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Abstract

Solitons and instantons are crucial in modern field theory, which includes high energy physics
and string theory, but also condensed matter physics and optics. This thesis is concerned with
two appearances of solitonic objects: higher-dimensional instantons arising as supersymme-
try condition in heterotic (flux-)compactifications, and monopole operators that describe the
Coulomb branch of gauge theories in 2+1 dimensions with 8 supercharges.
In Part I we analyse the generalised instanton equations on conical extensions of Sasaki-

Einstein manifolds. Due to a certain equivariant ansatz, the instanton equations are reduced to
a set of coupled, non-linear, ordinary first order differential equations for matrix-valued functions.
For the metric Calabi-Yau cone, the instanton equations are the Hermitian Yang-Mills equations
and we exploit their geometric structure to gain insights in the structure of the matrix equations.
The presented analysis relies strongly on methods used in the context of Nahm equations. For
non-Kähler conical extensions, focusing on the string theoretically interesting 6-dimensional case,
we first of all construct the relevant SU(3)-structures on the conical extensions and subsequently
derive the corresponding matrix equations. For the Kähler-torsion sine-cone the problem is
reduced to the Calabi-Yau cone by means of conformal invariance. For the nearly Kähler and
half-flat 6-manifolds we derive new explicit solutions.

The extension of a quiver bundle construction, defined via equivariant dimensional reduction
over product manifolds Md×G/H with Kähler cosets, to the case of the Sasaki-Einstein coset
S5 = SU(3)/SU(2) (and A-type orbifolds thereof) is considered in Part II. The construction
of the quiver bundle via SU(3)-equivariant dimensional reduction over Md×S5 is described
in detail and turns out to be an extension of SU(3)-equivariant dimensional reduction over
Md×CP 2. The extension is manifest in vertex edge loops, associated to the Hopf fibration
U(1) ↪→ S5 → CP 2, and is exemplified with specific examples. As the arising quiver gauge
theories are conceptually different from the conventional quiver gauge theories found in the
physics literature, we aim to provide a first step in the comparison between these two. For that,
we associate two different instanton moduli spaces on the Calabi-Yau orbifold C(S5/Γ): on
the one hand, equivariant instantons, wherein the underlying structure of the gauge theory is
fixed by the Sasakian quiver associated to S5, and, on the other hand, translationally invariant
instantons, which exhibit an appearance as moduli spaces of world volume gauge theories on
D-branes located at orbifold singularities. We contrast the resulting quiver gauge theories, their
relations, and construct the formal Kähler structure on the moduli space.
Recently, the Coulomb branchMC of 3-dimensional N = 4 gauge theories has experienced

an algebraic description in terms of the monopole formula which is the Hilbert series associated
to the chiral ring C[MC ]. In Part III we analyse the monopole formula and provide a geome-
tric derivation of the set of chiral ring generators. The matter content divides the dominant
Weyl chamber of the GNO-dual of the gauge group into a fan, via the weight vectors of the
matter field representation. Upon intersection of the fan with the weight lattice, the monopole
formula turns into a sum over affine semi-groups twisted by the Casimir invariance. This new
understanding provides unprecedented insights into the combinatorics of the Hilbert series: we
can explicitly sum the Hilbert series (in principle for any gauge group), we identify a sufficient
set of bare monopole operators, we derive the number and degree of the corresponding dressed
monopole operators, and we provide a clean approximation of the plethystic logarithm. This
novel interpretation is tested against a comprehensive list of rank two examples and one rank
three scenario.

key words: higher-dimensional instantons, monopole operators, gauge theories
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Kurzdarstellung

Solitonen und Instantonen sind fundamentale Bestandteile moderner Feldtheorien, nicht nur
in Hochenergiephysik oder Stringtheorie, sondern auch in der Theorie kondensierter Materie
und Optik. In der vorliegenden Arbeit werden zwei Beispiele solcher solitonischen Objekte
betrachtet: höher-dimensionale Yang–Mills-Instantonen, welche als Supersymmetriebedingungen
in heterotischen (Fluss-)Kompaktifizierungen erscheinen, und Monopoloperatoren, welche für die
Beschreibung des Coulomb-Zweiges von Eichtheorien in 2+1 Dimensionen mit 8 Superladungen
notwendig sind.
Der I. Teil der Arbeit ist der Analyse der verallgemeinerten Instantongleichungen auf kegel-

förmigen Erweiterungen von Sasaki–Einstein-Mannigfaltigkeiten gewidmet. Die Instantonglei-
chungen können durch einen äquivarianten Ansatz auf ein System gekoppelter, nichtlinearer,
gewöhnlicher Differentialgleichungen erster Ordnung für matrixwertige Funktionen reduziert
werden. Für den Fall des metrischen Calabi–Yau-Kegels sind die Instantongleichungen identisch
zu den hermiteschen Yang–Mills-Gleichungen, sodass wir deren geometrische Strukturen nutzen
können, um die Geometrie der Matrixgleichungen zu untersuchen. Die in dieser Arbeit präsen-
tierte Analyse basiert auf Methoden, die ihre Anwendung bereits bei den Nahm-Gleichungen
gefunden haben. Im Falle von Kegelerweiterungen die nicht Kähler sind, wobei wir uns auf die
stringtheoretisch interessanten 6-dimensionalen Fälle beschränken, konstruieren wir zuerst die
relevanten SU(3)-Strukturen und leiten anschließend die korrespondierenden Matrixgleichungen
her. Der dabei auftretende Fall Kähler-Torsion ist mittles konformer Invarianz äquivalent zum
Calabi–Yau-Kegel. Für die nearly Kähler und halb-flachen 6-Mannigfaltigkeiten präsentieren
wir neue explizite Lösungen.

Im Mittelpunkt des II. Teils steht die Übertragung einer Konstruktion von Köcherbündeln,
welche ursprünglich durch die äquivariante dimensionale Reduktion auf Produkten Md×G/H
mit einer Kähler-Faktorgruppe G/H definiert ist, auf den Fall der Sasaki-Einstein-Faktorgruppe
S5 = SU(3)/SU(2) und Orbifaltigkeiten derer. Die Konstruktion des Köcherbündels mittels
SU(3)-äquivarianter dimensionaler Reduktion überMd×S5 wird detailliert beschrieben und ent-
puppt sich als Erweiterung der SU(3)-äquivarianten dimensionalen Reduktion über Md×CP 2.
Markenzeichen der Erweiterung sind Vertexschleifen, welche zur Faserung U(1) ↪→ S5 → CP 2

assoziiert sind, und wir verdeutlichen diesen Umstand anhand von Beispielen. Da diese so erzeug-
ten Köchereichtheorien konzeptionell verschieden von den gewöhnlichen Köchereichtheorien der
Hochenergiephysik sind, beabsichtigen wir einen ersten Vergleich zwischen diesen zu ziehen. Dar-
um betrachten wir zwei verschiedene Instantonlösungsräume auf der Calabi–Yau-Orbifaltigkeit
C(S5/Γ): zum einen den der äquivarianten Instantonen, deren zugrunde-liegende Eichtheorien
strukturell durch die Sasaki-Köcher bestimmt sind, und zum anderen den der translationsin-
varianten Instantonen, deren Lösungsraum eine Realisierung als Weltvolumeneichtheorien auf
D-Branen findet. Für diese beiden Fälle stellen wir die resultierenden Köchereichtheorien sowie
deren Relationen gegenüber und konstruieren die formale Kählerstruktur auf den Lösungsräu-
men.

Der Coulomb-ZweigMC von 3-dimensionalen N=4 Eichtheorien wurde kürzlich algebraisch
durch die Monopolformel beschrieben, welche der Hilbertreihe des chiralen Rings C[MC ] ent-
spricht. Im III. Teil analysieren wir die Monopolformel und liefern eine geometrische Herleitung
einer hinreichenden Menge von Generatoren des chiralen Rings. Der Materiegehalt der Theo-
rie, genauer gesagt die Gewichtsvektoren der Darstellung in welcher die Materie transformiert,
zerlegt die fundamentale Weylkammer des GNO-Dualen der Eichgruppe in einen Fächer. Nach
Schnitt des Fächers mit dem Gewichtsgitter kann die Monopolformel als Summe über affine
Halbgruppen verstanden werden, welche noch zusätzlich mit der Casimir-Invarianz nicht-trivial
verflochten wird. Dieses neuartige Verständnis erlaubt weitere Einblicke in die Kombinatorik
der Hilbertreihe: Man kann die Hilbertreihe explizit summieren (im Prinzip für einen beliebige
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Eichtheorie), einen hinreichenden Satz von nackten Monopoloperatoren identifizieren, sowie die
Anzahl und die Dimensionen der bekleideten Monopoloperatoren herleiten. Außerdem erlaubt
dieses Wissen eine saubere Näherung des plethystischen Logarithmus. Die entwickelte neue
Interpretation wird mittels einer umfassende Liste von Beispielen mit Eichgruppen vom Rang
zwei und einer Gruppe vom Rang drei verifiziert sowie verdeutlicht.

Schlagworte: verallgemeinerte Instantonen, Monopoloperatoren, Eichtheorien
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1 Introduction

Modern day physics rests on two pillars: general relativity and quantum field theory, both of
which have been experimentally verified with remarkable precision. Relativistic quantum field
theories, on the one hand, provide a valid approximation of microscopic processes at energies
currently accessible in experiments. The Standard Model (SM) of Particle Physics has been
completed by the discovery of its last missing ingredient — the Higgs boson [1, 2]. The SM is
one of the experimentally most well-verified theories and is based on a spontaneously broken
U(1)×SU(2)×SU(3) gauge theory. The Standard Model covers three fundamental interactions
called: electromagnetic, weak, and strong. On the other hand, general relativity (GR) successfully
describes the macroscopic processes at cosmological scales and has found a beautiful verification
by the recent direct experimental detection of gravitational waves [3]. GR encodes our knowledge
of the fourth fundamental interaction: gravity. Nonetheless, the unification of all fundamental
interactions, i.e. a consistent quantum theory of gravity, has yet to been found and is a driving
force behind much of current higher energy physics research.
String theory started as the attempt to model hadronic resonances, but has been discarded

shortly after due to undesired (phenomenological) implications and the formulation of quantum
chromodynamics as superior description. Nevertheless, string theory turned out to be a quantum
theory of gravity, having the potential to overcome the shortcomings of any ordinary quantum
field theory. Pushed by two superstring revolutions, string theory developed into an active field of
research and initiated an unprecedented fruitful flow of ideas between physics and mathematics.

1.1 Motivation

Let us first recollect some historic milestones of the developments of string theory and highlight
their implications for gauge theories. A detailed account on the history of string theory can, for
example, be found in [4]. Then, we focus on equations which are naturally associated to gauge
theories and indicate their appearance in string theory.

1.1.1 A brief history of string theory

The original bosonic string theory was flawed by the necessity of 26 dimensions, the prediction
of tachyons, and the absence of fermions. Ramond [5] introduced the superstring in 1971, which
allowed to reduce the dimensionality to 10 and made the theory tachyon-free. The appearance
of massless spin-2 particles in the vibrational modes was the nail in the coffin of any hopes that
string theory could describe only strong interactions. However, these are precisely the properties
of the hypothetical graviton. Although Schwarz and Scherk [6] subsequently discovered that
string theory itself is a quantum theory of gravity, the field entered a decade of low attention
and interest.

First superstring revolution In 1984, Green and Schwarz [7] proved that anomalies in
string theories cancel; thus, rendering it consistent. More excitement arose as Gross, Harvey,
Martinec, and Rohm [8–10] discovered the heterotic string in 1985. Due to the intrinsic gauge
field and the large gauge groups E8 × E8 or SO(32), many believed the final Grand Unified
Theory (GUT) of everything was imminent.

1



1 Introduction

The physics community was well-equipped with five superstring theories in 10 dimensions at
their disposal — type I, IIA, IIB, heterotic E8 ×E8, and heterotic SO(32). At the same time, a
plaguing question arose: which one of them provides the correct description of Nature?

Second superstring revolution Witten [11] proposed in 1995 that all of the five superstring
theories were different limits of one 11-dimensional supergravity theory, called M-theory. This
conjecture relies heavily on so-called dualities, which — put simply — relate different theories
that describe the same physics. Shortly after, Polchinski [12] realised that higher dimensional
objects, called D-branes, can and have to be included in string theory.
Such branes introduced a much richer machinery for constructing gauge theories in lower

dimensions. One method, for instance, is geometrical engineering [13] in which branes wrap
supersymmetric cycles such that the world-volume theory is a dimensionally reduced gauge the-
ory inherited from the original D-brane. Here, the geometry of the homological cycles (together
with the wrapped branes) determines the gauge group and matter content. Another method,
the so-called Hanany-Witten setups [14], concerns world-volume theories for configurations of
branes. The benefit of this approach lies in the direct translation of simple geometric quanti-
ties, such as distances and bendings, into physical quantities, like coupling constants and beta
functions. Lastly, a method called brane probes, initiated by [15], exploits stacks of D-branes
located at (isolated) orbifold singularities to deduce gauge theories that differ from simple U(N)-
theories. Depending on the choice of orbifold group Γ with respect to the R-symmetry group,
i.e. Γ ⊂ SU(2), SU(3), or SU(4), the world-volume theory has N = 2, 1, or 0 supersymmetries,
respectively. As a remark, all of these three methods are equivalent under a sequence of dualities.
In 1997, Maldacena [16] conjectured the AdS/CFT or gauge/gravity correspondence, which

would be an exact equivalence between a conformally invariant quantum field theory and a
superstring theory. The archetypal example states the equivalence between N=4 SU(N) super
Yang-Mills in 4 dimensions and type IIB superstring theory on the 10-dimensional product
AdS5×S5. Ever since this astonishing conjecture much effort has been devoted in testing and
exploiting this correspondence.

Related mathematics In the course of string theory developments, some remarkable math-
ematics has been unveiled. One of the most famous string theory concepts to mathematicians
probably is mirror symmetry, which associates to almost any Calabi-Yau 3-fold M another
Calabi-Yau 3-fold W such that the cohomology groups satisfy Hp,q(M) = H3−p,q(W ). In partic-
ular, it implies that the Hodge-diamond ofW is the flipped Hodge-diamond ofM . Consequently,
it is conjectured that type IIA string theory compactified on M is dual to type IIB string theory
compactified onW ; in other words, both are isomorphic string theories that give rise to the same
physics [17, 18]. Even more is true: a Calabi-Yau manifold M allows to introduce two moduli
spacesM1,1,M2,1 associated to Kähler and complex structure deformations. For a mirror pair
(M,W ) these moduli spaces are identified asM1,1(M) =M2,1(W ) andM1,1(W ) =M2,1(M).

Another incidence of stringy mathematics occurred in the McKay correspondence and higher
dimensional generalisations thereof. Dixon, Harvey, Vafa, and Witten [19,20] proposed a string
partition function which resolved orbifolds and predicted the Euler characteristic of orbifolds. It
was then realised that the DHVW proposal is an important ingredient for crepant resolutions of
C3/Γ, for a finite subgroup Γ ⊂ SL(3,C), as well as for the associated McKay correspondence.

1.1.2 Gauge theoretic equations

There are several instances in which gauge theoretic equations, first discovered in physics and
later formalised in mathematics, appear in string theory. Alternatively, one could just call them

2



1.1 Motivation

soliton equations, as we will encounter instantons, monopoles, and vortices as solutions. For a
review of the D-brane realisations of such solitons, see [21] and references therein.

Yang-Mills instantons Yang-Mills instantons are (anti-)self-dual connections A on a G-
principal bundle over a 4-dimensional Riemannian manifold M4, i.e. their defining property is
FA = ± ?FA, with ? the Hodge star on M4. They were first found as finite action solutions on
4-dimensional Euclidean space compactified to the 4-sphere [22,23]. The finiteness of the action
has to be ensured by boundary conditions at ∂R4 ∼= S3

∞, which then allows a classification of
solutions by homotopy classes in π3(G). These give rise to the instanton number (or charge),
which also equals the Pontryagin number. Moreover, the study of (anti-)self-dual connections
led to a classification of 4-manifolds, as demonstrated by Donaldson [24]. By the seminal work of
Atiyah, Drinfeld, Hitchin, and Manin [25] the construction of instanton solutions, for all classical
groups, on R4 has been turned into an algebraic problem.
The so-called ADHM construction later experienced a realisation in D-brane dynamics [26,

27]. Considering Dp-branes inside D(p+4)-branes, the Dp-branes are co-dimension 4 objects
and dissolve into instantons for the world-volume gauge fields of the D(p+4)-branes. From
the perspective of the gauge theory on the Dp-brane, the Higgs branch of the moduli space
then corresponds to the moduli space of instantons of the D(p+4) gauge group. In addition,
moduli spaces of anti-self dual connections on C2 appear as Higgs branches [28–30] or Coulomb
branches [31–33] of, for example, 3-dimensional N = 4 gauge theories.

Generalised Yang-Mills instantons, which have been first introduced in [34], appear frequently
in string theory. Most prominently, the heterotic compactifications require the gauge field to
satisfy the Hermitian Yang-Mills (HYM) equations. By the seminal work of Donaldson [35,36],
and Uhlenbeck and Yau [37] solutions to the HYM equations are equivalent to (poly-)stable
holomorphic bundles. Hence, the problem has been transformed from a partial differential
equation into an algebo-geometric formulation.

Monopoles A (magnetic) monopole is mathematically given by a solution of the Bogomolny
equations, but can also be considered as dimensional reduction of an instanton. For a G-monopole
on a Riemannian 3-manifold M3 the data of a monopole consists of a connection A on a G-
principal bundle over M3 and a section Φ of the adjoint bundle, called Higgs field, such that
they satisfy the Bogomolny equation FA = ?DAΦ with certain asymptotic conditions Φ∞ on
the Higgs field. These boundary conditions topologically classify the solutions via homotopy
classes [Φ∞] ∈ π2(G/T), wherein T is a maximal torus of G. The construction is valid for all
(classical) Lie groups G, and monopoles are an active research topic in mathematics, see for
instance [38–41]. Remarkably, Nahm [38] provided a description of the monopole moduli space
in terms of matrix equations, now known as Nahm equations.

The first finite energy solutions in a non-abelian gauge theory have been found independently
by ’t Hooft [42] and Polyakov [43]. The ’t Hooft-Polyakov monopole is a smooth solution in
contrast to the previously found singular Dirac monopole [44].
Surprisingly, monopoles and Nahm equations appear also in type IIB string theory. There,

the dynamics of N D1-branes stretching between two separated D3-branes is described by the
Nahm equations [45,46].

In addition, magnetic monopoles also appear in the description of moduli spaces of supersym-
metric gauge theories. More precisely, the description of the Coulomb branch of 3-dimensional
N = 4 gauge theories relies on ’t Hooft monopole operators [47, 48], which lead to an insertion
of a particular monopole singularity in the path integral.
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Vortex equations Geometrically, vortices are absolute minima of the Yang-Mills-Higgs func-
tional

S[A, φ] =
∫
R2

(
|FA|2 + |dAφ|2 + 1

4
(
1− |φ|2

)2
)
,

for a unitary connection A and a smooth section φ of a Hermitian line bundle over R2. Iden-
tifying R2 with the complex plane, the minimum is attained if and only if ∂̄Aφ = 0 and
FA = 1

2 ?
(
1− |φ|2

)
, which are the vortex equations. In analogy to instantons and monopoles,

the topological charge (or vortex winding number) is now given by the equivalence class of the
solution in the first homotopy group. In 1950, vortices were first introduced in [49] in the study
of superconductivity, and an extensive treatment can be found in [50].

Interestingly, the setting has been generalised to vortex equations on Kähler manifolds [51,52]
and on Kähler products M2n ×G/H in the context of quiver bundles in [53–55]. Moreover, the
vortex equations are a dimensional reduction of the HYM equations, which is a generalisation
of the statement that the (ordinary) vortex equations on R2, i.e. n = 1, are a dimensional
reduction of the (anti-)self-dual connections on R4. Furthermore, the vortex equations for n = 2
are the Seiberg-Witten monopole equations [56].

1.2 Thesis overview

This thesis is divided into three (fairly self-contained) parts, each devoted to a different aspect
of gauge theories related to string theory.

Part I is centred around the generalised Yang-Mills instanton equation which arises in heterotic
(flux-)compactifications to 4-dimensional theories with N = 1 supersymmetry. Attention will
be paid to three particular points: (i) We recall known conical extensions as well as explicitly
construct several new conical extensions of Sasaki-Einstein manifolds, mostly 5-dimensional
ones, which are of interest for flux compactifications. (ii) The instanton equation on the Calabi-
Yau cone will be treated rather mathematically. We will study the moduli space of certain
equivariant instantons on the Calabi-Yau cone over arbitrary Sasaki-Einstein manifolds. An
equivariant ansatz for the gauge field reduces the Hermitian Yang-Mills equations to a set of
matrix equations, for which we describe the geometric properties. (iii) In contrast, we establish
explicit instanton solutions on 6-manifolds which are manifestly non-Kähler; thus, they might
be interesting testing grounds for flux compactifications.
A different perspective is taken in Part II, in which we construct quiver gauge theories as-

sociated to the simplest 5-dimensional Sasaki-Einstein coset S5 (and certain A-type orbifolds
thereof). We first provide a detailed account of the construction of so-called quiver bundles,
before we compare two different instanton moduli spaces. On the one hand, these moduli spaces
describe the (non-trivial) vacua of the quiver gauge theories; while, on the other hand, they
can be motivated from two different settings: (i) equivariant instantons on conical extensions,
as known from the heterotic BPS-equations, and (ii) translationally invariant instantons on
an orbifold, which resembles the space of classical vacua for D-branes probing orbifold singu-
larities. Therefore, the comparison is between two moduli spaces originating from different,
well-motivated phenomena.

Lastly, we explore the Coulomb branch of 3-dimensional N = 4 gauge theories with rank
two gauge groups in Part III. The techniques employed are complementary to the previous two
parts, as the tools mostly borrow from algebraic geometry. We will show that the computation
of the Hilbert series by means of the monopole formula can be greatly simplified by our novel
interpretation, which also sheds light on the combinatorics of the monopole formula. The main
idea relies on the insight that the conformal dimension generates a fan in the Weyl chamber of
the GNO-dual group. Upon intersection with the (magnetic) weight lattice, the Hilbert basis
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is a unique, finite set of generators for each affine semi-group. Employing this, we provide an
explicit expression of the Hilbert series for any rank two gauge group. In addition, the number
and the degrees of dressed monopole operators in non-abelian theories can be understood by
ratios of functions accounting for the Casimir invariance. We then supplement these findings
by a comprehensive list of examples in which we demonstrate the novel interpretation.
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Part I

Instantons on cones over
Sasaki-Einstein manifolds
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2 Introduction and motivation

Solitons and instantons are important objects in modern field theory [57–59]. For example, soli-
tons in supergravity theories are branes of various dimensions, which describe non-perturbative
states of the underlying string theories or M-theory [60–62]. Yang-Mills instantons, on the other
hand, can appear as co-dimension four objects in brane systems [26,27] or, as we will explore
in this part, as supersymmetry condition in heterotic string compactifications.

Let us review compactifications of the heterotic string to theories in 4-dimensional spacetime
with N = 1 supersymmetry.

2.1 Compactifications of the heterotic string

Kaluza-Klein compactifications of the heterotic string on Calabi-Yau 3-folds have been the
simplest attempt to reduce the 10 dimensions of the heterotic superstring to the four physical
and to break some of the original 16 supersymmetries. The heterotic string is phenomenologically
particularly interesting as it contains a gauge field even without D-branes, and its gauge group
E8 × E8 or SO(32) is large enough to accommodate the Standard Model gauge group as well
as GUT-groups thereof [63].
Heterotic supergravity, as a low-energy effective field theory, preserves supersymmetry in 10

dimensions precisely if there exists at least one globally defined and nowhere-vanishing Majorana-
Weyl spinor ε such that the supersymmetry variations of the fermionic fields (gravitino λ, dilatino
ψ, and gaugino ξ) vanish, i.e. the so-called BPS equations

δλ = ∇+ε = 0 , (2.1a)

δψ = γ

(
dφ− 1

2H
)
ε = 0 , (2.1b)

δξ = γ (FA) ε = 0 (2.1c)

hold, wherein γ(ω) = 1
p!ωi1...ipΓ

i1...ip is the Clifford map for a p-form ω. The bosonic field content
is given by the metric g, the dilaton φ, the 3-form H, and the gauge field A. Further, ∇+ is a
metric-compatible connection with torsion H.
The BPS equations (2.1) have to be supplemented by the α′-corrected Bianchi identity

dH = α′

4 [tr (R ∧R)− tr (FA ∧ FA)] (2.2)

due to the Green-Schwarz anomaly cancellation mechanism [7]. Here R is the curvature of a
connection ∇ on the tangent bundle1.
The 10-dimensional space is assumed to be a product Mp−1,1 ×M10−p, where M10−p is a

(10−p)-dimensional internal manifold and Mp−1,1 is a Lorentzian manifold of signature (p−1, 1).
Then (2.1a) translates into the existence of an covariantly constant spinor εd on Md, with
d=(10−p). Moreover, a globally defined nowhere-vanishing spinor exists only on manifolds Md

with reduced structure group (i.e. a G-structure), which in d = 6 amounts to an SU(3)-structure.
Then a metric-compatible connection, which leaves ε6 parallel and is also compatible with the

1Different choices for ∇, such as ∇+, are mentioned in [64].
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SU(3)-structure, always exists, but possibly has torsion. In other words, a connection with
SU(3)-holonomy always exists on SU(3)-manifolds, but in general it differs from the Levi-Civita
connection. As a consequence, manifolds with special holonomy or G-structure are essential in
string theory compactifications. Moreover, assuming that the external space Mp−1,1 is maximally
symmetric plus employing the existence of a covariantly constant spinor on it, reduces the
external space to a Minkowski space.

2.1.1 Calabi-Yau compactifications

Assuming maximal symmetry along M3,1 imposes the vanishing of any component of the NS-NS
3-form H and the field strength FA which are purely in M3,1 or which are mixed between
external and internal space. Most importantly, if one further assumes that H = 0 in the internal
space and a constant dilaton φ, the BPS-equations (2.1) for N = 1 unbroken supersymmetry
imply that M6 is a Calabi-Yau manifold.

In such compactifications, it is then necessary to specify a 6-dimensional Calabi-Yau manifold
as well as a Hermitian Yang-Mills (HYM) instanton on a gauge bundle over that manifold [63],
because (2.1c) is precisely the HYM instanton condition on the gauge field A. For compact
Calabi-Yau 3-foldsM6 this is equivalent to specifying a (poly-)stable holomorphic vector bundle
of M6 due to [35–37].

Nevertheless, the Bianchi identity (2.2) has to be satisfied. As dH is exact, tr(FA ∧ FA) and
tr(R ∧ R) belong to the same cohomology class, and coincide for dH = 0. We recall: R takes
values in the Lie algebra of the holonomy group SU(3), while FA takes values in the Lie algebra
of the gauge group E8 × E8 or SO(32). Hence, a simple way to solve (2.2) (for dH = 0) is to
specify an SU(3)-subgroup of the gauge group. This is usually called standard embedding of the
spin connection into the gauge connection A, i.e. the gauge bundle over the Calabi-Yau 3-folds
M6 is taken to be the tangent bundle TM6. Among the multitude of embeddings of SU(3) in,
say, E8 × E8 only some are admissible [63]; one, for instance, is SU(3) embedded in one E8
factor with commutant E6. The resulting unbroken gauge group2 in 4 dimensions is E6 × E8.
This scenario offers two intriguing features: E6 has been proposed as a grand unification group
for the Standard Model. In addition, the remaining E8 gauge factor can comprise a hidden
sector, which is desirable for inclusion of dark matter. Nevertheless, the standard embedding
is of limited usefulness from the phenomenologically point of view [62, 65], because it limits
considerations to E6 GUTs, and very few Calabi-Yau 3-folds with the right features are known.
However, the geometry of the internal space is not completely fixed by the BPS-equations,

as Betti numbers do not uniquely characterise a Calabi-Yau space. The deformations of the
internal space are parametrised by numbers called moduli, which characterise the shape and size.
The moduli give rise to effective scalar fields in the low-energy effective theory. If the H-flux
vanishes, there is no potential for these fields in the effective theory. As these massless scalar
fields are unrestrained, they can have arbitrary magnitudes, but these moduli control the size of
the internal manifold. Consequently, the entire idea of compactifications is spoiled by massless
moduli, at least for vanishing H-flux. Nevertheless, it is remarkable that the requirement of
N = 1 supersymmetry determines the internal geometry (almost) entirely.

2.1.2 Flux compactifications

Allowing for a non-vanishing H-flux has two implications for the background geometry. Firstly,
the 10-dimensional space M10 becomes a warped product in the Einstein frame with warping
factor exp(2φ), which again becomes a direct product in the string frame. Secondly, the non-
vanishing 3-form still renders the internal space M6 into a complex manifold, but generically

2The corresponding unbroken gauge group for SO(32) is SO(26)×U(1), which turns out to be unrealistic [63].
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not Kähler any more. Moreover, the 3-form can be interpreted geometrically as torsion of the
internal manifold.

String vacua with p-form fields along the extra dimensions (flux compactifications) have been
intensively studied in recent years, we refer to [66,67] for a review and references. In particular,
heterotic flux compactifications have been known for quite some time, starting from [68–71] in
the mid-1980s, and have been considered, for example, in [72–85]. The introduction of fluxes
partially resolves the vacuum degeneracy problem by giving masses to problematic moduli,
but they lead to non-integrable SU(3)-structures (i.e. with intrinsic torsion) on the internal
compact 6-manifolds. Among these manifolds there are six-dimensional nearly Kähler and
half-flat manifolds [72–76,82–85].
On a different note, branes are sources of p-form flux fields. They can also wrap various

supersymmetric cycles of special holonomy manifolds [62], and these cycles (which are calibrated
submanifolds [86]) are calibrated via the p-form fluxes. Thus, fluxes play an important role in
the compactification of low-energy string theories and M-theory.
The BPS-equations for the generic case of heterotic compactifications down to N = 1 in 4

dimensions are also known as the Strominger system, based on [71]. Again, the curvature FA
of a connection A on a gauge bundle has to satisfy the Hermitian Yang-Mills equations (2.1c),
but the choice of the gauge bundle is restricted by the Bianchi identity (2.2) for dH 6= 0.

By a theorem of Ivanov [64], a solution to the BPS equations (2.1) and the Bianchi identity (2.2)
satisfies the heterotic equations of motion if and only if the connection ∇ is an SU(3)-instanton
in d = 6. In other words, R and FA are treated on the same footing in a pure supergravity point
of view, i.e. γ(FA)ε = γ(R)ε = 0. Therefore, in the spirit of [84, 85, 87, 88], we will study the
instanton equation (2.1c) for non-integrable SU(3)-structures in order to provide an important
ingredient for full heterotic supergravity solutions3.

2.2 Cones and G-structures

The construction of metric cones and sine-cones over manifolds Md with a G-structure pro-
vides a tool to generate and link different G′-structures on (d+1)-dimensional manifolds. Most
prominently, Sasaki-Einstein 5-manifolds generate a Calabi-Yau structure on their metric cone
and a nearly Kähler structure on their sine-cone. Recently, the study of Sasaki-Einstein mani-
folds [89–93] has lead to infinitely many explicit metrics on (non-compact) Calabi-Yau cones.
Since there are no explicit Ricci-flat metrics known on compact Calabi-Yau manifolds, metric
cones over Sasaki-Einstein spaces provide a testing ground for Calabi-Yau compactifications.
Focusing on non-Kähler backgrounds for flux compactifications, a generalisation of Sasaki-

Einstein 5-manifolds is provided by hypo geometry, in particular hypo, nearly hypo and double
hypo SU(2)-structures; see for instance [94]. Double hypo structures lift to nearly Kähler as
well as to half-flat SU(3)-structures on the sine-cone. The described linking phenomenon is
well-known from the cases of cylinders, cones and sine-cones over nearly Kähler 6-manifolds,
which lead to different G2-manifolds [95]. Here, we use these techniques in order to construct
6-dimensional manifolds with special SU(3)-structures that may be valuable, for example, in
flux compactifications of the heterotic string.
Supergravity in d=10 dimensions allows for brane solutions which interpolate between an

AdSp+1 ×M9−p near-horizon geometry and an asymptotic geometry Rp−1,1 ×C(M9−p), where
C(M9−p) is a metric cone over M9−p (see e.g. [96, 97] and references therein). These brane
solutions in heterotic supergravity with Yang-Mills instantons on the metric cones C(M9−p)

3Choosing a different connection ∇, for example ∇+, the BPS equations together with the Bianchi identity
imply the heterotic equations of motion only up to higher α′-correction. This yields a perturbative solution
in contrast to the exact solution advocated above.
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have been considered in [84,85,98]. Here, we take the first step to generalise them by considering
sine-cones with Kähler-torsion and nearly Kähler structures as well as cylinders with half-flat
structures instead of metric cones with Kähler structures.

2.3 Generalised instanton condition

As remarked earlier, the curvature FA of a connection A on a gauge bundle has to satisfy
the generalised instanton equation (2.1c). Instantons have proven to be interesting both for
mathematicians and physicists. Starting from work [24] by Donaldson, anti-self-dual Yang-
Mills connections provided a new topological invariant for four-manifolds. The generalisation
of Yang-Mills instantons to higher dimensions (d>4) was first proposed in [34] and further
studied in [35–37,99–106] (see also references therein). Some solutions for d>4 have been found,
namely Spin(7)-instantons on R8 in [107,108] and G2-instantons on R7 in [109–111]. Although
recently the moduli space of contact instantons has been discussed in [112], the moduli spaces
of higher-dimensional instantons are still not fully understood.
In particular, the instanton equation can be introduced on any manifold with a G-structure.

