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The purpose of this talk today is to reconcile two different perspectives  
on two-dimensional pure Yang-Mills theories:

1) Decomposition

Two-dimensional pure Yang-Mills = ⊕R (Trivial (invertible) QFTs )

Executive summary: 
Decomposition appears to predict a one-form symmetry in the Gross-Taylor string theory.

2) Gross-Taylor expansion

Two-dimensional pure Yang-Mills = target-space field theory of a string field theory

(Gross, Taylor ’93; Cordes, Moore, Ramgoolam ’94, …)

(Hellerman, Henriques, Pantev, ES, Ando ’06; …  
…, Nguyen, Tanizaki, Unsal ’21, …)



Plan of the talk:

1) Review decomposition

Focusing on examples of  orbifolds & 2d pure YMSn

3) Proposed resolution
The branched cover/SFT interpretation will also be compatible 

if the GT string is required to have a novel symmetry.

2) Gross-Taylor and two puzzles

First rewrite pure YM partition function as a sum of  orbifolds, 
then, interpret those orbifolds as branched covers and then as SFT.

Sn

We’ll see that the  orbifolds interlace with decomposition perfectly, 
but two puzzles arise in the branched covers/SFT interpretation.

Sn

Logic of Gross-Taylor:



When this happens, we say the QFT `decomposes.’ 
Decomposition has been explored in many examples, as I’ll quickly review. 

Today:  understand decomposition in the Gross-Taylor expansion of 2d pure YM.

In  spacetime dimensions, 
if a local quantum field theory has a global -form symmetry, 

it is equivalent to a disjoint union of other local QFT’s, 
known in this context as `universes.’

d > 1
(d − 1)

We call this decomposition.
(2d: Hellerman et al ’06, …;  

d>2: Tanizaki-Unsal ’19, Cherman-Jacobson ’20, …)

A short review of decomposition

More on decomposition…



What does it mean for one local QFT to be a sum of other local QFTs?

1) Existence of projection operators
The theory contains topological local operators    such that Πi

Correlation functions:
⟨𝒪1⋯𝒪m⟩ = ∑

i

⟨Πi𝒪1⋯𝒪m⟩ = ∑
i

⟨(Πi𝒪1)⋯(Πi𝒪m)⟩ = ∑
i

⟨�̃�1⋯�̃�m⟩i

(Hellerman et al ’06)

2) Partition functions decompose

Z = ∑
states

exp(−βH) = ∑
i

∑ exp(−βHi) = ∑
i

Zi

(on a connected spacetime)

ΠiΠj = δi,jΠj ∑
i

Πi = 1 [Πi, 𝒪] = 0

Operators  simultaneously diagonalizable; state space = Πi ℋ = ⊕i ℋi



QFT(       gauge theory)  =G�
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QFT (G/K−gauge theory w/ discrete theta angles)

(Hellerman et al ’06)

where  denote discrete theta angles (w2)±

a

char0s K̂
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Example:  pure  gauge theory = sum  pure gauge theoriesSU(2) SO(3)+ + SO(3)−

Statement of decomposition (in this example):

Perturbatively, the ,  theories are identical  
— differences are all nonperturbative.

SU(2) SO(3)±

S’pose have -gauge theory,  semisimple, with finite central  acting trivially. G G K ⊂ G

Decomposition in 2d gauge theories

Example:



QFT(       gauge theory)  =G�
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QFT (G/K−gauge theory w/ discrete theta angles)

(Hellerman et al ’06)

where  denote discrete theta angles (w2)±

a

char0s K̂
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Example:  pure  gauge theory = sum  pure gauge theoriesSU(2) SO(3)+ + SO(3)−

 instantons (bundles)  instantons (bundles)SU(2) ⊂ SO(3)

The discrete theta angles weight the non-   instantons so as to 
cancel out of the partition function of the disjoint union.

