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1. Introduction and Overview

The concept of a computer whose calculations were governed by the laws of quantum me-
chanics is usually attributed first to Feynman [10]. Generally speaking, quantum computers
are able to outcompete classical computers in certain classes of problems by drastically reduc-
ing the number of computations necessary to solve a given problem. This is often achieved by
leveraging quantum entanglement between qubits in the physical system, allowing each com-
putational operation in a quantum computer to perform the equivalent of multiple classical
operations.

One of the main difficulties in building a quantum computer, however, is that it is notably
more difficult to mitigate and handle errors. Quantum computers are often only advan-
tageous over classical computers when they are able to leverage superposition of states of
qubits. If no qubits in a quantum algorithm are put into a superposition of states by any
operations or initialization, the algorithm can usually be equivalently executed classically.
Therefore, a physical implementation of a quantum computer will need to handle decoher-
ence, as this may collapse wavefunctions in unexpected ways, introducing unexpected errors
into a calculation.
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So, a major problem that must be addressed in an implementation of a quantum computer
is the effect of local perturbations. For example, consider a qubit corresponding to the z-
component of an electron in a semiconductor quantum computer. At low temperatures, and
in the presence of an external magnetic field, the randomly fluctuating magnetic field due to
nuclear spins in the semiconductor can cause decoherence of a nearby electron , introducing
an error in the computation [11].

The vulnerability in this last example is that the information in the qubit is encoded
locally, as the z-component of the spin of a particle. This makes the information vulnerable
to local perturbations, and therefore to errors. One possible solution to this issue is topo-
logical quantum computing. In a topological quantum computer, rather than encoding the
information locally, information is encoded more globally, involving topological properties of
a multi-quasiparticle system [4]. By topological properties, I mean those that are invariant
under ”bending” and ”stretching”, so that local perturbations do not change the encoded
information. We will be more specific about this later.

The idea of a topological quantum computer is, in a crash-course format, as follows: in
systems of two spatial dimensions, we can create particles, called anyons, that behave non-
trivially under exchange. So if we exchange two particles, then exchange them back in the
same (not the reverse!) direction, the quantum system picks up a phase, so we can tell that
the particles were swapped and then put back. The particles’ worldlines, or the paths they
trace through time, then show a history of which particle was exchanged with which, and in
what order, which are topological properties. We can, in theory, manipulate the system by
braiding these worldlines as we please, which corresponds to what turns out to be a unitary
operation on the system. Finally, we can measure the end state of the system by fusing
together the particles, which determines a state.

The goal of this paper is to summarize how one might go about computing with a topolog-
ical quantum computer, and focuses less on how a physical implementation may be achieved.
In Section 2, we will introduce anyons, the particles that exchange non-trivially in the above
paragraph. We will focus on Fibonacci anyons, the simplest known anyon model that can be
used to build a universal quantum computer. We will also consider a Hilbert space of anyons
and define a basis for the Hilbert space. In Section 3, we will discuss unitary operations on
the space, which arise from braiding the anyons. We will also introduce a computational
subspace and basis in this Hilbert space, allowing us to build qubits. In Section 4, we will
discuss construction of a universal quantum computer with Fibonacci anyons. More specif-
ically, we will talk about approximating quantum circuits with braids, showing that if we
can control Fibonacci anyons, we can create a universal quantum computer.

2. Introducing Anyons

Topological quantum computation hinges on the use of anyons, a class of particles that
emerges in quantum systems in two spatial dimensions. In this paper, we will be concerned
with moving anyons, so it is most useful to think of these particles as existing in 2 + 1
dimensions, where the last dimension is time. For our purposes, anyons become particularly
interesting due to their exchange statistics. The central idea here is that swapping two
anyons and then swapping them back introduces a phase into the system’s wavefunction.

