Universidade Estadual de Campinas IMECC

Explicit Constructions over the Exotic 8-sphere

Llohann D. Sperança†

(Joint work with C. Durán and A. Rigas)

†: Financially supported by FAPESP - n.07953-8

*-Bundles

*-Bundles

Bredon-Dur'an-Gromoll-Meyer-Rigas

*-Bundles

Bredon-Durán-Gromoll-Meyer-Rigas

A Pull-back diagram for the Gromoll-Meyer construction

*-Bundles

Bredon-Durán-Gromoll-Meyer-Rigas

A Pull-back diagram for the Gromoll-Meyer construction

Results on the 8-sphere

Construction:

Isotopy

Linear S^7 -bundles

Definition and Main Theorem

Definition (*-bundle):

Let M be a G-manifold and $M=\cup U_i$, U_i equivariant. Let $\phi_{ij}:U_i\cap U_j\to G$ be conjugation equivariant, i.e.:

$$\phi_{ij}(g\cdot x)=g\phi_{ij}(x)g^{-1},$$

and $P = \cup_{f_{\phi_{ij}}} U_i \times G$ be a bundle. Then P is called a \star -bundle with transition maps ϕ_{ij} .

Definition and Main Theorem

Definition (*-bundle):

Let M be a G-manifold and $M=\cup U_i$, U_i equivariant. Let $\phi_{ij}:U_i\cap U_j\to G$ be conjugation equivariant, i.e.:

$$\phi_{ij}(g\cdot x)=g\phi_{ij}(x)g^{-1},$$

and $P = \cup_{f_{\phi_{ij}}} U_i \times G$ be a bundle. Then P is called a \star -bundle with transition maps ϕ_{ij} .

Theorem *:

If $P \stackrel{\pi}{\to} M$ is a *-bundle then the action $g \star (x, q) = (g \cdot x, qg^{-1})$ is well-defined on P, free, and has quotient $M' = \cup_{\widehat{\phi_{ii}}} U_i$.

Here $f_{\phi_{ij}}(x,q) = (x,q\phi_{ij}(x))$ and $\widehat{\phi_{ij}}(x) = \phi_{ij}(x) \cdot x$. The proof is based on the involution $(x,q) \mapsto (q \cdot x,q^{-1})$.

Equivariant maps

Proposition 1 (Equivariant maps):

The following maps are smooth and conjugation equivariant:

$$\theta: S^{3} \times S^{3} \to S^{3} \qquad b: S^{6} \to S^{3}$$
$$(x, y) \mapsto xy^{-1} \qquad (\xi, w) \mapsto \frac{w}{|w|} e^{\pi \xi} \frac{\bar{w}}{|w|}$$

Equivariant maps

Proposition 1 (Equivariant maps):

The following maps are smooth and conjugation equivariant:

$$\theta: S^{3} \times S^{3} \to S^{3} \qquad b: S^{6} \to S^{3}$$
$$(x,y) \mapsto xy^{-1} \qquad (\xi,w) \mapsto \frac{w}{|w|} e^{\pi\xi} \frac{\bar{w}}{|w|}$$

I.e.:

$$\theta(qx\bar{q},qy\bar{q}) = q\theta(x,y)\bar{q}$$
$$b(q\xi\bar{q},qw\bar{q}) = qb(\xi,w)\bar{q}.$$

Durán's Theorem

Theorem 1 ([Durán 01]):

Furthermore, $D^4 \times S^3 \times S^3 \cup_{f_\theta} S^3 \times D^4 \times S^3$, $D^7 \times S^3 \cup_{f_b} D^7 \times S^3$ and Sp(2) are equivariantly diffeomorphic

Durán's Theorem

Theorem 1 ([Durán 01]):

Furthermore, $D^4 \times S^3 \times S^3 \cup_{f_\theta} S^3 \times D^4 \times S^3$, $D^7 \times S^3 \cup_{f_b} D^7 \times S^3$ and Sp(2) are equivariantly diffeomorphic with respect to the following **well-defined** $S^3 \times S^3$ actions:

$$(q_1,q_2)\cdot(q_2\cdot\vec{x},q_1q\bar{q}_2).$$

and

$$(q_1, q_2) \cdot \begin{pmatrix} a & c \\ b & d \end{pmatrix} = \begin{pmatrix} q_2 a \overline{q}_2 & q_2 c \overline{q}_1 \\ q_2 b \overline{q}_2 & q_2 d \overline{q}_1 \end{pmatrix}$$

on Sp(2).