SU(2) SO(3)

Summing over the  theories projects out some instantons, giving the  theory.SO(3) SU(2)

Statement of decomposition (in this example):

S’pose have -gauge theory,  semisimple, with finite central  acting trivially. G G K ⊂ G
As discussed previously, has -form symmetry (specifically, ).1 BK

Decomposition in 2d gauge theories

Example:



(Hellerman et al ’06)

Formally, the partition function of the disjoint union can be written

=
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Z
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✓
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Disjoint union

projection operator
Z
[DA] exp(�S)

0

@
X

✓2K̂

exp


✓

Z
!2(A)

�1

A
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Z =

where we have moved the summation inside the integral.

QFT(       gauge theory)  =G�
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QFT (G/K−gauge theory w/ discrete theta angles)
a

char0s K̂
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Statement of decomposition (in this example):

S’pose have -gauge theory,  semisimple, with finite central  acting trivially. G G K ⊂ G
As discussed previously, has -form symmetry (specifically, ).1 BK

This is an interference effect between universes:   multiverse interference

Decomposition in 2d gauge theories

Example:



(Hellerman et al ’06)

=
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projection operator
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Decomposition in 2d gauge theories



One effect is a projection on nonperturbative sectors:

=
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Disjoint union

projection operator

Schematically, 
two theories combine to form a distinct third:

Disjoint union of  
several QFTs / universes

`One’ QFT with a restriction on 
nonperturbative sectors 

= `multiverse interference’

=

universe universe

multiverse interference effect

(Hellerman et al ’06)

( )SO(3)+ ( )SO(3)−

( )SU(2)

Decomposition in 2d gauge theories



Since 2005, decomposition has been checked in many examples in many ways.  Examples:

• Susy gauge theories w/ localization
• Nonsusy pure Yang-Mills ala Migdal

• Orbifolds:  partition f’ns, massless spectra, elliptic genera
• Open strings, K theory

• Versions in d-dim’l theories w/ (d-1)-form symmetries (Tanizaki, Unsal, ’19; Cherman, Jacobson ’20)

• GLSM’s:  mirrors, quantum cohomology rings (Coulomb branch)
(T Pantev, ES ’05; Gu et al ’18-’20)

(ES 1404.3986)

(T Pantev, ES ’05; Robbins et al ’21)

(Hellerman et al hep-th/0606034)

(ES ’14; Nguyen, Tanizaki, Unsal ’21)

• Adjoint QCD2  (Komargodski et al ’20)

This list is  
incomplete; 
apologies to  

those not listed.

• Nonperturbative constructions of geometries in GLSMs (Caldararu et al 0709.3855, Hori ’11, …
• Predictions for Gromov-Witten theory (checked by H-H Tseng, Y Jiang, E Andreini, etc starting ’08)

Applications include:

• Elliptic genera (Eager et al ’20) • Anomalies in orbifolds (Robbins et al ’21)

• Sigma models with target stacks & gerbes (T Pantev, ES ’05)

…, Romo et al ’21)

• Numerical checks (lattice gauge thy) (Honda et al ’21)

Today: decomposition in the Gross-Taylor string….



Two examples of decomposition will play an important role in this talk:

• 2d pure Yang-Mills (decomposing to invertibles)

• 2d Dijkgraaf-Witten theory

The role of the first is clear:   
we’re trying to reconcile decomposition of 2d pure Yang-Mills  

with its description ala Gross-Taylor.

Now, part of the Gross-Taylor story is a rewriting of the 2d pure YM partition function as a sum 
of 2d Dijkgraaf-Witten theories, so its decomposition will also play a role.

We’ll discuss each in turn.



Recall from (Migdal ’75, Drouffe ’78, Lang et al ’81, Menotti et al ’81, Rusakov ’90)  
that 2d pure Yang-Mills has been solved exactly.

The partition function  on a closed Riemann surface  of genus   and area  isZ(Σ) Σ p A

Z(Σ) = ∑
R

(dim R)2−2p exp (−g2
YM

A
2

C2(R))
where  is an irrep of the gauge groupR

 is the quadratic Casimir of C2(R) R

How does it decompose? ….

