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Context and background

Main goal

My main goal with this talk is to discuss the global differential geometry and
topology of four-dimensional universal supergravity and its application to U-duality.

Our goal is to understand the mathematical structure of universal supergravity, in
the sense of characterizing the underlying geometric topological object on which
the theory is formulated in terms of globally defined differential operators acting
on prescribed infinite dimensional spaces and study its mathematical applications.

Key ingredient

The implementation of the DSZ integrality condition of universal supergravity in
terms of the appropriate sheaf cohomology and its geometric interpretation.
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Context and background
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Map, J. Geom. Phys. 23, 1997.
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B438, 1995.
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Context and background

Ungauged supergravity in four dimensions

Four-dimensional supergavity is a supersymmetric theory of gravity that plays a
prominent role in the description of the effective dynamics to Type-Il string theory
compactified on a Calabi-Yaus or certain conformally balanced complex manifolds.

o Kihler manifolds and moduli spaces in algebraic geometry.
o Projective special Kahler geometry and Quaternionic-Kihler manifolds.
o Maps of special type into complex and Quaternionic-Kihler manifolds.

@ Homogeneous spaces and exceptional Lie groups.

Spinorial Lipschitz structures and differential spinors.

Gauge-theoretic moduli problems and dynamical systems.

@ Evolution flows and initial data sets.

These ingredients appear in local supergravity and give rise to open mathematical
problems and potential applications in differential geometry/topology.
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Context and background

Procedure

Constructing a global geometric model of supergravity requires:

@ Determining its configuration space in terms of connections and global
sections of the appropriate fiber bundles (submersions, gerbes or algebroids,
among others) equipped with the appropriate geometric structures.

@ Determining the equations of motion and Killing spinor equations of the
theory in terms of global differential operators acting on the corresponding
spaces of sections (sophisticated spinorial Lipschitz structures required!).

© Determining the automorphism group of the system of partial differential
equations defining the theory: U - duality!.
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Context and background

Developing the mathematical formulation of supergravity allows to:

@ Study geodesic extensions and completeness of supergravity solutions.

@ Study of the Cauchy problem and evolution flow of supersymmetric
configurations, evaluating well-posedness and short-time existence.

© Study the moduli space of its supersymmetric solutions, and in particular the
moduli of supersymmetric initial data on a Cauchy hypersurface.

@ Potential applications of supersymmetric initial data sets to the construction
of smooth invariants on low-dimensional manifolds.

@ Compute and characterize the continuous and arithmetic U-duality groups.
@ Understand the topology and geometry of supergravity U-folds.

@ Construct the universal c-map.
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Toy model: Maxwell theory

Consider the vacuum Maxwell equations on (U, g) with U C R* contractible:
d*,dA=0 & dxF=0, dF=0

for A€ Q'(U) and F € Q2(U) respectively. These two systems are equivalent: A
and F = dA well-defined modulo gauge transformations.

Suppose we want to promote this formulation to an oriented Lorentzian four-
manifold (M, g) of arbitrary topology. Which formulation do we choose?

© Formulation d *; dA = 0 with A € Q'(M) is insufficient: Dirac’s monopole!!
© Formulation d *; F = 0 is more general since F € Q%(M) = F = dA.

Issue resolved: we go for formulation (2). This is however also problematic:

Aharonov-Bohm effect!!
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Toy model: Maxwell theory

There is a way to solve this conundrum: implement Dirac quantization. An element
F € Q% (M) defines a real cohomology class in H*>(M, R). Consider the full lattice:

L := j(H*(M,Z)) c H*(M,R),

and restrict the space of field strengths to those satisfying 5= [F] € L. Then, Weil's
Theorem states that for every such element w there exists a principal U(1)with
connection A such that w = Fa: Maxwell theory is promoted to a theory of
connections on a principal bundle, whose holonomy takes care of the Aharonov-
Bohm effect and which may not exist as globally defined potentials on M!

We want to do the analog construction for the universal bosonic sector of four-
dimensional ungauged supergravity, which also contains an abelian gauge theory.