Picture

Picture

$$S^{3} \xrightarrow{\star} Sp(2) \longrightarrow S^{7} \qquad q \star \begin{pmatrix} a & c \\ b & d \end{pmatrix} = \begin{pmatrix} a & c\bar{q} \\ b & d\bar{q} \end{pmatrix},$$

$$Q \star \begin{pmatrix} a & c \\ b & d \end{pmatrix} = \begin{pmatrix} qa\bar{q} & qc \\ qb\bar{q} & qd \end{pmatrix}.$$

$$\Sigma^{7} \xrightarrow{\tilde{h}'} S^{4}$$

Corollary:

The spaces $D^4 \times S^3 \cup_{\hat{\theta}} S^3 \times D^4$ and $D^7 \cup_{\hat{b}} D^7$ are diffeomorphic to the Gromoll-Meyer sphere Σ^7 (a generator of $\theta^7 \approx \mathbb{Z}_{28}$).

Picture

Corollary:

The spaces $D^4 \times S^3 \cup_{\hat{\theta}} S^3 \times D^4$ and $D^7 \cup_{\hat{b}} D^7$ are diffeomorphic to the Gromoll-Meyer sphere Σ^7 (a generator of $\theta^7 \approx \mathbb{Z}_{28}$).

Remark: $b \in \mathcal{C}^{\omega}$, generates $\pi_6 S^3 \approx \mathbb{Z}_{12}$ and $D^7 \cup_{\hat{p}_k} D^7 = \#_k \Sigma^7$.

Sp(2) via pull-back

$$h: S^7 \to S^4$$

 $(x,y) \mapsto (|x|^2 - |y|^2, 2x\bar{y})$

$$S^7 = D^4 \times S^3 \cup_{(x,q) \mapsto (x,qx)} D^4 \times S^3$$

Sp(2) via pull-back

$$h: S^7 \to S^4$$

 $(x,y) \mapsto (|x|^2 - |y|^2, 2x\bar{y})$

$$S^7 = D^4 \times S^3 \cup_{(x,q) \mapsto (x,qx)} D^4 \times S^3$$

$$\begin{array}{c|c}
Sp(2) & & & \\
\downarrow & & & \\
S^7 & \xrightarrow{-h} & S^4 \\
\downarrow \frac{1}{\sqrt{2}} tori & & & \\
S^3 \times S^3 & \xrightarrow{\theta} & S^3
\end{array}$$

$$Sp(2) \longrightarrow S^{7}$$

$$\downarrow \qquad \qquad \downarrow h$$

$$S^{7} \longrightarrow S^{4}$$

$$equator \qquad \qquad \uparrow$$

$$S^{6} \longrightarrow S^{3}$$

Sp(2) via pull-back

$$h: S^7 \to S^4$$

 $(x,y) \mapsto (|x|^2 - |y|^2, 2x\bar{y})$ $S^7 = D^4 \times S^3 \cup_{(x,q) \mapsto (x,qx)} D^4 \times S^3$

Restatement of Theorem 1:

Sp(2) is a *-bundle over S^7 with the action $q \cdot (x,y) = (qx\bar{q},qy\bar{q})$ with trivialization maps θ or b and quotient Σ^7 .

Theorem (Pull-back):

For $V_i = f^{-1}(U_i)$ we have that $N' = \bigcup_{\widehat{\phi_{ij}f}} V_i$ and for each i a commutative diagram:

$$\begin{array}{ccc}
N & \longleftarrow & V_i & \longrightarrow & N' \\
\downarrow^f & & \downarrow^{f|_{V_i} = f'|_{V_i}} \downarrow^{f'} \\
M & \longleftarrow & U_i & \longrightarrow & M'
\end{array}$$

Theorem (Pull-back):

For $V_i = f^{-1}(U_i)$ we have that $N' = \bigcup_{\widehat{\phi_{ij}f}} V_i$ and for each i a commutative diagram:

$$\begin{array}{ccc}
N & \longleftarrow V_i \longrightarrow N' \\
\downarrow^f & \downarrow^{f|_{V_i} = f'|_{V_i} \downarrow^{f'}} \\
M & \longleftarrow U_i \longrightarrow M'
\end{array}$$

 $\Rightarrow \Sigma^7 \stackrel{-h'}{\to} S^4$ is a linear S^3 -bundle.