2.1. Anyon Exchange Statistics. Consider two identical particles in 3+1 dimensions. If
we take particle A and wind it around particle B, bringing particle A back to its original
positions, particle A’s worldline traces a path around particle B. But we are in 3 spatial
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dimensions, so we can smoothly deform the worldline back to an increasingly tiny loop that
does not encircle particle B, and in fact we can smoothly deform the worldline all the way
down to one in which particle A never moves at all. Call the path in which particle A never
moves the identity. Since these paths are topologically equivalent to one another (there
exists a homotopy between them), the effect on the wavefunction must be the same in both
cases [4]. So winding particle A around particle B must do nothing to the wavefunction in
3+1 dimensions.

Note that, topologically, winding particle A around particle B in the counter-clockwise
direction is the same as exchanging particles A and B in a counter-clockwise direction, and
then exchanging them again in the counter-clockwise direction to return the particles to their
original positions. Let |ψAB〉 be the wavefunction of this two-particle system. Since particles
A and B are identical, | |ψAB〉 |2 must be invariant under exchange of the two particles.
Suppose exchanging the two particles counter-clockwise introduces a phase −θ:

(2.1) |ψAB〉 = eiθ |ψBA〉

where we write the relationship in terms of the ”un-twisted” wavefunction |ψAB〉 for consis-
tency with our later notation. Then exchanging the particles counter-clockwise twice, which
we saw should be the same as doing nothing, gives

(2.2) |ψAB〉 = ei2θ |ψAB〉

Since this should be the same as doing nothing, we must have for some n

(2.3) 2θ = 2πn =⇒ eiθ = ±1

That is, exchanging two particles gives the wavefunction a phase of±1. These are the familiar
exchange statistics for bosons and fermions! This holds for 3 or more spatial dimensions.

In 2+1 dimensions, the situation is a bit more unique. If we wind particle A around
particle B, we can no longer smoothly deform particle A’s worldline back to a tiny loop not
encircling particle B - the loop will always get ”caught” on particle B! Since this action is no
longer equivalent to doing nothing, the above derivation changes. We now have no condition
on what 2θ may be, and so exchanging particles A and B twice counter-clockwise can induce
a non-trivial phase to the wavefunction. We now have

(2.4) |ψAB〉 = e−i2θ |ψ′AB〉

where the prime is to denote that although the coordinate labels have been returned to
the original setting, the wavefunction is no longer necessarily the same. Particles that have
e−i2θ 6= 1 are called anyons. This is the magic that enables topological quantum computing
to work.

2.2. Physical Models of Anyons. For a physical model of anyons, consider the Aharonov-
Bohm effect, as presented in [7]. Consider two spatial dimensions, with a magnetic flux
localized to some point. We can assume that since the flux is localized to a point, the
magnetic field outside of this point is zero. However, in the Aharonov-Bohm effect, which
can be experimentally observed in three dimensions, an electron moving in a loop around
the flux gains a non-trivial phase in its wavefunction. The phase is directly related to the
flux and charge of the particle encircling the flux. As you might expect in this context, the
phase is a topological invariant of the electron’s path, depending only on how many times
the electron encircles the flux, and not depending on the exact geometry of the path.



4 RYAN SIMEON

Now, consider gluing a charge e around the circumference of the flux. This allows us
to consider each flux-plus-charge as an anyon. Moving one flux-charge combination around
another can be viewed as moving a charge around a flux, generating a phase by the Aharonov-
Bohm effect. For a fuller description of this model, see [7], page 7. For more on how to build
anyons with Majorana Zero Modes, see [9].

2.3. Anyon Fusion and Fibonacci Anyons. Rather than focus on a single physical model
for anyons, we will focus on a more abstract model of anyons defined by what rules the anyons
follow when they fuse.

Each anyon has an intrinsic quantum number that behaves like a charge or spin; here we
will refer to it as a charge. Similarly, a group of anyons has a charge, and so long as that
group does not interact with any other anyons, that charge will be conserved. The charge of
a group of anyons is the charge of the particle that results from the fusion of all the anyons
in the group. For example, if two pairs of anyon-anti-anyon pairs are created from vacuum
(so that each pair has net charge zero), then fusing all the anyons together will result in a
charge-zero anyon [1]. In this paper, the anyons can be labeled by this charge, so that an
anyon of type a is an anyon with charge a.