Goal: Dirac-Schwinger-Zwanziger integrality condition in universal supergravity!
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Local universal supergravity

The local Lagrangian of ungauged supergravity

Fix contractible open set U C R*. The bosonic sector of unaguged four-
dimensional supergravity on U is defined by the following Lagrangian:

L= =5+ Gj($)0a¢'0°¢ + Ras(¢)Faap g Fix ™ + Ins(¢)FaapFa ™
where ¢': U = R, i =1,...,ns, are (scalar fields) and:
FM=dA" e Q*(U), A=1,...n,,

are the field strengths of the local gauge fields A" € Q' (V).

e R:V — Mat(n,,R), Z: V — Mat(n,,R), R(¢p) :==Ro¢, Z(¢) :=To .
e Variables of the theory: (g, #', A"); G; and Zxs positive definite.

e The scalar couplings Gj; are considered as a Riemannian metric on the scalar manifold.

First big question: what are the A" mathematically?
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Local supergravity

Local universal supergravity is uniquely determined by a choice of Riemannian met-
ric G on V, and matrix valued functions R and Z. The matrix Z generalizes the
inverse of the squared coupling constant appearing in ordinary four-dimensional
gauge theories, whereas R generalizes the theta angle of quantum chromodynam-
ics. The functional S; can be naturally written as a sum of three pieces:

SI=S/+S;+5S/,

where:

@ S} <> Einstein-Hilbert term <+ Theory of Einstein metrics.
@ Sj < scalar sector <+ Theory of wave (harmonic) maps.

o S/ > gauge sector <> Yang-Mills-like theory.

Hence, bosonic supergravity simultaneously involves three classical theories in
physics, coupling the Einstein-Hilbert term to a non-linear sigma model with Rie-
mannian target space (V,Gj) and to a given number of abelian gauge fields.
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Supersymmetry constraints

Interludio: scalar manifolds four-dimensional supergravity.

The scalar manifolds that can appear in ungauged four-dimensional supergravity
are highly constrained by supersymmetry, as the following table indicates.

Number of supersymmetries Isometry type of (V,Gj)
N=1 My
N =2 Mpsk X Mok
N =3 SU(3, n)/S(U(3) x U(n))
N =4 SU(1,1)/U(1) x SO(6, n)/S(O(6) x O(n))
N =5 SU(1,5)/S(U(1) x U(5))
N =6 SO*(12)/U(1) x SU(6)
N=¢8 Er/SU(8)/Z2)

Table: Local isometry type of the scalar manifolds of four-dimensional supergravity

The period matrices are also given in terms of very specific formulas dictated by
supersymmetry, and are yet to be mathematically understood!
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Geometric interpretation of the gauge sector

The Maxwell equations contain the key information that we shall need in the following:
VE(Raz(9)(+F2)™ + Inz(4)(FX)™) = 0

Define the period matrix map N := R+ iZ: V — SH,,: local supergravity completely
determined by a pair (G,N) on (U, V).

Since U is contractible we consider closed two-forms F* € Q2(U,R™) as variables
of the Maxwell equations. Condition dF = 0 ensures F = dA for A unique modulo
local gauge transformations. Denoting by Conf. the set of all triples (g, ¢, F)
where F is a closed two-form valued in R" we have a canonical bijection:

Conf

~

where (g1, ¢1,A1) ~ (g2, ¢2,A2) if g1 = g2, $1 = ¢2 and A; = Az + df for a
vector valued function f € C*°(U,R"). Reformulation of the Maxwell equations:

= Conf., (g,¢,[A]) = (g, 9, Fa),

dF =0, d(R(p)F) = d(Z(¢) = F),

with variables in Conf..
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Geometric interpretation of the gauge sector

Given a period matrix map N: V — SH(n,) we define a map:
Gu': Confc — Q*(U,R™), (g,9,F) — Gn(g, o, F) :=R(¢)F —I(¢)* F,
The Bianchi identities and Maxwell equations reduce to:
dF =0, dGn(g,9,F) =0,
which in turn can be equivalently written simply as:
dVn(g,¢,F) =0,
where V: Conf, — Q%(U,R?*™) denotes the map defined by:

Conf. > (g,¢, F) — Vn(g, ¢, F) = (GN(g,:-@ F)) e (U, R*™).

Note that Vx(g, ¢, F) is valued in R*™ whereas F is valued in R™.
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Geometric interpretation of the gauge sector

Not every R®™ valued two-form is in the image of Vi : Conf. — Q*(U, R?™).