On manifoldsMd with integrable G-structure, instantons have two crucial features. Firstly, they
solve the Yang-Mills equation (without torsion), and, secondly, the Levi-Civita connection on
TMd already is an instanton. For generic non-integrable G-structures, the instanton equation
implies the Yang-Mills equation with torsion. However, as shown in [84], on manifolds with real
Killing spinors the corresponding instantons solve the Yang-Mills equation without torsion even
if the G-structure has non-vanishing intrinsic torsion.

In studying generalised instantons on conical extensions of Sasaki-Einstein manifolds M2n+1,
we follow the approach outlined in [113], which extends the results of [84]. As a consequence,
the instanton equations have been reduced by an equivariant ansatz to a set of matrix equations.
This set of equations comprises three types of equations: (i) an SU(n+1)-equivariance condition,
(ii) a holomorphicity condition, and (iii) a remaining equation that strongly depends on the
type of SU(n+1)-structure on the conical extension.
One of the main topics in this part is the moduli space of the reduced instanton matrix

equations on the Calabi-Yau cone of an arbitrary Sasaki-Einstein manifold. Instantons on
Calabi-Yau cones and their resolutions have also been studied in [114,115] and, for the particular
orbifolds Cn/Zn, in [116]. However, the settings and ansätze considered there are different: on
the one hand, the authors of [114,115] considered instantons on the tangent bundle of a (2n+2)-
dimensional Calabi-Yau cone whose structure was largely determined by the 2n-dimensional
Einstein-Kähler manifold underlying the Sasaki-Einstein manifold in between. The ansatz for
the connection was adapted to the isometry of the Calabi-Yau cone, and the seed was the spin
connection in the Einstein-Kähler space, which is an instanton. On the other hand, certain
gauge backgrounds for heterotic compactifications were constructed in [116] by extending a flat
connection on CPn−1 to U(1) and U(n−1)-valued instanton connections on the orbifolds. In
contrast, the approach in [113], which is extended here, can conceptually take any instanton on
the Sasaki-Einstein manifold as a starting point, and the gauge bundle does not need to be the
tangent bundle anymore.

2.4 Outline

The outline of the first part of this thesis is as follows: Ch. 3 is devoted to a review of Sasaki-
Einstein structures in 2n+1, SU(2)-structures in 5, and SU(3)-structures in 6 dimensions. By
means of cone constructions we obtain the relevant geometries in one dimension higher. We then
take two perspectives: We recall the geometry of HYM-instantons and argue in Ch. 4 that the
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moduli space of the instanton matrix equations on the CY-cone is a finite dimensional Kähler
space obtained by a Kähler quotient. This part will be detached from the physical application,
as we only study the mathematical properties of these equivariant instantons. In contrast, Ch. 5
focuses on the search for explicit instanton solutions on conical 6-manifolds that are promising
backgrounds for heterotic flux compactifications.
The contents of this part stem from collaborations [117, 118] with S. Bunk, T. Ivanova,

O. Lechtenfeld, and A.D. Popov, and from the publication [119] of the author.
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3 Geometry

In this chapter we lay the foundations for Part I and II: Sasaki-Einstein geometry is introduced
as well as the relevant G-structures on various conical extensions in one dimension higher.

3.1 Sasakian geometry

Sasakian geometry can be understood as odd-dimensional analogue of Kähler geometry. In par-
ticular, an odd-dimensional manifold M2n+1 with a Sasakian structure is naturally sandwiched
between two different types of Kähler geometry in the neighbouring dimensions 2n and 2n+2.
Following [120], a Sasakian manifold M2n+1 carries a Sasakian structure comprised of the

quadruplet S = (ξ, η,Φ, g), wherein ξ is the Reeb vector field, η the dual contact 1-form,
Φ ∈ End(TM2n+1) a tensor, and g a Riemannian metric. The defining property for (M2n+1,S)
to be Sasakian is that the metric cone (C(M2n+1), ĝ) = (R+ ×M2n+1, dr2 + r2g) is Kähler, i.e.
the holonomy group of the Levi-Civita connection on the cone is U(n+1). The (compatible)
complex structure Jc on the cone acts via Jc(r ∂r) = ξ and Jc(X) = Φ(X)− η(X) r ∂r for any
vector field X on M2n+1. The corresponding Kähler 2-form is 1

2d(r2η).
Moreover, considering the contact subbundle D = ker(η) ⊂ TM2n+1 one has a complex

structure defined by restriction Jt = Φ|D and a symplectic structure dη. Hence, (D, Jt,dη)
defines the transverse Kähler structure [120].

A Sasaki-Einstein manifold is Sasakian and Einstein simultaneously; thus, the defining prop-
erty is that the metric cone is Calabi-Yau, i.e. the holonomy group on the cone is reduced to
SU(n+1).

For the purposes of this thesis, it is convenient to understand a Sasaki-Einstein manifoldM2n+1

in terms of an SU(n)-structure. To this end, consider the 2-form ω defined by dη = −2ω. One
can always choose a co-frame {eµ} = (ea, e2n+1), with µ = 1, 2, . . . , 2n+ 1 and a = 1, 2, . . . , 2n,
such that these forms are locally given by

η = e2n+1 and ω = e1 ∧ e2 + e3 ∧ e4 + . . .+ e2n−1 ∧ e2n ≡ 1
2ωabe

ab (3.1)

and the metric reads
g = δµνe

µ ⊗ eν = δabe
a ⊗ eb + η ⊗ η . (3.2)

Moreover, there exists a canonical connection ΓP on TM2n+1 which is metric-compatible, is
an instanton with respect to the SU(n)-structure, and has non-vanishing torsion4. The torsion
components are given by [84]

T 2n+1
a b = −2ωab and T ba 2n+1 = n+ 1

n
ωab . (3.3)

Remarks Besides Sasaki-Einstein structures there exist various other Sasakian structures
that are of similar interest. For example, 3-Sasakian manifolds M4d+3 are manifolds whose

4The torsion components can be related to the components of the 3-form P = η ∧ ω; hence, the name ΓP .
However, the torsion is not completely antisymmetric itself.

17



3 Geometry

metric cone is hyper-Kähler, i.e. its holonomy is a subgroup of Sp(d+1). Hyper-Kähler spaces
will play a central role in Part III.

3.2 Calabi-Yau metric cone

One result that makes Sasaki-Einstein manifolds interesting for string theorists as well as
mathematicians is that their metric cones are Calabi-Yau. First of all, let us recall the basic
properties of a Calabi-Yau manifoldM2n+2: as a Calabi-Yau space is Kähler, one has the Kähler
form, which is a closed (1, 1)-form on M2n+2. In addition, the Calabi-Yau condition enforces
the canonical bundle to be trivial, i.e. KM2n+2 = Λ(n+1,0)T ∗M2n+2 ∼= M2n+2 × C. Thus, there
exists a nowhere vanishing section in KM2n+2 which translates into an (n+1, 0)-form on M2n+2.
The metric on the metric cone (C(M2n+1), ĝ) over the Sasaki-Einstein manifold M2n+1 is

defined as
ĝ = dr2 + r2g = e2t

(
dt2 + δµνe

µ ⊗ eν
)

= e2tg̃ , (3.4)

where the last equality employs a conformal rescaling r = et from the metric cone with cone
coordinate r ∈ R+ to the cylinder (Cyl(M2n+1), g̃) with coordinate t ∈ R. Also, we identify
dt = e2n+2 and extend the index range µ̂ = 1, 2, . . . , 2n+ 1, 2n+ 2. The Kähler form ω̂ on the
cone is

ω̂ = r2ω + rη ∧ dr = e2t (ω + η ∧ dt) = e2tω̃ , (3.5)

which is again related to the fundamental (1, 1)-form ω̃ on the cylinder. Next, we introduce a
complexified basis on the cotangent bundle of Cyl(M2n+1) as follows

θj = ie2j−1 + e2j and θ̄j = −ie2j−1 + e2j for j = 1, 2, . . . , n+ 1 , (3.6)

such that the metric and fundamental (1, 1)-form read

g̃ = 1
2

n+1∑
j=1

(
θj ⊗ θ̄j + θ̄j ⊗ θj

)
and ω̃ = − i

2

n+1∑
j=1

θj ∧ θ̄j . (3.7)

The compatible complex structure J acts via Jθj = iθj and Jθ̄j = −iθ̄j , such that the compati-
bility relation is ω̃(·, ·) = g̃(·, J ·).

Let us compare the choice (3.6) with the canonical choice θjcan = e2j−1 +ie2j and the canonical
complex structure Jcanθ

j
can = iθjcan. The conventions used here correspond to J = −Jcan such

that the (1, 0) and (0, 1)-forms are interchanged, which implies that ω̃(·, ·) = g̃(Jcan·, ·) =
−g̃(·, Jcan·) = g̃(·, J ·) is consistent with the above. The reasons for this choice are that we desire
a resemblance to the treatment of [40, 121, 122], while at the same time we treat dt as the
(2n+2)-th basis 1-form instead of the 0-th.

3.3 SU(2)-structures in 5 dimensions

Sasaki-Einstein 5-manifolds are a particular case of manifolds carrying an SU(2)-structures in
5 dimensions. Let us briefly summarise their definition and introduce some notation for later
convenience.

LetM5 be 5-manifold with an SU(2)-structure, i.e. the frame bundle ofM5 can be reduced to
an SU(2) principal subbundle. It has been proven in [123] that an SU(2)-structure is determined
by a quadruplet (η, ω1, ω2, ω3) of differential forms, wherein η ∈ Ω1(M5) and ωα ∈ Ω2(M5) for
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α = 1, 2, 3. These forms satisfy

ωα ∧ ωβ = 2 δαβQ (3.8)

for the 4-form Q = 1
2 ω

3 ∧ ω3. We note that η ∧Q 6= 0 holds.
Moreover, it has been shown in [123] that it is always possible to choose a local orthonormal

coframe e1, . . . , e5 of forms on M5 such that

η = −e5 , ω1 = e23 + e14 , ω2 = e31 + e24 , ω3 = e12 + e34 . (3.9)

By means of the ’t Hooft symbols ηαab, see for instance [57], one can express the 2-forms as

ωα = 1
2 η

α
ab e

a ∧ eb. (3.10)

Here again a, b = 1, 2, 3, 4. Among the SU(2)-structures in 5 dimensions there are several types
having particularly interesting geometry. We will now recall their definitions following [94].

Sasaki-Einstein A Sasaki-Einstein 5-manifold is a manifold carrying an SU(2)-structure
defined by (η, ω1, ω2, ω3), where these forms are subject to

d η = 2ω3 , dω1 = −3 η ∧ ω2 , dω2 = 3 η ∧ ω1 . (3.11)

Hypo An SU(2)-structure on a 5-manifold is called hypo if

dω3 = 0 , d
(
ω1 ∧ η

)
= 0 , d

(
ω2 ∧ η

)
= 0 (3.12)

holds true. Hypo geometry, therefore, is a generalisation of Sasaki-Einstein geometry.

Nearly hypo An SU(2)-structure on a 5-manifold is called nearly hypo if it satisfies

dω1 = −3 η ∧ ω2 , d
(
η ∧ ω3

)
= 2ω1 ∧ ω1 . (3.13)

Note that any SU(2)-structure which satisfies the first two identities of (3.11) is a nearly hypo
structure.

Double hypo An SU(2)-structure on a 5-manifold is called double hypo if it is hypo and nearly
hypo simultaneously, i.e. if it satisfies (3.12) and (3.13). Thus, the Sasaki-Einstein 5-manifolds
are a subset of the double hypo manifolds.

As shown in [123], SU(2)-structures in 5 dimensions always induce a nowhere-vanishing spinor
on M5. This will be generalised Killing if and only if the SU(2)-structure is hypo, and Killing if
and only if the SU(2)-structure is Sasaki-Einstein. In [84] it has been argued that in the latter
case there exists a one-parameter family of metrics

gM5 = e2hδab e
a ⊗ eb + e5 ⊗ e5 , (3.14)

with the real parameter h. This family is compatible with an su(2)-valued connection on TM5

for which the Killing spinor is parallel. For the special value exp(2h) = 4/3 the torsion of that
connection is totally antisymmetric and parallel with respect to that connection, i.e. there exists
a canonical su(2) connection. For all values of h however, this connection is an su(2) instanton
on TM5 for the respective SU(2)-structure. For h = 0, M5 is a Sasaki-Einstein manifold and
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the torsion components of the canonical connection are as follows:

T a = 3
4Paµνe

µν and T 5 = P5µνe
µν for P = η ∧ ω3 . (3.15)

Remark For the treatment of SU(2)-structures in d = 5 we have chosen a different sign in
the definition (3.9) of η compared to (3.1), implying that (3.3) (for n = 2) and (3.15) differ.

3.4 SU(3)-structures in 6 dimensions

As pointed out in the introduction, one of our goals is the construction of SU(3)-structures on
6-dimensional manifolds. Therefore, we introduce these structures and their characterisation
via intrinsic torsion classes. In a manner similar to Sec. 3.3, an SU(3)-structure on a 6-manifold
M6 is given by a reduction of the frame bundle to an SU(3)-subbundle. An SU(3)-structure on
a 6-dimensional manifold M6 is characterised in terms of a triple (J, ω,Ω), where J is an almost
complex structure, ω a (1, 1)-form, and Ω a (3, 0)-form with respect to J . These are subject to
the algebraic relations

ω ∧ Ω = 0 and Ω ∧ Ω̄ = −4i
3 ω ∧ ω ∧ ω . (3.16)

The compatible Riemannian metric is determined by ω(·, ·) = g(J(·), ·), and the (3, 0)-form can
be split into its real and imaginary part, i.e. Ω = Ω+ + i Ω−. By an appropriate choice of a local
frame, these forms can always be brought into the form

ω = e1 ∧ e2 + e3 ∧ e4 + e5 ∧ e6 and Ω = (e1 + ie2) ∧ (e3 + ie4) ∧ (e5 + ie6). (3.17)

For SU(3)-structures in 6 dimensions, there exist several types of such structures with different
geometric behaviour, which is mostly governed by the differentials dω and dΩ. SU(3)-structures
in 6 dimensions have been classified in terms of their five intrinsic torsion classes [124]. These
are encoded in the differentials of the defining forms in the following manner:

dω = 3
2 =m

((
W+

1 − iW−1
)

Ω
)

+W3 +W4 ∧ ω , (3.18a)

dΩ =
(
W+

1 + iW−1
)
ω ∧ ω +

(
W+

2 + iW−2
)
∧ ω + Ω ∧W5 . (3.18b)

Here W±1 are real functions, W4 and W5 are real 1-forms, W±2 are the real and imaginary part
of a (1, 1)-form, respectively, and W3 is the real part of a (2, 1)-form. Note that both W2 and
W3 are primitive forms [66], i.e.

ωyW2 = 0 and ωyW3 = 0 , (3.18c)

where the contraction of two forms A, B is defined via AyB := ?(A∧ ?B), see for instance [125].
The Nijenhuis tensor gives rise to the components W1 and W2 such that the almost complex
structure J of any SU(3)-structure with non-vanishing W1 or W2 is non-integrable [124].
We now list the structures of particular relevance for this thesis.

Kähler-torsion On any almost Hermitian manifold (M, g, J) there exists a unique connection
preserving this structure and having totally antisymmetric torsion [126]. This connection is
called the Kähler-torsion (KT) connection or Bismut connection [127]. KT 6-manifolds are
characterised by their torsion, which is given by

T = J dω , (3.19)
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3.5 Cylinders and sine-cones over 5-manifolds with SU(2)-structure

and is the real part of a (2, 1)-form. From [126] one can see that KT manifolds are complex
manifolds, i.e. they enjoy

W±1 = W±2 = 0 . (3.20)

Note that in general their structure group is U(3) rather than SU(3), as they are a subclass of
almost Hermitian structures. However, they may reduce to an SU(3)-structure that is contained
in the U(3)-structure.

Calabi-Yau-torsion If the KT connection is traceless, its holonomy is SU(3) instead of U(3)
and, in particular, the structure group is reduced to SU(3). Conversely, if one is given an SU(3)-
structure (g, ω,Ω) on M6, this is always contained in the almost Hermitian structure defined
by (g, ω). The KT connection of the latter then comprises an SU(3) connection for the SU(3)-
structure if and only if its U(1) part vanishes on the SU(3) subbundle. This can be written
as a further condition on their torsion classes of the SU(3)-structure under consideration (see,
e.g. [128]), which reads

2W4 +W5 = 0 , (3.21)

without further restricting W3. SU(3)-structures that are compatible with the KT connection
of their almost Hermitian structure in this sense are called Calabi-Yau-torsion (CYT). Hence,
CYT manifolds form a subset of KT manifolds, but with SU(3) structure group.

Nearly Kähler An SU(3)-structure on a 6-manifold is nearly Kähler if

W+
1 = W±2 = W3 = W4 = W5 = 0 . (3.22)

Note that, in general, one does not need a vanishing W+
1 , but this can be achieved by suitable

phase-transformation in Ω.

Half-flat An SU(3)-structure on a 6-manifold which satisfies

W+
1 = W+

2 = W4 = W5 = 0 (3.23)

is called half-flat.
Note that generic nearly Kähler and half-flat 6-manifolds have a non-integrable almost complex

structure J and that nearly Kähler manifolds are a subclass of half-flat manifolds.

3.5 Cylinders and sine-cones over 5-manifolds with
SU(2)-structure

Cylinders, metric cones, and sine-cones provide a tool for constructing (n+1)-dimensional G-
structure manifolds starting from n-dimensional H-structure manifolds with H ⊂ G. At first, we
review the Calabi-Yau cone with canonical complex structure for completeness. Next, we focus
on the Kähler-torsion sine-cone, the nearly Kähler sine-cone and the half-flat cylinder, which
will provide the stage for the instanton equations considered in Ch. 5.

First, let us assume we are given a 5-dimensional manifold M5 with an SU(2)-structure
defined by (η, ωα) and a Riemannian metric g5. These tensor fields induce global tensor fields
on the Cartesian product M5×I, where I is an interval. Due to the properties (3.9) of the
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SU(2)-structure on M5, around every point of M5 × I there is a local frame such that

η = −e5 , ωα = 1
2 η

α
ab e

a ∧ eb and dr = e6 , (3.24)

if r is the natural coordinate on the interval I. Next, we can apply transformations to these
local frames; for example, we can perform a transformation like

eµ 7→ φ(r) eµ and e6 7→ e6 , (3.25a)

changing the metric on M5×I to the warped-product metric

g = dr2 + φ(r)2 g5 onM5×φI . (3.25b)

Still, the forms (φ η, φ2 ωα, dr) have the same components as in (3.24) with respect to the
transformed frames.
Afterwards, one still has the freedom of further transformations. These need to map one

SU(2)-structure to another, which means that the defining forms need to have the standard
components (3.9) with respect to the new frame. In addition, those transformations can be
chosen to preserve the warped-product metric. In other words, these admissible transformations
are given by maps from M5×I to the normaliser subgroup of SU(2) in GL(6,R) (or SO(6) if
one wants to preserve g), i.e.

L : M5 × I → NGL(6,R)(SU(2)) . (3.26)

The crucial statement is that if we are given a set of forms (η, ωα) on M5 × I such that around
every point in M5 × I there is a local frame with respect to which (3.24) holds true, the forms
defined by

ω = ω3 − η ∧ dr , (3.27a)
Ω+ = − ω1 ∧ dr + ω2 ∧ η , (3.27b)
Ω− = − ω2 ∧ dr − ω1 ∧ η (3.27c)

take the standard components (3.17) with respect to these local frames and, therefore, define
an SU(3)-structure on M5 × I. Note that ω and Ω are globally well-defined, simply because η
and the ωα are.
This provides us with a general way to construct SU(3)-structure manifolds in 6 dimensions.

Namely, we push a given SU(2)-structure on M5 forward to M5 × I and apply transformations
such that we still are given forms with components (3.24). Then we know that there exists an
extension to an SU(3)-structure given by (3.27). For a generalisation of this procedure we refer
to [129]. In the following subsections we apply this procedure in several cases.

3.5.1 Calabi-Yau cones

Recall the Calabi-Yau cone introduced in Sec. 3.2. We now equip it with the canonical complex
structure and complete the picture for 6-dimensional SU(3)-manifolds. To prevent confusion,
we deliberately change the notation and index sets for the complexified forms.

Consider a Sasaki-Einstein 5-manifold M5 with local coframes eµ, where µ = (a, 5) and
a = 1, 2, 3, 4. The metric on its metric cone reads

g = r2
(
δab e

a ⊗ eb + e5 ⊗ e5
)

+ dr ⊗ dr = r2
(
δab e

a ⊗ eb + e5 ⊗ e5 + e6 ⊗ e6
)

(3.28)
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with

e6 = dτ = dr
r
. (3.29)

The last equality in (3.28) displays the conformal equivalence to the cylinder over M5 with the
metric

gcyl = δab e
a ⊗ eb + e5 ⊗ e5 + e6 ⊗ e6 . (3.30)

We can introduce the canonical almost complex structure J on the metric cone via

JΘ̂α = iΘ̂α for α = 1, 2, 3 with Θ̂α = ê2α−1 + iê2α , (3.31)

and we set êµ̂ = reµ̂ for µ̂ = 1, . . . , 6. The SU(3)-structure forms (ω̂, Ω̂) have the local expressions

ω̂ = ê1 ∧ ê2 + ê3 ∧ ê4 + ê5 ∧ ê6 = r2(ω3 + e5 ∧ e6) , (3.32a)
Ω̂ = Θ̂1 ∧ Θ̂2 ∧ Θ̂3 , (3.32b)

for which a direct computation yields

dω̂ = 0 and dΩ̂ = 0 . (3.33)

Therefore, the metric cone introduced in (3.28) is indeed Calabi-Yau as all SU(3)-torsion classes
vanish.

3.5.2 Kähler-torsion sine-cones

It has been shown in [130] that the sine-cone over a d-dimensional Einstein manifold with
Einstein constant d−1 is again an Einstein manifold with Einstein constant d. Here we will
show that the sine-cone over any Sasaki-Einstein 5-manifold is not only Einstein, but additionally
carries a Kähler-torsion structure5.

Consider a Sasaki-Einstein 5-manifoldM5 and the product manifoldM6 = M5× (0,Λπ) with
the metric

g = Λ2 sin2ϕ
(
δab e

a ⊗ eb + e5 ⊗ e5
)

+ dr ⊗ dr (3.34a)

= Λ2 sin2ϕ
(
δab e

a ⊗ eb + e5 ⊗ e5 + e6 ⊗ e6
)
, (3.34b)

where

ϕ = r

Λ and e6 = dτ = dϕ
sinϕ , (3.35)

with the scaling parameter Λ ∈ R+. Equation (3.34b) shows that the metric on the sine-cone is
conformally equivalent to the metric (3.30) on the cylinder over M5.
The explicit solution of τ = τ(ϕ) is computed to

τ = ln
∣∣tan ϕ

2
∣∣+ constant . (3.36)

5In fact, the argument holds for the sine-cone over any (2n+1)-dimensional Sasaki-Einstein manifold, which we
proved in [117].
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Demanding that in the large volume limit Λ→∞ the sine-cone becomes the metric cone fixes
the integration constant such that

τ(ϕ) = ln
(
2Λ tan ϕ

2
)

= ln
(

2Λ
√

1−cosϕ
1+cosϕ

)
. (3.37)

Next, we introduce an almost complex structure J and the associated fundamental (1, 1)-form
ω̃ on the sine-cone as follows (α = 1, 2, 3):

JΘ̃α = iΘ̃α with Θ̃α = Λ sinϕ
(
e2α−1 + ie2α

)
, (3.38a)

JΘ̃ᾱ = −iΘ̃ᾱ with Θ̃ᾱ = Θ̃α , (3.38b)

ω̃ = Λ2 sin2ϕ
(
ω3 + e5 ∧ e6

)
, (3.38c)

where ω3 is defined in (3.9). It then follows that the above structure defines a Kähler-torsion
structure on the sine-cone, because there exists the uniquely defined Bismut connection ∇B,
which preserves g and J , and has torsion given by

TB = J dω̃ . (3.39)

Remarks One can also introduce a globally well-defined complex (3, 0)-form Ω̃ defined as

Ω̃ = Θ̃1 ∧ Θ̃2 ∧ Θ̃3 = Λ3 sin3ϕ
(
ω2 − iω1) ∧ η − Λ2 sin2ϕ

(
ω1 + iω2) ∧ dr . (3.40)

Applying the exterior differential yields

dω̃ = 2 cosϕ− 1
Λ sinϕ ω̃ ∧ ẽ6 = − 2

Λ tan ϕ
2 ω̃ ∧ ẽ

6 , (3.41a)

dΩ̃ = 3 1− cosϕ
Λ sinϕ Ω̃ ∧ ẽ6 = 3

Λ tan ϕ
2 Ω̃ ∧ ẽ6 , (3.41b)

thus rendering the sine-cone over M5 an SU(3)-structure manifold as defined in Sec. 3.4. From
(3.41) we immediately see that J is integrable and

2W4 +W5 = − 1
Λ tan ϕ

2 ẽ
6 6= 0 for Λ <∞ , (3.42)

whence the Bismut connection does not preserve the SU(3)-structure unless Λ =∞. Nevertheless,
the condition 3W4 + 2W5 = 0 is satisfied, which is in agreement with the conformal equivalence
between the sine-cone over a Sasaki-Eintein 5-manifold and the Calabi-Yau metric cone over
M5 [124,131]. That is, the conformal equivalence of the Calabi-Yau cone and the Kähler-torsion
sine-cone also maps their two SU(3)-structures into one another. We also note that 2W4+W5 → 0
as Λ → ∞, and the KT sine-cone becomes the Calabi-Yau metric cone. Recall from Sec. 3.4
that Kähler-torsion structures are U(3)-structures, whence one has to distinguish between the
KT-structure and the SU(3)-structure.

3.5.3 Nearly Kähler sine-cones

In [94] a nearly Kähler structure on the sine-cone over a Sasaki-Einstein 5-manifold has been
obtained by means of flow equations. Here, in contrast, we show that this structure can be
constructed by means of a combined rotation and rescaling of the coframes of the cylinder over
the Sasaki-Einstein 5-manifold. We will carry this construction out in the following three steps:
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1. An SU(3)-structure on the cylinder over a Sasaki-Einstein 5-manifold M5 can be intro-
duced via a metric (3.30), an almost complex structure J , or the equivalent (1, 1)-form ω,
and a (3, 0)-form Ω. These objects are

ω = ω3 + e5 ∧ e6 = e1 ∧ e2 + e3 ∧ e4 + e5 ∧ e6 , with e6 = dt , (3.43a)
JΘα = iΘα , for Θα = e2α−1 + ie2α with α = 1, 2, 3 , (3.43b)

Ω = Θ1 ∧Θ2 ∧Θ3 = −ω2 ∧ e5 − ω1 ∧ e6 + i
(
ω1 ∧ e5 − ω2 ∧ e6

)
. (3.43c)

2. Next, we consider an SO(5)-rotation of the SU(2)-structure (η, ωα) on M5. Let η2 be the
matrix of the ’t Hooft symbols η2

ab, and perform a rotation of the basis 1-forms e1, . . . , e4

as follows:

E =


e1

e2

e3

e4

 7→ Eϕ = exp
(
ϕ
2 η

2
)
E =


cos ϕ2 0 − sin ϕ

2 0
0 cos ϕ2 0 sin ϕ

2
sin ϕ

2 0 cos ϕ2 0
0 − sin ϕ

2 0 cos ϕ2



e1

e2

e3

e4

 . (3.44)

In the rotated frame (eaϕ, e5) we define the SU(3)-structure forms to have the same
components as in the unrotated frame (3.43), i.e.

ωϕ = ω3
ϕ + e5 ∧ e6 , (3.45a)

Ωϕ = −ω2
ϕ ∧ e5 − ω1

ϕ ∧ e6 + i
(
ω1
ϕ ∧ e5 − ω2

ϕ ∧ e6
)
, (3.45b)

where ωαϕ = 1
2η

α
µν e

µν
ϕ . Note that this is still an SU(3)-structure on the cylinder, because

the defining forms have the standard components (3.43) with respect to the coframes eµϕ.

3. Last, the pullback to the sine-cone Cs(M5) along the map establishing the conformal
equivalence to the cylinder yields

eas = Λ eaϕ sinϕ , e5
s = Λ e5 sinϕ , e6

s = Λ e6 sinϕ = Λ dϕ = dr , (3.46a)
ωαs = Λ2 ωαϕ sin2ϕ , ωs = ω3

s + Λ2 e5 ∧ e6 sin2ϕ , (3.46b)
Ωs = Λ3 Ωϕ sin3ϕ (3.46c)

as an SU(3)-structure on the sine-cone. By a direct calculation we obtain

dωs = − 3
Λ Ω+

s , (3.47a)

dΩ+
s = 0 , dΩ−s = 2

Λ ωs ∧ ωs , (3.47b)

which confirms that (3.46) induces a nearly Kähler structure on the sine-cone.

Remarks In the limit Λ→∞, in which the sine-cone becomes the metric cone, this nearly
Kähler structure on the sine-cone is smoothly deformed to the Calabi-Yau structure on the
metric cone since

lim
Λ→∞

dωs = 0 and lim
Λ→∞

dΩs = 0 . (3.48)

Generically, the sine-cone, as a conifold, has two singularities at ϕ = 0 and ϕ = π. As we
see from (3.46), the SU(3)-structure cannot be extended to the tips, because all defining forms
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3 Geometry

vanish at these points. Hence, the sine-cone is a nearly Kähler manifold but not extendible to
the tips.

3.5.4 Half-flat cylinders

Consider a 5-dimensional manifold M5 endowed with a Sasaki-Einstein SU(2)-structure defined
by (η, ω1, ω2, ω3) as in (3.11). For an arbitrary coframe eµ compatible with the SU(2)-structure,
consider the transformation

e1
z = e4 cos ζ + e3 sin ζ , e2

z = − e1 , (3.49a)
e3
z = e2 , e4

z = e3 cos ζ − e4 sin ζ , (3.49b)
e5
z = % e5. (3.49c)

Here ζ ∈ [0, 2π] and ρ ∈ R+ are two constant parameters. For % = 1 this can be seen to be an
SO(5)-transformation of the coframe, such that the metric on M5 is unchanged. Nevertheless,
we obtain a two-parameter family of SU(2)-structures on M5 by defining

ηz = % η , ωαz = 1
2 η

α
µν e

µ
z ∧ eνz , gz = δµν e

µ
z ⊗ eνz . (3.50)

These objects are globally well-defined as can be seen from

ω1
z = − ω3 , (3.51a)
ω2
z = ω1 sin ζ + ω2 cos ζ , (3.51b)
ω3
z = ω1 cos ζ − ω2 sin ζ , (3.51c)

and, thus, yield a two-parameter family of SU(2)-structures on M5. Note that these structures
are neither hypo nor nearly hypo any more.
With these SU(2)-structures on M5 at hand we define a two-parameter family of SU(3)-

structures on the metric cylinder (M5×R, ḡz = gz + dr ⊗ dr) by

ωz = ω3
z − ηz ∧ dr = ω1 cos ζ − ω2 sin ζ − % η ∧ dr , (3.52a)

Ω+
z = − ω1

z ∧ dr + ω2
z ∧ ηz = %

(
ω1 sin ζ + ω2 cos ζ

)
∧ η + ω3 ∧ dr , (3.52b)

Ω−z = − ω2
z ∧ dr − ω1

z ∧ ηz = −
(
ω1 sin ζ + ω2 cos ζ

)
∧ dr + %ω3 ∧ η , (3.52c)

which yields a two-parameter family of half-flat SU(3)-structures. The non-vanishing torsion
classes can be computed to read

W−1 = 3 + 2%2

3% , W−2 = 4%2 − 3
3%

(
ω3
z + 2 ηz ∧ dr

)
and

W3 = 2%2 − 3
2%

(
ω1
z ∧ dr + ω2

z ∧ ηz
)
.

(3.53)

Furthermore, the conditions ωzyW−2 = 0 and ωzyW3 = 0 are satisfied for any values of the
parameters ζ and %.
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4 Hermitian Yang-Mills instantons on
Calabi-Yau cones

The generalised instanton equations on the Calabi-Yau cone above any Sasaki-Einstein manifold
are the HYM equations, which exhibit a rich geometric structure. We recall the relevant concepts
and apply them to a certain equivariant ansatz.