Construction

$$\mathbb{R} \atop
\mathbb{H} \ni \begin{pmatrix} \lambda \\ qx\bar{q} \\ y\bar{q} \end{pmatrix} \stackrel{f=E^5\eta}{\mapsto} \begin{pmatrix} q(\lambda+y^{-1}iy)\bar{q} \\ qx\bar{q} \end{pmatrix}$$

Construction

$$\mathbb{R} \atop
\mathbb{H} \ni \begin{pmatrix} \lambda \\ qx\bar{q} \\ y\bar{q} \end{pmatrix} \stackrel{f=E^5\eta}{\mapsto} \begin{pmatrix} q(\lambda+y^{-1}iy)\bar{q} \\ qx\bar{q} \end{pmatrix}$$

$$E^{11} \xrightarrow{f^*} Sp(2) \xrightarrow{S^7} \downarrow h$$

$$S^8 \xrightarrow{f} S^7 \xrightarrow{-h} S^4$$

Construction

$$\mathbb{R} \atop
\mathbb{H} \ni \begin{pmatrix} \lambda \\ qx\bar{q} \\ y\bar{q} \end{pmatrix} \stackrel{f=E^5\eta}{\mapsto} \begin{pmatrix} q(\lambda+y^{-1}iy)\bar{q} \\ qx\bar{q} \end{pmatrix}$$

$$E^{11} \xrightarrow{f^*} Sp(2) \longrightarrow S^7$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \tilde{h}$$

$$S^8 \xrightarrow{f} S^7 \xrightarrow{-h} S^4$$

$$E^{11} \xrightarrow{f^*} Sp(2) \longrightarrow S^7$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \tilde{h}$$

$$\Sigma^8 \xrightarrow{f'} \Sigma^7 \xrightarrow{-h'} S^4$$

Construction

$$\mathbb{R} \atop
\mathbb{H} \ni \begin{pmatrix} \lambda \\ qx\bar{q} \\ y\bar{q} \end{pmatrix} \stackrel{f=E^5\eta}{\mapsto} \begin{pmatrix} q(\lambda+y^{-1}iy)\bar{q} \\ qx\bar{q} \end{pmatrix}$$

$$E^{11} \xrightarrow{f^*} Sp(2) \longrightarrow S^7$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \tilde{h}$$

$$S^8 \xrightarrow{f} S^7 \xrightarrow{-h} S^4$$

$$E^{11} \xrightarrow{f^*} Sp(2) \longrightarrow S^7$$

$$\downarrow \qquad \qquad \downarrow \tilde{h}$$

$$\Sigma^8 \xrightarrow{f'} \Sigma^7 \xrightarrow{-h'} S^4$$

Theorem (exotic 8-sphere):

 $\Sigma^8 = \sigma_{3,4}(1,1) \neq 0 \in \theta^8$, where $\sigma_{3,4} : \pi_3 SO(4) \otimes \pi_4 SO(3) \rightarrow \theta^8$ is the Milnor's pairing.

Construction

$$\mathbb{R} \atop
\mathbb{H} \ni \begin{pmatrix} \lambda \\ qx\bar{q} \\ e^{it}y\bar{q} \end{pmatrix} \xrightarrow{f=E^{5}\eta} \begin{pmatrix} q(\lambda+y^{-1}iy)\bar{q} \\ qx\bar{q} \end{pmatrix}$$

$$E^{11} \xrightarrow{f^*} Sp(2) \longrightarrow S^7$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \tilde{h}$$

$$S^8 \xrightarrow{f} S^7 \xrightarrow{-h} S^4$$

$$E^{11} \xrightarrow{f^*} Sp(2) \longrightarrow S^7$$

$$\downarrow \qquad \qquad \downarrow \tilde{h}$$

$$\Sigma^8 \xrightarrow{f'} \Sigma^7 \xrightarrow{-h'} S^4$$

Theorem (exotic 8-sphere):

 $\Sigma^8 = \sigma_{3,4}(1,1) \neq 0 \in \theta^8$, where $\sigma_{3,4} : \pi_3 SO(4) \otimes \pi_4 SO(3) \rightarrow \theta^8$ is the Milnor's pairing.

8-sphere: an order 2 generator

$$E^{11} \xrightarrow{f^*} Sp(2) \xrightarrow{} S^7$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow h$$

$$S^8 \xrightarrow{f} S^7 \xrightarrow{Eb} S^4$$

8-sphere: an order 2 generator

8-sphere: an order 2 generator

Theorem (isotopy):

Let $t \in [0,\pi]$ and $\chi_t : S^7 \to S^3$ be given as

$$\chi_t \begin{pmatrix} x \\ y \end{pmatrix} = b \begin{pmatrix} y^{-1}(\cos ti + \sin tj)y \\ x \end{pmatrix} = \frac{y}{|y|} e^{\pi y^{-1}(\cos ti + \sin tj)y} \frac{\overline{y}}{|y|}.$$

Then $\hat{\chi}_t: S^7 \to S^7$ is an isotopy from a generator of θ^8 to its inverse. Furthermore, it indeuces an explicit diffeomorphism $\Sigma^8 \# \Sigma^8 \to S^8$.