Example:  2d pure Yang-Mills (decomposing to invertibles)



Example:  2d pure Yang-Mills (decomposing to invertibles)

Recall from (Migdal ’75, Drouffe ’78, Lang et al ’81, Menotti et al ’81, Rusakov ’90)  
that 2d pure Yang-Mills has been solved exactly.

The partition function  on a closed Riemann surface  of genus   and area  isZ(Σ) Σ p A

Z(Σ) = ∑
R

(dim R)2−2p exp (−g2
YM

A
2

C2(R))
Decomposes into theories associated with irreps :R

ZR = (dim R)2−2p exp (−g2
YM

A
2

C2(R))Z(Σ) = ∑
R

ZR

How to interpret those constituent theories?…

(It can also decompose along center symmetries,  
but the decomposition along irreps will be the focus of the rest of this talk.)



2d pure YM is a disjoint sum of trivial (`invertible’) field theories, 
associated to the irreps :R

The constituent invertible field theories are ~ classical theories,  
with 1d Fock space (only vacuum), indexed by counterterms:

S = ∫Σ
−g (aR + b) Z = exp (aχ(Σ) + b ⋅ Area)

(Nguyen, Tanizaki, Unsal ’21)

so the universe associated to irrep  (partition function ) R ZR

a(R) = ln dim R, b(R) = −
g2

YM

2
C2(R)has

Z(Σ) = ∑
R

ZR ZR = (dim R)2−2p exp (−g2
YM

A
2

C2(R))

when interpret as invertible field theory. Next: Dijkgraaf-Witten…

Example:  2d pure Yang-Mills (decomposing to invertibles)



Example:  2d Dijkgraaf-Witten theory

This is a fancy name for an orbifold of a point:     for  finite[point/G] G

In cases w/o discrete torsion, operators are twist fields associated to conjugacy classes.

Correlation functions:  On a Riemann surface  of genus ,Σ p

⟨𝒪1⋯𝒪n⟩ =
1

|G | ∑
s1,t1,⋯,sp,tp∈G

δ (𝒪1⋯𝒪n

p

∏
i=1

sitis−1
i t−1

i )

where δ(g) =
1

0

g = 1

g ≠ 1{
For example, the partition function is

Z =
1

|G | ∑
s1,t1,⋯,sp,tp∈G

δ (
p

∏
i=1

sitis−1
i t−1

i ) How does it decompose? ….



Example:  2d Dijkgraaf-Witten theory

This theory also decomposes into a disjoint sum of trivial (`invertible’) field theories, 
associated to the irreps .r

Projection operators  exist:Pr Pr =
dim r
|G | ∑

g∈G

χr (g−1) g
This can also be written 

as a sum over conjugacy classes, 
but this form is simpler.

These are projection operators in the sense that      ,PrPs = δr,sPr

⟨𝒪1⋯𝒪n⟩r = ⟨𝒪1⋯𝒪n Pr⟩ =
1

|G | ∑
s1,t1,⋯,sp,tp∈G

δ 𝒪1⋯𝒪n (
p

∏
i=1

sitis−1
i t−1

i ) Pr

Correlation functions in the universe associated to irrep  arer

Note ⟨𝒪1⋯𝒪n⟩ = ∑
r

⟨𝒪1⋯𝒪n⟩r

∑
r

Pr = 1

Next: Gross-Taylor…



Next, we turn to the Gross-Taylor expansion of 2d pure  Yang-Mills.  SU(N)

They argued that at large , this is a target-space SFT of some other 2d string theory,  
via a series expansion of the partition functions.

N

Let’s review.  On a closed Riemann surface  of genus  and area ,ΣT p A

Z (ΣT) = ∑
R

(dim R)2−2p exp (−g2
YM

A
2N

C2(R))
Strictly speaking, to get the right large  asymptotics, we need to write irreps  in terms 

of coupled representations.  For sake of time, and b/c it doesn’t significantly affect our result, 
I’ll gloss over that step.