For a group of anyons, one way to define a state of the system in its Hilbert space is by its
ordered set of fusion outcomes. In the above example, if we label the 4 particles by a, ā, b, b̄,
we could fuse a and b to get c, c and ā to get d, and d and b̄ to get 0. We can write this state
as (c, d, 0), and this is a well-defined state of the system. Because our system is quantum, an
arbitrary system is typically in a superposition of states, each with its own fusion outcomes.
The set of possible fusion outcomes for a given initial set of anyons and group charge forms
an orthonormal basis of a Hilbert space. For the Hilbert space of fusion outcomes that can
come from the initial set of anyons (a1, . . . , an) with group charge c, call this space V c

a1,...,an
.

This can also be thought of as the space of states that start with anyons (a1, . . . , an) and
end with an anyon c.

There exists a class of anyons for which each pair of anyons has only one possible fusion
outcome. Such anyons are called abelian anyons. For a given set of initial anyons and a
set order of fusion, there is then only one possible fusion outcome, so the Hilbert space
V c
a1,...,an

has dimension 1 for abelian anyons. This makes them much less useful for quantum
computation. The opposing class of anyons, non-abelian anyons, has more than one possible
fusion outcome for a pair of anyons. This makes the Hilbert spaces V c

a1,...,an
much richer, and

more useful for computation.
Rather than pick a single physical model of anyons to focus on, we pick a mathematical

model of non-abelian anyons defined by the rules governing their fusion. We focus on a
model of anyons called Fibonacci anyons, which is the simplest model of anyons from which
we can build a universal quantum computer [3]. We will explore how these anyons can work
as the components of a universal quantum computer later; in this subsection we will just
explore how the Hilbert spaces for these anyons look.

There are two possible charges for Fibonacci anyons: 0, which corresponds to the vacuum,
or the absence of an anyon; and τ , which is the presence of an anyon. For Fibonacci anyons,

(2.5) 0̄ = 0

(2.6) τ̄ = τ
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That is, the vacuum is its own antiparticle, and a Fibonacci anyon is its own antiparticle.
With two particle types, there are 4 possible pairs of anyons. Let × denote fusion, and +
denote multiple possible outcomes, without any associated weighting. The fusion rules for
Fibonacci anyons are then

(2.7) 0× 0 = 0

(2.8) 0× τ = τ

(2.9) τ × 0 = τ

(2.10) τ × τ = 0 + τ

The vacuum behaves as expected, and the only nontrivial fusion is then an anyon with itself.
Consider a line of n Fibonacci anyons, each with charge τ , but with group charge 0. This

system exists in the Hilbert space V 0
τ,...,τ := V 0

τn . We can write the basis as the ordered tuple

of fusion outcomes from first to last. This tuple will be of length n− 1, where the ith entry
is the result of the ith fusion. If at any point a fusion results in a 0, the next fusion will be
0× τ . But by our fusion rules, this next fusion must result in a τ . So a tuple corresponding
to a basis state cannot have two 0s in a row, since the first 0 necessitates a τ after it.

The first fusion can result in a τ , in which case the possible states are in the Hilbert space
V 0
τn−1 . If the first fusion is a 0, then the next fusion must be a 1. So the possible states

would then be in the HIlbert space V 0
τn−2 . Therefore, we get the relation

(2.11) |V 0
τn| = |V 0

τn−1|+ |V 0
τn−2 |

This is the Fibonacci recursion relation! There is only one way to get 0 from two τ anyons,
and there is only one way to get 0 from three τ anyons (since the first fusion must be a τ),
so

(2.12) |V 0
τ,τ | = |V 0

τ,τ,τ | = 1

So the dimensions of the Hilbert spaces for 0-charge anyon configurations exactly follows the
Fibonacci sequence: |Vτn| is the n− 1st Fibonacci number. This is the reason for the name
[7].