4.1 Instanton condition induced by a G-structure

(Anti-)Self-dual connections on 4-manifolds [24] were the first examples of what is nowadays
known as instantons. The generalisation to higher dimensions was first proposed in [34] and
has been the topic of active research ever since. Let us provide a brief summary of the relevant
notions.
Suppose an n-dimensional manifold Mn is equipped with a G-structure, i.e. a reduction

of the structure group of the tangent bundle TMn to a Lie subgroup G ⊂ GL(n,R). Then
there exist covariantly constant sections in certain associated bundles [132]. We have already
encountered several examples of G-structures in Ch. 3 and Tab. 4.1 provides archetypal examples.
In particular, a Kähler structure on M2n lies at the interplay of complex, Riemannian, and

structure Lie group G relevant section

Riemannian O(2n) metric g
(almost) complex GL(n,C) (almost) complex struture J

symplectic Sp(2n) symplectic form ω

Table 4.1: Three typical geometric structures on a 2n-dimensional manifold M2n.

symplectic geometry, i.e. all three structures coexist and are subject to compatibility constraints.
Consequently, the Lie subgroup G is obtained from the intersection of all the individual structure
groups GL(n,C) ∩O(2n) ∩ Sp(2n) = U(n).
In the cases considered, G is moreover a subgroup of SO(n), as we start from Riemannian

manifolds with chosen orientation. Therefore, the G-structure equals a G-principal subbundle
Q of the frame bundle SO(Mn, g). There exists an isomorphism Ad(SO(Mn, g)) ∼= Λ2T ∗Mn,
which at a point in Mn reduces to the isomorphism between the Lie algebra so(n) and the
space of 2-forms Λ2Rn. The restriction of the bundle isomorphism to Q defines a subbundle
W (Q) ⊂ Λ2T ∗Mn, the so-called instanton bundle. An instanton in (Mn, g) with respect to the
G-structure is a connection A on a principal bundle B over Mn whose curvature FA satisfies

FA ∈ Γ (W (Q)⊗Ad(B)) ⊂ Ω2 (Mn,Ad(B)) . (4.1)

There exist various equivalent realisations of this mathematical definition, two of which we
like to summarise here, see also [133]. Firstly, if the G-structure can be defined via a spinor ε
then A is an instanton if it annihilates the spinor under the Clifford map γ, i.e.

γ(FA)ε = 0 . (4.2)

27



4 Hermitian Yang-Mills instantons on Calabi-Yau cones

Secondly, one can employ the differential forms that define the G-structure to construct a G-
invariant (n−4)-form Q on Mn. By means of Q one defines an endomorphism of Λ2T ∗Mn via

Λ2T ∗Mn → Λ2T ∗Mn

ρ 7→ ?(Q ∧ ρ) , (4.3a)

where ? is the Hodge star on Mn. Then A is an instanton if the curvatures lies in the eigenspace
with eigenvalue −1, i.e.

? (Q ∧ FA) = −FA . (4.3b)

Summarising, the generalised instanton equations are conditions on the 2-form part of the
curvature FA. In the proceeding considerations, we mainly consider connections on associated
vector bundles, but employ the natural principal bundle setting whenever necessary.

4.2 Hermitian Yang-Mills instantons

The instanton equations for Kähler manifolds are rather special and known under the name
Hermitian Yang-Mills equations. For later analysis, the geometric properties of the space of
connections and the HYM instanton moduli space over a Kähler manifold are recalled. This
brief account is inspired by [134,135].

Space of connections Let M2n be a (closed) Kähler manifold of dimC(M) = n and G a
compact matrix Lie group. Let P (M2n,G) be a G-principal bundle over M2n, A a connection
1-form and FA = dA+A ∧A the curvature.

Let Int(P ) := P ×G G be the group bundle (where G acts via the internal automorphism
h 7→ ghg−1), let Ad(P ) := P ×G g be the Lie algebra bundle (where G acts on g via the adjoint
action), and E := P ×G F be an associated vector bundle (where the vector space F , the typical
fibre, carries a G-representation).
Denote the space of all connections on P by A(P ), and note that all associated bundles E

inherit their space of connections A(E) from P . On A(P ) there is a natural action of the gauge
group Ĝ, i.e. the set of automorphisms on P which are trivial on the base. With

Ĝ = Γ
(
M2n, Int(P )

)
(4.4)

one has an identification with the space of global sections of the group bundle. The action is
realised via

A → Ag = Ad(g−1)A+ g−1dg for g ∈ Γ
(
M2n, Int(P )

)
. (4.5)

The Lie algebra of the gauge group then equals

ĝ = Γ
(
M2n,Ad(P )

)
, (4.6)

and the infinitesimal gauge transformations are given by

A 7→ δA = dAχ := dχ+ [A, χ] for χ ∈ Γ(M2n,Ad(P )) . (4.7)

Since A(P ) is an affine space over Ω1(M2n,Ad(P )), the tangent space TAA for any A ∈ A(P )
is canonically identified with Ω1(M2n,Ad(P )). Further, assuming G ↪→ U(N), for some N ∈ N,
implies that the trace is an Ad-invariant inner product. Hence, a metric on A(P ) is defined via

g|A(X1, X2) :=
∫
M2n

tr (X1 ∧ ?X2) for X1, X2 ∈ TAA , (4.8)
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4.2 Hermitian Yang-Mills instantons

with ? the Hodge-dual on M2n. Moreover, the space A(P ) allows for a symplectic structure

ω|A(X1, X2) :=
∫
M2n

tr (X1 ∧X2) ∧ ωn−1

(n− 1)! for X1, X2 ∈ TAA , (4.9a)

with ω the Kähler form on M2n. Since ω is completely base point independent (on A), ω is in
fact a symplectic form.
In addition, one can check that X ∧ ωn−1

(n−1)! = ?J(X) holds for any X ∈ TAA, where J , the
(canonical) complex structure ofM2n, acts only the 1-form part of X. This allows to reformulate
the symplectic structure as

ω|A(X1, X2) =
∫
M2n

tr (X1 ∧ ?J(X2)) for X1, X2 ∈ TAA . (4.9b)

Moreover, it implies that ω is non-degenerate as ω|A(X1, X2) = g|A(X1, J(X2)) holds for any
X1, X2 and any A. Consequently, (A, g,ω) is an infinite-dimensional Riemannian, symplectic
manifold, which is equipped with compatible Ĝ-action.

Holomorphic structure Next, consider the restriction to connections on E 'F−−→ M which
satisfy the so-called holomorphicity condition

F2,0
A = 0 and F0,2

A = 0 . (4.10)

It is known that this condition is equivalent to the existence of a holomorphic structure on
E, i.e. a Cauchy-Riemann operator ∂̄E := ∂̄ + A0,1 that satisfies the Leibniz-rule as well as
∂̄E ◦ ∂̄E = 0. If M2n is also Calabi-Yau, then the condition (4.10) is equivalent to Ω ∧ FA = 0,
where Ω is a holomorphic (n, 0)-form.

Define the subspace of holomorphic connections as

A1,1 =
{
A ∈ A(E) : F0,2

A = −
(
F2,0
A

)†
= 0

}
⊂ A(E) . (4.11)

This definition employs the underlying complex structure on M2n, and † denotes complex
conjugation and transposition. Moreover, one can show that A1,1 is an infinite-dimensional
Kähler space, i.e. the restriction of g to A1,1 is a Hermitian metric and the symplectic form ω is
Kähler. The compatible complex structure J (with ω(·, ·) = g(J ·, ·)) can be read off from (4.8)
and (4.9) to be

J |A(X) = −J(X) for X ∈ TAA , (4.12)

i.e. it is base point independent.

Moment map The space A1,1 inherits the Ĝ-action from A, and since it has a symplectic
form, i.e. the Kähler form, one can introduce a moment map

µ : A1,1 → ĝ∗ ∼= Ω2n(M2n,Ad(P ))

A 7→ FA ∧
ωn−1

(n− 1)! .
(4.13)

We see that µ is Ĝ-equivariant by construction. Nonetheless, for this to be a moment map of
the Ĝ-action, one needs to verify the defining property

(φ,Dµ|A)(ψ) = ιφ\ω|A(ψ) , (4.14)
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4 Hermitian Yang-Mills instantons on Calabi-Yau cones

where φ ∈ Γ(M2n,Ad(P )) an element of the gauge Lie algebra, φ\ be the corresponding vector
field on A1,1 and ψ ∈ Ω1(M2n,Ad(P )) a tangent vector at the base point A. By D we denote
the exterior derivative on A. Moreover, the duality pairing (·, ·) of ĝ and its dual is defined
via the integral over M2n and the invariant product on g. We now generalise the arguments
presented in [134]. Firstly, in the definition of µ only FA is base point dependent, and a standard
computation gives

FA+t ψ = FA + t dAψ + 1
2 t

2 ψ ∧ ψ so that DF|A(ψ) =
( d

dtFA+t ψ

)
|t=0

= dAψ . (4.15a)

Thus, the left-hand side of (4.14) is

(φ,Dµ|A)(ψ) =
∫
M

tr
(
(dAψ) ∧ φ

)
∧ ωn−1

(n− 1)! . (4.15b)

Secondly, the vector field φ\ can be read off from (4.7) to be φ\|A = dAφ ∈ Ω1(M,Ad(P )). Hence,
the right-hand side is

ιφ\ω|A(ψ) =
∫
M

tr
(
(dAφ) ∧ ψ

)
∧ ωn−1

(n− 1)! . (4.15c)

But from
∫
M d

(
tr (ψ ∧ φ) ∧ ωn−1

(n−1)!

)
= 0 by Stokes’ theorem6 and dω = 0 one has

∫
M

tr
(
(dAψ) ∧ φ

)
∧ ωn−1

(n− 1)! = −
∫
M

tr
(
ψ ∧ (dAφ)

)
∧ ωn−1

(n− 1)! , (4.15d)

and, therefore, the relation (4.14) holds, i.e. µ is a moment map of the Ĝ-action on A1,1.
However, one can equally well use the dual map defined by

µ∗ : A1,1 → ĝ = Ω0(M2n,Ad(P ))
A 7→ ωyFA ,

(4.16)

which is equivalent to µ of (4.13) due to

FA ∧ ωn−1 = 1
n

(ωyFA)ωn . (4.17)

Thus, we will no longer explicitly distinguish between µ and µ∗.
For Ξ ∈ Centre(ĝ), we know µ−1(Ξ) ⊂ A1,1 defines a sub-manifold which allows for a Ĝ-action.

The quotient
A1,1 � Ĝ ≡ µ−1(Ξ)/Ĝ (4.18)

is well-defined and, moreover, is a Kähler manifold, as the Kähler form and the complex structure
descend from A1,1.

We recognise the zero-level set µ−1(0)/Ĝ as the Hermitian Yang-Mills moduli space. In other
words, the HYM equations consist of the holomorphicity conditions (4.10) together with the
so-called stability condition

µ(FA) = FA ∧
ωn−1

(n− 1)! = 0 or equivalently µ∗(FA) = ωyFA = 0 . (4.19)

6For the non-compact Calabi-Yau cone of this thesis, the boundary term arising by Stokes’ theorem will be
cancelled be restriction to framed gauge transformations. See Sec. 4.3.3.
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4.3 Equivariant instantons

By well-known theorems [35–37], a holomorphic vector bundle admits a solution to the HYM
equations if and only if the bundle is (poly-)stable in the algebraic geometry sense.

Complex group action As the Ĝ-action on A1,1 preserves the Kähler structure, one can
extend it to a ĜC-action on A1,1. In other words, the holomorphicity condition F0,2

A = 0 are
invariant under the action of the complex gauge group

ĜC = Ĝ ⊗ C . (4.20)

Let A ∈ A1,1, then the orbit ĜCA of A under the ĜC-action is

ĜCA =
{
A′ ∈ A1,1 ∣∣ ∃q ∈ ĜC : A′ = Aq

}
. (4.21)

A point A ∈ A1,1 is called stable if ĜCA ∩ µ−1(Ξ) 6= ∅, and we denote by A1,1
st (Ξ) ⊂ A1,1 the set

of all stable points (for a given Ξ). Then, a well-known result (see for example [136]) is

A1,1 � Ĝ ≡ µ−1(Ξ)/Ĝ ∼= A1,1
st (Ξ)/ĜC . (4.22)

Remark A peculiarity arises for holomorphic bundles E over a compact Kähler manifoldM2n

with non-empty boundary [137]. Due to the prescription of boundary conditions, the stability
condition is automatically satisfied for a unitary connection whose curvature is of type (1, 1).
Hence, all points in A1,1 are stable in this case.
In the following we will consider the HYM equations (4.10) and (4.19) on the non-compact

Calabi-Yau cones. For these, the holomorphicity conditions still imply the existence of a holo-
morphic structure, while the notion of stability is not applicable anymore. Nonetheless, we will
continue referring to ωyFA = 0 as stability-like condition.

4.3 Equivariant instantons

The main focus of this section lies on the description of instantons on certain vector bundles
E over Cyl(M2n+1), where M2n+1 is taken to be Sasaki-Einstein. However, instead of generic
connections the set-up will be restricted to connections that arise from an instanton on the
Sasaki-Einstein space M2n+1 by an extension X ∈ Ω1(Cyl(M2n+1),End(E)). This extension
has to satisfy a certain invariance condition.

The arguments presented in what follows are a generalisation of [40,121,122]: i.e. we generalise
from spherically symmetric instantons on vector bundles over C(S3) ∼= R4\{0} with an SU(2)-
structure to SU(n+1)-equivariant instantons on vector bundles overC(M2n+1) with an SU(n+1)-
structure, where M2n+1 is an arbitrary Sasaki-Einstein manifold. Analogously to the work
of Donaldson and Kronheimer, it will be necessary to consider boundary conditions for the
components of the connection 1-form, i.e. for the Yang-Mills field.

4.3.1 Ansatz

Let us recall the ansatz based on [113]. Start from any Sasaki-Einstein manifold M2n+1, i.e. the
manifold carries an SU(n)-structure Q together with the canonical connection ΓP on the tangent
bundle. The metric cone is Calabi-Yau with holonomy SU(n+1), i.e. it carries an integrable
SU(n+1)-structure, as mentioned earlier in Sec. 3.1. By conformal equivalence one can consider
Cyl(M2n+1), which is equipped with a non-integrable SU(n+1)-structure.

Let P be the principal SU(n+1) bundle of SO(Cyl(M2n+1), g̃) which comprises the SU(n+1)-
structure. Consider an associated complex vector bundle E → Cyl(M2n+1) of rank p, which

31



4 Hermitian Yang-Mills instantons on Calabi-Yau cones

consequently has structure group SU(n+1). In particular, it is a Hermitian vector bundle where
F† = −F and tr(F) = 0 hold for the curvature F of a compatible connection. (Thereby,
tr(F) = 0 equals a vanishing first Chern class, which is consistent as P is the associated
principal SU(n+1) bundle.) For example, the (holomorphic) tangent bundle of the Calabi-Yau
cone is such a bundle, but one does not have to restrict to this case.
We recall that the connection 1-forms are su(n+1)-valued 1-forms on Cyl(M2n+1) for any

connection A on E. The ansatz for a connection is

A = Γ̂P +X (4.23a)

where Γ̂P is the lifted su(n)-valued connection on E obtained from ΓP , i.e. one essentially has
to change the representation on the fibres. Moreover, on a patch U ⊂ Cyl(M2n+1) with the
co-frame {eµ̂} we employ the local description

X|U = Xµ ⊗ eµ +X2n+2 ⊗ e2n+2 , (4.23b)

whereXµ̂|x ∈ End(Cp) for x ∈ U . UsuallyX2n+2 is eliminated by a suitable gauge transformation,
but there is no harm in not doing so.

The ansatz (4.23) is a generic connection in the sense that the Xµ̂ are base point dependent,
skew-Hermitian, traceless matrices with nontrivial transformation behaviour under change of
trivialisation. Hence, any connection A on E can be reached starting from Γ̂P , simply because
A is an affine over the space in which X lives.

Next, we investigate the matrices Xµ̂ and their transformation behaviour under a change of e.
By construction, Xµ̂e

µ̂ is the local representation of an Ad-equivariant 1-form X on the gauge
principal bundle, which here coincides with the SU(n+1)-subbundle P. Note that, P contains
a principal SU(n)-subbundle Q; the latter is the pullback of the SU(n)-structure on M2n+1

and is the appropriate bundle for the connection ΓP . Now let e and e′ be two local sections of
Q ⊂ P over some U ⊂ Cyl(M2n+1) related by an SU(n)-transformation L : U → SU(n). The
components X ′µ̂ and Xµ̂ of X with respect to e′ and e are related via

X ′µ = Ad(L−1) ◦Xν ρ(L)νµ and X ′2n+2 = Ad(L−1) ◦X2n+2 . (4.24)

Here ρ is the dual of the representation of SU(n) on R2n+1 which is the typical fibre of TM2n+1.
It coincides with the representation AdSU(n+1) : SU(n)→ End(m), where su(n+1) = su(n)⊕m.

Since SU(n) is a closed subgroup of SU(n+1), one can choose an SU(n)-invariant decomposi-
tion

su(n+1) = su(n)⊕m with

su(n+1) = span
{
IA
∣∣A = 1, . . . , (n+1)2−1

}
,

su(n) = span
{
Iα
∣∣α = 2n+2, . . . , (n+1)2−1

}
,

m = span
{
Iµ
∣∣µ = 1, . . . , 2n+1

}
,

(4.25)

and denote by ÎA the generators in a representation on the fibres Ex ∼= Cp. By the AdSU(n)-
invariant splitting, one has the following commutation relations:[

Îα, Îβ
]

= f γ
αβ Îγ ,

[
Îα, Îµ

]
= f ν

αµ Îν ,
[
Îµ, Îν

]
= f α

µν Îα + f σ
µν Îσ , (4.26)

for α, β, γ = 2n+2, . . . , (n+1)2−1 and µ, ν, σ = 1, . . . , 2n+1. A suitable choice of these structure
constants can be found in [84,113].

Generically, only X is well-defined globally, rather than the component maps Xµ̂. The latter
strongly depend on the choice of the local frame e and, therefore, we have no control over their
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behaviour in general. In other words, one could try to find local solutions, but it is a priori not
clear that they glue together to a global solution. That would be different, if the components Xµ̂

were independent of the trivialisation of the involved bundles, that is, if the Xµ̂ were invariant
under the aforementioned transformations (4.24) that change the local frames. Furthermore,
since SU(n) is connected, this is equivalent to the infinitesimal version of the invariance, i.e.[

Îα, Xµ

]
= ρ∗(Iα)νµXν = f ν

αµ Xν and
[
Îα, X2n+2

]
= 0 , (4.27)

for µ, ν = 1, . . . , 2n+1 and α = 2n+2, . . . , (n+1)2−1. Note that this simplification implies that
the Xµ̂ are independent of the choice of frame adapted to the SU(n)-structure Q. As additional
simplification, we choose them to vary with the cone or cylinder direction only. Condition (4.27)
appeared, for example, in [138,139] on coset spaces, where equivariant connections have been
constructed. We will in the following refer to (4.27) as the equivariance condition, for the same
reasons. The representation-theoretic content of (4.27) is that the matrix-valued functions Xµ̂

have to transform in a representation of su(n).
Computing the curvature FA for the ansatz (4.23) together with an X satisfying the equiv-

ariance condition (4.27) then yields

FA = FΓ̂P + 1
2
(
[Xa, Xb] + T 2n+1

a b X2n+1
)
ea ∧ eb +

(
[Xa, X2n+1] + T ba 2n+1Xb

)
ea ∧ e2n+1

+
(
[Xa, X2n+2]− d

dtXa

)
ea ∧ e2n+2 (4.28)

+
(
[X2n+1, X2n+2]− d

dtX2n+1
)
e2n+1 ∧ e2n+2 ,

with FΓ̂P is the curvature of Γ̂P , and a, b = 1, . . . , 2n. The torsion components of Γ̂P are denoted
by T ρµν . The HYM instanton equations (4.10) and (4.19) reduce for the ansatz to a set of matrix
equations for the Xµ̂, which we spell out in a moment. Let us note that these equations have
already been derived in [113], for the choice X2n+2 = 0. Moreover, FΓ̂P already satisfies the
HYM equations, as the connection Γ̂P is the lift of an SU(n)-instanton, and the corresponding
SU(n)-principal bundle is a subbundle in the SU(n+1)-principal bundle associated to E.

Matrix equations: real basis The resulting instanton matrix equations in the real basis
{eµ̂} are the holomorphicity conditions

[X2j−1, X2k−1]− [X2j , X2k] = 0 , (4.29a)
[X2j−1, X2k] + [X2j , X2k−1] = 0 , (4.29b)

[X2j−1, X2n+2] + [X2j , X2n+1] = d
dtX2j−1 + n+1

n X2j−1 , (4.29c)
[X2j , X2n+2]− [X2j−1, X2n+1] = d

dtX2j + n+1
n X2j , (4.29d)

for j, k = 1, . . . , n and the stability-like condition

d
dtX2n+1 + 2nX2n+1 =

n+1∑
k=1

[X2k−1, X2k] . (4.29e)

Solving (4.29) subject to (4.27) is usually a sophisticated task, as one has to find a suitable
ansatz that satisfies (4.27) and that at the same time reduces to non-trivial, solvable equations
for (4.29). For instance, in the temporal gauge X2n+2 = 0, a possible choice of ansatz [113] is

Xa(τ) = ψ(τ)Îa and X2n+1(τ) = χ(τ)Î2n+1 . (4.30)
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4 Hermitian Yang-Mills instantons on Calabi-Yau cones

This ansatz satisfies the equivariance condition and reduces the above matrix equations to two
coupled ordinary differential equations of first order,

d
dτ ψ = n+ 1

n
ψ(χ− 1) and d

dτ χ = 2n(ψ2 − χ) (4.31)

for the functions ψ(τ) and χ(τ). Coincidentally, these equations have already been studied
in [84]; although there they have been derived from a different, less generic starting point.

Matrix equations: complex basis For the intents and purposes here, it is more convenient
to switch to the complex basis {θj , θ̄j} defined in (3.6) and introduce

Yj := 1
2 (X2j − iX2j−1) and Yj̄ := 1

2 (X2j + iX2j−1) for j = 1, 2, . . . , n+ 1 . (4.32)

Hence, Yj̄ = −(Yj)† since Xµ̂(t) ∈ su(n+ 1) for all t ∈ R. For the Yj : R→ End(Cp) one finds
the holomorphicity conditions

d
dtYj + n+1

n Yj = 2 [Yj , Yn+1] and [Yj , Yk] = 0 for j, k = 1, . . . , n , (4.33a)

and the adjoint equations thereof. The stability-like condition reads

d
dt

(
Yn+1 + Y †n+1

)
+ 2n

(
Yn+1 + Y †n+1

)
+ 2

n+1∑
j=1

[
Yj , Y

†
j

]
= 0 . (4.33b)

The equivariance conditions for the complex matrices are[
Îα, Yj

]
= −if 2j

α2j−1Yj and
[
Îα, Yn+1

]
= 0 , (4.34)

for j,= 1, . . . , n. For these calculations we have used a choice of structure constants f ν
αµ = 0

if µ or ν = 2n + 1 and f b
αa ∝ ωab, see for instance [84, 113]. Later, in Ch. 5 we actually need

to solve the equivariance condition and we provide such a choice in (5.14) and (5.15). Here, we
assume the equivariance condition to be solved, cf. the last comment in Sec. 4.3.5.

Change of trivialisation The remaining non-trivial effects of a change of trivialisation of
the bundle E over Cyl(M2n+1) are given by the set of functions {g(t)| g : R→ SU(p)} that act
as

Xµ 7→ Ad(g)Xµ for µ = 1, . . . , 2n+ 1 and X2n+2 7→ Ad(g)X2n+2 −
(

d
dtg
)
g−1 , (4.35)

which follows from7 A 7→ Ag = Ad(g)A − (dg)g−1 and g = g(t). Due to their adjoint trans-
formation behaviour, the Xµ are sometimes called Higgs fields, for example in quiver gauge
theories. The inhomogeneous transformation of X2n+2 is crucial to be able to gauge away this
connection component. Furthermore, these gauge transformations (and their complexification)
will be used to study the solutions of the matrix equations.

Yang-Mills with torsion The instanton equations (on the cone and the cylinder) are equiv-
alently given by

? FA = − ωn−1

(n− 1)! ∧ FA , (4.36)

7We have simply replaced g in (5.11) by g−1.

34



4.3 Equivariant instantons

where ω is the corresponding (1, 1)-form (dω = 0 on the cone, but dω 6= 0 on the cylinder).
An immediate consequence is that the instanton equation for the integrable SU(n+1)-structure
implies the Yang-Mills equations, while this is not true for the SU(n+1)-structure with torsion.
In detail

cone: (4.36) ⇒ dA ? FA = 0 Yang-Mills , (4.37a)

cylinder: (4.36) ⇒ dA ? FA + ωn−2

(n− 2)! ∧ dω ∧ FA = 0 Yang-Mills with torsion . (4.37b)

These torsionful Yang-Mills equations (4.37b), which arise in the context of non-integrable G-
structures (with intrinsic torsion), have been studied in the literature before [125,128,140–143].
In particular, the torsion term does not automatically vanish on instantons because dω contains
(2, 1) and (1, 2)-forms. This is, for instance, in contrast to the nearly Kähler case discussed in [144],
in which nearly Kähler instantons were found to satisfy the ordinary Yang-Mills equations.
It is known that the appropriate functional for the torsionful Yang-Mills equations consists

of the ordinary Yang-Mills functional plus an additional Chern-Simons term

SYM+T(A) =
∫

Cyl(M2n+1)
tr (FA ∧ ?FA) + ωn−1

(n− 1)! ∧ tr (FA ∧ FA) , (4.38)

which is a gauge-invariant functional. The properties of SYM+T are the following: firstly and
most importantly, instanton connections satisfying (4.36) have SYM+T(A) = 0, i.e. the action
is finite. Secondly, the stationary points of (4.38) are the vanishing locus of the torsionful Yang-
Mills equations (up to boundary terms). For this, we use FA+zΨ = FA + zdAΨ + 1

2z
2Ψ ∧Ψ for

any Ψ ∈ TAA(E) and compute the variation

δSYM+T(A) := d
dzSYM(A+ zΨ)

∣∣∣
z=0

=
∫

Cyl(M2n+1)
2 tr (dAΨ ∧ ?FA) + 2 ωn−1

(n− 1)! ∧ tr (FA ∧ dAΨ)

= 2
∫

Cyl(M2n+1)
tr
[
Ψ ∧

(
dA ? FA + ωn−2

(n− 2)! ∧ dω ∧ FA

)]
(4.39)

+ 2
∫

Cyl(M2n+1)
d tr

[
Ψ ∧

(
?FA + ωn−1

(n− 1)! ∧ FA

)]
.

The boundary term cannot simply vanish as the cylinder is never a closed manifold. Hence, if one
assumes M2n+1 to be closed, the vanishing of the boundary term requires certain assumptions
on the fall-off rate of FA for t→ ±∞. Moreover, it is interesting to observe that the boundary
term in (4.39) vanishes for instanton configurations.

4.3.2 Rewriting the instanton equations

Real equations Returning to the reduced instanton equations for the X-matrices (4.29), the
linear terms can be eliminated via a change of coordinates:

X2j−1 =: e−
n+1
n tX2j−1 , X2j =: e−

n+1
n tX2j for j = 1, . . . , n , (4.40a)

X2n+1 =: e−2ntX2n+1 , X2n+2 =: e−2ntX2n+2 , (4.40b)

s = − 1
2ne

−2nt ∈ R− , λn(s) :=
( −1

2ns

)2−n+1
n2

. (4.40c)
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4 Hermitian Yang-Mills instantons on Calabi-Yau cones

Note that the exponent 2− n+1
n2 vanishes for n = 1 and is strictly positive for any n > 1. The

matrix equations (4.29) now read as follows:

[X2j−1,X2k−1]− [X2j ,X2k] = 0 , [X2j−1,X2k] + [X2j ,X2k−1] = 0 , (4.41a)
[X2j−1,X2n+2] + [X2j ,X2n+1] = d

dsX2j−1 , [X2j ,X2n+2]− [X2j−1,X2n+1] = d
dsX2j , (4.41b)

for j, k = 1, . . . , n and

d
dsX2n+1 = λn(s)

n∑
k=1

[X2k−1,X2k] + [X2n+1,X2n+2] . (4.41c)

Complex equations Completely analogously, the change of coordinates for the complex
equations is performed via

Yj =: e−
n+1
n tYj for j = 1, . . . , n and Yn+1 =: e−2ntZ . (4.42)

We will refer to this set of matrices simply by (Y,Z). In summary, the instanton equations are
now comprised by the complex equations

[Yj ,Yk] = 0 and d
dsYj = 2 [Yj ,Z] for j, k = 1, . . . , n , (4.43a)

and the real equation

d
ds

(
Z + Z†

)
+ 2

[
Z,Z†

]
+ 2λn(s)

n∑
j=1

[
Yj ,Y

†
j

]
= 0 . (4.43b)

These equations are reminiscent of those encountered in the considerations of the instantons on
R4\{0} of [40,121,122], and, in fact, they reduce to the same system for n = 1, but in general on a
Calabi-Yau 2-fold C2/Γ. To see this, we recall [120] that all 3-dimensional Sasaki-Einstein spaces
are given by S3/Γ, where Γ is a finite subgroup of SU(2) (and commutes with U(1) ⊂ SU(2))
which acts freely and isometrically from the left on S3 ∼= SU(2).

Remarks The equivariance conditions for the rescaled matrices {Xµ̂} or ({Yj},Z) are exactly
the same as (4.27) or (4.34), respectively.
Moreover, the rescaling has another salient feature: the matrices {Xµ̂} or ({Yj},Z) (as well

as their derivatives) are bounded (see for instance [121]); in contrast, the original connection
components will develop a pole at the origin r = 0. This will become apparent once the boundary
conditions are specified. For further details, see App. A.1.
In addition, we observe that the exponents on the rescaling (4.40) reflect the torsion com-

ponents (3.3). The choice of a flat starting point Γ = 0 would lead to Nahm-type equations
straight away, but solutions to the resulting matrix equations would not interpolate between any
(non-trivial) lifted instantons from M2n+1 and instantons on the Calabi-Yau space C(M2n+1),
cf. [113,128].

Real gauge group The full set of instanton equations (4.43) is invariant under the action of
the gauge group

Ĝ :=
{
g(s)|g : R− → U(p)

}
, (4.44)

wherein the action is defined via

Yj 7→ Ygj := Ad(g)Yj for j = 1, . . . , n , (4.45a)
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Z 7→ Zg := Ad(g)Z − 1
2

( d
dsg

)
g−1 . (4.45b)

Note that only the real equation (4.43b) requires g−1 = g† for it to be gauge invariant. Moreover,
one can always find a gauge transformation g ∈ Ĝ such that Zg = (Zg)† (Hermitian) or,
equivalently, Xg

2n+2 = 0.
In summary, these properties follow from (4.35) as the X-matrices are extensions to a connec-

tion. However, the gauge group (4.44) still contains {g(s)|g(s) = φ(s)1p×p with φ : R− → U(1)}
as non-trivial centre, such that (4.35) corresponds to the quotient of Ĝ by its centre.

Complex gauge group Moreover, the complex equations (4.43a) allow for an action of the
complexified gauge group

ĜC ≡
{
g(s)

∣∣g : R− → GL(p,C)
}
, (4.46)

given by

Yk 7→ Ad(g)Yk , Yk̄ 7→ Ad((g−1)†)Yk̄ , for k = 1, . . . , n , (4.47a)

Z 7→ Ad(g)Z − 1
2

(
d
dsg
)
g−1 , Z̄ 7→ Ad((g−1)†)Z̄ + 1

2(g−1)†
(

d
dsg
†
)
. (4.47b)

The extension to ĜC-invariance for the holomorphicity conditions exemplifies the generic situa-
tion discussed in Sec. 4.2.

Boundary conditions We observe that a trivial solution of (4.41) is

X2n+2(s) = 0 and Xµ(s) = Tµ with [Tµ, Tν ] = 0 for µ, ν = 1, . . . , 2n+ 1 , (4.48)

where the (constant) Tµ are elements in the Cartan subalgebra of su(p); i.e. the (real) (p−1)-
dimensional space spanned by the diagonal, traceless matrices with purely imaginary values.
Later, we will be modelling the general solution based on this particular solution.
To begin with, we observe from the rescaling (4.40) of the Xµ̂ that these matrices become

singular as r → 0 (t → −∞ or s → −∞). Following [121, 145], it is appropriate to choose the
boundary conditions for Xµ to be8

s→ 0 : Xµ(s)→ 0 for µ = 1, . . . , 2n+ 1 and (4.49a)
s→ −∞ : ∃ g0 ∈ U(p) such that Xµ(s)→ Ad(g0)Tµ for µ = 1, . . . , 2n+ 1 . (4.49b)

One can show [121] that this implies the existence of the limit of Xµ for s → 0. Hence, the
solutions extend to the interval (−∞, 0], see also App. A.1. Thus, we are led to consider (4.41)
for matrices Xµ(s) over (−∞, 0] with one remaining boundary condition:

∃ g0 ∈ U(p) such that ∀µ = 1, . . . , 2n+ 1 : lim
s→−∞

Xµ(s) = Ad(g0)Tµ . (4.50)

We have to give a little thought on the choice of boundary values Tµ. If the Tµ lie in a Cartan
subalgebra of su(p), then the generic model solution to (4.29) subject to (4.50) is given by

Xa(t) = e−
n+1
n tTa + Sa, X2n+1(t) = e−2ntT2n+1 + S2n+1 and X2n+2(t) = 0 , (4.51)

8One does not need to worry about X2n+2, as it can always be gauged away.
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with elements Sµ ∈ su(p) that commute with each Tµ and satisfy the algebra9

[S2j−1, S2k−1]− [S2j , S2k] = 0 , [S2j−1, S2k] + [S2j , S2k−1] = 0 , (4.52a)
[S2j , S2n+1] = n+1

n S2j−1 , [S2j−1, S2n+1] = −n+1
n S2j , (4.52b)

n∑
k=1

[S2k−1, S2k] = 2nS2n+1 , (4.52c)

for k, j = 1, . . . , n. The rescaled matrices take the following form:

Xa(s) = Ta + Sa

(−2ns)
n+1
2n2

, X2n+1(s) = T2n+1 + S2n+1
−2ns and X2n+2 = 0 . (4.53)

For simplification, we can require the Tµ to be a regular tuple, i.e. the intersection of the
centralisers of the Tµ consists only of the Cartan subalgebra of su(p). Then all of the Sµ have to
vanish such that the Tµ alone provide the only model for the behaviour of the Xµ near s→ −∞.