N R

Basic strategy:  rewrite the sum over  irrep data, 
as a sum over ’s and  irrep data, 

where  is the num’ boxes in Young tableau for irrep , 
and then interpret in terms of branched covers of 

SU(N)
Sn Sn

n R
ΣT



Z (ΣT) = ∑
R

(dim R)2−2p exp (−g2
YM

A
2N

C2(R))

(dim R(Y))m = ( Nn dim r(Y)
|Sn | )

m χr(Y) ((Ωn)m)
dim r(Y)

Expand the terms using Schur-Weyl duality:

where Young tableau associated with  irrep Y = SU(N) R

 irrep associated to  (and hence )r(Y) = Sn Y R = R(Y)

Ωn = ∑
σ∈Sn

NKσ−n σ

num’ cycles in the cycle decomposition of Kσ = σ ∈ Sn

Let’s rewrite in terms of irreps & characters of the finite symmetric group Sn

 data 
(fixed irrep )
SU(N)

R
 dataSn

num’ boxes in Young tableau n = Y



Z (ΣT) = ∑
R

(dim R)2−2p exp (−g2
YM

A
2N

C2(R))

Use the identity ∑
s,t∈G

χr (sts−1t−1) = ( |G |
dim r )

2

dim r to show

= Nnm ( dim r(Y)
|Sn | )

m+2p

∑
s1,t1,⋯,sp,tp∈Sn

χr ((Ωn)m∏p
i=1 sitis−1

i t−1
i )

dim r(Y)

(dim R(Y))m = ( Nn dim r(Y)
|Sn | )

m χr(Y) ((Ωn)m)
dim r(Y)

= Nnm ( dim r(Y)
|Sn | )

m+2p−1

∑
s1,t1,⋯,sp,tp∈Sn

δ ((Ωn)m(∏p
i=1 sitis−1

i t−1
i ) Pr(Y))

dim r(Y)

One more step….

(dim R(Y))m



Z (ΣT) = ∑
R

(dim R)2−2p exp (−g2
YM

A
2N

C2(R))

(dim R(Y))m

So far:

Use the identity
C2(R(Y))

N
= n +

2
N

χr(Y)(T2)
dim r(Y)

−
n2

N2

to write

(dim R(Y))2−2p exp (−g2
YM

A
2N

C2(R))
= Nn(2−2p) ( dim r(Y)

|Sn | ) ∑
s1,t1,⋯,sp,tp∈Sn

δ ((Ωn)2−2p(∏p
i=1 sitis−1

i t−1
i ) Pr(Y))

dim r(Y)
exp (−g2

YM
A
2

n)
+ subleading

= Nnm ( dim r(Y)
|Sn | )

m+2p−1

∑
s1,t1,⋯,sp,tp∈Sn

δ ((Ωn)m(∏p
i=1 sitis−1

i t−1
i ) Pr(Y))

dim r(Y)



Finally, we have the Gross-Taylor series expansion.

The partition function of two-dimensional pure  Yang-MillsSU(N)

Z (ΣT) = ∑
R

(dim R)2−2p exp (−g2
YM

A
2N

C2(R))
has now been rewritten in terms of ’s and  irrep data:Sn Sn

(dim R(Y))2−2p exp (−g2
YM

A
2N

C2(R))

+ subleading
Strictly speaking, we need to break up each irrep  into coupled reps; however, the analysis is nearly identical, 

and the expression above emerges as one of two chiral components.
R

Next: interpretation….

= Nn(2−2p) ( dim r(Y)
|Sn | ) ∑

s1,t1,⋯,sp,tp∈Sn

δ ((Ωn)2−2p(∏p
i=1 sitis−1

i t−1
i ) Pr(Y))

dim r(Y)
exp (−g2

YM
A
2

n)

 data 
(fixed irrep )
SU(N)

R  dataSn



(dim R(Y))2−2p exp (−g2
YM

A
2N

C2(R))

+ subleading

Let’s interpret:

Partition function of a single universe  
in the decomposition of 2d pure YM.