3. Unitary Operations on Anyons and Anyonic Qubits

Now that we have an idea of how to look at the state of a system of anyons, we can
consider how to perform unitary operations on these states. As we mentioned in Section 2.1,
the nontrivial exchange statistics of anyons are what make them interesting for quantum
computation. Another way of thinking about exchanging particles is to think about braiding
their worldlines. In a braid, there are n strands, fixed to n points on the bottom and
n points on the top. The combination of the starting and endpoints of each strand with
the intermediate interactions of the strands with one another between the ends determines
the topological properties of the braid. As we will see in this section, a braid of anyons
corresponds to a unitary operations on the system’s wavefunction, so we will perform the
unitary operations in our quantum computer with braids.



6 RYAN SIMEON

3.1. Braiding Anyons. Consider a straight line of anyons. The first elementary braid move
is b1, which passes the first anyon behind the second, leaving the first anyon in the second
position, and vice versa.

We can also have the inverse operation b−11 , which passes the anyon in the first position
in front of the anyon in the second position. The braid formed by performing b1 and then
b−11 is, as we expect, just the straight strands, or the identity I.

More generally, the braid group on n strands is generated by the n − 1 elements bi and
the n− 1 corresponding elements b−1i . These generators are subject to the relations

(3.1) bib
−1
i = b−1i bi = I

(3.2) bibi+1bi = bi+1bibi+1

(3.3) bibj = bjbi if |i− j| ≥ 2

The first of these relations is true by definition of the inverse. The second relation is less
obvious, but can be seen by taking any three adjacent strands and directly carrying out the
braiding. The third relation is usually called far-commutativity, and just encodes the fact
that it does not matter which of two braid moves we perform first if they involve entirely
different strands in each order.

One of the reasons that topological quantum computation with non-abelian anyons is
such an attractive idea is because almost all unitary operations on a system of anyons come
from braiding [4]. Therefore, if we are being careful about our braiding, we are unlikely to
accidentally perform an unintended unitary operation on our anyons.

3.2. R-moves. To this point, we have not been specific about how braiding anyons affects
the state of the system. The relationship between a system of two anyons pre- and post-
braiding is described by the R-move.

Recall that a state of a system of anyons is described by the fusion outcomes. For a system
of two anyons, a and b, the system’s state is described by the charge of the particle c to which
they fuse. The fusion diagram for this scenario before braiding is shown on the left below.
If we were to perform a braid on the anyons, say b1, we get the fusion diagram on the right.

c

ba

c

ab
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The first is a basis state of V c
a,b, and the second is a basis state of V c

b,a. Of course, these
Hilbert spaces are one-dimensional, but when we extend this to more initial anyons, we get
connections between basis states of V c

a1,a2,...,an
and Va2,a1,...,an and so on [7].

This relationship between the basis states is the R-move, and we say that

c

ba = Rcab
c

ab

where Rc
ab is the R coefficient associated with this set of initial and final anyons. The R

coefficients for incompatible sets of anyons, such as Rτ
00, are zero. In addition, braiding with

the vacuum is considered as not braiding at all, so coefficients like Rτ
0τ are 1. Together, the

R coefficients give rise to an isomorphism between bases of V c
ab and V c

ba. The map R extends
to a unitary operation, so the inverse of an R coefficient Rc

ab, corresponding to the inverse
braid b−1, is the complex conjugate of Rc

ab [1].
For Fibonacci anyons, the only non-trivial R coefficients are R0

11 and R1
11. Using quantum

field theory and consistency relations [1], these coefficients turn out to be

(3.4) R0
11 = e−4πi/5

(3.5) R1
11 = e3πi/5

See [4].