Remark: $q \cdot (\lambda, x, y) = (\lambda, qx\bar{q}, y\bar{q})$ is in G_2 so $H: S^{15} \to S^8$ preserves it.

Remark: $q \cdot (\lambda, x, y) = (\lambda, qx\bar{q}, y\bar{q})$ is in G_2 so $H: S^{15} \to S^8$ preserves it.

Remark: $q \cdot (\lambda, x, y) = (\lambda, qx\bar{q}, y\bar{q})$ is in G_2 so $H : S^{15} \to S^8$ preserves it.

$$H^*E \longrightarrow E^{11} \longrightarrow S^7$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$S^{15} \stackrel{H}{\longrightarrow} S^8 \longrightarrow S^4$$

Remark: $q \cdot (\lambda, x, y) = (\lambda, qx\bar{q}, y\bar{q})$ is in G_2 so $H : S^{15} \to S^8$ preserves it.

$$H^*E \longrightarrow E^{11} \longrightarrow S^7$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$S^{15} \xrightarrow{H} S^8 \longrightarrow S^4$$

$$\Rightarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\Sigma^{15} \xrightarrow{H'} \Sigma^8$$

Remark: $q \cdot (\lambda, x, y) = (\lambda, qx\bar{q}, y\bar{q})$ is in G_2 so $H : S^{15} \to S^8$ preserves it.

Theorem (Exotic Hopf map):

 Σ^{15} is diffeomorphic to S^{15} . Furthermore $H': \Sigma^{15} \to \Sigma^8$ defines a linear S^7 -bundle over Σ^8 with total space diffeomorphic to S^{15} .

Proof.

Use the framming of $H^{-1}(1,0)\subset S^{15}$ induced by H and note that $\Sigma^{15}=D^8\times S^7\cup S^7\times D^8$ glued by this framming composed with $(X,Y)\mapsto (X,b(f(X))\cdot Y)$. But $X\mapsto (Y\mapsto b(f(X))\cdot Y)\in SO(7)$ has order 2 in $\pi_7SO(7)\approx \mathbb{Z}$ so it does not affect any diffeomorphism class. The same can be proved for the element correspondent to the framming.

Proof.

Use the framming of $H^{-1}(1,0)\subset S^{15}$ induced by H and note that $\Sigma^{15}=D^8\times S^7\cup S^7\times D^8$ glued by this framming composed with $(X,Y)\mapsto (X,b(f(X))\cdot Y)$. But $X\mapsto (Y\mapsto b(f(X))\cdot Y)\in SO(7)$ has order 2 in $\pi_7SO(7)\approx \mathbb{Z}$ so it does not affect any diffeomorphism class. The same can be proved for the element correspondent to the framming.

Remark: One can replace $H:S^{15}\to S^8$ by any linear S^7 -bundle over S^8 with total space homeomorphic to the 15-sphere. A classification result gives:

Proof.

Use the framming of $H^{-1}(1,0)\subset S^{15}$ induced by H and note that $\Sigma^{15}=D^8\times S^7\cup S^7\times D^8$ glued by this framming composed with $(X,Y)\mapsto (X,b(f(X))\cdot Y)$. But $X\mapsto (Y\mapsto b(f(X))\cdot Y)\in SO(7)$ has order 2 in $\pi_7SO(7)\approx \mathbb{Z}$ so it does not affect any diffeomorphism class. The same can be proved for the element correspondent to the framming.

Remark: One can replace $H: S^{15} \to S^8$ by any linear S^7 -bundle over S^8 with total space homeomorphic to the 15-sphere. A classification result gives:

Theorem (linear bundles over Σ^8):

A homotopy 15-sphere fibers over the exotic 8-sphere with linear S^7 as fibers if and only if it fibers in the same way over S^8 .

References

C. Durán, Pointed Wiedersehen Metrics on Exotic Spheres and Diffeomorphisms of S^6 , Geometriae Dedicata 88 (2001).

C. Durán, A. Mendoza, A. Rigas, Blakers-Massey Elements and Exotic Diffeomorphisms of S^6 and S^{14} via Geodesics, Trans. Amer. Math. Soc. **356**, No. 12 (2004).

C. Durán, T. Puettmann, A. Rigas, An infinite family of Gromoll-Meyer spheres, accepted for publishing.

C. Durán, A. Rigas, Equivariant homotopy and deformations of diffeomorphisms, Differential Geometry and Its Applications, 27 (2009), 206-211.

D. Gromoll, W. Meyer, An exotic sphere with nonnegative curvature, Ann. Math. 96 (1972), 413-443.

J. W. Milnor, On manifolds homeomorphic to the 7-sphere, Ann. of Math. 64 (1956), 399-405.