The RHS (above) is a sum of 2d Dijkgraaf-Witten correlation functions for group . 
In fact, note that the correlation functions have projectors  

— these are correlation functions in the universe associated to   ! 

Sn
Pr(Y)

r(Y)

Takeaway: the partition function of a single universe in the decomposition of 2d pure YM, 
is a sum of correlation functions in a single universe of 2d Dijkgraaf-Witten for  .Sn

Next: Gross-Taylor and 2d strings….Perfect match!

= Nn(2−2p) ( dim r(Y)
|Sn | ) ∑

s1,t1,⋯,sp,tp∈Sn

δ ((Ωn)2−2p(∏p
i=1 sitis−1

i t−1
i ) Pr(Y))

dim r(Y)
exp (−g2

YM
A
2

n)



So far:  written partition function of a single universe of 2d pure  Yang-Mills 
as a sum of correlation functions in a single universe of 2d Dijkgraaf-Witten for 

SU(N)
Sn

Next: interpret in terms of branched covers of the Riemann surface ΣT

Decomposition meshes perfectly!



Interpretation of  Dijkgraaf-Witten in terms of branched -coversSn n

For simplicity, let’s take the Riemann surface ΣT = S2

If there are no insertions, then, identify the cover with a disjoint union ∐
n

S2

An insertion of  corresponds to a branch point of monodromy ,  
that ties the  sheets of the cover together.
g ∈ Sn g

n

(Gross, Taylor ’93)

Let’s see some examples….



Interpretation of  Dijkgraaf-Witten in terms of branched -coversSn n

Examples:  ,  :  double covers of ΣT = S2 n = 2 S2

⟨1⟩ =

⟨g4⟩ =

= ∐
2

S2

= T2

⟨g2⟩ = = S2=
 as branched 

double cover of ; 
branch pts at poles, 

and wraps.

S2

S2

=



Let’s apply to the (original) Gross-Taylor expansion:

∑
R

(dim R(Y))2−2p exp (−g2
YM

A
2N

C2(R))

+ subleading

=
∞

∑
n=0

∑
r

Nn(2−2p) ( dim r(Y)
|Sn | ) ∑

s1,t1,⋯,sp,tp∈Sn

δ ((Ωn)2−2p(∏p
i=1 sitis−1

i t−1
i ))

dim r(Y)
exp (−g2

YM
A
2

n)
This is the expansion of the full YM theory — includes sum over all representations 

(so the projectors  sum out — we’ll return to them when we look at individual universes).Pr(Y)

Ωn = ∑
σ∈Sn

NKσ−n σ

Powers of :  N
n(2 − 2p) + ∑

j
(Kσj

− n) = nχ (ΣT) + ∑
j

(Kσj
− n)

= χ (ΣW) (Riemann-Hurwitz theorem)

where  is a branched -fold cover of ΣW n ΣT



Let’s apply to the (original) Gross-Taylor expansion:

∑
R

(dim R(Y))2−2p exp (−g2
YM

A
2N

C2(R))
=

∞

∑
n=0

∑
si,ti∈Sn

∞

∑
L=0

∑
v1,⋯,vL∈Sn

Nχ(ΣW) (#) δ v1⋯vL (
p

∏
i=1

[si, ti]) exp (−
A

α′ GT
n)

+ subleading
where

branched -fold cover of , branched over  pointsΣW = n ΣT L

α′ GT =
2

g2
YM

misc’ numerical factors, which match Euler char’ of space of maps# =

This is the form expected if 2d pure YM is the SFT of a sigma model , at large ΣW → ΣT N



Now let’s turn to the decomposition.