Moreover, since one has first order differential equations, it suffices to impose this one boundary
condition, here at s = −∞. Thus, the values of Yk at s = 0 are completely determined by the
solution. Following [121], we observe that (4.43a) implies that Yk(s) lies entirely in a single
adjoint orbit O(k) of the complex group GL(p,C), for each k = 1, . . . , n. By further imposing
that Tk = 1

2 (T2k − iT2k−1) is a regular pair in the complexified Cartan subalgebra, i.e. the
centraliser of Tk in gl(p,C) is only the Cartan subalgebra itself, for each k = 1, . . . , n, one
obtains that Yk(s=0) ∈ O(k). Thus, the values at s = 0 are in a conjugacy class of Tk because
the orbits are closed. Moreover, only the conjugacy class has a gauge-invariant meaning.
Nonetheless, the boundary conditions (4.50) clearly show that the original connection (4.23)

develops the following poles at the origin r = 0 of the Calabi-Yau cone:

lim
r→0

r
n+1
n Xa = Ad(g0)Ta for a = 1, . . . , 2n and lim

r→0
r2nX2n+1 = Ad(g0)T2n+1 . (4.54)

Note that the case n = 1 is reminiscent to the instantons with poles considered in [121].

4.3.3 Geometric structure

Consider the space of su(n+1)-valued connections A(E) in which any element can be parametrised
as in (4.23). Due to the ansatz of Sec. 4.3.1, we restrict ourselves to the subspace Aequi(E) ⊂ A(E)
of connections which satisfy (4.27). Specialising the considerations of Sec. 4.2, we will now es-
tablish certain (formal) geometric structures.

Kähler structure The first step is to establish a Kähler structure on Aequi(E). Since Aequi(E)
is a subset of the space of all connection A(E), one can simply obtain the geometric structures
by restriction. A tangent vector

y =
n+1∑
j=1

(
yjθ

j + yj̄ θ̄j
)

(4.55)

at a point A ∈ Aequi(E) is defined by the linearisation of (4.33) for paths yj : R→ su(p). Their
gauge transformations are

yj → ygj := Ad(g)yj for j = 1, . . . , n+ 1 . (4.56)

9For n = 1, this coincides with the usual su(2) relations [S1, S2] = 2S3, [S2, S3] = 2S1, and [S1, S3] = −2S2.
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Taking the generic expressions for the metric (4.8) and the symplectic structure (4.9), we can
specialise to the case at hand by transition to the cylinder and neglecting the volume integral
of M2n+1. Thus, for a metric on Aequi we obtain

g|A

(
y(1),y(2)

)
≡ 2

∫
R

dt e2nt tr


n+1∑
j=1

(
y

(1)†
j y

(2)
j + y(1)

j y
(2)†
j

) . (4.57)

Similarly, the symplectic form reads as

ω|A
(
y(1),y(2)

)
≡ −2i

∫
R

dt e2nt tr


n+1∑
j=1

(
y

(1)†
j y

(2)
j − y

(1)
j y

(2)†
j

) . (4.58)

Moreover, a complex structure J on A(E)equiv has been given in (4.12). Keeping in mind
that (3.6) implies J = −Jcan, we obtain

J |A(y) = J(y) = i
n+1∑
j=1

(
yjθ

j − yj̄ θ̄
j
)

(4.59)

As before, the symplectic form ω and the metric g are compatible, i.e g(J ·, ·) = ω(·, ·). We note
that both structures are gauge-invariant by construction.

Moment map The subspace of holomorphic connections A1,1
equi(E) ⊂ Aequi(E) is defined by

the condition (4.43a). This condition only restricts the allowed endmorphism-valued 1-forms,
because Γ̂P is already a (1, 1)-type connection, since it is an HYM-instanton. Again, the metric
g and Kähler form ω descend to A1,1

equi(E) from the corresponding objects on Aequi(E). Moreover,
on the Kähler space A1,1

equi(E), one defines a moment map

µ : A1,1
equi(E)→ ĝ0 = Lie(Ĝ0)

(Y,Z) 7→ i
(

d
ds
(
Z + Z†

)
+ 2

[
Z,Z†

]
+ 2 λn(s)

n∑
k=1

[
Yk,Y

†
k

])
,

(4.60)

where Ĝ0 is the corresponding framed gauge group. That is

Ĝ0 :=
{
g(s)|g : R− → U(p) , lim

s→0
g(s) = lim

s→−∞
g(s) = 1

}
. (4.61)

It is an important observation that on the non-compact Calabi-Yau cone (and the conformally
equivalent cylinder) one has to compensate the appearing boundary terms in Stokes’ theorem
by the transition to the framed gauge transformations. The details of the proof that (4.60)
satisfies conditions (4.14) are given in the App. A.2. Here, we just note that the map (4.60)
maps the matrices (Y,Z) into the correct space: the factor of i renders the expression anti-
Hermitian, while the boundary conditions (4.49) together with the gauge choice Z = −Z† yield
the vanishing of µ (Y,Z) at s→ 0 and s→ −∞.
The part of instanton moduli space that is connected with the lift Γ̂P (in the sense of our

ansatz (4.23)) is then readily obtained by the Kähler quotient

MΓP = µ−1(0)/Ĝ0 . (4.62)
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Stable points Alternatively, one can describe this part of the moduli space via the stable
points

A1,1
st (E) ≡

{
Γ̂P +X ∈ A1,1(E)

∣∣ (ĜC0 )(Y,Z) ∩ µ−1(0) 6= ∅
}
, (4.63)

where the tuple (Y,Z) is obtained from X via complex linear combinations and rescaling as
before. The moduli space arises then by taking the ĜC0 -quotient

A1,1
st (E)/ĜC0 ∼=MΓP . (4.64)

We argue in the next couple of paragraphs that it suffices to solve the complex equations (4.43a),
because the solution to the real equation (4.43b) follows from a framed complex gauge transfor-
mation. More precisely: for every point in A1,1

equi(E) there exists a unique point in the complex
gauge orbit such that the real equation is satisfied. In other words, every point in A1,1

equi(E) is
stable.

4.3.4 Solutions to matrix equations

Solutions to complex equation In the spirit of [40], one can also understand the complex
equations as being locally trivial. That is, one can take (4.47) and demand the gauge transformed
Z to be zero

Zg = Ad(g)Z − 1
2

(
d
dsg
)
g−1 != 0 ⇒ Z = 1

2g
−1 d

dsg . (4.65)

From the holomorphicity equations (4.43a) one obtains

d
dsY

g
k = 0 and Ygk = Ad(g0) Tk with [Tj , Tk] = 0 , (4.66)

for j, k = 1, . . . , n and g0 is a constant gauge transformation10. Consequently, the general local
solution of the complex equations (4.43a) is

Yk = Ad(g−1) Tk with [Tj , Tk] = 0 and Z = 1
2g
−1 d

dsg , (4.67)

for any g ∈ ĜC. A solution to the commutator constraint is obtained by choosing Tk for
k = 1, . . . , n as elements of a Cartan subalgebra of the Lie algebra gl(p,C), which are all
diagonal (complex) p×p matrices.

Solutions to real equation In any case, one can in principle solve the complex equations;
now, the real equation (4.43b) needs to be solved as well. Following the ideas of [40], the
considerations are split in two steps: (i) a variational description and (ii) a differential inequality.
We provide the details of (i) in this paragraph, while we postpone the details of (ii) to the
App. A.4. Let us recall that the complete set of instanton equations is gauge-invariant under Ĝ.
Thus, define for each g ∈ ĜC the map

h = h(g) = g†g : R− → GL(p,C)/U(p) . (4.68)

10This g0 can also be gauged away to 1.
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The quotient GL(p,C)/U(p) can be identified with the set of positive, self-adjoint p×p matrices.
Then, fix a tuple (Y,Z) and define the functional Lε[g] for g

Lε[g] = 1
2

∫ −ε
−1
ε

ds tr
(∣∣∣Zg + (Z†)g

∣∣∣2 + 2λn(s)
n∑
k=1

∣∣Ygk ∣∣2
)

for 0 < ε < 1 , (4.69)

where (Yg,Zg) denotes the gauge-transformed tuple. For the variation of (4.69) it suffices
to consider variations with δg = δg† around g = 1, but of course δg 6= 0. Then the gauge
transformations (4.47) imply

δZ = [δg,Z]− 1
2

d
dsδg and δYk = [δg,Yk] for k = 1, . . . , n . (4.70)

The variation then leads to

δgLε = −i
∫ −ε
−1
ε

ds tr {µ(Y,Z) δg} , (4.71)

i.e. critical points of (4.69) are precisely the zero-level set of the moment map. Next, we take
the solution (4.67) and insert it as a starting point for Lε. Thus, one obtains a functional for h

Lε[h] = 1
2

∫ −ε
−1
ε

ds
{

1
4tr
(
h−1 dh

ds

)2
+ 2λn(s)

n∑
k=1

tr
(
hTkh−1T †k

)}
(4.72)

= 1
2

∫ −ε
−1
ε

ds
{

1
4tr
(
h−1 dh

ds

)2
+ V

}
.

Following [40], the potential V (h) = 2λn(s)
∑n
k=1 tr

(
hTkh−1T †k

)
is positive11, implying that for

any boundary values h−, h+ ∈ GL(p,C)/U(p) there exists a continuous path12

h :
[
−1
ε ,−ε

]
→ GL(p,C)/U(p) with h(−1

ε ) = h− and h(−ε) = h+ , (4.73)

which is smooth in Iε =
(
−1
ε ,−ε

)
and minimises the functional. Hence, for any choice of gauge

transformation g such that g†g = h one has that(
{Tk}k=1,...,n , 0

)g
=
(
{Ad(g)Tk}k=1,...,n ,−

1
2( d

dsg)g−1
)

(4.74)

satisfies the real equation in Iε for any 0 < ε < 1. From now on, we restrict the attention to
h+ = h− = 1, i.e. h is framed.

The uniqueness of the solution h on each interval Iε and the existence of the limit h∞ for ε→ 0
follows from the aforementioned differential inequality similar to [40] and the discussion of [121,
Lem. 3.17]. The details are presented in App. A.4. The relevant (framed) gauge transformation13

is then simply given by g =
√
h∞.

However, we need to emphasise two crucial points. Firstly, the construction of a solution for
the limit ε→ 0 relies manifestly on the use of the boundary conditions (4.50), and the fact that
these give rise to a (constant) solution of both the complex equations and the real equation.

11Note that λn(s) is strictly positive and smooth on
(
− 1
ε
,−ε
)
for any 0 < ε < 1.

12See for instance the note under [40, Cor. 2.13]: One knows that GL(p,C)/U(p) satisfies all necessary conditions
for the existence of a unique stationary path between any two points.

13We use the unique principal root of the positive Hermitian matrix h, which is a continuous operation. Conse-
quently, the framing of h implies the framing of g.
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Secondly, the corresponding complex gauge transformation g = g(h∞) is only determined up
to unitary gauge transformations, i.e. it is not unique. This ambiguity in the choice of g can
be removed, when we recall that a Ĝ gauge transformation suffices to eliminate X2n+2. Hence,
one can demand that the gauge-transformed system (Yg,Zg) of a solution (Y,Z) satisfies
Zg = (Zg)†. This fixes g = g(h) uniquely, see also App. A.4.4 for further details.

Result In summary, it is sufficient to search for solutions (Y ′,Z ′) of the complex equa-
tions (4.43a) on the interval (−∞, 0] such that the boundary conditions (4.50) are satisfied.
Then one has the existence of a unique complex gauge transformation g such that

(i) (Y,Z) = (Y ′,Z ′)g satisfies (4.43b) ,

(ii) Z is Hermitian (i.e. X2n+2 = 0) and

(iii) g is bounded and framed.

In other words, it suffices to solve the complex equations subject to some boundary conditions
and the real equation will be satisfied automatically.

Moreover, the above indicates that any point in A1,1
equi is stable, which we recall to be exactly the

condition that every complex gauge orbit intersects µ−1(0). We believe that this circumstance
holds because we restricted ourselves to the space of equivariant connections. The benefit is
then, that one, in principle, only has to show the solvability of the holomorphicity conditions
in order to solve the instanton (matrix) equations. Nevertheless, one still has to find an ansatz
that satisfies the equivariance conditions (4.27).

4.3.5 Further comments

Before concluding this chapter, we can further exploit the results collected so far as well as to
illustrate another perspective on the reduced instanton equations.

Relation to coadjoint orbits Let us denote byMn(E) the moduli space of solutions to the
complex and real equations satisfying the boundary conditions (4.50) (with suitable regularity)
as well as the equivariance condition. From the considerations above, we can establish the
following map

Mn(E)→ Odiag(Y1, . . . ,Yn)
(Y,Z) 7→ (Y1(0), . . . ,Yn(0))

(4.75)

where Odiag(Y1, . . . ,Yn) is defined as follows: The n objects Yk can be understood as element of
gl(p,C)⊗Cn, because the gauge group GL(p,C) does not act separately on each Yk, but it acts
the same on every Yk. In other words, consider (GL(p,C))×n which has a natural GL(p,C)×n
action. Here, we select the diagonal embedding GL(p,C) ↪→ GL(p,C)×n, which gives rise to the
relevant action (4.47a). Then we clearly see

Odiag(Y1, . . . ,Yn) :=
{
(Ad(g)Y1(0), . . .Ad(g)Yn(0))

∣∣ g ∈ GL(p,C)
}

⊂
n∏
j=1

{
Ad(gj)Yj(0)

∣∣ gj ∈ GL(p,C)
}

= OT1 × · · · × OTn
(4.76)

where OTk denotes the adjoint orbit of Tk in gl(p,C). Analogous to [121], the map (4.75) is
injective due to the uniqueness of the corresponding solution of the real and complex equations.
In contrast, the surjectivity is less clear. By the construction of the local solution (4.67), one
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4.3 Equivariant instantons

finds that any element of Odiag(Y1, . . . ,Yn) gives rise to a solution of the complex and real
equation, but it is unclear if this solution satisfies the required asymptotic. The Nahm equations
of [121] can be cast as gradient flow, which together with boundedness of the matrix-valued
functions gives the existence of the limit s→ −∞ and that the limit must be a critical point of
the gradient flow function. This is not the case for our Nahm-type equations and, hence, we do
not know whether the map (4.75) is surjective.
Moreover, one knows that the orbit of an element Tk of the Cartan subalgebra is of the

form GL(p,C)/Stab(Tk) and Stab(Tk) is the maximal torus of GL(p,C) because each Tk is
assumed to be a regular element. The product of the regular semi-simple coadjoint orbits is a
complex symplectic manifold. Each orbit is equipped with the so-called Kirillov-Kostant-Souriau
symplectic form [146] and the product thereof gives the symplectic structure on the total space.
As a manifold the orbit Odiag(Y1, . . . ,Yn) is just GL(p,C)/Stab (Y1(0), . . . ,Yn(0)), wherein

Stab (Y1(0), . . . ,Yn(0)) =
n⋂
j=1

Stab (Yj(0)) =
n⋂
j=1

Stab(Tj) (4.77)

and the intersection of the stabilisers of the Tj is the complexified maximal torus, by the
regularity assumption. Hence, the complex dimension14 is

dimC (Odiag(Y1, . . . ,Yn)) = dimR(U(p))− rk(U(p)) = p(p− 1) , (4.78)

which always is a multiple of 2. The diagonal orbit is also Kähler, as it is a complex sub-manifold
of a (hyper-)Kähler product. Analogous to [121], the map (4.75) is holomorphic such that it
describes an embedding of the framed moduli spaceMn(E) into the diagonal orbit, which is a
finite dimensional Kähler manifold.

Relation to quiver representations The instanton matrix equations can be seen to define
quiver representations, depending on the chosen SU(n+1)-representation on the typical fibre
Cp. Then, by the employed ansatz, we decompose this representation with respect to SU(n) into

Cp
∣∣∣
SU(n)

=
⊕
w∈K

Cnw , (4.79)

where Cnw carries an nw-dimensional irreducible SU(n)-representation. More explicitly,w should
be understood as pair of labels: let φ label the irreducible SU(n)-representations and recall that
the centraliser of SU(n) inside SU(n+1) is a U(1). Then each representation space Cnw carries
also a U(1)-representation characterised by a charge q. Therefore, the decomposition is labelled
by pairs w = (φ, q).
As a consequence, the equivariance condition (4.27) dictates the decomposition of the Xµ-

matrices into homomorphisms

Xµ =
⊕

w,w′∈K
(Xµ)w,w′ with (Xµ)w,w′ ∈ Hom (Cnw ,Cnw′ ) . (4.80)

The quiver representation then arises as follows: the set Q0 of vertices is the set {Cnw |w ∈ K}
of vector spaces and the set Q1 of arrows is given by the non-vanishing homomorphisms
{(Xµ)w,w′ |w,w′ ∈ K , µ = 1, . . . , 2n+ 1}.
The reduced instanton equations (or matrix equations) then lead to relations on the quiver

representation. Examples for the arising quiver diagrams as well as their relations for the case
n = 1 and M3 = S3 can be found in [147], for n = 2 and M5 = S5 in Part II of this thesis,
14In fact, as each Tj is a regular pair, each regular semi-simple OTk has the same dimension as the diagonal orbit.
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4 Hermitian Yang-Mills instantons on Calabi-Yau cones

and M5 = T 1,1 in [148]. To study the representations of a quiver one would rather use the
constructions of [147–149], instead of the ansatz employed here. This is because once the bundle
E and the action of SU(n+1) on the fibres is chosen, there is no freedom to change the quiver
representation any more.
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5 Instantons on non-Kähler conical
6-manifolds

Having constructed several 6-dimensional conical manifolds in Sec. 3.5, we now turn our attention
to instanton equations on such spaces. Here, we restrict ourselves to the tangent bundle of the
generically non-complex spaces.

5.1 Definition and reduction of instanton equations on conical
6-manifolds

As these spaces are non-Kähler, the generalised instanton equations do not coincide with the
HYM equations and we need to revise the definition of an instanton with respect to the non-
integrable SU(3)-structures.

5.1.1 Instanton condition

Firstly, we need to specify the instanton condition for non-integrable SU(3)-structures. Let M6

be a 6-manifold with a connection A on the tangent bundle. Then the curvature 2-form FA
satisfies the Bianchi identity DAFA = 0, where DA is the covariant differential associated to
A. As before, we can perform the type-decomposition of a form with respect to any almost
complex structure J , yielding

FA = F2,0
A + F1,1

A + F0,2
A . (5.1)

For a given SU(3)-structure (ω,Ω) on a 6-manifold and a curvature 2-form FA, the instanton
equation can be defined in two steps: first, the pseudo-holomorphicity condition reads

Ω ∧ FA = 0 ⇔ F0,2
A = 0 , (5.2a)

and, second, applying the covariant differential to (5.2a), and using the Bianchi identity as well
as (5.2a) yields

dΩ ∧ FA =
[(
W+

1 + iW−1
)
ω ∧ ω +

(
W+

2 + iW−2
)
∧ ω

]
∧ FA = 0 . (5.2b)

The last equation, although a mere consequence of (5.2a), depends strongly on the type of
SU(3)-manifold under consideration. For example, on nearly Kähler manifolds one has

dΩ ∝ ω ∧ ω (5.2b)====⇒ ω ∧ ω ∧ FA = 0 ⇔ ωyFA = 0 , (5.3)

whereas on half-flat SU(3)-manifolds this is not true as dΩ 6= κω ∧ ω. For Calabi-Yau, on the
other hand, (5.2b) is trivial as dΩ = 0, and the condition ωyFA = 0 is added as an additional
stability-like condition.
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5 Instantons on non-Kähler conical 6-manifolds

Lastly, for Kähler-torsion spaces we define an instanton via the condition

? FA = −(?Q) ∧ FA for Q = 1
2ω ∧ ω , (5.4)

wherein ω is the fundamental (1, 1)-form of the Hermitian space. If, on the other hand, the
KT-structure really is a CYT-structure, one can equivalently employ (5.2).

5.1.2 Ansatz

We follow the ansatz outlined previously in Sec. 4.3.1, but we are forced to adjust the setting.
Let M6 be the SU(3)-structure manifold of interest, constructed as a conical extension of a
Sasaki-Einstein 5-manifold M5. Note that we do not assume M6 to be conformally equivalent
to Cyl(M5). Suppose we are given an SU(2)-instanton Γ on the tangent bundle TM6 with
curvature RΓ. As before, we then generalise this instanton Γ by extending it to a connection A
with curvature FA by the ansatz15

A = Γ +Xµe
µ with Γ = ΓiÎi , (5.5)

where µ = 1, . . . , 5 and i = 6, 7, 8. In addition, Îi is a representation of the su(2)-generators
Ii on the fibres R6 of the bundle, and Γi are the components of an su(2)-connection on the
tangent bundle ofM6. Furthermore, the Xµ are now End(R6)-valued functions on some interval,
specified by the conical construction of M6.
The computation of FA with the ansatz for A yields

FA = RΓ + dXµ ∧ eµ + Tµ6νXµe
6 ∧ eν + 1

2

(
[Xµ, Xν ] + T ςµνXς

)
eµ ∧ eν

+ Γi
(
[Îi, Xµ]− fνiµXν

)
∧ eµ .

(5.6)

Herein, T denotes the torsion of the connection Γ, which is not assumed to be the canonical
connection ΓP . By the same arguments as before, the consistency condition (4.27) reduces (5.6)
to

FA = RΓ +
(
Ẋµ + T ν6µXν

)
e6 ∧ eµ + 1

2

(
[Xµ, Xν ] + T ςµνXς

)
eµ ∧ eν , (5.7)

as we choose the Xµ to vary on the cone direction only. Hence, the dot denotes the derivative
in the cone direction. In any case, the instanton condition is the requirement that the 2-form
part of FA takes values in a certain subbundle of Λ2T ∗M6, which we called the instanton
bundle in Sec. 4.1. Following the ideas of [113], we anticipate that 2-forms of the general form
e6 ∧ eσ + 1

2N
σ
µνe

µ ∧ eν , with N to be determined from the geometry under consideration, are
local sections of this instanton bundle, we add a zero to the above expression and obtain

F = RΓ +
(
Ẋµ + T ν6µXν

) (
e6 ∧ eµ + 1

2N
µ
σρ e

σ ∧ eρ
)

+ 1
2

(
[Xµ, Xν ] + T ςµν Xς −Nσ

µν

(
Ẋσ + T ρ6σXρ

) )
eµ ∧ eν .

(5.8)

From Sec. 4.3.1 we know RΓ to be an instanton; while the second term in (5.8) is already an
instantons by construction. Thus, we are left to require that the last term satisfies the instanton
equation; this leads us to

[Xµ, Xν ] + T ςµνXς = Nσ
µν

(
Ẋσ + T ρ6σXρ

)
+Nµν , (5.9)

15As usual, one component can be set to zero. Mimicking temporal gauge, we set the component in the cone
direction to zero.
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5.1 Definition and reduction of instanton equations on conical 6-manifolds

where N has to be an instanton on M6 that compensates for the su(2)-component of the left-
hand-side commutator. Hence, N can only be a linear combination of the three instantons [84]
f i
µν e

µ ∧ eν for i = 6, 7, 8, which depends on the cone coordinate. That is,

[Xµ, Xν ] + T ςµνXς = Nσ
µν

(
Ẋσ + T ρ6σXρ

)
+ f i

µν Ni . (5.10)

In summary, we are searching for m-valued matrices Xµ that solve equations (4.27) and (5.10),
as these will give rise to new instantons on the considered manifolds.

5.1.3 Remarks on the instanton equation

Before proceeding with the particular cases of the nearly Kähler sine-cone and the half-flat
cylinder, one needs to clarify an important point regarding the transformations of coframes
mentioned in Sec. 3.5.
The SU(2)-structure on the Sasaki-Einstein 5-manifold is understood as an SU(2)-principal

bundle Q, a subbundle of the frame bundle F (TM5). The warped product M5×φI of (3.25) is
equipped with an SU(3)-structure via (3.27) and the corresponding principal bundle is denoted
by P ⊂ F (T (M5×φI)). We refer to Fig. 5.1 for an illustration. However, P is not the SU(3)-
structure one is interested in, i.e. in our cases it is neither nearly Kähler nor half-flat. The
constructions of Sec. 3.5.3 and 3.5.4 rely on transformations of the coframes on M5: they
generate a different SU(2)-structure Q′ that can be extended to the desired SU(3)-structure
P ′ on the warped product. An important observation is the following: for a G-structure Q the
bundle Q′ defined via Q′ = RLQ is a G-structure if and only if L is a map from the base to the
normaliser NGL(6,R)(G), cf. (3.26) or the treatment in [129].

P

P ′

defines instantons via Ω′ ∧ F = 0 and dΩ′ ∧ F = 0

Q

Q′

RL

e

RL ◦ e

ΓP su(2)-valued here

M5×φI

π

F
(
T (M5×φI)

)

Figure 5.1: A schematic depiction of the different principal bundles involved in the definition
of the instanton condition: Q and P are the SU(2)- and SU(3)-bundles, respectively, which
originate from the Sasaki-Einstein structure onM5. The transformation L defines the principal
bundles Q′ and P ′, which again are SU(2) and SU(3)-bundles, respectively. All bundles under
consideration are understood as principal subbundles of the frame bundle F (T (M5×φI)).

The crux of the instanton equation is the following: the defining forms (ω′,Ω′) stem from P ′,
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5 Instantons on non-Kähler conical 6-manifolds

whereas the canonical connection ΓP belongs to Q and is trivially lifted to an instanton on P. Let
us denote by e ∈ Γ(U ,Q) an adapted frame forQ. Then by construction e′ =: (RL◦e) ∈ Γ(U ,Q′)
is an adapted frame for Q′. By standard results, the connection 1-forms of A transform under
a change of section as

e′
∗A = Ad(L−1) ◦ e∗A+ L−1dL . (5.11)

The employed extension A = ΓP + X relies on the splitting (4.25) such that X corresponds
to m-valued 1-forms. However, this only holds in the frame e, due to the following: Starting
with ΓP on Q, one has a purely su(2)-valued connection. Applying any transformation L to
Q, ΓP is generically not an su(2)-valued connection on Q′. This is due to the fact that L−1dL,
in general, takes values in the Lie-algebra of NGL(6,R)(SU(2)) instead of su(2). Therefore, one
cannot simply take e′∗ΓP as a starting point for some ansatz like e′∗A = e′∗ΓP +X ′µe

′µ.
For the cases under consideration, L depends (at most) on the cone direction r. Hence, one

has that Ad(L−1) ◦ e∗A is su(2)-valued and L−1dL ∝ dr, but generically not su(2)-valued. The
immediate consequences are the following:

• On the nearly Kähler sine-cone, for instance, one has to perform all calculations in the
frame e, because for the derivation of Sec. 5.1 we employed a section of the bundle on
which ΓP is an su(2)-valued connection. We will, however, compute e′∗ΓP explicitly in
Sec. 5.3.2 and demonstrate that it yields an su(3)-valued instanton on the sine-cone.

• In contrast, the transformation for the half-flat cylinder (3.49) is, although a 2-parameter
family, base point independent. Therefore, one is allowed to consider the frames e as well
as e′ for this instanton equation, as e∗ΓP and e′∗ΓP are su(2)-valued connection 1-forms.
However, this raises the question whether the two extensions Xµe

µ and X ′µe′µ are in any
sense comparable. The coframe transformations are only required to be NGL(6,R)(SU(2))-
valued, which implies that the m-piece will, in general, not be mapped into m or even
su(3). Hence, one cannot simply compare both extensions, but it is admissible to consider
both cases.

In summary, these remarks were not relevant for the cases studied for example in [84,113] or our
earlier results of Sec. 4.3.1, because the construction of the G-structures on the warped product
M5×φI followed immediately from the chosen frame on M5. In other words, no (base point
dependent) transformation of coframes was necessary. Even on the Kähler-torsion sine-cone,
the relevant rescaling (3.38) does not affect the computations due to the conformal equivalence
to the cylinder. However, for the nearly Kähler sine-cone and the half-flat cylinder the situation
is more involved and a careful analysis is mandatory.

5.2 Instantons on Kähler-torsion sine-cone

Consider the Λ-scaled sine-cone CΛ(M5) with a KT-structure as constructed in Sec. 3.5.2. The
instanton equations for the Kähler-torsion space can be written as

? FA = −(?Q) ∧ FA with Q = 1
2ω ∧ ω . (5.12)

In the coframe {eµ} of the cylinder, the space of admissible 2-forms is spanned by

e5 ∧ e6 − 1
4η

3
ab e

a ∧ eb and ea ∧ e6 − η3 a
b e
a ∧ e5 , (5.13)
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5.3 Instantons on nearly Kähler sine-cones

which one finds either by direct computation or by employing the projectors from so(6) to su(3)
of [110]. A 6-dimensional representation of m can be chosen as in [84,113],

(Î5)ba = 1
2 η

3
ab , −(Î5)6

5 = (Î5)5
6 = 1 , (5.14a)

−(Îa)6
b = (Îa)b6 = δba , (Îa)5

b = −(Îa)b5 = η3
ab , (5.14b)

from which one obtains the structure constants

f b
5a = 3

2 η
3 b
a and f 5

ab = 2 η3
ab . (5.15)

The torsion components of the canonical su(2)-connection ΓP in the unrotated frame eµ read

T 5
ab = −2 η3

ab = −f 5
ab , (5.16a)

T ab5 = −3
2 (η3)ab = −f a

b5 . (5.16b)

Inserting the chosen representation and employing the ansatz (5.5) into (5.12) one derives the
non-vanishing components Nρ

µν of the parametrisation as

N a
b 5 = 2

3f
a

b5 and N5
ab = 1

4f
5

ab . (5.17)

Therefore, the reduced instanton equations are given by[
Îi, Xµ

]
= f ν

iµ Xν , (5.18a)

[Xa, Xb] = 2η3
ab

(
X5 + 1

4Ẋ5

)
+ f i

ab Ni , (5.18b)

[X5, Xa] = 3
2η

3 b
a

(
Xb + 2

3Ẋb

)
, (5.18c)

where the dot denotes the derivative in the cylinder direction τ . We observe that the equa-
tions (5.18) are identical to those considered on the Calabi-Yau cone in [113], see also (4.29).
This is not surprising, as the instanton equations are conformally invariant and the CY cone
is conformally equivalent to the KT sine-cone. Hence, once a solution to (5.18) is known, the
corresponding solutions on the cone and sine-cone differ as the functional dependence of the
(sine-)cone coordinate of τ enters. A possible solution of (5.18) has already been discussed in
Sec. 4.3.1.

5.3 Instantons on nearly Kähler sine-cones

5.3.1 Matrix equations — part I

The set-up for the nearly Kähler sine-cone has been described in Sec. 3.5.3. In particular, we
are investigating extensions of the connection ΓP on the sine-cone in this subsection. M6 being
a nearly Kähler manifold, the instanton equation with respect to the coframe eµ is equivalent
to

ω ∧ ω ∧ FA = 0 ⇔ ωµ̂ν̂(FA)µ̂ν̂ = 0 , (5.19a)
Ω ∧ FA = 0 ⇔ Ως̂ µ̂ν̂(FA)µ̂ν̂ = 0 for ς̂ = 1, . . . , 6 . (5.19b)
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5 Instantons on non-Kähler conical 6-manifolds

The seven equations (5.19) restrict the space of admissible 2-forms, and the instanton bundle,
which is locally isomorphic16 to the subspace m, is spanned by

e5 ∧ e6 − Λ sinϕ
4

(
sinϕη1

ab + cosϕη3
ab

)
ea ∧ eb and

ea ∧ e6 − Λ sinϕ
(
sinϕη1 a

b + cosϕη3 a
b

)
eb ∧ e5 .

(5.20)

This can be seen either by direct computation or by the explicit form of the projectors from
so(6) to su(3) of [110]. Here we have used the Riemannian metric to pull up one of the indices
of η3, and from here on we use e6 = dr.
With the chosen representation (5.14) and (5.15) for m and by inserting the ansatz

A = ΓP +Xµ e
µ (5.21)

into (5.19), one obtains the non-vanishing components Nρ
µν of the parametrization (5.10) as

follows:

N5
ab = Λ sinϕ

2

(
sinϕη1

ab + cosϕη3
ab

)
and Na

b5 = Λ sinϕ
(
sinϕη1 a

b + cosϕη3 a
b

)
. (5.22)

Finally, the matrix equations for Xµ read

[Îi, Xµ] = f ν
iµ Xν , (5.23a)

[Xa, Xb] = Λ sinϕ
2

(
sinϕη1

ab + cosϕη3
ab

)
Ẋ5 + 2 η3

abX5 + f i
ab Ni , (5.23b)

[X5, Xa] = Λ sinϕ
(
sinϕη1 b

a + cosϕη3 b
a

)
Ẋb + 3

2 η
3 b
a Xb , (5.23c)

where the first line is just the equivariance condition (4.27). The dot-notation means Ẏ ≡ d
drY .