3.3. F-moves. The R moves give the relationship between the states of braided and un-
braided sets of two anyons fusing to a given anyon. However, for more than two initial
anyons, we need another move to relate a given basis state to an arbitrary braiding of that
state’s anyons. To see this, consider the braid b2..

c

We can use an R move on the two rightmost strands to untwist them, but then we are still
not left with the ”standard” basis state

c
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. What we need is the relationship shown below.

d

c

i

ba

=
∑
j F (abcd)

i
j

d

j

cba

This is the F move, and it is both unitary and Hermitian. The F coefficients F (abcd)ij,
as with the R moves, are zero for fusions incompatible with the fusion rules of the anyons.
For Fibonacci anyons, the only non-trivial F coefficients are those for abcd = 1111. These
coefficients are

(3.6) F (1111)00 =
1

φ

(3.7) F (1111)01 = F (1111)10 =
1√
φ

(3.8) F (1111)11 = −1

φ

where φ is the golden ratio, φ = 1+
√
5

2
. See [1], [7]. Together, the F and R moves are sufficient

to determine the action of every braid on the basis states of a system of anyons [7]. We will
see how these moves can be used to calculate the linear transformations corresponding to
braids in Section 3.5.

3.4. Building Qubits from Fibonacci Anyons. Consider a line of 3 Fibonacci anyons.
That is, the initial set of anyons is τ, τ, τ . Use the basis corresponding to the fusion outcomes
when we fuse the two leftmost anyons at each stage. This Hilbert space is 3 dimensional.
The basis we described has fusion outcomes, in order, (0, 1), (1, 1), and (1, 0), since (0, 0) is
forbidden by the fusion rules for Fibonacci anyons. These fusion results are shown below,
where for the rest of the paper, we assume that any unlabeled vertices on fusion diagrams
are τ . We give these basis states the suggestive labels |0〉, |1〉, and |NC〉.

|0〉 =
τ

0 |1〉 =
τ

τ

|NC〉 =
0

τ

To build qubits, we will want a two-dimensional Hilbert space, so we can consider the span of
only the first of these two options. In practice, it is popular to do this by instead considering
a system of four anyons, consisting of two anyon-anti-anyon pairs created from the vacuum,
so as to give the system a group charge of 0. Then, if we neglect the fourth anyon and do
not braid it, the first three anyons must fuse to τ , as otherwise the final fusion will be 0× τ ,
which cannot give 0. Therefore, the only possible basis states of this system are the first
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two, |0〉 and |1〉, as desired [5]. The states |0〉 and |1〉 are then the logical 0 and 1 for our
computational basis, and we refer to |NC〉 as a non-computational state.

3.5. Fibonacci Braid Matrices. In the basis {|0〉 , |1〉 , |NC〉}, we can write the actions
of the braid operators b1 and b2 as matrices. The matrices corresponding to b−11 and b−12

are then, naturally, the inverses of those matrices (equivalently, the conjugate transpose of
those matrices, since they are unitary). Since the braid group on three strands is generated
by b1, b2, b

−1
1 , and b−12 , this set of matrices fully describes the action of braiding anyons on

the system’s wavefunction.
Following [1], we can write

b1 |0〉 =
τ

0

= R0
11

τ

0

= e−4πi/5 |0〉

where we used the result for R0
11 at (3.4). Similarly, we find that b1 |1〉 = e3πi/5 |1〉, and

b1 |NC〉 = e3πi/5 |NC〉. In this basis, we can write

(3.9) b1 =

(
e−4πi/5 0 0

0 e3πi/5 0
0 0 e3πi/5

)

The derivation of the matrix for b2 is a bit more involved, so we present the calculation of
b2 |1〉 here, and refer the reader to [1] for the action of b2 on the other two basis elements.

b2 |1〉 =

τ

τ
= F (1111)10

τ

0
+F (1111)11

τ

τ

= F (1111)10R
0
11

τ

0
+F (1111)11R

1
11

τ

τ
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= (F (1111)10R
0
11F (1111)00