A vector valued two-form V € Q*(U,R®*™) can be written as:

V=Vn(g ¢ F)= (GN(g,jdn F)> ’

for a certain (G,N) and (g, ¢, F) iff gV = —F(¢)(V), where J: V — Gl(2n,,R) is the
matrix-valued map defined as follows in terms of N := R + iZ: V — SH,, :

-I'R 7t
J = (—I—RI“R RI_1> : V = GI(2n,,R),

and J(¢) :== J o ¢: U — GI(2n,,R). In particular, we have J° = —1.

The matrix-valued map J: V — GI(2n,,R) can be understood as a fiber-wise complex
structure on the trivial vector bundle of rank 2n, over V.
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Geometric interpretation of the gauge sector

Equation %,V = —J(¢4)(V) is known as the twisted self-duality condition. The
following proposition gives its geometric interpretation, which in turn hints at the
global geometric interpretation of the twisted self-duality condition.

Let w be the standard symplectic form on R*". A matrix-valued map J: V — Aut(R>")
can be written as:

. IR '\ 2n
J = (—I—RI*IR RI”) 7 = Ami{IE)

for a local (N') if and only if J|, is a compatible taming of w for every p € V.

A complex structure J on R*™ is said to be a compatible taming of w if:

w(J1,J&) =w(&, &), ¥V &, & € R?™, w(, JE) >0, V £ e R*™\ {0} .
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Geometric interpretation of the gauge sector

Definition

A taming map J on V is a smooth map J: V — Aut(R®*™) such that J|, is a taming
on R?™ with respect to the standard symplectic structure on R?™,

One-to-one correspondence between taming maps and period matrix maps!

Definition

The configuration space Conf(G, J) of the local bosonic supergravity determined by
(G,J) on (U, V) is:

Conf(G,7) :={(g, ¢, V) | %V =—-T(¢)(V)}
Solution space Sol(G, J) C Confy(G, J). Maxwell equations dV = 0, V € Q*(M,R?™).
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The local U-duality group

Duality transformations of the local theory are crucial to construct the global
geometric formulation of the universal sector of bosonic supergravity.

e A duality transformation is a symmetry of the local supergravity equations which do
not involve diffeomorphisms of U and that may not preserve the action functional.

e Extends to supergravity the well-known electromagnetic duality transformations
occurring in standard electromagnetism and are key for its connection to string theory.

First recall that (f,2() € Diff (V) x Sp(2n.,R) has a natural action:
Ara: Lor(U) x C(U, V) x Q2(U,R*™) — Lor(U) x C*(U, V) x Q2(U,R>™)
(8:¢,V) =~ (g, f oo, AV),

This action does not preserve in general Confy(G, J) of the local supergravity associated
to a given local electromagnetic structure (G, J).

C. S. Shahbazi UNED - Madrid, Reino de Es|The differential topology and geometry of uni



The local U-duality group

The failure of Diff(V) x Sp(2n.,R) to preserve the configuration space of a given
local supergravity determined by (G, J) can be precisely characterized.

For every (f,2) € Diff (V) x Sp(2n,,R), the map Ar g induces by restriction a bijection:
A Conf(G,J) — Conf(£.G,T4),
such that it further restricts to a bijection of the corresponding spaces of solutions:

Ara: Sol(G, T) — Sol(£.G, L),

where f.G is the push-forward of G by f: V — V and Ji := A (T o f1)A!

Diff (V) x Sp(2n,,R) defines a correspondence between different theories!

C. S. Shahbazi UNED - Madrid, Reino de Es|The differential topology and geometry of uni



The local U-duality group

Let (f,21) € Diff(V) x Sp(2nv,R) such that f € Iso(V,G) and:
Ja=A(TofHAt=7.

Then Af o : Conf(G, J) — Conf(G, J) is a bijection that preserves Sol(G, [J).

We define the local U-duality group of the supergravity theory defined by (G, J)
precisely as the subgroup of Diff (V') x Sp(2n,,R) preserving Conf(G, J).

Definition
The local electromagnetic U-duality group, or U-duality group for short, is:

U(G,J) == {(f,A) € Iso(V,G) x Sp(2n,,R) [ AT A =T of} .