An obvious solution to (5.23) is Xµ ≡ 0, which yields the instanton solution A = ΓP that is the
lift of the instanton ΓP from M5 to the sine-cone Cs(M5).
Consider the ansatz

Xa = ψ(r)
(
exp(ξ η3)

) b

a
Îb , for ξ ∈ [0, 2π) and X5 = χ(r)Î5 , (5.24)

which respects equivariance due to [ηα, η̄β ] = 0. Here, ξ is a parameter, and ψ(r), χ(r) are two
functions depending only on the cone direction r. Inserting (5.24) into (5.23) yields

Ni = ψ2(r) Îi for i = 6, 7, 8 (5.25)

as well as the following differential equations:

Λ
2 χ̇(r) sin(2ϕ) = 4

(
ψ2(r)− χ(r)

)
and Λ

2 ψ̇(r) sin(2ϕ) = 3
2ψ(r) (χ(r)− 1) . (5.26a)

These are subject to the constraints

Λ
2 ψ̇(r) sin2 ϕ = Λ

2 χ̇(r) sin2 ϕ = 0 . (5.26b)

As a matter of fact, these equations (5.26) hold for any value of ξ ∈ [0, 2π). The solutions
to (5.26) are readily obtained to be the following:

• (ψ, χ) = (0, 0): This is, of course, the trivial solution of (5.23), but is still required for

16One employs the identification so(6) ' Λ2(R6) to obtain 2-forms from antisymmetric 6× 6-matrices.
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5.3 Instantons on nearly Kähler sine-cones

consistency as it confirms that ΓP satisfies the instanton condition on M6.

• (ψ, χ) = (1, 1): Here we obtain an extension of the original instanton ΓP . Despite being
an instanton, this newly obtain instanton is a mere lift of an instanton in M5 as it does
not have any dependence on the cone direction.

• (ψ, χ) = (−1, 1): Again, we obtain an extension which is a lift of an M5-instanton. Note
that the existence of this solutions follows from ξ 7→ ξ + π, because

(
exp(π η3)

) b
a = −δ b

a .

Hence, we have a one-parameter family of su(3)-valued instantons given by

A = ΓP +
(
exp(ξ η3)

) b

a
Îb ⊗ ea + Î5 ⊗ e5 . (5.27)

To summarise, the ansatz solving the matrix equations (5.23) generates isolated instanton
solutions which can all be interpreted as lifts of connections living on M5. The non-trivial
solutions are su(3)-valued connections; whereas the trivial solution is a purely su(2)-valued
connection.

Remarks Firstly, the family of solutions (5.27) can be seen to be contained in a gauge orbit
if we recall that (η3)νµ ∝ f ν

5µ = ad(I5)νµ and whence exp(ξ η3) ∝ Ad(exp(I5)). Nevertheless,
this gauge symmetry clarifies the origin of the ψ-reflection symmetry of the solutions.
Secondly, in the same manner as in the previous Sec. 5.2 we can equivalently provide the

matrix equations on the conformally equivalent cylinder with coordinate τ as follows:

[Îi, Xµ] = f ν
iµ Xν , (5.28a)

[Xa, Xb] = 1
2
(
sinϕη1

ab + cosϕη3
ab

) d
dτ X5 + 2 η3

abX5 + f i
ab Ni , (5.28b)

[X5, Xa] =
(
sinϕη1 b

a + cosϕη3 b
a

) d
dτ Xb + 3

2 η
3 b
a Xb . (5.28c)

Further, the limit Λ→∞ (with ϕ= r
Λ → 0 and keeping r fixed) transforms the sine-cone into

the Calabi-Yau cone, as mentioned in Sec. 3.5.3. In this limit, the matrix equations (5.28) take
the following form:

[Xa, Xb] = f 5
ab

(
X5 + 1

4 Ẋ5

)
+ f i

ab Ni and [X5, Xa] = f b
5a

(
Xb + 2

3 Ẋb

)
, (5.29)

which are exactly the same equations as on the Kähler-torsion sine-cone of our earlier re-
sults (5.18). Applying the τ -dependent version of the ansatz (5.24) yields

χ̇(τ) = 4
(
ψ2(τ)− χ(τ)

)
and ψ̇(τ) = 3

2ψ(τ) (χ(τ)− 1) . (5.30)

Obviously, all constant solutions found above are still instantons on the CY-cone, but the reduced
equations do not automatically enforce constant χ and ψ. Finally, note that (5.30) is, of course,
equivalent to (5.26) in the limit Λ→∞ as the constraint on the derivatives vanishes.
Thirdly, the sine-cone is a conifold with two conical singularities, here at ϕ = 0 and ϕ = π.

One observes that the coefficient functions, i.e. cosϕ and sinϕ, of (5.23) as well as our solutions
are well-behaved at the singular points. However, recall the remark from Sec. 3.5.3 that the
defining sections of the SU(3)-structure become trivial at these singular points; hence, the
instanton condition is not well-defined there. Yet, in principal one could extend the gauge field
to these points.
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5 Instantons on non-Kähler conical 6-manifolds

5.3.2 Nearly Kähler canonical connection

In this section we construct the canonical su(3)-connection of the nearly Kähler sine-cone. It
turns out that we obtain an instanton for the SU(3)-structure that is not the lift of an instanton
on M5; furthermore, this instanton is of the form (5.21) presented above. On the 5-manifold
M5 the Maurer-Cartan equations read

dea = −(ΓP )ab ∧ e
b + 1

2 T
a
µν e

µ ∧ eν , (5.31a)

de5 = −(ΓP )5
5 ∧ e

5 + 1
2 T

5
µν e

µ ∧ eν , (5.31b)

where the torsion components are given by (cf. [84, 113])

T ab5 = −3
2 η

3a
b and T 5

ab = −2 η3
ab . (5.32)

In particular, the last identity implies (ΓP )5
5 = 0 due to the Sasaki-Einstein relation de5 = −2ω3.

Next, we are interested in the Maurer-Cartan equations for the frame eµs resulting from the
rotation (3.44) and rescaling (3.46) of the SU(2)-structure. With respect to coframes e adapted
to Q, the canonical su(2)-connection ΓP has components

(ΓP )νµ = (ΓP )if ν
iµ with (f b

ia ) ∝ η̄α(i) , (5.33)

where α(i) = i−5 and η̄α are the anti-self-dual ’t Hooft tensors. Noting that [ηα, η̄β] = 0 for
all α, β, we see that the components of the canonical su(2)-connection are unaffected by the
homogeneous part of the transformation (5.11) with

L(r) = Λ sin(ϕ)
(

exp(ϕ2 η
2)4×4 04×2

02×4 12×2

)
∈ NGL(6,R)(SU(2)) , (5.34)

which realises the rotation (3.44) and the rescaling (3.46). In detail, the transformation reads
(ΓP )ab = Lac (ΓP )cd (L−1)db . A straightforward computation yields

deas = −(ΓP )ab ∧ e
b
s −

cotϕ
Λ

(
eas ∧ e6

s + η3a
b e
b
s ∧ e5

s

)
− cotϕ

2Λ η3a
b e
b
s ∧ e5

s (5.35a)

− 1
2Λ

(
η2a

b e
b
s ∧ e6

s − η1a
b e
b
s ∧ e5

s

)
+ 1

Λη
1a
b e
b
s ∧ e5

s ,

de5
s = −cotϕ

Λ
(
e5
s ∧ e6

s + η3
ab e

a
s ∧ ebs

)
+ 1

Λη
1
ab e

a
s ∧ ebs , (5.35b)

de6
s = 0 . (5.35c)

It is important to realise that, although the components (ΓP )ab used in (5.35) coincide with the
components of the lift of the canonical connection on the Sasaki-Einstein 5-manifold to the
cylinder; the transformed coframe eµs is used since we are on the nearly Kähler sine-cone. Thus,
with respect to that frame (ΓP )ab no longer comprises the canonical su(2)-connection. However,
it forms a different su(2)-valued connection Γsu(2). This is because the inhomogeneous term
in (5.11), which results from the change of basis, has been split off.

Introducing an almost complex structure J via demanding

Θ1
s = e1

s + ie2
s , Θ2

s = e3
s + ie4

s and Θ3
s = i(e5

s + ie6
s) (5.36)

52



5.3 Instantons on nearly Kähler sine-cones

to be (1, 0)-forms yields

d

Θ1
s

Θ2
s

Θ3
s

 = −

Γ̂su(2)
1
1 + i cotϕ

2Λ e5
s Γ̂su(2)

1
2 − cotϕ

Λ Θ1
s − 1

2ΛΘ2̄
s

Γ̂su(2)
2
1 Γ̂su(2)

2
2 + i cotϕ

2Λ e5
s −

cotϕ
Λ Θ2

s + 1
2ΛΘ1̄

s
cotϕ

Λ Θ1̄
s + 1

2ΛΘ2
s

cotϕ
Λ Θ2̄

s − 1
2ΛΘ1

s − i cotϕ
Λ e5

s


︸ ︷︷ ︸

canonical su(3)-connection Γ̂su(3) on sine-cone

∧

Θ1
s

Θ2
s

Θ3
s

− 1
Λ

Θ2̄3̄
s

Θ3̄1̄
s

Θ1̄2̄
s


︸ ︷︷ ︸
NK-torsion T̂

.

(5.37)
Here we used the shorthand notation Θᾱβ̄ ≡ Θᾱ ∧Θβ̄.
The connection 1-forms Γ̂su(2)

β
α with α, β = 1, 2 are defined via the components (ΓP )ba by

employing (5.31) and (5.35) as well as the change to the complex basis (5.36). We use the hat
to indicate that we are considering the connection forms with respect to the complex basis Θs

rather than the real basis es. Thus, the corresponding Maurer-Cartan equations read

dΘα
s = −Γ̂su(3)

α
β ∧Θβ

s + T̂α and dΘᾱ
s = −Γ̂su(3)

ᾱ
β̄
∧Θβ̄

s + T̂ ᾱ . (5.38)

Note that Γsu(3) = diag
(
Γ̂su(3), Γ̂

∗
su(3)

)
is indeed a connection on TM6, which can be seen

from (5.38) and the fact that T̂ transforms as a tensor. Furthermore, Γsu(3) is an instanton
because it satisfies the conditions of [84, Prop. 3.1].
The above result (5.37) can be brought into a more suggestive form by rewriting it as

Γ̂su(3) = Γ̂su(2) + 1
2Λ

 0 0 −2 cotϕ
0 0 1

2 cotϕ −1 0

 e1
s + i

2Λ

 0 0 −2 cotϕ
0 0 −1

−2 cotϕ −1 0

 e2
s

+ 1
2Λ

0 0 −1
0 0 −2 cotϕ
1 2 cotϕ 0

 e3
s + i

2Λ

0 0 1
0 0 −2 cotϕ
1 −2 cotϕ 0

 e4
s (5.39a)

+ i
2Λ

cotϕ 0 0
0 cotϕ 0
0 0 −2 cotϕ

 e5
s

= Γ̂su(2) +Bµ ⊗ eµs , (5.39b)

which reflects exactly the Xµ-ansatz from (5.21). One can check that the matrices Bµ satisfy the
equivariance condition (4.27). Thus, as Γsu(3) is a connection on TM6, one can infer by the same
arguments as in Sec. 5.1 that Γsu(2) is a well-defined connection on TM6. An alternative way to
see that is to check that the inhomogeneous part, which has been split off in the transformation
law (5.11) for the components of ΓP , glues to globally well-defined 1-forms with values in the
adjoint bundle of P. This, however, holds due to the fact that the transformation L given in (5.34)
commutes with the SU(2) subgroup of GL(6,R), i.e. takes values in centraliser CGL(6,R)(SU(2)).
Note that in the limit Λ → ∞ (i.e. ϕ = r

Λ → 0) the torsion on C(M5) vanishes, and Γ̂su(3)
coincides with the connection corresponding to the χ = ψ = 1 case of [84], which has been
stated to be the Levi-Civita connection of the cone. Furthermore, this is consistent with the
observation that as Γ̂su(3) preserves the metric and as in the above limit its torsion vanishes,
Γ̂su(3) has to converge to the Levi-Civita connection of the CY-cone.

5.3.3 Matrix equations — part II

As pointed out above, there are two different su(2)-valued connections on the nearly Kähler
sine-cone. On the one hand, there is the lift of the canonical connection ΓP of the Sasaki-Einstein
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5 Instantons on non-Kähler conical 6-manifolds

5-manifold; on the other hand, there is Γsu(2). A comparison shows that the respective curvature
2-forms coincide, i.e.

RΓP = RΓsu(2) . (5.40)

This stems from the fact that the generators of the two transformations (3.44) and (3.46), which
lead from the cylinder to the sine-cone, commute with su(2). In other words, the inhomogeneous
part of (5.11) yields an abelian flat part proportional to e6

s. As a consequence, Γsu(2) is another
su(2)-valued instanton on the sine-cone, since ΓP is an instanton itself17. Therefore, we can
use Γsu(2) in the procedure described in Sec. 5.1: One extends Γsu(2) by some suitable 1-form
Xµ e

µ
s and investigates the conditions on Xµ such that the new connection is an instanton on

the sine-cone.
However, we have to adjust the equations (5.23) due to the different torsion of Γsu(2). Denoting

by T the torsion of ΓP , the torsion of Γsu(2) reads

T µ̂su(2) = T µ̂ + 1
Λ
(
δµ̂ν̂ cotϕ+ 1

2 η
2µ̂
ν̂

)
e6
s ∧ eν̂s , (5.41)

where we defined η2
µ̂ν̂ = η2

ab for µ̂, ν̂ = a, b ∈ {1, . . . , 4} and η2
µ̂ν̂ = 0 whenever µ̂ ≥ 5 or ν̂ ≥ 5.

The components of N are the same as in Sec. 5.3.1 and, by inserting everything into (5.8), we
obtain the matrix equations

[Îα, Xµ] = f ν
αµ Xν , (5.42a)

[Xa, Xb] = 1
2 η

3
abẊ5 + 1

2Λ
(
5 cotϕη3

ab − 4 η1
ab

)
X5 + f α

ab Nα , (5.42b)

[X5, Xa] = η3 b
a Ẋb + 1

2Λ
(
5 cotϕη3 b

a − 3 η1 b
a − η3 c

a η2 b
c

)
Xb , (5.42c)

with the notation Ẏ = d
drY . Next, we use the matrices in (5.39) to construct the extension

of Γsu(2). Recall that we had defined auxiliary matrices Bµ that solve the equivariance condi-
tion (4.27) by writing (5.39) in the form

Γ̂su(3) = Γ̂su(2) +Bµe
µ
s , (5.43)

and that the Bµ explicitly depend on ϕ = r
Λ . Hence, we may set

Xa := ψ(r)Ba and X5 := χ(r)B5 (5.44)

as in the usual procedure18. The equivariance condition enforces the same coefficient function
ψ(r) for all four Ba. Inserting this Xµ-ansatz in the matrix equations (5.42), one can first of all
read off

Ni = ψ(r)2 1 + 4 cot2ϕ

4Λ2 Ii , for i = 6, 7, 8 , (5.45)

which is compatible with the assumptions on N used in Sec. 5.1. Using this explicit form, we
obtain the algebraic equation

ψ(r)2 − χ(r) = 0 . (5.46)

This then reduces the remaining equations to

χ̇(r) = ψ̇(r) = 0 and ψ(r)
(
χ(r)− 1

)
= 0 . (5.47)

17We recall from Sec. 5.1.3: ΓP is a connection on the SU(2)-bundle Q, whereas Γsu(2) is a connection on the
SU(2)-bundle Q′.

18Note that in (5.39) we have Bµ ∈ End(C3). Here we used the identification C ' R2 to obtain Bµ ∈ End(R6),
which is necessary for the ansatz (5.5).
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5.3 Instantons on nearly Kähler sine-cones

Let us now comment on the three solutions to this system:

• (ψ, χ) = (0, 0): To start with, there is the obvious trivial solution of (5.42). This is required
for consistency, since Γsu(2) is an instanton.

• (ψ, χ) = (1, 1): This second solution is very important because it reproduces Γsu(3) from
Sec. 5.3.2. We already knew from [84, Prop. 3.1] that this particular connection is an
instanton on the nearly Kähler sine-cone, but here we confirmed it directly, using techniques
completely different than those employed in [84]. In addition, this provides us with another
way of constructing the canonical connection of the nearly Kähler sine-cone than the one
we followed in Sec. 5.3.2, namely as the extension of an su(2)-valued instanton.

• (ψ, χ) = (−1, 1): Thirdly, there is again the solution which results from the invariance of
(5.42) under the simultaneous sign-flip Xa 7→ −Xa for a = 1, 2, 3, 4. Nevertheless, this
solution is an additional instanton.

In summary, the solutions we obtained here are isolated su(3)- and su(2)-valued connections on
M6 that cannot be traced back to lifts of connections on M5. In contrast to e.g. [95], there are
no instanton solutions that interpolate between these isolated instantons. (At least not in the
subset of the moduli space that we can explore with these techniques.)

Remarks Firstly, the CY-limit Λ→∞ of (5.42) is given by

[Xa, Xb] = f 5
ab

(
X5 + 1

4
d
dτ X5

)
+ f i

ab Ni and [X5, Xa] = f b
5a

(
Xb + 2

3
d
dτ Xb

)
, (5.48)

wherein one requires the rescaling Xµ 7→ 1
rXµ, which can be seen from Xµe

µ
s → Xµ re

µ for
Λ→∞. Further, recall that in the limit Λ→∞ we have dτ = 1

rdr. The above matrix equations
coincide with the ones obtained in the Kähler-torsion case (5.18) of Sec. 5.2 as well as with
the limit (5.29) of Sec. 5.3.1. The two reductions of Sec. 5.3.1 and 5.3.3 used the different
su(2)-instantons ΓP and Γsu(2) as starting point; however, in the above limit the difference

ΓP − Γsu(2)
Λ→∞−−−−→ 1⊗ dr

r
∈ Ω1(M6,End(R6)) (5.49)

becomes an abelian flat part, which contributes to the instanton equation via the altered torsion.
Secondly, note the explicit impact of the conical singularities at ϕ = 0 or ϕ = π in the matrix

equations (5.42) as well as the Bµ-matrices of (5.39). However, we do not have to consider these
singularities, as the instanton equation is not well-defined at the tips.

5.3.4 Transfer of solutions

The previous subsections considered the nearly Kähler sine-cone from two perspectives: in
Sec. 5.3.1 we extended the instanton ΓP , which is a connection on Q, whereas Sec. 5.3.3 was
concerned with Γsu(2), which is an su(2)-valued connection on Q′, as a starting point for our
ansatz (5.5). The local representations of these are related via a transformation L as considered
in (5.34). Due to the properties of L we arrive at the following statement (c.f. Sec. 5.1.3):

e′
∗Γsu(2) = e′

∗ΓP − L−1dL = e∗ΓP , (5.50)

implying that Γsu(2) and ΓP have the same components with respect to their adapted coframes
e′ and e. Observe that the inhomogeneous part that is split off in the connection 1-form enters
in the torsion (5.41) of Γsu(2), thus altering the matrix equations. However, from (5.8) one can
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5 Instantons on non-Kähler conical 6-manifolds

check that the local expressions of the respective field strengths of the extension of both ΓP
and Γsu(2) by Xµ ⊗ e′µ = XµL

µ
ν ⊗ eν coincide. Consequently, every instanton extension Xµ of

Γsu(2) gives rise to an instanton extension XνL
ν
µ of ΓP and vice versa. In other words, we have

the relation
Xµ solves (5.42) 1:1⇐===⇒ XνL

ν
µ solves (5.23) . (5.51)

As a remark, the above is true whenever L takes values in the centraliser CGL(6,R)(SU(2)), as
then L−1dL gives rise to a well-defined equivariant 1-form. However, one should not naively
expect that the solutions obtained in Sec. 5.3.1 and 5.3.3 are related via (5.51), as this does not
necessarily transform the employed ansätze into one another.

The benefit from observation (5.51) is that we can generate further instanton solutions from
our previous ones. On the one hand, we can apply the above to (5.27) and obtain the ansatz

Xa = ψ(r)
Λ sin( rΛ)

(
exp

(
r

2Λη
2
)

exp(ξη3)
) b

a
Îb and X5 = χ(r)

Λ sin( rΛ) Î5 , (5.52)

which inserted into (5.42) has precisely the solutions (ψ, χ) = (0, 0), (±1, 1), just as one would
expect from the above arguments. This is another non-constant instanton extension for Γsu(2).

On the other hand, the same can be done for (5.44) in the other direction. There one derives
the ansatz

Xa = ψ(r) Λ sin( rΛ) exp
(
− r

2Λη
2
) b

a
Bb(r) and X5 = χ(r) Λ sin( rΛ)B5(r) . (5.53)

Rewritten in a linear combination of the Îµ, the ansatz (5.53) is given as

X1 = ψ(r)
(
cos3 ( r

2Λ
)
Î1 − sin3 ( r

2Λ
)
Î3
)
,

X2 = ψ(r)
(
cos3 ( r

2Λ
)
Î2 + sin3 ( r

2Λ
)
Î4
)
,

X3 = ψ(r)
(
cos3 ( r

2Λ
)
Î3 + sin3 ( r

2Λ
)
Î1
)
,

X4 = ψ(r)
(
cos3 ( r

2Λ
)
Î4 − sin3 ( r

2Λ
)
Î2
)
,

X5 = χ(r) cos
(
r
Λ
)
Î5 .

(5.54)

One can check that this, again, produces the solutions (ψ, χ) = (0, 0), (±1, 1). The two non-trivial
instanton solutions correspond to non-constant extensions of ΓP .

5.4 Instantons on half-flat cylinders

Let us now return to the half-flat 6-manifolds constructed in Sec. 3.5.4 and apply the ansatz
developed above to the instanton equation on these spaces. The instanton equation on spaces
with non-vanishingW2 was introduced in (5.2). In a local coframe adapted to the SU(3)-structure,
imposing the pseudo-holomorphicity condition

Ωz ∧ FA = 0 (5.55)

yields the same set of six equations as we have obtained in the nearly Kähler case. But the
additional equation implied by the pseudo-holomorphicity condition reads

dΩz ∧ FA = 0 ⇔ (FA)12 + (FA)34 + 4
3%

2 (FA)56 = 0 (5.56)
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in the rotated frame ez. Note that for % = ±
√

3
2 this coincides with the nearly Kähler instanton

equation of Sec. 5.3.1, although the SU(3)-structure is not nearly Kähler (see for example the
torsion classes (3.53)).
It is important to recall that the lift of the canonical connection of the Sasaki-Einstein M5

provides an instanton on the cylinder that one can extend by some X in our ansatz to su(3)-
valued connections, being defined either on P or P ′. We will do so in two set-ups: firstly, we
formulate the matrix equations in the frame eµ, and, secondly, the analogous computation is
performed in the adapted frame eµz for the half-flat SU(3)-structure.

5.4.1 Matrix equations — part I

In the unrotated frame eµ the instanton bundle is locally spanned by

e5∧e6− %
3

(
cos ζ η1

ab − sin ζ η2
ab

)
ea∧eb and ea∧e6−%

(
cos ζ η1a

b − sin ζ η2a
b

)
eb∧e5 , (5.57)

from which we can extract the components of (Nρ
µν) to be

N5
ab = 2%

3
(
cos ζ η1

ab − sin ζ η2
ab

)
and Na

b5 = %
(
cos ζ η1a

b − sin ζ η2a
b

)
. (5.58)

As the torsion components are unchanged, we can directly give the matrix equations

[Îα, Xµ] = f ν
αµ Xν , (5.59a)

[Xa, Xb] = 2%
3
(
cos ζ η1

ab − sin ζ η2
ab

)
Ẋ5 + 2 η3

abX5 + f α
ab Nα , (5.59b)

[X5, Xa] = %
(
cos ζ η1 b

a − sin ζ η2 b
a

)
Ẋb + 3

2 η
3 b
a Xb . (5.59c)

The ansatz

Xa = ψ(r)
(
exp(ξ η3)

) b

a
Îb for ξ ∈ [0, 2π) and X5 = χ(r)Î5 (5.60)

satisfies, again, the equivariance condition of (5.59). We then obtain

Ni = ψ2(r) Îi , for i = 6, 7, 8 (5.61)

as well as the set of equations

ψ̇(r) = χ̇(r) = 0 , ψ2(r) = χ(r) , and ψ(r) (χ(r)− 1) = 0 , (5.62)

for the two functions ψ and χ, and the equations hold for all values of ξ.

• (ψ, χ) = (0, 0): The trivial solution appears again for consistency.

• (ψ, χ) = (±1, 1): These two extensions of the lift of ΓP are newly obtained instantons;
however, they correspond to lifts of M5-instantons because they are independent of the
cylinder direction. Recall that (ψ, χ) = (−1, 1) can be generated from (ψ, χ) = (+1, 1) by
the shift ξ 7→ ξ + π.

Identically to the nearly Kähler case, one obtains the one-parameter family (5.27) as a solution.
As a matter of fact, these instanton solutions are identical to the ones obtained in Sec. 5.3.1.
The explanation is as follows: firstly, note that nearly Kähler 6-manifolds are a subset of half-flat
6-manifolds; thus, any nearly Kähler instanton solution must necessarily appear in the half-flat

57



5 Instantons on non-Kähler conical 6-manifolds

scenario. Secondly, the matrix equations (5.23) and (5.59) differ only in their derivative parts,
i.e. in the coefficients of Ẋµ, which implies that both sets have coinciding constant solutions.

5.4.2 Matrix equations — part II

In contrast to the previous subsection, here the focus is on the formulation of the instanton
equations in the adapted coframe eµz for the SU(3)-structure on the cylinder. As with respect
to these, the SU(3)-structure forms have their standard components, one only has to compute
the components of its torsion with respect to the transformed basis.
The space m is now spanned by the 2-forms

e5
z ∧ e6

z − 1
3%

2 η3
ab e

a
z ∧ ebz and eaz ∧ e6

z − η3a
b e
b
z ∧ e5

z , (5.63)

which follows from direct evaluation of (5.55) and (5.56). In the coframe ez the torsion compo-
nents of the lifted canonical connection of the Sasaki-Einstein manifold are

T̃ 5
ab = 2% η1

ab and T̃ ab5 = 3
2% η

1a
b . (5.64)

In addition, we need the tensor N that appeared in (5.10). Since the instanton equations take
a slightly different form here, its components now read

Na
µν = 2

3 fµν
a and N5

µν = 1
3%

2 fµν
5 , (5.65)

wherein we have used the same su(3) structure constants as in (5.15). With these alterations
(5.10) can be written as

[Îα, Xµ] = f ν
αµ Xν , (5.66a)

[Xa, Xb] = − 2% η1
abX5 + 2

3%
2 fab

5 Ẋ5 +Nα fabα , (5.66b)
[Xa, X5] = 3

2% η
1 b
a Xb + 2

3 fa5
b Ẋb . (5.66c)

One can employ the following ansatz:

Xa = ψ(r)
(
exp(ξ η1) exp(θ η2)

) b

a
Îb , for θ, ξ ∈ [0, 2π) and X5 = χ(r)Î5 , (5.67)

which, again, satisfies the equivariance condition. The insertion of (5.67) into (5.66) yields for
the su(2)-part

Ni = ψ2Ii , (5.68)

as the projection of [Xa, Xb] onto su(2) in su(3) is independent of θ and ξ. Further, for the
functions ψ and χ one derives the set of equations

χ̇ = 3
%2 ψ

2 (cos2θ − sin2θ) , (5.69a)

χ = 2
%
ψ2 cos θ sin θ , (5.69b)

ψ̇ cos θ = 3
2 ψ

(1
%

sin θ + χ cos θ
)
, (5.69c)

ψ̇ sin θ = − 3
2 ψ

(1
%

cos θ + χ sin θ
)
. (5.69d)

Note that the equations are independent of ξ. These equations are mutually compatible only
for θ=π

4 or θ=3π
4 . For these values of θ the first two equations yield ψ̇ = χ̇ = 0 and the last two
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equations coincide. The system (5.69) admits, besides the trivial solution (ψ, χ) = (0, 0), only
the following solutions:

θ = π

4 : ψ = ±1 , χ = +1
%
, (5.70a)

θ = 3π
4 : ψ = ±1 , χ = −1

%
. (5.70b)

Hence, we again have a whole family of solutions given by

A = Γ+
(
exp(ξ η1) exp(θ η2)

) b

a
Îb⊗eaz ±

1
%
Î5⊗e5

z , for θ ∈ {π4 ,
3π
4 } , ξ ∈ [0, 2π) . (5.71)

As the corresponding instantons on the cylinder over M5 do neither depend on the cone coor-
dinate nor contain dr, they are actually lifts of instantons on M5, which live on the pull-back
bundle of the SU(3)-bundle on the slices of the cylinder.
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6 Conclusions and outlook

Summarising this first part of the thesis, we follow the separated presentation of the Calabi-Yau
cone of Ch. 4 and non-Kähler conical extensions of Ch. 5.

Hermitian Yang-Mills on Calabi-Yau cone It is known that the instanton moduli space
over a Kähler manifold is a Kähler space. Therefore, we argued that the moduli space of certain
invariant connections inherits this property.
The ansatz presented in Sec. 4.3 relied on two steps: firstly, we chose an instanton ΓP

as a starting point and, secondly, we imposed an equivariance condition and simplified to
dependence on the cone-direction only. Therefore, we restrict ourselves to a subset of all accessible
connections. Hence, by this construction one can only reach a particular part of the full instanton
moduli space by the solutions of the instanton matrix equations.
The arguments subsequently presented in Sec. 4.3 show that the reduced instanton matrix

equations can be treated similarly to the Nahm equations with regular boundary conditions.
As a consequence, one gains local solvability of the holomorphicity conditions together with the
fact that any solution can be uniquely gauge-transformed into a solution of the stability-like
condition. Moreover, the structure of the (framed) moduli space shares, at least locally, all
features of a Kähler space due to the Kähler quotient construction. In addition, we showed that
the framed moduli space is mapped into a finite dimensional orbit with a Kähler structure.
Some open questions remain and we hope to address them in future research. For example,

the properties of the map (4.75) have to be studied in more detail; in particular, if there is any
hope to restore surjectivity without the gradient flow present for the Nahm equations. Similar
to [121,122], one could explore the implications of non-regular boundary conditions. Moreover,
the solutions to the equivariance condition (4.27) have to be investigated in more detail.
In addition, it is of interest to extend the ansatz presented here from cones to their smooth

resolutions as in [113,115]. Moreover, focusing on Sasaki-Einstein coset spaces and the solutions
to the equivariance condition it seems natural to consider quiver gauge theories which can be
associated to Calabi-Yau cones along the lines of [147]. The latter will be addressed in Part II
for the cone over the 5-sphere (and orbifolds thereof).

Instantons on non-Kähler conical 6-manifolds We investigated the geometry of cylin-
ders, cones and sine-cones over 5-dimensional SU(2)-manifolds in Sec. 3.5. On the resulting
6-dimensional conical manifolds we formulated generalised instanton equations and reduced
them to matrix equations via the ansatz (5.5). In particular, we focused on Kähler-torsion
structures as well as nearly Kähler and half-flat SU(3)-manifolds.
Firstly, we demonstrated in Sec. 3.5.2 that the sine-cone over a Sasaki-Einstein 5-manifold

is not only an Einstein space, but, moreover, a Kähler-torsion space. The instanton equations
where reduced to matrix equations (5.18), which turned out to be identical to the equations
on Calabi-Yau cone due to conformal equivalence. Although we discussed the HYM-equations
thoroughly in Ch. 4, the geometric interpretation is not the same for the KT-case. The reason
behind this is the non-Kähler nature of a generic KT-structure, such that the notion of a moment
map is not appropriate.
Secondly, we constructed in Sec. 3.5.3 a nearly Kähler 6-manifold as a sine-cone over an

arbitrary Sasaki-Einstein 5-manifold by means of a rotation of the SU(2)-structures on the
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slices. Employing the ansatz (5.21), the instanton equation was reduced to the set (5.23) of
matrix equations, for which we found a family of non-trivial, but constant solutions. All of
these correspond to lifts of M5-instantons to Cs(M5). In addition, in Sec. 5.3.2 we obtained an
instanton solution on the manifold Cs(M5) by the construction of its su(3)-valued canonical
connection. We decomposed this connection Γsu(3) into another su(2)-valued instanton Γsu(2)
plus an additional part resembling the ansatz used before. Using this decomposition and, again,
carrying the reduction of the instanton equation out, we obtained a set of four equations for
two functions which parametrise the ansatz. Its three solutions, for which the scalar functions
take certain constant values, correspond to three instantons on the nearly Kähler sine-cone that
cannot be constructed as lifts of instanton connections on M5. As a by-product, we explicitly
confirmed the nearly Kähler canonical connection to be an instanton. In addition, observing
a correspondence between the solutions, we transferred the solutions of the two cases to new
r-dependent instanton extensions of ΓP as well as Γsu(2). Remarkably, the extension found for
ΓP does not seem to correspond to a lift of an instanton from M5.
Furthermore, we introduced a two-parameter family of half-flat structures on the cylinder

over a generic Sasaki-Einstein 5-manifold in Sec. 3.5.4. Again employing the ansatz (5.5) on
these cylindrical half-flat 6-manifolds, we were able to deduce the matrix equations (5.66) on
the two local frames eµ̂ and eµ̂z . Moreover, we provided families of constant, but non-trivial
solutions. In that case, the instantons obtained this way do correspond to lifts of instantons on
M5.