The partition function of a single universe of 2d pure YM is

(dim R(Y))2−2p exp (−g2
YM

A
2N

C2(R))
= ∑

si,ti∈Sn

∞

∑
L=0

∑
v1,⋯,vL∈Sn

Nχ( Σ̃ W) (#) δ v1⋯vL (
p

∏
i=1

[si, ti]) Pr(Y) exp (−
A

α′ GT
n)

+ subleading
• Restrict to single  irrep SU(N) R(Y)
• which fixes num’ boxes in Young diagram  for irrep  = covering map deg’n = Y R(Y)
• plus added factor of projector  in the delta functionPr(Y)

This means:
1) Sigma model is restricted to maps of a single degree ( )n
2) Presence of projector  implies add’l contributions not present previouslyPr(Y)



So, we have puzzles to explain in the expansion of a single YM universe:

1) Sigma model is restricted to maps of a single degree ( )n
2) Presence of projector  implies add’l contributions not present previouslyPr(Y)

In broad brushstrokes, both phenomena are typical in decomposition:

• Restrictions on instantons / nonperturbative sectors
• Individual universes can receive contributions which cancel out in sums over universes

However, the details here are more extreme:

• Restrictions are usually to a subset of instantons, not to a single instanton degree
• Here the extra contributions would expand possible worldsheets beyond smooth Riemann 

surfaces
Let’s examine in detail….

as we saw previously in the          example.SU(2) = SO(3)+∐SO(3)−



1) Sigma model is restricted to maps of a single degree ( )n

In a 2d NLSM, this is a restriction to (worldsheet) instantons of a single degree.

Furthermore,  
labelling field configurations by instanton number  

is typically just an artifact of a semiclassical expansion,  
and ordinarily does not have an intrinsic meaning in QFT.

This is more extreme than we ordinarily see in decomposition.

Proposal:  
the Gross-Taylor string has a symmetry for which map degree is a conserved quantity.

But map degree is a 2-form ( ),  
so such a symmetry would be either a 1-form or (-1)-form symmetry.

ϕ*ω



1) Sigma model is restricted to maps of a single degree ( )n

Proposal:  
the Gross-Taylor string has a symmetry for which map degree is a conserved quantity.

But map degree is a 2-form ( ),  
so such a symmetry would be either a 1-form or (-1)-form symmetry.

ϕ*ω

To make this more concrete, 
next I’ll walk through a related example, where precisely this happens: 

2d pure Maxwell theory.



1) Sigma model is restricted to maps of a single degree ( )n

2d pure Maxwell theory:

Pure Maxwell theory in any dimension has a global  (1-form) symmetry:BU(1)
A ↦ A + Λ

and Noether current , associated to operator Je = * F Uα(p) = exp(iα * F(p))

In 2d, it also has a magnetic (-1)-form symmetry,

with current , associated to operator Jm = F Uβ(Σ) = exp (iβ∫Σ
F)

So, the symmetries are of the same form as proposed for Gross-Taylor, 
making it a useful prototype….



1) Sigma model is restricted to maps of a single degree ( )n

2d pure Maxwell theory:

Z(Σ) = ∫ [DA]exp(−S) for S =
1

g2
YM ∫Σ

FμνFμν + iθ∫Σ
F

∝
∞

∑
n=−∞

exp (−
n2

g2
YMA

+ iθn) n ∼ c1 ∼ ∫ Fwhere

Decomposes into universes indexed by  (irreps of ), Poisson dual to .m U(1) n ∼ c1

After Poisson resummation,

Z(Σ) =
∞

∑
m=−∞

exp (−
g2

YMA
4

(θ + 2πm)2)
This is the form of the  

exact expression  
for pure YM.