τ

0
+F (1111)10R

0
11F (1111)01

τ

τ
)

+(F (1111)11R
1
11F (1111)10

τ

0
+F (1111)11R

1
11F (1111)11

τ

τ
)

= (φ−
3
2 e−4πi/5 − φ−

3
2 e3πi/5) |0〉+ (φ−1e−4πi/5 + φ−2e3πi/5) |1〉 = φ−

1
2 e−3πi/5 |0〉 − φ−1 |1〉

As seen on page 17 of [1], we eventually get the matrix

(3.10) b2 =

(
φ−1e4πi/5 φ−1/2e−3πi/5 0
φ−1/2e−3πi/5 −φ−1 0

0 0 e3πi/5

)
Notice that each matrix is block diagonal, with the upper two rows forming the block in the
matrix b2. Therefore, any state that begins in the span of the computational basis stays in the
span of the computational basis, and there is no ”leakage” to |NC〉. Single qubit operations,
then, are safe from leakage. However, this safety is not afforded to multiple-qubit operations,
and so care must be taken to mitigate these errors [8].

4. Approximating Gates with Anyonic Qubits

Now that we have a way to build and act on qubits made of anyons, we turn to the problem
of finding a set of braid operations that enact some unitary operation on the system. In
particular, we want to create gates for a quantum computer. Unfortunately, braids that give
exactly a particular unitary gate do not always exist [6]. Fortunately, the set of braiding
operations on our 3 (or 4, with one anyon inert) anyon system is dense in SU(2), meaning we
can approximate a single qubit gate to arbitrary accuracy. In fact, using the Solovay-Kitaev
algorithm, one can algorithmically compute a good approximation to any operation in SU(2)
in a manner that converges fairly quickly. In [2], this is presented as a classical algorithm.
This reduces a problem in quantum computation to one in classical computation: given a
unitary matrix, what product of braid operation matrices approximates the corresponding
gate ”well enough”?

This subject is very interesting in its own right. The most common method currently
appears to be an exhaustive search method, where a maximum braidword length is defined,
and all braidwords up to that length are considered. In [1], the authors mention that
certain optimization involving eliminating redundancies due to the braid group’s relations
can significantly decrease the search space, and that braidwords converge to good accuracy
fairly quickly, so the problem can be solved with limited efficiency.

Using this method, we can approximate the Hadamard gate. As given in [1], the braidword
b−42 b−41 b22b

4
1b

2
2b
−2
1 b−22 b−21 b−22 b21b

−2
2 is an approximation of the Hadamard gate, up to a global
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phase that is does not affect any measurement of the system. The braidword gives exactly
the matrix

(4.1) e3.4558i
(

0.9997 + 0.0017i 1.0003− 0.0039i
1.0003 + 0.0039i −0.9997 + 0.0017i

)
which is rather close to the Hadamard gate.

In [5], the authors found a braid that implements an approximation to a CNOT gate. The
method takes the first two anyons in the control qubit together and braids them as a pair
through the three anyons in the target qubit. If the two anyons in the control qubit fuse
to the vacuum, it is as if nothing was ever braided through the second qubit. If the first
two anyons fuse to a τ , then the gate approximates a NOT gate on the target qubit. By
looking at the fusion diagrams for our computational basis, one can notice that the state is
determined by the fusion of the first two anyons, so this corresponds to our CNOT gate.

This braid does introduce some leakage to the state |NC〉, and so it will need to be managed
with the projective methods in [8]. However, any quantum circuit can be implemented using
only a CNOT gate and single qubit operations [5], so this gives a universal quantum computer
with qubits made from Fibonacci anyons.

Notes

Braids were drawn with Andrew Stacey’s braids package, originating at the stackexchange
post here: https://tex.stackexchange.com/questions/16897/how-to-make-nice-braids-diagrams.
Fusion diagrams were drawn using tikzpicture trees.
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