It would be interesting to extend the methods presented here, i.e. the reduction of the instanton
equation to matrix equations and the construction of higher-dimensional G-structure manifolds
from lower-dimensional ones, to other scenarios that appear in string theory. For example, in
M-theory desirable (internal) manifolds are 7-dimensional and are endowed with a G2-structure.
Therefore, the study of certain SU(3)-structures seems to be promising, as one could hope
to obtain interesting G2-geometries as well as explicit instanton solutions via the procedures
employed here.
Returning to the heterotic supergravity point of view, we expect that our solutions to the

instanton equations can be lifted to full solutions of the heterotic equations of motions via
the BPS equations (2.1) and the Bianchi identity (2.2). The gaugino equation (2.1c) is already
solved by the instanton solutions above. The remaining equations should be solvable in a manner
similar to [84,85,87,88], which may look as follows:

1. The dilatino equation (2.1b) may be solved by a suitable ansatz such as choosing the
dilaton φ = φ(τ) and the 3-form H ∝ dφ

dτ P where P is the canonical 3-form on the
Sasaki-Einstein 5-manifold.

2. The gravitino equation (2.1a) requires a spin connection with SU(3)-holonomy and torsion
H. Therefore, one can take an ansatz similar to (5.5) from which we know it to be an
SU(3)-instanton. The remaining task is then to check the correct torsion for this connection.
One choice might be the canonical connection Γsu(3) on the nearly Kähler sine-cone, whose
torsion is by definition skew-symmetric, and we know Γsu(3) is an instanton.

3. The theorem of Ivanov requires a connection ∇ on TM6 which is an instanton. Here, the
instantons constructed in the first part of this thesis provide a valuable choice, i.e. by an
extension of the canonical connection. Then the connection ∇, together with the gauge
connection A, needs to satisfy the Bianchi identity (2.2).

Finally, one has to solve the differential equations that appear for the degrees of freedom
in the different ansätze for H, ∇+, and ∇. We hope to report on this process and embed our
solutions into heterotic supergravity in the future.
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In this appendix, we provide the proofs of the statements made in Sec. 4.3.2–4.3.4. Although
the steps are similar to those performed in [40, 121, 122], we believe that these are necessary
because the reduced instanton matrix equations are generalisations of the Nahm equations.

A.1 Boundedness of rescaled matrices

Recall the boundary conditions (4.50) for the original matrices

t→ +∞ : Xµ → 0 , (A.1a)

t→ −∞ : e
n+1
n tXa → Ad(g0)Ta and e2ntX2n+1 → Ad(g0)T2n+1 . (A.1b)

Evaluating the asymptotic behaviour for t→ +∞ of (4.29), one finds the leading behaviour of
(the real and imaginary part) of each matrix element to be

d
dt(Xa)AB + n+ 1

n
(Xa)AB ' 0 → (Xa)AB ∼ e−

n+1
n t as t→∞ , (A.2a)

d
dt(X2n+1)AB + 2n(X2n+1)AB ' 0 → (X2n+1)AB ∼ e−2nt as t→∞ , (A.2b)

because the commutator terms vanish faster than linear order. These results imply the following:

(i) The rescaled matrices Xµ of (4.40) are bounded for s→ 0.

(ii) The commutators e
n+1
n t[Xa, X2n+1] are integrable over (0,∞).

(iii) The derivatives d
dt

(
e
n+1
n tXa

)
and d

dt
(
e2ntX2n+1

)
are integrable, which follows by the use

of the equations (4.29).

In conclusion, the Xµ̂ as well as their derivatives are bounded.

A.2 Well-defined moment map

We need to prove (4.14) for µ defined in (4.60). Recall that µ(A) := FA ∧ ω̂n−1

(n−1)! and that we
identified µ∗ with µ. Moreover, it is crucial to use the closed Kähler 2-form from the cone, i.e.
ω̂ = e2tω̃ on the cylinder. We will work with the original connection components Yk defined
in (4.32).
For the left-hand-side we proceed as follows: Let φ ∈ ĝ0 and Ψ = Ψkθ

k −Ψ†kθ̄k be a tangent
vector at A. The duality pairing of Lie- and dual Lie-algebra is realised by the integration over
the cylinder and the subsequent invariant product on u(p).

(φ,Dµ|A)Ψ =
∫

Cyl(M2n+1)
tr
{
φ

d
dzFA+zΨ

∣∣
z=0

}
∧ ω̂

n

n! (A.3a)
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=
∫
R

dt e2nt tr
{
φ · i

[
d
dt(Ψn+1 + Ψ†n+1) + 2n(Ψn+1 + Ψ†n+1) (A.3b)

+ 2
n+1∑
k=1

([
Ψk, Y

†
k

]
+
[
Yk,Ψ†k

]) ]}
·
∫
M2n+1

vol .

Hence, for the dual moment map one can neglect the volume integral over M2n+1 and the dual
pairing is defined via the integral over t.

To compute the right-hand-side of (4.14) we need to take a step back and derive the symplectic
form on A from (4.9) as follows:

ω|A(Ψ,Ξ) = −
∫

Cyl(M2n+1)
tr (Ψ ∧ Ξ) ∧ ω̂

n

n! (A.4a)

= −2i
∫
R

dt e2nt tr
n+1∑
k=1

{
Ψ†kΞk −ΨkΞ†k

}
·
∫
M2n+1

vol . (A.4b)

Again, we can drop the volume of the Sasaki-Einstein space. Next, we need the infinitesimal
gauge transformation generated by an (framed) Lie-algebra element φ. From (4.45) we obtain

φ# = d
dzY

g=exp(zφ)
j

∣∣∣∣
z=0

=
{

[φ, Yj ] , j = 1, . . . , n
[φ, Yn+1]− 1

2
d
dtφ , j = n+ 1 ,

(A.5)

which then leads us to

ιφ#ω|A(Ψ) = −2i
∫
R

dt e2nt tr
{

n∑
k=1

{
[φ, Yk]†Ψk − [φ, Yk] Ψ†k

}
(A.6a)

+
(

[φ, Yn+1]− 1
2

d
dtφ

)†
Ψn+1 −

(
[φ, Yn+1]− 1

2
d
dtφ

)
Ψ†n+1

}

=
∫
R

dt e2nt tr
{
φ · i

[
d
dt(Ψn+1 + Ψ†n+1) + 2n(Ψn+1 + Ψ†n+1) (A.6b)

+ 2
n+1∑
k=1

([
Ψk, Y

†
k

]
+
[
Yk,Ψ†k

]) ]}
− i
∫
R

d
dt
{
e2nttrφ(Ψn+1 + Ψ†n+1)

}
.

A close inspection of the boundary term reveals that

∫
R

d
dt
{
e2nt tr

(
φ(Ψn+1 + Ψ†n+1)

)}
= e2nt tr

(
φ(Ψn+1 + Ψ†n+1)

) ∣∣∣∣∣
t→+∞

t→−∞

(A.7)

vanishes provided limt→±∞ φ(t) = 0, i.e. the map defined in (4.60) is a moment map for the
action of the framed gauge group Ĝ0 = {g(t)|g : R→ U(p), s.t. limt→±∞ g(t) = 1}.

A.3 Notation

We need to introduce some notation, which is relevant for the proofs later.

64



A.3 Notation

∂,∂̄-operators Following [40], we define the following ∂, ∂̄-operators on Cp-valued functions
f on R−:

dZf = 1
2

d
dsf + Zf , d̄Zf = 1

2
d
dsf −Z

†f , (A.8a)

djf = Yjf , d̄jf = −Y†j f , (A.8b)

and on matrix-valued functions γ on R−

dZγ = 1
2

d
dsγ + [Z, γ] , d̄Zγ = 1

2
d
dsγ −

[
Z†, γ

]
, (A.8c)

djγ = [Yj , γ] , d̄jγ = −
[
Y†j , γ

]
. (A.8d)

These operators will give rise to the ∂̄-operators associated to the connection A. For that we
take the covariant derivative dA = d + Γ̂P + Yjθ

j + Yj̄ θ̄
j and define ∂̄A = ∂̄ + (Γ̂P )(0,1) + Yj̄ θ̄

j .
Hence, the above definitions are understood as components of ∂̄A. However, our notation and
conventions differ slightly from [40] in the sense that we work with the equivalent ∂A-operator.
In detail, the cone direction s in [40] is considered as 0-th coordinate such that the canonical
complex structure is defined via the choice of (1, 0)-forms ds+ ie1 and e2 + ie3 ({ep, p = 1, 2, 3}
a co-frame on R3). In contrast, we designated the cone coordinate as e2n+2 and choose the
(1, 0)-forms as in (3.6) in order to avoid unnecessary factors of i. With respect to the canonical
choice e2j−1 + ie2j our complex structure is simply J = −Jcan, implying that we interchanged
(1, 0) and (0, 1)-forms. Consequently, we consider the ∂A-operator.

Gauge transformations For the ∂-operators the action of the complex automorphisms is
defined via

dgj := g ◦ dj ◦ g−1 and dgZ := g ◦ dZ ◦ g−1 . (A.9)

From these definitions, we obtain

g−1dgZg = dZ , g−1d̄gZg = d̄Z + h−1d̄Zh , (A.10a)
g−1dgjg = dj , g−1d̄gjg = d̄j + h−1d̄jh . (A.10b)

for h := g†g.

Complex equations For the complex equations it holds

[dj , dk] = 0 ⇔ [Yj ,Yk] = 0 , (A.11a)

[dZ ,dj ] = 0 ⇔ 1
2

d
dsYj = [Yj ,Z] , (A.11b)

where the right-hand-side is understood as acting on Cp- or matrix-valued functions. For the
integrability of ∂A, i.e. ∂2

A = 0, we need besides (A.11) also ∂2
Γ̂P

= 0 and (4.34) to hold.
Fortunately, Γ̂P is an HYM-instantons and, thus, defines an integrable ∂-operator. Moreover,
by construction we restricted to matrix-valued functions Yj and Z that satisfy the equivariance.
In summary, the complex equations are the integrability conditions for ∂A.
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Real equation Recall the definition (4.60) of the moment map µ(Y,Z). The expression is
identical to the action of the operator19

Υ(Y,Z) := 2

[d̄Z , dZ]+ λn(s)
n∑
j=1

[
d̄j ,dj

] (A.12)

in the usual sense. This operator behaves under complex gauge transformations as follows:

g−1 (Υ(Yg,Zg)) g = Υ(Y,Z)− 2

dZ(h−1d̄Zh) + λn(s)
n∑
j=1

dj(h−1d̄jh)

 . (A.13)

A.4 Adaptation of proofs

A.4.1 Differential inequality

Let {κi}i=1,...,p be the positive eigenvalues (still functions of s) of h on Iε. Define

Φ(h) := ln
(

max
i=1,...,p

κi

)
, (A.14)

which is well-defined. The claim is that the inequalities

d2

ds2 Φ(h) ≥ −2 (‖Υ(Y,Z)‖+ ‖Υ(Yg,Zg)‖) , (A.15a)

d2

ds2 Φ(h−1) ≥ −2 (‖Υ(Y,Z)‖+ ‖Υ(Yg,Zg)‖) (A.15b)

hold in a weak sense.
Proof: Following [40], it is sufficient to consider the case where all eigenvalues of h are distinct for each s.
Further, by a unitary gauge transformation one finds in each GL(p,C)/U(p)-equivalence class an element g
(which corresponds to a given h) such that

g = diag(et1 , . . . , etp) with t1(s) > t2(s) > . . . > tp(s) ∀s ∈ Iε . (A.16)

Hence, one obtains h = diag(e2t1 , . . . , e2tp) and h−1 = diag(e−2t1 , . . . , e−2tp) such that Φ(h) = 2t1 and Φ(h−1) =
−2tp. Next, we compute

d̄Zh = diag(e2tj d
ds tj)−

[
Z†, h

]
, (A.17a)

h−1d̄Zh = diag( d
ds tj) + Z† − h−1Z†h , (A.17b)

dZ(h−1d̄Zh) = diag
(

1
2

d2

ds2 tj

)
+
[
Z, diag( d

ds tj)
]

+ 1
2

d
ds
(
Z† − h−1Z†h

)
+
[
Z,Z† − h−1Z†h

]
. (A.17c)

Now, we consider the diagonal elements(
dZ(h−1d̄Zh)

)
(a,a)

= 1
2

d2

ds2 ta +
∑
b6=a

|Zab|2
{(

1− e2(ta−tb))− (1− e−2(ta−tb))} , (A.18)

where we used ([
Z, diag( d

ds tj)
])

(a,a)
= 0 and

(
Z† − h−1Z†h

)
(a,a)

= 0 . (A.19)

Similarly, one derives(
dj(h−1d̄jh)

)
(a,a)

=
∑
b 6=a

|(Yj)ab|2
{(

1− e2(ta−tb))− (1− e−2(ta−tb))} . (A.20)

19This object is analogous to F̂ of [40, Eq. (1.10)].
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Then, one proceeds by computing

(Υ(Y,Z)−Υ(Yg,Zg))(a,a) =
(
Υ(Y,Z)− g−1 (Υ(Yg,Zg)) g

)
(a,a)

(A.21)

= 2

(
dZ(h−1d̄Zh) + λn(s)

n∑
j=1

dj(h−1d̄jh)

)
(a,a)

= d2

ds2 ta + 2
∑
b 6=a

(
|Zab|2 + λn(s)

n∑
j=1

|(Yj)ab|2
){(

1− e2(ta−tb))− (1− e−2(ta−tb))} .
To get the estimate for Φ(h) = 2t1 we take a = 1 and use that

{(
1− e2(t1−tb))− (1− e−2(t1−tb))} < 0 as t1 > tb

for all b > 1. Then

d2

ds2 t1 ≥ − (Υ(Yg,Zg)−Υ(Y,Z))(1,1) ≥ −
(
|Υ(Yg,Zg)(1,1)|+ |Υ(Y,Z)(1,1)|

)
≥ − (‖Υ(Yg,Zg)‖+ ‖Υ(Y,Z)‖)

⇒ d2

ds2 Φ(h) ≥ −2 (‖Υ(Yg,Zg)‖+ ‖Υ(Y,Z)‖) . (A.22)

Similarly, the estimate for Φ(h−1) is obtained by taking a = p and
{(

1− e2(tp−tb))− (1− e−2(tp−tb))} > 0 for
all b < p. Hence, we obtain

(Υ(Y,Z)−Υ(Yg,Zg))(p,p) ≥
d2

ds2 tp ⇒ d2

ds2 Φ(h−1) ≥ −2 (‖Υ(Yg,Zg)‖+ ‖Υ(Y,Z)‖) . (A.23)

Thus, the claim (A.15) holds. �

A.4.2 Uniqueness

Suppose that (Y,Z) is a solution to the complex equations on Iε. Let us assume that we have
two complex gauge transformations g1 and g2 such that

(i) µ(Yg1 ,Zg1) = 0 and µ(Yg2 ,Zg2) = 0 in Iε

(ii) h1 = g†1g1 and h2 = g†2g2 satisfying h1|∂Iε = h2|∂Iε .

Then h1 = h2 in Iε.
Proof: We can suppose g2 = 1 such that h2 = 1 in Iε and ∂Iε. Hence, g ≡ g1 and h|∂Iε = 1. Since Υ(Y,Z) = 0
and Υ(Yg,Zg) = 0, we have

d2

ds2 Φ(h) = 2 d2

ds2 t1 ≥ 0 in Iε , t1|∂Iε = 0 and d2

ds2 Φ(h−1) = −2 d2

ds2 tp ≥ 0 in Iε , tp|∂Iε = 0 . (A.24)

By (weak) convexity, it follows t1 ≤ 0 in Iε and tp ≥ 0 in Iε, but we now arrive at 0 ≥ t1 > t2 > . . . > tp ≥ 0.
Hence, tj = 0 in Iε and h = 1 in Iε (modulo unitary transformations). �

A.4.3 Boundedness

Next, we need to show the boundedness of µ(Y,Z). The only critical term is λn(s), which
diverges for s → 0. However, it is straightforward to derive the pole structure of the gauge
transformed operator Υ to be

g−1 (Υ(Yg,Zg)) g
∣∣∣
pole

= Υ(Y,Z)
∣∣∣
pole
− 2λn

n∑
j=1

dj
(
h−1d̄jh

)

= 2λn
n∑
j=1

[
Yj , h−1Y†jh

]
s→0

.

(A.25)
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But recall that we will consider framed gauge transformation, i.e. h = 1 at the boundaries,
and Y(s = 0) are elements of a Cartan subalgebra. Hence, the potential pole vanishes for any
gauge transformation once the correct boundary conditions (4.50) are imposed. Thus, µ(Y,Z)
is bounded.

A.4.4 Limit ε→ 0
Finally, we need to show that the limit ε→ 0 exists, for which we follow [121,122]. Let (Y,Z) be
any solution of the complex equation, then for each ε > 0 there exists a unique complex gauge
transformation gε such that (Ygε ,Zgε) satisfies the real equation in Iε. Associate hε = g†εgε.
We start by constructing a solution (Ŷ, Ẑ) of the complex equations with the properties

(Ŷj , Ẑ)(s) =
{

(τj , 0) for s = −ε ,
(Tj , Tn+1) for −1

ε < s < −1 , (A.26)

where (Tj , Tn+1) correspond to the complex linear combinations of the Tµ of the boundary
condition (4.50), i.e. they lie in a Cartan subalgebra of su(n+ 1). The τj are arbitrary points
in the complex orbits O(Tj), because we know that the boundary values at s→ 0 are in gauge
orbits of the Tj .
The existence of such a solution follows from the local triviality of the complex equations.

Note that this solution is constant in (−1
ε ,−1) and µ(Ŷ, Ẑ) = 0 for −1

ε < s < −1.
The claim then is: Starting from (Ŷ, Ẑ) as above, for each ε > 0 there exists a unique gauge

transformation gε such that

(i) (Ŷgε , Ẑgε) satisfies the real equation everywhere in Iε,

(ii) (Ŷgε , Ẑgε) has the correct boundary conditions (4.50),

(iii) g = 1 at the boundaries and Ẑgε is Hermitian,

(iv) Φ(hε), Φ(h−1
ε ) are uniformly bounded.

Thus, by the existence of a uniform bound, one has the existence of a C∞ limit h∞ := limε→0 hε
such that g∞ :=

√
h∞ has all desired properties on the negative half-line.

Proof: The existence and the uniqueness of such a gε follows from the above. Using the differential inequali-
ties (A.15) and the boundedness of µ we arrive at

d2

ds2 Φ(hε) ≥
{
−2‖Υ(Ŷ, Ẑ)‖ ≥ −2C , for −1 < s < −ε ,

0 , for − 1
ε
< s < −1 . (A.27)

Moreover, since hε = 1 on ∂Iε, the eigenvalues have to vanish, which implies Φ(hε) = 0 = Φ(h−1
ε ) at ∂Iε. Consider

the bounded, continuous, non-negative function

fε(s) =
{
−C(s+ 1)(s+ ε) for −1 < s < −ε

0 for − 1
ε
< s < −1

with d2

ds2 fε =
{
−2C for −1 < s < −ε

0 for − 1
ε
< s < −1

(A.28)

in a weak sense. But then, we obtain

d2

ds2 (Φ(hε)− fε) ≥ 0 in Iε and Φ(hε)− fε = 0 at ∂Iε . (A.29)

By convexity, Φ(hε)− fε ≤ 0 in Iε, which then implies

Φ(hε) = 2t1 ≤
{
−C(s+ 1)(s+ ε) ≤ −Cs(s+ 1) , for −1 < s < −ε ,

0 , for − 1
ε
< s < −1 . (A.30)

68



A.4 Adaptation of proofs

Applying the very same reasoning to Φ(h−1
ε ), we obtain Φ(h−1)− fε ≤ 0 in Iε, and thus

−Φ(h−1
ε ) = 2tp ≥

{
Cs(s+ 1) , for −1 < s < −ε ,

0 , for − 1
ε
< s < −1 . (A.31)

In conclusion, the eigenvalues of hε are uniformly bounded as follows:

1
2f ≥ t1 > . . . > tp ≥ −

1
2f for f(s) =

{
−Cs(s+ 1) , for −1 < s < −ε ,

0 for − 1
ε
< s < −1 (A.32)

independently of ε.
Lastly, we need to show that the limit ε→ 0 yields a smooth function on compact subsets of (−∞, 0]. Recall

from [40, 121, 122] that the real equation is a dimensional reduction of an elliptic equation. For any compactly
contained open set U ⊂ (−∞, 0], we find an N ∈ N such that U ⊂ (−N,− 1

N
). By previous arguments hε is

smooth in Iε such that for all ε < 1
N

the function hε is smooth on (−N,− 1
N

) as well as uniformly bounded. By
ellipticity or following the steps in [40, Lem. 2.20], the n-th derivative of hε is bounded by the lower derivatives
(and possibly Υ). Thus, the sequence hε is not only uniformly bounded, but also all of its derivatives are uniformly
bounded on (−N,− 1

N
) for all ε < 1

N
. Hence, the limit function h∞ is smooth on all compactly contained subsets

of (−∞, 0], which coincides with the C∞ topology. �
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7 Introduction and motivation

Quiver gauge theories arise in two distinct scenarios. On the one hand, the world-volume theories
of a set of D-branes located at an orbifold singularity lead to gauge theories which differ from
the U(N) gauge theory, living on the world-volume of a stack on N D-branes, due to the action
of the orbifold group. First explored in [15], the full information of such (supersymmetric) gauge
theories is encoded in two objects: (i) the superpotential, and (ii) the quiver diagram. The
quiver diagram is a directed graph with a particular interpretation. Each node represents a
gauge group, determined by the number of branes stacked on top of each other, while the arrows
correspond to matter fields transforming in the bifundamental representation of the two gauge
nodes to which they are attached.
On the other hand, the procedure of equivariant dimensional reduction over Kähler product

manifolds of the form Md ×G/H (with H ⊂ G both compact), as introduced in [54], leads to
quiver bundles together with (non-abelian) vortices and Yang-Mills-Higgs theories, wherein all
information is again encoded in a quiver diagram. However, the arising quiver diagram has to
be interpreted differently. In particular, the form of the diagram is entirely determined by the
representation theory of G and H, such that nodes correspond to the irreducible representations
of H and arrows indicate morphisms between two such H-representations. The procedure of [54]
then introduces a representation of such graphs in the category of holomorphic vector bundles,
such that nodes correspond to holomorphic vector bundles equipped with connections, and
arrows are understood as bundle morphisms, also called Higgs fields. To be more precise, G is
a connected, simply connected, semi-simple complex Lie group and P is a parabolic subgroup,
such that G/P is a flag manifold, i.e. a Kähler space. Moreover, Md is a compact Kähler
manifold. In this particular set-up, one can introduce vortex equations as generalisations of the
Hermitian Yang-Mills equations and a notion of stability allows for a corresponding version of
the Hitchin-Kobayashi correspondence [55].
Such equivariant dimensional reductions are particularly interesting for compactifications in

string theory, as the dynamical degrees of freedom, i.e. the gauge fields and the Higgs fields,
vary only over Md, while the dependence on the internal space G/H is compensated by gauge
transformations due to the equivariant construction. Quiver gauge theories based on this con-
struction have been studied for the internal coset CP 1 in [53, 150–153], or CP 1 × CP 1 in [154]
and for Kähler cosets SU(3)/H in [155,156].
However, there are a couple of questions that need to be addressed. For instance, is there

a relation between the two appearances of quiver gauge theories? Or can the equivariant
dimensional reduction be generalised to non-Kähler cosets?

7.1 Finite subgroups of SL(2,C) versus SU(2)-equivariance
An attempt to answer these questions was first provided in [147], in which the Kähler-coset
G/H has been replaced by the 3-dimensional Sasaki-Einstein orbifold S3/Γ, wherein Γ is a
ADE subgroup of SL(2,C). The motivation behind can be summarised in two points: firstly,
by an extension of the construction of [54, 55] one can associate a new class of quiver gauge
theories to the Sasaki-Einstein orbifolds S3/Γ via SU(2)-equivariant reduction. Since the quiver
structure is solely determined by the representation theory of G and H, the resulting quiver
theories for a Sasaki-Einstein coset G/H have been dubbed Sasakian quiver gauge theories.
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7 Introduction and motivation

Secondly, it was hoped that the bridging property of Sasaki-Einstein spaces20 might clarify the
relation between the two different types of quiver gauge theories introduced before. In detail,
to any Kähler-Einstein manifold one can associate a U(1)-bundle whose total space is a Sasaki-
Einstein manifold, with the metric cone being Calabi-Yau. Here, the bridging is schematically
given by

CP 1 ∼=
SU(2)
U(1)

U(1)−−−−−→
bundle

S3/Γ metric−−−−→
cone

C(S3/Γ) ∼= C2/Γ . (7.1)

For each Kähler space, there are distinct quiver gauge theories of physical significance. Starting
with SU(2)-equivariant dimensional reduction on CP 1 (and orbifolds thereof), the resulting
quiver diagrams are of Dynkin type Ak+1, as studied in [150]. In contrast, considering the
ADE-orbifolds C2/Γ, there is a deep connection between various mathematical aspects and
string theory, which we briefly summarise now.

7.1.1 Du Val-Kleinian singularities

One aspect concerns the singularity resolution of Calabi-Yau orbifolds Cn/Γ, where Γ ⊂ SL(n,C)
is a finite subgroup. A resolution (X,π) of Cn/Γ is a non-singular complex manifold X of
dimension n together with a map π : X → Cn/Γ that induces a biholomorphism between open
dense sets. As it is desirable to obtain a resolution that preserves the Calabi-Yau condition,
i.e. triviality of the canoncial bundle, the resolution has to be crepant, which means that the
canoncial bundles are isomorphic KX

∼= π∗(KCn/Γ). The amount of information known about
such crepant resolutions thereby depends drastically on n.
For n = 2, the quotient singularities C2/Γ for finite subgroups Γ ⊂ SL(2,C) have been

classified by Klein [157] in 1884. The resulting five families are in correspondence with the Dynkin
diagrams of type A, D, and E. Hence, they are named ADE-singularities, but sometimes also
Kleinian or Du Val singularities. The resolutions thereof have been studied by Du Val [158–160].
As a result, for n = 2 a crepant resolution exists and is unique. The topology of the resolution
is thereby entirely determined by the finite group Γ.
Remarkably, for the crepant resolution π : X → C2/Γ, the exceptional divisor π−1(0) is the

dual of the Dynkin diagram21. In other words, the CP 1 blow-ups intersect in the fashion of
Dynkin diagrams for simply laced Lie algebras of type ADE.

7.1.2 McKay correspondence

Another reason for naming the finite subgroups of SL(2,C) as ADE is given by the McKay
correspondence, which is the bijection between the set of irreducible representations of Γ and the
set of vertices of an extended Dynkin diagram of type ADE. To begin with, we recall the generic
McKay quiver Q(Γ, VR), where VR is a representation of the finite group Γ. If (R0, R1, . . . , Rr)
denotes the set of irreducible representations of Γ with R0 the trivial representation, then one
associates the (r+1)×(r+1) adjacency matrix A = (aij) with i, j = 0, 1, . . . , r via the tensor
product decomposition Ri ⊗ VR = ⊕ri=0aijRj . The nodes of the McKay quiver are labelled by
the irreducible representations, while there are aij arrows from the i-th node to the j-th node.
In general, the matrix A is non-symmetric and the quiver graph has loops as long as the trivial
representation appears in the decomposition of VR. McKay [161] then observed that for the
self-dual 2-dimensional representation VR = C2, induced by the embedding Γ ⊂ SL(2,C), the
adjacency matrix satisfies A = 2 ·1− C̃, wherein C̃ is the Cartan matrix of the extended Dynkin
20Recall from the cone constructions of Ch. 3 that Sasaki-Einstein spaces are naturally sandwiched between

various Kähler and non-Kähler spaces in one dimension lower and higher.
21For a varietyM with isolated singularity s and resolutionX, the exceptional divisor is the pre-image π−1(s) ⊂ X

of the singularity under π : X →M .
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7.1 Finite subgroups of SL(2,C) versus SU(2)-equivariance

diagram associated to Γ. In this case, the McKay quiver Q(Γ,C2) is the Dynkin diagram of the
affine ADE Lie algebra itself.

7.1.3 Hyper-Kähler quotient

It was proven by Kronheimer [162,163] that the resolutions of C2/Γ are smooth hyper-Kähler
manifolds of real dimension four, by means of the ADHM construction understood as hyper-
Kähler quotient. In other words, the resolutions equal the moduli spaceMξ of translationally-
invariant HYM-instantons on the vector bundle C2 × VΓ → C2/Γ, with VΓ the regular represen-
tation of Γ.

7.1.4 D-brane probes

Pioniered by the work in [15] for (abelian) A-type singularities and completed by [164] for the
full ADE family, D-branes in type IIB at ALE-singularities probe the geometry. By saying
that, one has typically two aspects in mind. Firstly, the quiver diagram of the N = 2, d = 6
world-volume gauge theory on D-branes at the singularity of the ADE-orbifold C2/Γ is the ADE
McKay-quiver [164], i.e. the affine Dynkin diagram. Secondly, the space of classical vacua of
that quiver gauge theory, the vanishing locus of the D- and F-terms, is described by the ADHM
equations. Thus, the space of vacua is a hyper-Kähler space given by a hyper-Kähler quotient.
Moreover, the space of vacua is not any hyper-Kähler space — it is preciselyMξ. Therefore,
the classical vacua of D-branes placed at an ADE-singularity, with Fayet-Iliopoulos parameter
ξ, describe the resolutionMξ of the underlying ADE-orbifold.

resolution Mξ

ADE-orbifoldOO

��

CP 1 SU(2)−equiv.
dim. red.

//� _

U(1)
��

quiver bundle
on Md×CP 1

extension
��

class. SUSY vacua
D-branes at ADE-sing.OO

��

S3/Γ
SU(2)−equiv.

dim. red.
//

� _

cone
��

Sasakian quiver
on Md×S3/Γ

simplify to
Md=RMcKay quiver

for regular rep.

((

C(S3/Γ)
trans.-inv.
Γ−equiv.

HYMww

•

SU(2)−equiv. HYM
��

ADHM-type nn
relations?

11 Nahm-type

Figure 7.1: The set-up of [147]: The aim is to compare two different HYM-instanton moduli
spaces over C(S3/Γ) ∼= C2/Γ.

7.1.5 Comparison

In order to contrast the McKay quivers with the quiver bundles obtained for CP 1, the Sasakian
quiver gauge theory on S3/Γ is taken as intermediate step, see Fig. 7.1. The corresponding quiver
graphs are extensions of those for CP 1 by vertex edge loops due to the horizontal components
in the U(1)-fibration S3 → CP 1. Next, considering SU(2)-equivariant HYM-instantons on the
cone C(S3/Γ) allows to study quiver gauge theories whose structure is determined by S3/Γ due
to the equivariance, but one introduces an additional dependence on the cone coordinate. The

79



7 Introduction and motivation

resulting instanton equations are of Nahm-type, in contrast to the ADHM-type equations for
constant matrices from above.

As shown in [147] the comparison of the moduli spaces reveals surprising similarities although
both stem from fundamentally different set-ups. For particular choices of boundary conditions,
both moduli spaces are Kleinian singularities. Hence, both spaces have the same singularity
structure. Nevertheless, the moduli space of SU(2)-equivariant instantons is always of A-type
despite the orbifold group Γ ranging through all ADE possibilities.

7.2 Finite subgroups of SL(3,C) versus SU(3)-equivariance

As a next step, one can continue the comparison of these different instanton moduli spaces in
one (complex) dimension higher, which will be the content of this second part. By the very
same reasoning, we now consider the following Kähler and Sasaki-Einstein spaces

CP 2 ∼=
SU(3)

S(U(1)×U(2))
U(1)−−−−−→

bundle
S5/Zq+1

metric−−−−→
cone

C(S5/Zq+1) ∼= C3/Zq+1 . (7.2)

The considerations of the SU(3)-equivariant dimensional reduction and the quiver bundle over
CP 2 have been performed in [155]. We now aim for two tasks: (i) construction of new Sasakian
quiver gauge theories associated with the coset S5=SU(3)/SU(2), and (ii) comparison of the
translationally invariant and Zq+1-equivariant HYM-instantons on the Calabi-Yau 3-orbifold
C3/Zq+1 with the SU(3)-equivariant HYM-instantons on the cone C(S5/Zq+1). The overall
picture is sketched in Fig. 7.2.
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Figure 7.2: The set-up for this part of the thesis: The aim is to compare two different
HYM-instanton moduli spaces over C(S5/Zq+1) ∼= C3/Zq+1.

Again, the two appearing instanton moduli spaces have different physical realisations. Equiv-
ariant instantons appear frequently in heterotic compactifications on the warped products over
manifolds with G-structure, see Part I. The moduli space Mξ of translationally-invariant in-
stantons appears in special circumstances as vacua of world volume theories of D-branes at
C3/Zq+1. Moreover, the same moduli space describes partial resolutionsMξ → C3/Zq+1 of the
CY-orbifold. Let us briefly recall the details.
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7.3 Outline

7.2.1 Orbifold resolutions

The finite subgroups of SL(3,C) have been classified by Blichfeldt [165] in 1917, and were found
to constitute ten families. For the n = 3 case, a crepant resolution for Cn/Γ exists, but is not
unique. It has been shown that all crepant resolutions of C3/Γ have Euler and Betti numbers
given by the stringy (or DHVW) Euler and Betti numbers conjectured in [19, 20]. As proven
in [166], the (partial) resolutionMξ of C3/Γ equals the moduli space of translationally-invariant
and Γ-equivariant HYM-instantons on the trivial bundle C3 × VR → C3, where VR is again the
regular representation of Γ. On a different account [167], the same moduli spaceMξ is identified
with a representation moduli of the McKay quiver.