The U-duality group should be trivial for all interesting supergravities! Not the case!!
The opposite is true: for A/ > 2 the U-duality group is as large as it can be!
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The local U-duality group

Define Stabs(7) := {2 € Sp(2n,,R) | AT A = T}. Then:
1 — Stabsp(J) — U(G,J) — Isop(V,G) — 1,

where Iso,(V,G) C Iso(V, G) is the subgroup of the isometry group of (V,G) that is
obtained by projecting U(G, J) onto its first component. On the other hand:

U(g7*7) - Sppr(znV7R) - SP(QI‘IV,R), (va() — Qly

fits into 1 — Stabiso(J) — U(G,J) — Sp,(2nv, R) — 1, where
Stabrso(J) := {f € Iso(V,G) | Jof =T}

If Stabsp(J) = Id then U(G, J) = Isonr(V,G) C Iso(V, G). If Stabise(J) = Id is trivial
then U(G, J) < Sp(2n,,R) canonically. If both Stabs,(J) = Id and Stabis(J) = Id
then the U-duality group U(G, J) is canonically isomorphic to a subgroup of Iso(V/, G)
embedded in Sp(2n,, R).

The previous corollary puts on firm grounds the validity of a folklore statement made in
the literature which states that the U-duality group consists of a copy of the isometry
group of the scalar manifold into the appropriate symplectic group.
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The geometry and topology of supergravity

We want to construct a global geometric model that reduces locally to local supergravity.
Guding principle

Supergravity needs to implement the local electromagnetic U-duality groups in the
sense that it must be possible to understand the theory as being the result of gluing
the local supergravity theories 4 /a Cech. This point is especially important for
the resulting theory to describe supergravity U-folds in a geometric context and to
make contact with the string theory and its compactification backgrounds.
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The geometry and topology of supergravity

The underlying topological structure.

Instead of going through the process of constructing geometric bosonic supergrav-
ity | will present it in its final form. Supergravity is uniquely determined by:
@ A scalar bundle (7,7, G), a submersion 7: X — M equipped with a flat
Ehresmann connection and a a vertically Riemannian metric G.
o A duality bundle A := (S,w, D) consisting of a symplectic vector bundle
(S,w) over X equipped with a flat symplectic connection D.
o A compatible taming J on (S,w, D) preserved by the extended parallel
transport of H and D on the ddouble fibration structure S — X — M.

Definition

Electromagnetic structure © = (S,w, D, J).
Scalar-electromagentic structure ¢ = (7, H, G, ©).
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The geometry and topology of supergravity

An uncountable infinity of inequivalent supergravities.

Isomorphism classes of duality structures on a fixed scalar manifold M are in
general not unique and depend on the fundamental group of M. The classical
theory of flat vector bundles shows that isomorphism classes of duality structure
are in one to one correspondence with a character variety:

Hom(71(X),Sp(2n,R))/Sp(2n,R) .

The fact that character varieties yield in general continuous moduli spaces
suggests the possibility of constructing an uncountable infinity of inequivalent
geometric bosonic supergravities which are however all locally equivalent!
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The geometry and topology of supergravity

Self-duality in four Lorentzian dimensions
For every Lorentzian metric g on M and scalar section ¢ we define:
*g 00 NT"MRS? - AT"M ® S§¥
by *¢,s¢ (@®s) = *;a®J¥(s) on homogeneous elements. Restricted to two-forms:
*z,ﬂ =1
Novel notion of (anti) self-duality in four Lorentzian dimensions!

We can split the bundle of two-forms taking values in ST in eigenbundles of x, s¢:

NTMeS8?=(NT"Ma8%): o (NNT*MeS%)-

Definition

Elements of Q3 (M, S?) are positive polarized self-dual two-forms and elements.
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The geometry and topology of supergravity

The configuration space.

The configuration space of the unique classical universal supergravity determined
by ® = (m,#,G,©) is given by:

@ A Lorentzian metric g on M.
o A scalar section ¢: M — X.

e A positively-polarized two-form V € Q3 (M, S?) with values in S®.
We obtain the global definition of the configuration space of the theory:
Conf(M, ®) := {(g,%,V) | g € Lor(M), ¢ € T(x), V € Q1(M,5%)} .

Classical configuration space, it is given in terms of field strengths!

Note the coupled nature of the configuration space!
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The geometry and topology of supergravity

The fundamental form

In ® we do not require D to be compatible with 7, which is crucial for applications.

Definition

The fundamental form Wg of © is Vg :=: DJ € Q'(X, End(S)).