(Paniak, Szabo ’02; Gross, Matytsin, ’94;  
Minahan, Polychronakos, ’93;  

Caselle et al ’93; Fine ’90)



1) Sigma model is restricted to maps of a single degree ( )n

2d pure Maxwell theory:

∝
∞

∑
n=−∞

exp (−
n2

g2
YMA

+ iθn)Z(Σ) =
∞

∑
m=−∞

exp (−
g2

YMA
4

(θ + 2πm)2)
Decomposes into universes indexed by  (irreps of ), Poisson dual to .m U(1) n ∼ c1

Partition function of a single universe is exp (−
g2

YMA
4

(θ + 2πm)2)
Analogue of the Witten effect:

Shifting    is equivalent to changing the universe:   θ ↦ θ + 2π m ↦ m + 1



1) Sigma model is restricted to maps of a single degree ( )n

2d pure Maxwell theory:

∝
∞

∑
n=−∞

exp (−
n2

g2
YMA

+ iθn)Z(Σ) =
∞

∑
m=−∞

exp (−
g2

YMA
4

(θ + 2πm)2)
This is a prototype for the Gross-Taylor proposal: 

there’s a decomposition, into universes indexed by , 
which is Poisson dual to the bundle degree.

m

In Gross-Taylor, we propose there exists a symmetry which allows us to pick out sectors of 
single map degree (single worldsheet instanton number), 

which is analogous.



1) Sigma model is restricted to maps of a single degree ( )n

So far, we’ve proposed that the Gross-Taylor string admits an extra symmetry.

Can that be seen directly?

There are (at least) 2 proposals in the literature for the Gross-Taylor string:

1) Cordes-Moore-Ramgoolam:  GT string = modification of A model TFT

Standard kinetic terms; localizes on holomorphic maps   {∂x = 0}

2) Horava:  GT string = twisted NLSM with nonstandard kinetic terms

Localizes on harmonic maps {∂∂x = 0}

The desired symmetry is not immediately visible in either; 
might be realized nonlinearly, or, maybe there exists a third version.



Review: puzzles to explain in the expansion of a single YM universe:

1) Sigma model is restricted to maps of a single degree ( )n

2) Presence of projector  implies add’l contributions not present previouslyPr(Y)

We’ve argued this implies the GT string has a new symmetry.

We’ll study this problem next.



2) Presence of projector  implies add’l contributions not present previouslyPr(Y)

Example:  ( ),   ΣT = S2 p = 0 n = 2

Z =
N2n

n!
δ ((Ωn)2 Pr) =

N2n

n!
δ ((1)Pr + 2 ( 1

N ) vPr + ( 1
N )

2

v2Pr)
=

N4

2!
δ (Pr) + 2

N3

2!
δ (vPr) +

N2

2!
δ (v2Pr)

=
N4

4
± N3

2
+

N2

4

ΣW = S2∐S2

χ(ΣW) = 4

ΣW = S2

χ(ΣW) = 2
????

The  term is new — not present in original GT — present here only b/c of  .N3 Pr

How to interpret?   so , but no closed string worldsheet has  oddNχ = N3 χ = 3 χ



2) Presence of projector  implies add’l contributions not present previouslyPr(Y)

How to interpret?  No closed string worldsheet has  oddχ
Some options:

• Expand out the projector Pr

In the previous example, we’d get a term prop’ to    . 
From the delta, should be , but wrong Euler characteristic.

N3δ(vv)
S2

• Open string?

Subleading corrections were interpreted in the old literature as nonpert’ corrections; 
open string worldsheets could have odd χ

But these terms aren’t all subleading, so expect them to be perturbative, 
hence not from open worldsheets.



2) Presence of projector  implies add’l contributions not present previouslyPr(Y)

How to interpret?  No closed string worldsheet has  oddχ

Another possible option: stacky worldsheets

Returning to previous example ( , ):ΣT = S2 n = 2

=
N4

2!
δ (Pr) + 2

N3

2!
δ (vPr) +

N2

2!
δ (v2Pr)

=
N4

4
± N3

2
+

N2

4

Z

Interpret as 2 copies of  with a single  orbifold point ( )S2 ℤ2 ℙ1
[1,2]

χ (ℙ1
[1,2]) = 3/2 χ (ℙ1

[1,2]∐ℙ1
[1,2]) = (2)(3/2) = 3

matches power of  !N



2) Presence of projector  implies add’l contributions not present previouslyPr(Y)

How to interpret?  No closed string worldsheet has  oddχ

Another possible option: stacky worldsheets

For , there is a systematic construction of stacky ’s 
(here, Riemann surfaces w/ orbifold points) 

that gives matching powers of .