7.2.2 D-brane probes

In type II string theory [168,169], it was found that the Higgs branch of the world-volume theory
on D-branes at singularities of C3/Γ equals the resolved space Mξ, where ξ are the physical
FI-parameters. Thus, the vacuum moduli space emerges as Kähler quotient with moment maps
determined by the FI-parameters. As before, the D-branes probe the geometry, which is now
Kähler rather than hyper-Kähler.
However, as we will see later, the comparison of the two constructed quiver gauge theories

on C(S5/Γ) to the McKay quiver and the resolutions of the orbifold singularity is not quite
appropriate; nevertheless, it is a intriguing phenomenon and severs us as motivation.

7.3 Outline

The remainder of this second part is organised as follows: In Ch. 8 we give a detailed account
of the geometry of the orbifold S5/Zq+1 employing its realisation as both a coset space and
as a Sasaki-Einstein manifold. In Ch. 9 we provide a detailed description of the quiver gauge
theory induced via SU(3)-equivariant dimensional reduction over S5/Zq+1, including explicit
constructions of the quiver bundles and their connections as well as the form of the action
functional. We then describe the Higgs branch vacuum states of quiver gauge theories on the
cone C(S5/Zq+1) as SU(3)-equivariant solutions to the Hermitian Yang-Mills equations in Ch. 10
and as translationally-invariant solutions in Ch. 11. In Ch. 12 we compare the two quiver gauge
theories in some detail, including a contrasting of their quiver bundles and explicit constructions
of their instanton moduli spaces as Kähler quotients. Four appendices at the end of this Part II
contain technical details and results which are employed in the main text.
The contents of this part stem from a collaboration [149] with O. Lechtenfeld, A.D. Popov,

and R.J. Szabo.
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8 Sasaki-Einstein 5-sphere and orbifolds
thereof

In this chapter we introduce the basic geometrical constructions that we shall need throughout
this part of the thesis. Sasaki-Einstein manifolds have been introduced in Sec. 3.1 and we
continue to employ the definitions provided there.
Given a Riemannian manifold Md and a finite group Γ acting isometrically on Md, one can,

loosely speaking, define the Riemannian space of Γ-orbits Md/Γ, which is called an orbifold
or sometimes V-manifold, see for instance [120]. The notion of fibre bundle can be adapted
to the category of orbifolds, and we follow [120] in calling them V-bundles. Any quasi-regular
Sasaki-Einstein manifold M2n+1 is a principal U(1) V-bundle over its transverse space M2n.

8.1 Sphere S5

The 5-dimensional sphere S5 has two realisations: Firstly, as the coset space S5 = SU(3)/SU(2)
and, secondly, as a principal U(1)-bundle over the complex projective plane CP 2. As such, we
have the chain of principal bundles

SU(3) SU(2)−−−→ S5 U(1)−−−→ CP 2 . (8.1)

Our description of S5 will be based on the principal U(1)-bundle over CP 2, and we will construct
a flat connection on the principal SU(2)-bundle over S5 by employing this feature.

8.1.1 Connections on CP 2

Let us consider a local section U over a patch U0 of CP 2 for the principal bundle SU(3)→ CP 2.
For this, let G = SU(3) and H = S(U(2)×U(1)) ⊂ G, and consider the principal bundle
associated to the coset G/H given by

G = SU(3) H=S(U(2)×U(1))−−−−−−−−−−−→ G/H ∼= CP 2 . (8.2)

By the definition of the complex projective plane

CP 2 = C3 / ∼ =
{

[z1 : z2 : z3] ∈ C3 ∣∣ [z1 : z2 : z3] ∼ [λ z1 : λ z2 : λ z3] , λ ∈ C∗
}
, (8.3)

one introduces on the patch U0 = {[z1 : z2 : z3] ∈ CP 2 | z3 6= 0} the coordinates

Y :=
(
y1

y2

)
∼
(
z1/z3

z2/z3

)
. (8.4)
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8 Sasaki-Einstein 5-sphere and orbifolds thereof

Define a local section on U0 of the principal bundle (8.2) via [155]

U : U0 −→ SU(3)

Y 7−→ U(Y ) := 1
γ

(
Λ̄ Ȳ

−Ȳ † 1

)
,

(8.5)

with the definitions

Λ̄ := γ 12 −
1

γ + 1 Ȳ Ȳ
† and γ :=

√
1 + Y † Y . (8.6)

From these two definitions, one observes the properties

Λ̄† = Λ̄ , Λ̄2 = γ2 12 − Ȳ Ȳ † , Λ̄Ȳ = Ȳ and Ȳ †Λ̄ = Ȳ † . (8.7)

It is immediate from (8.7) that U as defined in (8.5) is SU(3)-valued. One can define a flat
connection A0 on the bundle (8.2) via

A0 = U † dU ≡
(

B β̄
−β> −a

)
, (8.8)

with the definitions

B := 1
γ2

(
Λ̄ dΛ̄ + Ȳ dȲ † − 1

2 12 d
(
Y † Y

))
, (8.9a)

β̄ := 1
γ2 Λ̄ dȲ and β> := 1

γ2 dȲ † Λ̄ , (8.9b)

a := − 1
2γ2

(
Ȳ † dȲ − dȲ † Ȳ

)
= −ā . (8.9c)

The fact that U|(Y,Ȳ ) ∈ SU(3) directly implies the vanishing of the curvature 2-form F0, which
is equivalent to the set of relations

dB +B ∧B = β̄ ∧ β> and da = −β> ∧ β̄ = β† ∧ β , (8.10a)

dβ̄ +B ∧ β̄ = β̄ ∧ a and dβ> + β> ∧B = a ∧ β> . (8.10b)

As elaborated in [155, 156], B can be regarded as a u(2)-valued connection 1-form and a as a
u(1)-valued connection. Consequently, one can introduce an su(2)-valued connection B(1) by
removing the trace of B. An explicit parametrisation yields

B(1) := B − 1
2 tr(B)12 ≡

(
B11 B̄12
−B12 −B11

)
with tr(B) = a , B11 = −B̄11 . (8.11)

The geometry of CP 2 including the properties of the SU(3)-equivariant 1-forms βi, the instanton
connection B(1) and the monopole connection a are described in App. B.1.

8.1.2 Connections on S5

Consider now the principal SU(2)-bundle

G = SU(3) K=SU(2)−−−−−−→ G/K = S5 , (8.12)
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8.1 Sphere S5

where K ⊂ G. Then the section U from (8.5) can be modified as

Û : U0 × [0, 2π) −→ SU(3)

(Y, ϕ) 7−→ Û(Y, ϕ) := U(Y )
(

e iϕ 12 0
0 e−2 iϕ

)
≡ U(Y )Z(ϕ) ,

(8.13)

which is a local section of the bundle (8.12) on the patch U0× [0, 2π) with coordinates {y1, y2, ϕ}.
Note that Z−1 = Z† = Z̄ and det(Z) = 1, and furthermore Z(ϕ)Z(ψ) = Z(ψ)Z(ϕ) = Z(ψ+ϕ),
which implies that Z realises the embedding U(1) ↪→ SU(3). As a consequence, we know
that Û|(Y,Ȳ ,ϕ) ∈ SU(3) holds. The modified (flat) connection Â on the bundle (8.12) and the
corresponding curvature F̂ are given as

Â := Û † dÛ = Ad(Z−1)A0 + Z† dZ =
(
B + i12 dϕ β̄ e−3 iϕ

−β> e 3 iϕ −(a+ 2 i dϕ)

)
, (8.14a)

F̂ := dÂ+ Â ∧ Â = Ad(Z−1)F0

=

 dB +B ∧B − β̄ ∧ β>
(
dβ̄ +B ∧ β̄ − β̄ ∧ a

)
e−3 iϕ

−
(
dβ> + β> ∧B − a ∧ β>

)
e 3 iϕ −da− β> ∧ β̄

 = 0 . (8.14b)

Again the flatness of Â yields the same set of identities (8.10), because F̂ differs from F only
by the adjoint action of Z−1.

8.1.3 Contact geometry of S5

By construction, the base space of (8.12) is a 5-sphere. Now, the aim is to choose a basis of the
cotangent bundle T ∗S5 over the patch U0 × [0, 2π) such that one recovers the Sasaki-Einstein
structure on S5. For this, we start with the identifications

β1
ϕ := β1 e 3 iϕ ≡ e1 + i e2 , β2

ϕ := β2 e 3 iϕ ≡ e3 + i e4 and κ e5 := 1
2 a+ i dϕ , (8.15)

where κ ∈ C is a constant to be determined. The 1-forms βi originate from the complex
cotangent space T ∗(Y,Ȳ )CP

2 at a point (Y, Ȳ ) ∈ U0 ⊂ CP 2. Next, we define the forms

ω1 := e14 + e23 , ω2 := e31 + e24 , ω3 := e12 + e34 and η := e5 . (8.16)

In the basis (8.15), one obtains

ω1 = 1
2 i

(
β1
ϕ ∧ β2

ϕ − β̄1
ϕ ∧ β̄2

ϕ

)
, ω2 = −1

2

(
β1
ϕ ∧ β2

ϕ + β̄1
ϕ ∧ β̄2

ϕ

)
and ω3 = − 1

2 i

(
β1
ϕ ∧ β̄1

ϕ + β2
ϕ ∧ β̄2

ϕ

)
.

(8.17)

Note that ω3 coincides (up to a normalisation factor) with the Kähler form on CP 2, cf. App. B.1.
The exterior derivatives of βiϕ and β̄iϕ are given as follows

dβiϕ = e 3 iϕ dβi − 3 iβiϕ ∧ dϕ and dβ̄iϕ = e−3 iϕ dβ̄i + 3 i β̄iϕ ∧ dϕ . (8.18)

The distinguished 1-form η is taken to be the contact 1-form dual to the Reeb vector field of the
Sasaki-Einstein structure, cf. Sec. 3.1. At this stage, the choice of the quadruple (η, ω1, ω2, ω3)
defines an SU(2)-structure on the 5-sphere, recall Sec. 3.3. For it to be Sasaki-Einstein, one
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8 Sasaki-Einstein 5-sphere and orbifolds thereof

needs the relations

dω1 = 3η ∧ ω2 , dω2 = −3η ∧ ω1 and dη = −2ω3 (8.19)

to hold, following (3.11). Employing (8.10) one arrives at

dω1 = 6 iκ η ∧ ω2 and dω2 = −6 iκ η ∧ ω1 , (8.20a)

dη = i
κ ω3 and dω3 = 0 . (8.20b)

Consequently, the coframe {η, β1
ϕ, β

2
ϕ} yields a Sasaki-Einstein structure on S5 if and only if

κ = − i
2 , and from now on this will be the case.

8.2 Orbifold S5/Zq+1

Next, our aim is to construct a principal V-bundle over the orbifold S5/Zq+1 by the following
steps: Take the principal SU(2)-bundle π : G = SU(3) → SU(3)/SU(2) ∼= S5, which is SU(2)-
equivariant. Embed Zq+1 ↪→ U(1) ⊂ SU(3) such that U(1) commutes with SU(2) ⊂ SU(3),
and define a Zq+1-action γ on S5. The action γ : Zq+1 × S5 → S5 can be lifted to an action
γ̃ : Zq+1 ×G→ G with an isomorphism on the SU(2) fibres induced by this action. The crucial
point is that the fibre isomorphism is trivial as SU(2) commutes with Zq+1 by construction.
Hence, one can consider the Zq+1-projection of G to the principal SU(2) V-bundle G̃, which is
schematically given as

G γ̃ //

π
��

G̃

π̃
��

S5
γ
// S5/Zq+1

(8.21)

With an abuse of notation, we will denote the V-bundles obtained via Zq+1-projection by the
same symbols as the fibre bundles they originate from; only Zq+1-equivariant field configurations
survive this orbifold projection.
A section Ũ of the principal V-bundle (8.21) is obtained by a (further) modification of the

section (8.5) as

Ũ : U0 ×
[
0, 2π

q+1
)
−→ SU(3)

(
Y, ϕ

q+1
)
7−→ Ũ

(
Y, ϕ

q+1
)

:= U(Y )

 e
iϕ
q+1 12 0

0 e−2 iϕ
q+1

 ≡ U(Y )Zq+1(ϕ) .
(8.22)

Here ϕ ∈ [0, 2π) is again the local coordinate on the S1-fibration S5 U(1)−−−→ CP 2; hence, it holds
e

iϕ
q+1 ∈ S1/Zq+1. Analogously to the q = 0 case of S5 above, one can prove that Zq+1 realises

the embedding S1/Zq+1 ↪→ U(1) ⊂ SU(3), and Ũ|(Y,Ȳ ,ϕ/(q+1)) ∈ SU(3). As before, one computes
the connection 1-form Ã and the curvature F̃ of the flat connection on the V-bundle (8.21).
This yields

Ã := Ũ † dŨ = Ad(Z−1
q+1)A0 + Z†q+1 dZq+1 =

B + 12
i dϕ
q+1 β̄ e−3 iϕ

q+1

−β> e 3 iϕ
q+1 −

(
a+ 2 i dϕ

q+1
)
 , (8.23a)

F̃ := dÃ+ Ã ∧ Ã = Ad(Z−1
q+1)F0
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8.2 Orbifold S5/Zq+1

=

 dB +B ∧B − β̄ ∧ β>
(
dβ̄ +B ∧ β̄ − β̄ ∧ a

)
e−3 iϕ

q+1

−
(
dβ> + β> ∧B − a ∧ β>

)
e 3 iϕ

q+1 −da− β> ∧ β̄

 = 0 . (8.23b)

Again, the flatness of the connection Ã yields the very same relations (8.10).

8.2.1 Local coordinates

Our description of the orbifold S5/Zq+1 follows the treatment of the 3-sphere orbifolds S3/Γ
of [147]. The key idea is the embedding S5 = SU(3)/SU(2) ↪→ R6 ∼= C3 via the relation

r2 = δµ̂ν̂ x
µ̂ xν̂ = |z1|2 + |z2|2 + |z3|2 (8.24)

where xµ̂ (µ̂ = 1, . . . , 6) are coordinates of R6 and zα (α = 1, 2, 3) are coordinates of C3; here
r ∈ R>0 gives the radius of the embedded 5-sphere. In general, on the coordinates zα the
Zq+1-action is realised linearly by a representation h 7→ (hαβ) such that

zα 7−→ hαβ z
β and z̄α 7−→ h̄αβ z̄

β = (h−1)αβ z̄β , (8.25)

where h is the generator of the cyclic group Zq+1. In this thesis the action of the finite group Zq+1
is chosen to be realised by the embedding of Zq+1 in the fundamental 3-dimensional complex
representation C1,0 of SU(3) given by

(hαβ) =

ζq+1 0 0
0 ζq+1 0
0 0 ζ−2

q+1

 ∈ SU(3) with ζ lq+1 := e
2π i
q+1 l . (8.26)

Since CP 2 is naturally defined via a quotient of C3, see (8.3), one can deduce the Zq+1-action
on the local coordinates (y1, y2) of the patch U0 to be

yα 7−→ ζq+1 z
α

ζ−2
q+1 z

3 = ζ3
q+1 y

α and ȳα 7−→
ζ−1
q+1 z̄

α

ζ2
q+1 z̄

3 = ζ−3
q+1 ȳ

α for α = 1, 2 . (8.27)

Next, we consider the action of Zq+1 on the S1 coordinate ϕ. By (8.26) one naturally has

e i ϕ
q+1

Zq+1−−−→ e i ( ϕ
q+1 + 2π l

q+1 ) = e i ϕ
q+1 ζ lq+1 for l ∈ {0, 1, . . . , q} , (8.28)

i.e. the transformed coordinate e i ( ϕ
q+1 + 2π l

q+1 ) lies in the Zq+1-orbit
[
e i ϕ

q+1
]
of e i ϕ

q+1 .

8.2.2 Lens spaces

The spaces S5/Zq+1 are known as lens spaces, see for instance [120]. For this, one usually embeds
S5 into C3 and chooses the action of p ∈ {0, 1, . . . , q} as

Zq+1 × C3 −→ C3(
p , (z1, z2, z3)

)
7−→ p ·

(
z1, z2, z3) :=

(
e

2π i p
q+1 z1, e

2π i p
q+1 r1 z2, e

2π i p
q+1 r2 z3) , (8.29)

where the integers r1 and r2 are chosen to be coprime to q+1. The coprime condition is necessary
for the Zq+1-action to be free away from the origin of C3. The quotient space S5/Zq+1 with the
action (8.29) is called the lens space L(q + 1, r1, r2) or L2(q + 1, r1, r2). It is a 5-dimensional
orbifold with fundamental group Zq+1.
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8 Sasaki-Einstein 5-sphere and orbifolds thereof

We choose the Zq+1-action to be given by (8.26), i.e. r1 = 1 and r2 = −2. Then r1 is always
coprime to q + 1, but r2 is coprime to q + 1 only if q is even. Thus for q + 1 ∈ 2N + 1 the only
singular point in C3/Zq+1 is the origin, and its isotropy group is Zq+1. However, for q + 1 ∈ 2N
there is a singularity at the origin and also along the circle {z1 = z2 = 0 , |z3| = 1} ⊂ S5 of
singularities with isotropy group

{
0, q+1

2
} ∼= Z2 ⊂ Zq+1. Hence for the chosen action (8.26) we

are forced to take q ∈ 2N in all considerations.

8.2.3 Differential forms

Similarly to the previous case, one can construct locally a basis of differential forms. However,
one has to work with a uniformising system of local charts on the orbifold S5/Zq+1 instead of
local charts for the manifold S5, cf. [120]. Choosing the identifications

β1
q+1 := β1 e

3 iϕ
q+1 ≡ e1 + i e2 , β2

q+1 := β2 e
3 iϕ
q+1 ≡ e3 + i e4 and η := e5 ≡ i a− 2 dϕ

q+1 , (8.30)

and by means of the relations imposed by the flatness of (8.23a), one can study the geometry
of S5/Zq+1. Defining the three 2-forms

ω1 := 1
2 i

(
β1
q+1 ∧ β2

q+1 − β̄1
q+1 ∧ β̄2

q+1

)
, ω2 := −1

2

(
β1
q+1 ∧ β2

q+1 + β̄1
q+1 ∧ β̄2

q+1

)
and ω3 := − 1

2 i

(
β1
q+1 ∧ β̄1

q+1 + β2
q+1 ∧ β̄2

q+1

) (8.31)

and employing (8.10) implied by the flatness of Ã, one obtains the correct Sasaki-Einstein
relations (8.19).

8.2.4 Zq+1-action on 1-forms

Consider the Zq+1-action on the forms βiq+1, β̄iq+1, and η. Firstly, recall the definitions (8.30)
and (B.1), from which one sees that

βiq+1
Zq+1−−−→ ζ3

q+1 β
i
q+1 and β̄iq+1

Zq+1−−−→ ζ−3
q+1 β̄

i
q+1 . (8.32)

This follows directly from the transformation (8.27). Moreover, it agrees with the monodromy
of βiq+1 and β̄iq+1 along the S1 fibres, i.e.

βiq+1 = βi e 3 iϕ
q+1

ϕ7→ϕ+2π−−−−−−→ βiq+1 ζ
3
q+1 . (8.33)

Secondly, for the 1-form η from (8.30) we know that a is a U(1) connection. As any U(1)
connection is automatically U(1)-invariant, due to the embedding Zq+1 ↪→ U(1) one also has
Zq+1-invariance22 of a. We conclude that

η
Zq+1−−−→ η . (8.34)

From the definition (8.24) of the radial coordinate, one observes that r is invariant under
Zq+1. The same is true for the corresponding 1-form, so that

dr Zq+1−−−→ dr . (8.35)

Following [147], let T be a Zq+1-invariant 1-form on the metric cone C(S5/Zq+1) which is locally

22Alternatively, one can work out the transformation behaviour of a directly from the explicit expression (8.9c).
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expressed as
T = Tµ e

µ + Tr dr ≡Wi β
i
q+1 +W i β̄

i
q+1 +W5 e

5 +Wr dr (8.36)

with i = 1, 2 and µ = 1, . . . , 5, where W1 = 1
2 (T1 − iT2), W2 = 1

2 (T3 − iT4), W5 = T5 and
Wr = Tr. This induces a representation π of Zq+1 in Ω1(C(S5)

)
as

Wi 7−→ π(h)(Wi) = ζ−3
q+1Wi , W i 7−→ π(h)(W i) = ζ3

q+1W i , (8.37a)

W5 7−→ π(h)(W5) = W5 , Wr 7−→ π(h)(Wr) = Wr . (8.37b)

This completes the discussion of the orbifold group action on all relevant geometric objects.
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9 Quiver gauge theory

In this chapter we construct quiver bundles over a d-dimensional Riemannian manifold Md

via equivariant dimensional reduction over Md×S5/Zq+1, and derive the generic form of a
G-equivariant connection. For this, we recall some aspects from the representation theory of
G = SU(3), and exemplify the relation between quiver representations and homogeneous bundles
over S5/Zq+1. Then we extend our constructions to G-equivariant bundles over Md×S5/Zq+1,
which will furnish a quiver representation in the category of vector bundles instead of vector
spaces. We shall also derive the dimensional reduction of the pure Yang-Mills action onMd×S5

to obtain a Yang-Mills-Higgs theory onMd from our twisted reduction procedure (for the special
case q = 0).

9.1 Preliminaries

To begin with, we recall the necessary facts from Lie algebra and representation theory for
SU(3) and a suitably chosen subgroup SU(2).

9.1.1 Cartan-Weyl basis of su(3)

Our considerations are based on certain irreducible representations of the Lie group G = SU(3),
which are decomposed into irreducible representations of the subgroup H=SU(2)×U(1) ⊂ SU(3).
For this, we recall the root decomposition of the Lie algebra su(3). There is a pair of simple roots
α1 and α2, and the non-null roots are given by ±α1, ±α2, and ± (α1 + α2). The Lie algebra
su(3) is 8-dimensional and has a 2-dimensional Cartan subalgebra spanned by Hα1 and Hα2 .
We distinguish one su(2) subalgebra, which is spanned by Hα1 and E±α1 with the commutation
relations

[Hα1 , E±α1 ] = ± 2E±α1 and [Eα1 , E−α1 ] = Hα1 . (9.1a)

The element Hα2 generates a u(1) subalgebra that commutes with this su(2) subalgebra, i.e.

[Hα2 , Hα1 ] = 0 and [Hα2 , E±α1 ] = 0 . (9.1b)

In the Cartan-Weyl basis, the remaining generators E±α2 and E± (α1+α2) satisfy the following
non-vanishing commutation relations with the su(2) generators

[Hα1 , E±α2 ] = ∓E±α2 and [E±α1 , E±α2 ] = ±E± (α1+α2) , (9.1c)[
Hα1 , E± (α1+α2)

]
= ±E± (α1+α2) and

[
E±α1 , E∓ (α1+α2)

]
= ∓E∓α2 , (9.1d)

with the u(1) generator

[Hα2 , E±α2 ] = ± 3E±α2 and
[
Hα2 , E± (α1+α2)

]
= ± 3E± (α1+α2) , (9.1e)

and amongst each other

[Eα2 , E−α2 ] = 1
2 (Hα2 −Hα1) and [Eα1+α2 , E−α1−α2 ] = 1

2 (Hα1 +Hα2) , (9.1f)
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[
E±α2 , E∓ (α1+α2)

]
= ±E∓α1 . (9.1g)

9.1.2 Skew-Hermitian basis of sl(3,C)

Equivalently, we introduce the complex basis given by

I1 := Eα1+α2 − E−α1−α2 , I2 := −i (Eα1+α2 + E−α1−α2) , (9.2a)

I3 := Eα2 − E−α2 , I4 := −i (Eα2 + E−α2) , (9.2b)

I5 := − i
2 Hα2 , (9.2c)

I6 := Eα1 − E−α1 , I7 := −i (Eα1 + E−α1) , (9.2d)

I8 := iHα1 , (9.2e)

which reflects the splitting su(3) = su(2)⊕m in which

Ii ∈ su(2) for i = 6, 7, 8 and Iµ ∈ m for µ = 1, . . . , 5 . (9.3)

This representation of generators is skew-Hermitian, i.e. Iµ = −I†µ for µ = 1, . . . , 5 and Ii = −I†i
for i = 6, 7, 8, in contrast to the Cartan-Weyl basis. The chosen Cartan subalgebra is spanned by
I5 and I8, and [I5, Ii] = 0. From the commutation relations (9.1) one can infer the non-vanishing
structure constants of these generators as

f 8
67 = −2 plus cyclic , (9.4a)

f 1
63 = f 2

64 = f 4
71 = f 2

73 = f 1
82 = f 4

83 = 1 plus cyclic , (9.4b)

f 5
12 = f 5

34 = 2 , (9.4c)

f 1
25 = −f 2

15 = f 3
45 = −f 4

35 = 3
2 . (9.4d)

The Killing form KAB := f D
AC f C

DB (with A,B, . . . = 1, . . . , 8) associated to this basis is
diagonal, but not proportional to the identity, and is given by

Kab = 12 δab for a, b = 1, 2, 3, 4 , K55 = 9 and
Kij = 12 δij for i, j = 6, 7, 8 .

(9.5)

Introducing the ’t Hooft tensors ηαab for a, b = 1, 2, 3, 4 and α = 1, 2, 3 one has

f 5
ab = 2 η3

ab and f b
a5 = −3

2 η
3
ab . (9.6)

Comparing this to (5.15), one notices that the sign difference η = ±e5 of (8.16) and (3.9)
translates into different signs for the structure constants.

9.1.3 Biedenharn basis

The irreducible SU(3)-representations Ck,l are labelled by a pair of non-negative integers (k, l)
and have (complex) dimension

p0 := dim
(
Ck,l

)
= 1

2 (k + l + 2) (k + 1) (l + 1) . (9.7)

We decompose Ck,l with respect to the subgroup H = SU(2) × U(1) ⊂ G, just as in [155]. A
particularly convenient choice of basis for the vector space Ck,l is the Biedenharn basis [170–172],
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which is defined to be the eigenvector basis given by

Hα1

∣∣∣∣∣nq m
〉

= q

∣∣∣∣∣nq m
〉
, L2

∣∣∣∣∣nq m
〉

= n (n+ 2)
∣∣∣∣∣nq m

〉
and Hα2

∣∣∣∣∣nq m
〉

= m

∣∣∣∣∣nq m
〉
, (9.8)

where L2 := 2 (Eα1 E−α1 + E−α1 Eα1) + H2
α1 is the isospin operator of su(2). Define the

representation space (n,m) as the eigenspace with definite isospin n ∈ Z≥0 and magnetic
monopole charge m

2 for m ∈ Z. Then the SU(3)-representation Ck,l decomposes into irreducible
SU(2)×U(1)-representations (n,m) as

Ck,l =
⊕

(n,m)∈Q0(k,l)
(n,m) , (9.9)

where Q0(k, l) parametrises the set of all occurring representations (n,m). In App. B.2.1 we
summarise the matrix elements of all generators in the Biedenharn basis.

9.1.4 Representations of Zq+1

As the cyclic group Zq+1 is abelian, each of its irreducible representations is 1-dimensional.
There are exactly q + 1 inequivalent irreducible unitary representations ρl given by

ρl :
Zq+1 −→ S1 ⊂ C∗

p 7−→ e
2π i (p+l)
q+1

for l = 0, 1, . . . , q . (9.10)

9.2 Homogeneous bundles and quiver representations

Consider the groups G = SU(3), H = SU(2)×U(1) , K = SU(2), K̃ = SU(2)× Zq+1 ⊂ H and a
finite-dimensional K-representation R which descends from a G-representation. Associate to the
principal bundle (8.12) the K-equivariant vector bundle VR := G×K R. Due to the embedding
Zq+1 ↪→ U(1) ⊂ SU(3) and the origin of R from a G-representation, it follows that R is also
a Zq+1-representation. Consequently, as in Sec. 8.2, the Zq+1-action γ : Zq+1 × S5 → S5 can
be lifted to a Zq+1-action γ̃ : Zq+1 × VR → VR, wherein the linear Zq+1-action on the fibres is
trivial. Thus, one can define the corresponding K̃-equivariant vector V-bundle ṼR by suitable
Zq+1-projection as23

VR
γ̃ //

π

��

ṼR

π̃
��

S5
γ
// S5/Zq+1

(9.11)

and again we denote the vector V-bundle ṼR by the same symbol VR whenever the context is
clear.
According to [54], the category of such homogeneous vector bundles VR is equivalent to

the category of finite-dimensional representations of certain quivers with relations. We use
this equivalence to associate quivers to homogeneous bundles related to an irreducible SU(3)-
representation R = Ck,l, which is evidently a finite-dimensional (and usually reducible) repre-
sentation of SU(2)× Zq+1 ↪→ SU(2)×U(1).

23See also the treatment in [147].
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9.2.1 Flat connections

Inspired by the structure of the flat connection (8.23a) on the V-bundle (8.21), one observes
that it can be written as24

A0 =
[
B11Hα1 +B12Eα1 − (B12Eα1)†

]
− i

2 η Hα2 + β̄1
q+1Eα1+α2 + β̄2

q+1Eα2

− β1
q+1E−α1−α2 − β2

q+1E−α2 ,
(9.12a)

or equivalently
A0 = Γ + Iµ e

µ (9.12b)

with the coframe {eµ}µ=1,...,5 defined in (8.30) and the definition

Γ := Γi Ii with Γ6 = i
2

(
B12 − B̄12

)
, Γ7 = 1

2

(
B12 + B̄12

)
, Γ8 = −iB11 . (9.13)

Note that Γ is an su(2)-valued connection 1-form. The flatness of A0 is encoded in the relation

F0 = FΓ + Iµ deµ + Γi [Ii, Iµ] ∧ eµ + 1
2 [Iµ, Iν ] eµν = 0 , (9.14a)

F0
∣∣
su(2) = 0 : FΓ = −1

2 f
i

µν Ii e
µν , (9.14b)

F0
∣∣
m

= 0 : deµ = −Γi f µ
iν ∧ e

ν − 1
2 f

µ
ρσ eρσ , (9.14c)

where FΓ = dΓ + Γ ∧ Γ. The equivalent information can be cast in a set of relations starting
from (9.12a) and using the Biedenharn basis; we refer to App. B.2.2 for details.

9.2.2 Zq+1-equivariance

Consider the principal V-bundle (8.21), where the Zq+1-action is defined on S5 as in Sec. 8.2.
The connection (9.12) is SU(3)-equivariant by construction, but one can also check its Zq+1-
equivariance explicitly. For this, one needs to specify an action of Zq+1 on the fibre Ck,l, which
decomposes as an SU(2)-representation via (9.9). Demanding that the Zq+1-action commutes
with the SU(2)-action on Ck,l forces it to act as a multiple of the identity on each irreducible
SU(2)-representation by Schur’s lemma. Hence, we choose a representation γ : Zq+1 → U(p0)
of Zq+1 on Ck,l such that Zq+1 acts on (n,m) as

γ(h)
∣∣
(n,m) = ζmq+1 1n+1 ∈ U(1) . (9.15)

Consider the two parts of the connection (9.12): The connection Γ and the endomorphism-
valued 1-form Iµ e

µ. In terms of matrix elements, Γ is completely determined by the 1-forms
B(n,m) ∈ Ω1

(
SU(2),End(n,m )

)
which are instanton connections on the K̃-equivariant vector

V-bundle
Ṽ(n,m)

(n,m)
−−−−→ G/K̃ ∼= S5/Zq+1 with V(n,m) := G×K (n,m) , (9.16)

simply because they are K-equivariant by construction and Zq+1 ↪→ U(1) ⊂ SU(3) commutes
with this particular SU(2) subgroup (see also App. B.1). More explicitly, taking (9.15) one
observes that Zq+1 acts trivially on the endomorphism part,

γ(h)B(n,m) γ(h)−1 = B(n,m) , (9.17)

24Note that (8.23a) implicitly uses the fundamental representation C1,0 of SU(3).
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9.3 Quiver bundles and connections

as well as on the 1-form parts Γi because they are horizontal in the V-bundle (8.21). For Zq+1-
equivariance of the second term Iµ e

µ, from (9.12a) and the representation π defined in (8.37)
one demands the conditions

γ(h)Ew γ(h)−1 = π(h)−1(Ew) = ζ3
q+1Ew for w = α2, α1 + α2 , (9.18a)

γ(h)E−w γ(h)−1 = π(h)−1(E−w) = ζ−3
q+1E−w for w = α2, α1 + α2 , (9.18b)

γ(h)Hα2 γ(h)−1 = π(h)−1(Hα2) = Hα2 . (9.18c)

One can check that these conditions are satisfied by our choice of representation (9.15), due to
the explicit components of the generators (B.10). We conclude that, due to our ansatz for the
connection (9.12) on the principal V-bundle (8.21) and the embedding Zq+1 ↪→ U(1) ⊂ SU(3),
the 1-form A0 is indeed Zq+1-equivariant.

9.2.3 Quiver representations

Recall from [155] that one can interpret the decomposition (9.9) and the structure of the
connection (9.12) as a quiver associated to Ck,l as follows: The appearing H-representations
(n,m) form a set Q0(k, l) of vertices, whereas the actions of the generators Eα2 and Eα1+α2

intertwine the H-representations. These H-morphisms, together with Hα2 , constitute a set
Q1(k, l) of arrows (n,m)→ (n′,m′ ) between the vertices. The quiver Qk,l is then given by the
pair Qk,l =

(
Q0(k, l) , Q1(k, l)

)
; the underlying graph of this quiver is obtained from the weight

diagram of the representation Ck,l by collapsing all horizontal edges to vertices, cf. [155]. See
App. B.3 for an explicit treatment of the examples C1,0, C2,0 and C1,1.