Weo measures the local deviation of the gauge sector of the supergravity theory
defined by © from a Maxwell theory with n, gauge fields with constant gauge
couplings and theta angles.
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Classical supergravity

Definition

Let ® be a scalar-electromagnetic bundle. The classical supergravity determined by @ is
defined by the following set of differential equations:

@ The Einstein equations:
Ric? — SR® = £ Ty (¢30) — 95G +2V Qo V,
@ The scalar equations:
Vd'p = %(V, (V?)*oy).
o The electromagnetic (or Maxwell) equations:
dp-V =0,
with variables (g, ¢, V) € Conf(M, ®).

Recall that:
dpe: Q*(M,S8%) — Q*(M,S%), d“p € Q(M,V¥).
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The classical U-duality group

We identify the classical U-duality group of supergravity associated to ¢ with:
U(P) :={v € Autx(S) |wu=w, Dy =D, Hu, Gu =G, Tu=T},
which fits in the short exact sequence:
1 — Autp(©) — U(P) — Auty(m, H,G) > 1,

whence U(®) is finite-dimensional and it can markedly differ from the U-duality
group of the local theory usually considered in the literature!

U(®) preserves Sol(M, ).

This theorem established the classical U-duality group as being a solution-
generating technique in classical universal supergravity, as expected.
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From field strengths to gauge potentials

We introduced classical supergravity as a theory of triples (g, ¢, V) € Conf(®),
hence the gauge sector is a theory of field strengths — problematic experimentally.

We refine the construction as to obtain a theory of potentials, not field strengths.

@ Question: How do we identify the right notion of gauge potential?

o Answer: the DSZ integrality condition in classical supergravity.

Key idea: the DSZ integrality condition in classical supergravity defines a locally
constant sheaf and a sheaf cohomology class that, when interpreted geometrically,
determines a class of principal bundles whose connections are our gauge fields.

Gauge potentials <> connections on Siegel bundles
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The DSZ integrality condition in classical supergravity

Given the classical supergravity theory determined by ® we proceed as follows.

e Fix an integral duality structure;a bundle A of full lattices in S, preserved by
the parallel transport of D and such that w is integer-valued on A.

@ Associated to ® and A we construct a smooth bundle X := S/A of polarized
Abelian varieties endowed with a flat Ehresmann connection whose parallel
transport preserves the symplectic structure of the torus fibers.

The sheaf Gy of smooth flat sections of X fits into a short exact sequence of sheaves of
Abelian groups defined on M for every scalar section ¢: ['(7):

0—6¢ e 6% -+ 6% —0.
This induces a long exact sequence in sheaf cohomology:
= HY(M, 8%) — HA (M, &5) 25 L (M, 6%) = H* (M, &%) — .
In particular: jf: H*(M, &%) — H*(M, &%).
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The DSZ integrality condition in classical supergravity

The charge lattice of the integral scalar-electromagnetic bundle (=, A) relative to ¢ is:
Lx ::jf(H2(M7 &%) C HZ(M>6£)a

Elements of this lattice are integral cohomology classes.

Compare to j(H*(M,Z)) C H*(M,R) in Maxwell theory!

It can be shown that LY is a full lattice in H*(M, &%). Given (®,A), we implement DSZ
integrality condition by restricting the configuration space Conf(®) to the subset:

Conf(®,A) C Conf(®)

obtained by imposing an integrality condition on the elements of Conf(®). That is, we
refine the configuration space and we select only those elements that admit the
appropriate geometric interpretation in terms of gauge potentials.
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The DSZ integrality condition in classical supergravity

Definition

The integral configuration space Conf(®, A) defined by (¥, A) is the set:
Conf(®,A) := {(g,s,F) € Conf(P,A) | [F] € 2nLy} .

Integral solution space Sol(®, \) def- Sol(®) N Conf (P, A).

Definition
The framed integral configuration space Conf(, ®, \) with framing U of the classical
supergravity associated to (®,A),where B € H*(X, G,), is:

Conf(T, ®,A) := {(g,s, F) € Conf(®) | [F] = 277 (T¥)} ,

Framed integral solution space: Sol(, ®,\) := Sol(®) N Conf (Y, d, A).

Arithmetic U-duality group U(®,A) := {u € U(P) | u(L) = L}.
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The DSZ integrality condition in classical supergravity

Let (®, ) be an integral scalar-electromagnetic bundle of type t. For every framed
integral configuration space Conf (0, ®,\) there exists a polarized Siegel bundle (P, J)
on M such that (A, \) = ad(P) and its twisted Chern class satisfies c(P;) = 0.