ΣT = S2 ΣW

N

Idea:  Given ,  write each  as a product of cycles. 
On th copy of , if  appears in a cycle of length , insert 

δ(v1⋯vL) vi ∈ Sn
j S2 j k ℤk

Example:  S’pose       and    n = 6 v = (12)(345)(6)
Then, insert  on 2 copies,  on 3 copies, smooth pt on last copy.ℤ2 ℤ3

Can show             which matches power of χ = n(2 − 2p) + ∑
j

(Kvj
− n) N



2) Presence of projector  implies add’l contributions not present previouslyPr(Y)

How to interpret?  No closed string worldsheet has  oddχ

Another possible option: stacky worldsheets

Issues:

• Construction only understood for , not higher genusS2

• Construction not unique — orb’ points can be redistributed across sheets of cover
• Have not tried to compare Hurwitz moduli spaces in general cases



In the same spirit, at least on , 
one can reinterpret the terms as contributions from `stacky’ copies of , 

meaning, copies with orbifold points.

ΣT = S2

ΣT

This is in the spirit of the decomposition: 
instead of a sigma model summing over maps , 

this would reflect a decomposition, to trivial field theories  
(corresponding to copies of ).

ΣW → ΣT

ΣT



Summary: reconciling decomposition & GT string pictures of 2d pure YM

1) Reviewed decomposition

Focusing on examples of  orbifolds & 2d pure YMSn

3) Proposed resolution
The branched cover/SFT interpretation will also be compatible 

if the GT string is required to have a novel symmetry.

2) Gross-Taylor and the puzzles

First rewrote pure YM partition function as a sum of  orbifolds, 
then, interpreted those orbifolds as branched covers and then as SFT.

Sn

We saw that the  orbifolds interlace with decomposition perfectly, 
but two puzzles arise in the branched covers/SFT interpretation.

Sn

Logic of Gross-Taylor:



Thank you for your time!



Before going on, let’s quickly check these claims for pure  Yang-Mills in 2d.SU(2)

(Migdal, Rusakov)

Sum over all SU(2) reps

Sum over all SO(3) reps

(Tachikawa ’13)

Sum over all SU(2) reps 

that are not SO(3) reps

Result:

The partition function , on a Riemann surface of genus , isZ g

as expected.

(Later we’ll review a more extreme decomposition of 2d pure YM, which we’ll compare to GT.)



1) Sigma model is restricted to maps of a single degree ( )n

In a 2d NLSM, this is a restriction to (worldsheet) instantons of a single degree.

In decomposition, one often sees restrictions on instanton degrees.

For example, in the      example, 
 instantons are a subset of  instantons.

SU(2) = SO(3)+∐SO(3)−

SU(2) SO(3)

However, in that case, and most other examples, 
one restricts to a subset of instantons, 

not to instantons of a single degree.

Let’s take a moment to review some underlying physics….



Total instanton number : 0

instantonanti-instanton

Nonzero  
instanton number 

here!

Nonzero  
instanton number 

here!

Suppose we try to require that the total instanton number always vanish in our QFT.

Start with a field configuration with no net instantons.

Now, move them far away from one another:

If physics is local (“cluster decomposition”),  
then in those widely-separated regions, the theories have instantons. 

So, even if we start with no net instantons,  
cluster decomposition implies we get instantons!



Cluster decomposition:

For this reason, Steven Weinberg taught us:

All local quantum field theories must sum over all instantons, 
so as to preserve cluster decomposition.

Loophole:
Disjoint unions of QFTs also violate cluster decomposition 

(ex: multiple dimension zero operators), 
but in principle are straightforward to deal with.

So, if a theory with a restriction on instantons is also a disjoint union, 
of theories which are well-behaved, then all is OK.