Given t € Div™, we define Aff := U(1)®>™ x Sp,(2n,Z) with multiplication rule:
(a1,71) (a2,72) = (a1 + 1132,71%2), Va2 € U(L)*™, V¥ 71,72 € Sp,(2ny,Z).

The Siegel modular group Sp,(2n,,Z) is the automorphism group of the standard
integral symplectic space (R®™, w,,, A¢) of type t and A := Z™ @ M, 7 C R*™. Aff;
coincides with the group of affine symplectomorphisms of the 2n,-dimensional symplectic
torus (R®™ /A, Q), where Q is induced by wp, .

Definition

A Siegel bundle Py of type t is a principal bundle over M with structure group Affy.
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Universal four-dimensional supergravity

Definition
Let ¢ := (M, G, P, J) be a polarized scalar-Siegel bundle over M. The configuration
space of the supergravity defined by ( is the set:

Conf(¢) = {(g,s,A) | g € Lor(M), s € (w), A€ Conn(P;)} .

The universal bosonic sector of four-dimensional supergravity determined on M by ( is
defined through the following differential system for triples (g, s,.A) € Conf(():

o The Einstein equations: Ric® — §R® = 1Tr,(stG) g — s¢G + 2Fa Qgs Fa.
@ The scalar equations: V®&*)dCs = %(*]—"A7 VS Fa)e.5
o The Maxwell equations: %, 7sFa = Fa.

A is a connection on a principal bundle whose isomorphism type may depend on s € I'(7)!

v
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Universal four-dimensional supergravity

The Maxwell equations of the bosonic gauge sector of local supergravity are given
by a system of second-order partial differential equations for a number n, of elec-
tromagnetic local gauge potentials whose curvatures satisfy a generalization of the
Maxwell equations. This is locally equivalent to *g,7sFa4 = F.a, which reduces
locally to a system of first-order partial differential equations for 2n, local gauge
fields, both electric and magnetic.

The Bianchi identity and polarized self-duality condition imply the following second
order differential equation of Yang-Mills type:

dps *g,7 Fa=0.

These differ from the usual Yang-Mills equations since F4 involves both electric
and magnetic degrees of freedom while the equations themselves involve the pulled-
back taming J7°.
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The gauge U-duality group

Definition

The gauge U-duality group U(C) of the polarized scalar-Siegel bundle ¢ is:
U(C) = {UE AUtﬂ(Pt) | Hu :H7 gu:g7 JL’ :'—7}

1 — Autp(P, J) = U(C) — Autp(m,H,G) — 1
We have a canonical morphism of groups: ad: U(¢) — U(®({)) given by u — ad,.

Definition

The continuous subgroup of the gauge U-duality group U(¢) is C(¢) := ker(ad) C U(C)

C(¢) = U(C) =5 U(#(¢))

Elements in C(¢) behave as gauge transformations on a torus bundle and therefore act
trivially on the curvature of any connection. In fact, the arithmetic U-duality group
identifies with those gauge transformations of P; that act non-trivially on the adjoint
bundle of P;. This shows that U-dualities in supergravity are but gauge transformations
of the underlying Siegel bundle, a fact that elucidates their geometric origin.
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Further directions and open problems

@ Implement supersymmetry in universal supergravity: this implies in particular
implementing the Kihler-Hodge, projective Special-Kahler, QK and Cartan
geometries in the scalar bundle as well as the appropriate global constraints (not
understood mathematically!) on the polarization of the underlying Siegel bundle.

@ Study the Cauchy problem for the globally hyperbolic solutions of universal
supergravity and the associated flow equations.

© Study the supersymmetric initial data sets and their potential application in
low-dimensional differential topology.

@ Characterize the arithmetic U-duality groups occurring in supergravity.

@ Implement Dirac quantization on a general geometric supergravity, developing the
appropriate model in differential cohomology.

@ Gauge universal supergravity and explore its global higher geometry by applying the
theory developed by Kim, Saemann and others.

@ Explore a geometric model for Freudenthal duality in terms of the taming J.

@ Investigate the supersymmetric gravitational waves of geometric supergravity and
study their geodesic completeness, causality and boundaries.

@ Construct the universal supergravity c-map.
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Thanks!
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