9.3 Quiver bundles and connections

In the following, we consider representations of quivers not in the category of vector spaces, but
rather in the category of vector bundles. We shall construct a G-equivariant gauge theory on
the product space

Md ×K̃ G := Md ×G/K̃ = Md × S5/Zq+1 , (9.19)

where G and all of its subgroups act trivially on a d-dimensional Riemannian manifoldMd. The
equivariant dimensional reduction compensates isometries on G/K̃ with gauge transformations,
thus leading to quiver gauge theories on the manifold Md.

Roughly speaking, the reduction is achieved by extending the homogeneous V-bundles (9.11)
by K̃-equivariant bundles E →Md, which furnish a representation of the corresponding quiver
in the category of complex vector bundles over Md. Such a representation is called a quiver
bundle and it originates from the one-to-one correspondence between G-equivariant Hermitian
vector V-bundles over Md ×G/K̃ and K̃-equivariant Hermitian vector bundles over Md, where
K̃ acts trivially on the base space Md [54].

9.3.1 Equivariant bundles

For each irreducible H-representation (n,m) in the decomposition of Ck,l, construct the (trivial)
vector bundle

(n,m)
Md

:= Md ×K̃ (n,m)
(n,m)
−−−−→Md (9.20)
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of rank n+1, which is K̃-equivariant due to the trivial K̃-action on Md and the linear action on
the fibres. For each representation (n,m) we introduce also a Hermitian vector bundle

Ep(n,m)
Cp(n,m)
−−−−−→Md with rk(Ep(n,m)) = p(n,m) (9.21)

with structure group U(p(n,m)) and a u(p(n,m))-valued connection A(n,m), and with trivial K̃-
action. Denote the identity endomorphism on the fibres of Ep(n,m) by π(n,m). With these data
one constructs a K̃-equivariant bundle

Ek,l ∼=
⊕

(n,m)∈Q0(k,l)
Ep(n,m) ⊗ (n,m)

Md

Cp−−−→Md (9.22)

whose rank p is given by

p =
∑

(n,m)∈Q0(k,l)
p(n,m) dim (n,m) =

∑
(n,m)∈Q0(k,l)

p(n,m) (n+ 1) . (9.23)

Following [155], the bundle Ek,l is the K̃-equivariant vector bundle of rank p associated to the
representation Ck,l

∣∣
K̃ of K̃, and (9.22) is its isotopical decomposition. This construction breaks

the structure group U(p) of Ek,l via the Higgs effect to the subgroup

Gk,l :=
∏

(n,m)∈Q0(k,l)
U
(
p(n,m)

)n+1 (9.24)

which commutes with the SU(2)-action on the fibres of (9.22).
On the other hand, one can introduce K̃-equivariant V-bundles over S5/Zq+1 by (9.16). On
V(n,m) one has the su(2)-valued 1-instanton connection B(n,m) in the (n+1)-dimensional irre-
ducible representation. The aim is to establish a G-equivariant V-bundle Ek,l overMd×S5/Zq+1
as an extension of the K̃-equivariant bundle Ek,l. By the results of [54] such a V-bundle Ek,l
exists and according to [155] it is realised as

Ek,l := G×K̃ Ek,l =
⊕

(n,m)∈Q0(k,l)
Ep(n,m) � V(n,m)

V k,l−−−−→Md × S5/Zq+1 , (9.25)

where
V k,l =

⊕
(n,m)∈Q0(k,l)

Cp(n,m) ⊗ (n,m) (9.26)

is the typical fibre of (9.25).

9.3.2 Generic G-equivariant connection

The task now is to determine the generic form of a G-equivariant connection on (9.25). Since
the space of connections on Ek,l is an affine space modelled over Ω1(End(Ek,l))G, one has to
study the G-representations on this vector space. Recall from [155] that the decomposition
of Ω1(End(Ek,l))G with respect to G yields a diagonal subspace which accommodates the
connections A(n,m) on (9.21) twisted by G-equivariant connections on (9.16), and an off-diagonal
subspace which gives rise to bundle morphisms.
In other words, K-equivariance alone introduces only the connections A(n,m) on each bun-

dle (9.21) as well as the SU(2)-connections B(n,m) on the V-bundles (9.16). On the other hand,
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9.3 Quiver bundles and connections

G-equivariance additionally requires one to introduce a set of bundle morphisms

φ±(n,m) ∈ Hom
(
Ep(n,m) , Ep(n±1,m+3)

)
(9.27a)

and their adjoint maps

(φ±)†(n,m) ∈ Hom
(
Ep(n±1,m+3) , Ep(n,m)

)
, (9.27b)

for all (n,m) ∈ Q0(k, l). One further introduces the bundle endomorphisms

ψ(n,m) ∈ End
(
Ep(n,m)

)
(9.27c)

at each vertex (n,m) ∈ Q0(k, l) with m 6= 0. The morphisms φ±(n,m) and ψ(n,m) are collectively
called Higgs fields, and they realise the G-action in the same way that the generators Iµ
(or more precisely the 1-forms β̄±(n,m) and im

2 ηΠ(n,m) of App. B.2.1) do in the case of the flat
connection (9.12). The new Higgs fields ψ(n,m), implementing the vertical connection components
on the (orbifold of the) Hopf bundle S5 → CP 2, have to be Hermitian, i.e. ψ(n,m) = ψ†(n,m), by
construction in order for the connection to be u(p)-valued.

9.3.3 Ansatz for the connection

The ansatz for a G-equivariant connection on the equivariant V-bundle (9.25) is given by

A = Â+ Γ̂ +Xµ e
µ (9.28)

wherein the u(p(n,m))-valued connections A(n,m) and the su(2)-valued connection Γ are extended
as

Â :=
⊕

(n,m)
A(n,m)⊗Π(n,m) ≡ A⊗1 and Γ̂ :=

⊕
(n,m)

π(n,m)⊗Γi I(n,m)
i = Γi Îi ≡ 1⊗Γ , (9.29)

together with Îi =
⊕

(n,m) π(n,m) ⊗ I
(n,m)
i . Analogous to Sec. 4.3, the matrices Xµ are required

to satisfy the equivariance condition[
Îi, Xµ

]
= f ν

iµ Xν for i = 6, 7, 8 and µ = 1, . . . , 5 . (9.30)

Again, the equivariance condition ensures that Xµ are frame-independently defined endomor-
phisms that are the components of an endomorphism-valued 1-form, which is here given as the
difference A− (Â+ Γ̂ ).
The general solution to (9.30) expresses Xµ in terms of Higgs fields and generators as

1
2 (X1 + iX2) =

⊕
±,(n,m)

φ±(n,m) ⊗ E
± (n,m)
α1+α2 , (9.31a)

1
2 (X1 − iX2) = −

⊕
±,(n,m)

(φ±)†(n,m) ⊗ E
± (n,m)
−α1−α2 , (9.31b)

1
2 (X3 + iX4) =

⊕
±,(n,m)

φ±(n,m) ⊗ E
± (n,m)
α2 , (9.31c)

1
2 (X3 − iX4) = −

⊕
±,(n,m)

(φ±)†(n,m) ⊗ E
± (n,m)
−α2 , (9.31d)

97



9 Quiver gauge theory

X5 = − i
2
⊕

(n,m)
ψ(n,m) ⊗H(n,m)

α2 . (9.31e)

Altogether the G-equivariant connection takes the form

A =
⊕

(n,m)∈Q0(k,l)

(
A(n,m) ⊗Π(n,m) + π(n,m) ⊗B(n,m) − ψ(n,m) ⊗ im

2 ηΠ(n,m) (9.32)

+ φ+
(n,m) ⊗ β̄

+
(n,m) + φ−(n,m) ⊗ β̄

−
(n,m) − (φ+)†(n,m) ⊗ β

+
(n,m) − (φ−)†(n,m) ⊗ β

−
(n,m)

)
.

9.3.4 Zq+1-equivariance

One needs to extend the Zq+1-representation γ of (9.15) to act on the fibres (9.26) of the
equivariant V-bundle (9.25). Since by construction K̃ = SU(2)×Zq+1 acts trivially on the fibres
of the bundles (9.21), one ends up with the representation γ : Zq+1 → U(p) given by

γ(h) =
⊕

(n,m)∈Q0(k,l)
1p(n,m) ⊗ γ(h)

∣∣
(n,m) =

⊕
(n,m)∈Q0(k,l)

1p(n,m) ⊗ ζ
m
q+1 1n+1 . (9.33)

To prove Zq+1-equivariance of (9.28) one has to show two things. Firstly, the connections
A ⊗ 1 and 1 ⊗ Γ have to be Zq+1-equivariant. This can be seen as follows: For A ⊗ 1 the
representation γ of (9.33) acts trivially on each bundle Ep(n,m) , and thus

γ(h) (A⊗ 1) γ(h)−1 = A⊗ 1 . (9.34)

Furthermore, 1 ⊗ Γ is Zq+1-equivariant because Γ obeys (9.17), and hence the connection
A⊗ 1 + 1⊗ Γ satisfies the equivariance conditions.

Secondly, the endomorphism-valued 1-form Xµ e
µ = A− Â− Γ̂ needs to be Zq+1-equivariant

as well. Due to its structure, one needs to consider a combination of the adjoint action of γ
from (9.33) and the Zq+1-action on forms from (8.37). As γ acts trivially on each bundle Ep(n,m) ,
the Zq+1-equivariance conditions

γ(h)Xµ γ(h)−1 = π(h)−1(Xµ) for µ = 1, . . . , 5 (9.35)

hold also for the quiver connection A just as they hold for the flat connection A0 by (9.18).
Thus, the chosen representations (8.37) and (9.33) render the quiver connection (9.28) equiv-

ariant with respect to the action of Zq+1. On each irreducible representation (n,m) the generator
h of Zq+1 is represented by ζmq+1 1n+1 which depends on the U(1) monopole charge, but not on
the SU(2) isospin. This comes about as follows: The bundle morphisms associated to βiq+1 map
between bundles Ep(n,m) ⊗ (n,m)

Md that differ in m by −3 (from source to target vertex), but
differ in n by either +1 or −1. Thus the representation γ should only be sensitive to m and not
to n. We shall elucidate this point further in Sec. 12.1.

9.3.5 Curvature

The curvature F = dA+A ∧A of the connection (9.28) is given by

F = FA⊗1+1⊗FΓ +
(
dXµ+

[
Â,Xµ

])
∧eµ+Xµ deµ+

[
Γ̂, Xµ

]
∧eµ+ 1

2 [Xµ, Xν ] eµν , (9.36a)
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where FA = dA+A ∧A. Employing the relations (9.14) then yields

F = FA ⊗ 1 +
(
dXµ +

[
Â,Xµ

])
∧ eµ + Γi

([
Îi, Xµ

]
− f ν

iµ Xν
)
∧ eµ

+ 1
2
(

[Xµ, Xν ]− f ρ
µν Xρ − f i

µν Îi
)
eµν .

(9.36b)

Since the matrices Xµ satisfy the equivariance relation (9.30), the final form of the curvature
reads

F = FA ⊗ 1 + (DX)µ ∧ eµ + 1
2
(

[Xµ, Xν ]− f ρ
µν Xρ − f i

µν Îi
)
eµν , (9.36c)

where we defined the bifundamental covariant derivatives as

(DX)µ := dXµ +
[
Â,Xµ

]
. (9.36d)

Inserting the explicit form (9.31) for the scalar fields Xµ leads to the curvature components in
the Biedenharn basis; the detailed expressions are summarised in App. B.2.3.

9.3.6 Quiver bundles

Let us now exemplify and clarify how the equivariant bundle Ek,l → Md from (9.22) realises
a quiver bundle from our constructions above. Recall that the quiver Qk,l consists of the pair(
Q0(k, l) , Q1(k, l)

)
, with vertices (n,m) ∈ Q0(k, l) and arrows (n,m) → (n′,m′ ) ∈ Q1(k, l)

between certain pairs of vertices which are here determined by the decomposition (9.9). We
consider a representation Q̃ k,l =

(
Q̃0(k, l) , Q̃1(k, l)

)
of this quiver in the category of complex

vector bundles. The set of vertices is

Q̃0(k, l) =
{
Ep(n,m) −→Md

∣∣ (n,m) ∈ Q0(k, l)
}
, (9.37)

i.e. the set of Hermitian vector bundles, each equipped with a unitary connection A(n,m). The
set of arrows is

Q̃1(k, l) =
{
φ±(n,m) ∈ Hom

(
Ep(n,m) , Ep(n±1,m+3)

) ∣∣ (n,m) ∈ Q0(k, l)
}

∪
{
ψ(n,m) ∈ End

(
Ep(n,m)

) ∣∣ (n,m) ∈ Q0(k, l) , m 6= 0
}
, (9.38)

which is precisely the set of bundle morphisms, i.e. the Higgs fields. These quivers differ from
those considered in [155] by the appearance of vertex loops corresponding to the endomorphisms
ψ(n,m). See App. B.3 for details of the quiver bundles based on the representations C1,0, C2,0

and C1,1.
These constructions yield representations of quivers without any relations. We will see later

on that relations can arise by minimising the scalar potential of the quiver gauge theory (see
Sec. 9.4) or by imposing a generalised instanton equation on the connection A (see Ch. 10).

9.4 Dimensional reduction of the Yang-Mills action

Consider the reduction of the pure Yang-Mills action from Md × S5 to Md. On S5 we take as
basis of coframes {βjϕ, β̄jϕ}j=1,2 and e5 = η, and as metric

ds2
S5 = R2

(
β1
ϕ ⊗ β̄1

ϕ + β̄1
ϕ ⊗ β1

ϕ + β2
ϕ ⊗ β̄2

ϕ + β̄2
ϕ ⊗ β2

ϕ

)
+ r2 η ⊗ η . (9.39)

99



9 Quiver gauge theory

The Yang-Mills action is given by

S = − 1
4g̃2

∫
Md×S5

trF ∧ ?F , (9.40)

with coupling constant g̃ and ? the Hodge duality operator corresponding to the metric on
Md × S5 given by

ds2 = ds2
Md + ds2

S5 . (9.41)

We denote the Hodge operator corresponding to the metric ds2
Md on Md by ?Md . The reduction

of (9.40) proceeds by inserting the curvature (9.36c) and performing the integrals over S5, which
can be evaluated by using (9.39) and the identities of App. B.4.2. One finally obtains for the
reduced action

S = −2π3 r R4

g̃2

( ∫
Md

tr
(
FA ∧ ?MdFA

)
⊗ 1

+ 1
2R2

∫
Md

4∑
a=1

tr (DX)a ∧ ?Md(DX)a + 1
r2

∫
Md

tr (DX)5 ∧ ?Md(DX)5

+ 1
8R4

∫
Md

?Md

4∑
a,b=1

tr
(

[Xa, Xb]− f 5
ab X5 − f i

ab Îi
)2

+ 1
8R2 r2

∫
Md

?Md

4∑
a=1

tr
(

[Xa, X5]− f b
a5 Xb

)2)
. (9.42)

Here the explicit structure constants (9.4), i.e. f c
ab = f 5

a5 = f i
a5 = 0, have been used. One may

detail this action further by inserting the G-equivariant solution (9.31) for the scalar fields Xµ in
the Biedenharn basis, which allows one to perform the trace over the SU(2)×U(1)-representations
(n,m). The explicit, but lengthy formulas are given in App. B.4.3.

9.4.1 Higgs branch

On the Higgs branch of the quiver gauge theory, where all connections A(n,m) are trivial and
the Higgs fields are constant, the vacuum is solely determined by the vanishing locus of the
scalar potential. The vanishing of the potential gives rise to holomorphic F-term constraints as
well as non-holomorphic D-term constraints which read as

[Xa, Xb] = f 5
ab X5 + f i

ab Îi and [Xa, X5] = f b
a5 Xb , (9.43)

for a, b = 1, 2, 3, 4. The equivariance condition (9.30) implies that Xµ lie in a representation of
the su(2) Lie algebra. Hence, the BPS configurations of the gauge theory Xµ, together with Îi,
furnish a representation of the Lie algebra su(3) in the representation space of the quiver in u(p).
These constraints respectively give rise to a set of relations and a set of stability conditions for
the corresponding quiver representation. The details can be read off from the explicit expressions
in App. B.4.3.
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In this chapter we specialise to the case of a 1-dimensional Riemannian manifoldMd = M1. We
investigate the Hermitian Yang-Mills equations on the product M1×S5/Zq+1 for the generic
form of G-equivariant connections derived in Sec. 9.3.

10.1 Preliminaries

Consider the product manifoldM1×S5/Zq+1 forM1=R such thatM1×S5/Zq+1 ∼= C(S5/Zq+1)
is the metric cone over the Sasaki-Einstein space S5/Zq+1, which is an orbifold of the Calabi-
Yau manifold C3 ∼= C(S5). As discussed in Ch. 3, the Calabi-Yau space C(S5) is conformally
equivalent to the cylinder R×S5 with the metric (3.4) and fundamental (1, 1)-form (3.5).

Connections As R is contractible, each bundle Ep(n,m) → R is necessarily trivial, and hence
one can gauge away the (global) connection 1-forms A(n,m) = A(n,m)(t) dt. Explicitly, there is a
gauge transformation g : R→ Gk,l such that

Ã(n,m) = Ad(g−1)A(n,m) + g−1 dg
dt = 0 with g = exp

(
−
∫
A(n,m)(t) dt

)
. (10.1)

The ansatz for the connection on the equivariant V-bundle then reads

A = 1⊗ Γ +Xµ e
µ , (10.2)

where the Higgs fields φ±(n,m) and ψ(n,m) depend only on the cylinder coordinate t. The curvature
of this connection can be read off from (9.36c) and is evaluated to

F = dXµ

dt dt ∧ eµ + 1
2
(

[Xµ, Xν ]− f ρ
µν Xρ − f i

µν Îi
)
eµν . (10.3)

Generalised instanton equations By construction, the ansatz (10.2) restricts the space of
all connections on the SU(3)-equivariant vector V-bundle over C(S5/Zq+1) to SU(3)-equivariant
and Zq+1-equivariant connections. However, we saw that Zq+1-equivariance was automatic due
to the choice of Zq+1-action (8.37) and (9.33). Consequently, the situation is a special case of
the equivariant instantons discussed in Sec. 4.3.

As such, we conceptually split the HYM-instanton equations (4.29) into quiver relations and
stability-like conditions. In detail, the holomorphicity condition (4.10) can be specialised to a
d = 5 version of the first four equations in (4.29) and reads

[X1, X4] + [X2, X3] = 0 = [X1, X3]− [X2, X4] and [Xa, X5] = f b
a5

(
Xb + 2

3
dXb

dt
)

(10.4)

for a = 1, 2, 3, 4. These conditions will be understood as relations on the quiver bundle itself.
On the other hand, the stability-like condition (4.19) can be obtained from (4.29e) and reads

in d = 5 as follows:
[X1, X2] + [X3, X4] = 4X5 + dX5

dt . (10.5)

101



10 Spherically symmetric instantons

This condition will sometimes just be denoted as stability condition. In what follows we will
employ the geometric understanding of (10.4) and (10.5) gained in Ch. 4, and return to this
interpretation in Sec. 12.2.1.

10.2 Examples

We shall now apply these considerations to the three simplest examples: The quivers based on the
representations C1,0, C2,0 and C1,1. For each example we explicitly provide the representation
of the generators and the form of the matrices Xµ, followed by the quiver relations and the
stability conditions.

10.2.1 C1,0-quiver

The generators in the fundamental representation C1,0, which splits as in (B.24), are given as

Ia =
(

02 I
(0,−2)
a

−
(
I

(0,−2)
a

)† 0

)
and I5 =

(
I

(1,1)
5 0
0 I

(0,−2)
5

)
(10.6a)

for a = 1, 2, 3, 4, with components

I
(0,−2)
1 =

(
1
0

)
= i I(0,−2)

2 and I
(0,−2)
3 =

(
0
1

)
= i I(0,−2)

4 , (10.6b)

I
(0,−2)
5 = i12 and I

(1,1)
5 = − i

2 . (10.6c)

The endomorphisms Xµ read as

Xa =
(

02 φ⊗ I(0,−2)
a

−φ† ⊗
(
I

(0,−2)
a

)† 0

)
and X5 =

(
ψ1 ⊗ I(1,1)

5 0
0 ψ0 ⊗ I(0,−2)

5

)
, (10.7)

where the Higgs fields from App. B.3 give a representation of the quiver

(0,−2)

ψ0

�� φ //(1, 1)

ψ1

��
(10.8)

The Zq+1-representation (9.33) reads

γ : h 7−→
(
1p(1,1) ⊗ 12 ζq+1 0

0 1p(0,−2) ⊗ ζ
−2
q+1

)
, (10.9)

where h is the generator of the cyclic group Zq+1.

Quiver relations The first two equations from (10.4) are trivially satisfied without any further
constraints. The second set of equations all have the same non-trivial off-diagonal component
(and its adjoint) which yields

2 dφ
dt = −3φ+ 2φψ0 + ψ1 φ . (10.10)

Thus for the C1,0-quiver there are no purely algebraic quiver relations.
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Stability conditions From (10.5) we read off the two non-trivial diagonal components which
yield

1
4

dψ0
dt = −ψ0 + φ† φ and 1

4
dψ1
dt = −ψ1 + φφ† . (10.11)

By taking ψ0 and ψ1 to be identity endomorphisms, we recover the Higgs branch BPS equations
from equivariant dimensional reduction over CP 2: In this limit (10.10) implies that the scalar
field φ is independent of t, while (10.11) correctly reproduces the D-term constraints of the
quiver gauge theory for constant matrices [155,156].

10.2.2 C2,0-quiver

The generators in the 6-dimensional representation C2,0, which splits as in (B.26), are given by

Ia =

 03 I
(1,−1)
a 0

−
(
I

(1,−1)
a

)† 02 I
(0,−4)
a

0 −
(
I

(0,−4)
a

)† 0

 and I5 =

I
(2,2)
5 0 0
0 I

(1,−1)
5 0

0 0 I
(0,−4)
5

 (10.12a)

for a = 1, 2, 3, 4, with components

I
(1,−1)
1 =


√

2 0
0 1
0 0

 = i I(1,−1)
2 and I

(0,−4)
1 =

(√
2

0

)
= i I(0,−4)

2 , (10.12b)

I
(1,−1)
3 =

0 0
1 0
0
√

2

 = i I(1,−1)
4 and I

(0,−4)
3 =

(
0√
2

)
= i I(0,−4)

4 , (10.12c)

I
(2,2)
5 = −i13 , I

(1,−1)
5 = i

2 12 and I
(0,−4)
5 = 2 i . (10.12d)

The endomorphisms Xµ read

Xa =

 03 φ1 ⊗ I(1,−1)
a 0

−φ†1 ⊗
(
I

(1,−1)
a

)† 02 φ0 ⊗ I(0,−4)
a

0 −φ†0 ⊗
(
I

(0,−4)
a

)† 0

 ,

X5 =

ψ2 ⊗ I(2,2)
5 0 0

0 ψ1 ⊗ I(1,−1)
5 0

0 0 ψ0 ⊗ I(0,−4)
5

 ,

(10.13)

with the Higgs field content from App. B.3 that furnishes a representation of the quiver

(0,−4)

ψ0

�� φ0 //(1,−1)

ψ1

�� φ1 //(2, 2)

ψ2

��
(10.14)

The representation (9.33) in this case reads

γ : h 7−→

1p(2,2) ⊗ 13 ζ
2
q+1 0 0

0 1p(1,−1) ⊗ 12 ζ
−1
q+1 0

0 0 1p(0,−4) ⊗ ζ
−4
q+1

 . (10.15)
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10 Spherically symmetric instantons

Quiver relations Again the first two equations of (10.4) turn out to be trivial, while the
second set of equations have two non-vanishing off-diagonal components (plus their conjugates)
which yield

2 dφ0
dt = −3φ0 − ψ1 φ0 + 4φ0 ψ0 and 2 dφ1

dt = −3φ1 + φ1 ψ1 + 2ψ2 φ1 , (10.16)

and the C2,0-quiver has no purely algebraic quiver relations either.

Stability conditions From (10.5) one obtains three non-trivial diagonal components, which
are given by

1
4

dψ0
dt = −ψ0 + φ†0 φ0 , (10.17a)

1
4

dψ1
dt = −ψ1 − 2φ0 φ

†
0 + 3φ†1 φ1 , (10.17b)

1
4

dψ2
dt = −ψ2 + φ1 φ

†
1 . (10.17c)

Taking ψ0, ψ1 and ψ2 again to be identity morphisms, from (10.16) we obtain constant matrices
φ0 and φ1 which by (10.17) obey the expected D-term constraints from equivariant dimensional
reduction over CP 2 [155,156].

10.2.3 C1,1-quiver

The decomposition of the adjoint representation C1,1, which splits as given in (B.28), yields

Ia =


02 I

(0,0)
a I

(2,0)
a 0

−
(
I

(0,0)
a

)† 0 0 I
− (1,−3)
a

−
(
I

(2,0)
a

)† 0 03 I
+ (1,−3)
a

0 −
(
I
− (1,−3)
a

)† −(I+ (1,−3)
a

)† 02

 , (10.18a)

I5 =


I

(1,3)
5 0 0 0
0 I

(0,0)
5 0 0

0 0 I
(2,0)
5 0

0 0 0 I
(1,−3)
5

 (10.18b)

for a = 1, 2, 3, 4. The components read as

I
(0,0)
1 =

(√
3
2

0

)
= i I(0,0)

2 and I
(2,0)
1 =

(
0 −

√
1
2 0

0 0 −1

)
= i I(2,0)

2 , (10.18c)

I
− (1,−3)
1 =

(
0 −

√
3
2

)
= i I− (1,−3)

2 and I
+ (1,−3)
1 =

1 0
0
√

1
2

0 0

 = i I+ (1,−3)
2 , (10.18d)

I
(0,0)
3 =

(
0√

3
2

)
= i I(0,0)

4 and I
(2,0)
3 =

(
1 0 0
0
√

1
2 0

)
= i I(2,0)

4 , (10.18e)
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I
− (1,−3)
3 =

(√
3
2 0

)
= i I− (1,−3)

4 and I
+ (1,−3)
3 =

 0 0√
1
2 0

0 1

 = i I+ (1,−3)
4 , (10.18f)

I
(0,0)
5 = 0 , I

(2,0)
5 = 03 and I

(1,±3)
5 = ∓3 i

2 12 . (10.18g)

The matrices Xµ are given by

Xa =


02 φ+

0 ⊗ I
(0,0)
a φ−0 ⊗ I

(2,0)
a 0

−(φ+
0 )† ⊗

(
I

(0,0)
a

)† 0 0 φ−1 ⊗ I
− (1,−3)
a

−(φ−0 )† ⊗
(
I

(2,0)
a

)† 0 03 φ+
1 ⊗ I

+ (1,−3)
a

0 −(φ−1 )† ⊗
(
I
− (1,−3)
a

)† −(φ+
1 )† ⊗

(
I

+ (1,−3)
a

)† 02

 ,

(10.19a)

X5 =


ψ+ ⊗ I(1,3)

5 0 0 0
0 0 0 0
0 0 03 0
0 0 0 ψ− ⊗ I(1,−3)

5

 . (10.19b)

This example involves the collection of Higgs fields from App. B.3 which furnish a representation
of the quiver

(1,+3)

ψ+

��

(0, 0)

φ+
0
66

(2, 0)

φ−0
hh

(1,−3)φ−1

\\

φ+
1

BB

ψ−

DD

(10.20)

In this case the Zq+1-representation (9.33) has the form

γ : h 7−→


1p(1,3) ⊗ 12 ζ

3
q+1 0 0 0

0 1p(0,0) ⊗ 1 0 0
0 0 1p(2,0) ⊗ 13 0
0 0 0 1p(1,−3) ⊗ 12 ζ

−3
q+1

 . (10.21)

Quiver relations For this 8-dimensional example, one finds that the first two equations
of (10.4) have the same single non-trivial off-diagonal component (plus its adjoint) which yields

φ+
0 φ
−
1 = φ−0 φ

+
1 . (10.22)

This equation is precisely the anticipated algebraic relation for the C1,1-quiver expressing
equality of paths between the vertices (1,± 3), cf. [155]. The second set of equations have four
non-trivial off-diagonal components (plus their conjugates) which yield

2
3

dφ±0
dt = −φ±0 + ψ+ φ±0 and 2

3
dφ±1
dt = −φ±1 + φ±1 ψ

− . (10.23)
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Stability conditions From (10.5) one computes four non-vanishing diagonal components
that yield

(φ±0 )† φ±0 = φ∓1 (φ∓1 )† , (10.24a)

1
4

dψ+

dt = −ψ+ + 1
2
(
φ+

0 (φ+
0 )† + φ−0 (φ−0 )†

)
, (10.24b)

1
4

dψ−

dt = −ψ− + 1
2
(
(φ−1 )† φ−1 + (φ+

1 )† φ+
1

)
. (10.24c)

We thus obtain two non-holomorphic purely algebraic conditions, which coincide with D-term
constraints of the quiver gauge theory for the C1,1-quiver, and two further differential equations
which for identity endomorphisms ψ± reproduce the remaining stability equations for constant
matrices φ±0 and φ±1 in equivariant dimensional reduction over CP 2 [155,156].
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11 Translationally invariant instantons

In this chapter we study translationally-invariant instantons on a trivial vector V-bundle over the
orbifold C3/Zq+1. In contrast to the G-equivariant Hermitian Yang-Mills instantons of Ch. 10,
the generic form of a translationally-invariant connection is determined by Zq+1-equivariance
alone and is associated with a different quiver.

11.1 Preliminaries

Consider the cone C(S5)/Zq+1 ∼= C3/Zq+1, with the Zq+1-action given by (8.26), and the (trivial)
vector V-bundle

Ek,l
V k,l−−−−→ C3/Zq+1 (11.1)

of rank p. This V-bundle is obtained by a suitable Zq+1-projection from the trivial vector bundle
C3 × V k,l → C3. The fibres of (11.1) can be regarded as representation spaces

V k,l =
⊕

(n,m)∈Q0(k,l)
Cp(n,m) ⊗ (n,m) ∼=

⊕
(n,m)∈Q0(k,l)

(
Cp(n,m) ⊗ Cn+1)⊗ Vm . (11.2)

Here, Vm is the [m]-th irreducible representation ρ[m] of Zq+1 (cf. (9.10)), with [m] ∈ {0, 1, . . . , q}
the congruence class of m ∈ Z modulo q + 1, and the vector space Cp(n,m) ⊗Cn+1 serves as the
multiplicity space of this representation. The structure group of the bundle Ek,l is

Gk,l :=
∏

(n,m)∈Q0(k,l)
U
(
p(n,m) (n+ 1)

)
, (11.3)

because the fibres are isomorphic to (11.2) and hence the bundle carries a natural complex struc-
ture J . This complex structure is simply multiplication with i on each factor Vm. Consequently,
the structure group is reduced to the stabiliser of J .
On the base space the canonical Kähler form of C3 is given by

ωC3 = i
2 δαβ dzα ∧ dz̄β . (11.4)

This Kähler form is induced by the standard metric ds2
C3 = 1

2 δαβ (dzα ⊗ dz̄β + dz̄α ⊗ dzβ) and
the complex structure J(dzα) = i dzα, J(dz̄α) = −i dz̄α.

11.1.1 Connections

Consider a connection 1-form
A = Wα dzα +Wα dz̄α (11.5)

on Ek,l, where Wα = −W †α holds. Now, we impose translational invariance along the space C3.
For the coordinate basis {dzα, dz̄α} of T ∗(z,z̄)C

3 at any point (z, z̄) ∈ C3, this translates into the
condition

dWα = 0 = dWα for α = 1, 2, 3 . (11.6)
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Thus, the curvature F = dA+A ∧A simplifies to

F = A ∧A = 1
2
[
Wα,Wβ

]
dzα ∧ dzβ +

[
Wα,W β

]
dzα ∧ dz̄β + 1

2
[
Wα,W β

]
dz̄α ∧ dz̄β . (11.7)

11.1.2 Zq+1-Action

Similar to the previous construction, we impose Zq+1-invariance by to the projection from the
trivial vector bundle C3 × V k,l → C3 to the trivial V-bundle Ek,l → C3/Zq+1. Again one needs
to choose a representation of Zq+1 on the fibres (11.2). For reasons that will become clear later
on (see Sec. 12.1), this time one chooses

γ(h) =
⊕

(n,m)∈Q0(k,l)
1p(n,m) ⊗ ζ

n
q+1 1n+1 ∈ Centre

(
Gk,l) . (11.8)

It is immediate that all elements of Gk,l commute with the action of Zq+1 given by (11.8), i.e.
γ(Zq+1) ⊂ Centre(Gk,l). The action of Zq+1 on the coordinates zα defined in (8.26) induces a
representation π of Zq+1 in Ω1(C3), which on the generator h of Zq+1 is given by

π(h)(Wα) =
{
ζ−1
q+1Wi , i = 1, 2
ζ2
q+1W3

and π(h)(Wα) =
{
ζq+1Wi , i = 1, 2
ζ−2
q+1W3

. (11.9)

Requiring Zq+1-equivariance of the connection A reduces to conditions similar to (9.35), i.e. the
equivariance conditions read as

γ(h)Wα γ(h)−1 = π(h)−1(Wα) and γ(h)Wα γ(h)−1 = π(h)−1(Wα) (11.10)

for α = 1, 2, 3, but this time with different Zq+1-actions γ and π.

11.1.3 Quiver representations

For a decomposition of the endomorphisms

Wα =
⊕

(n,m),(n′,m′)
(Wα)(n,m),(n′,m′) ,

with (Wα)(n,m),(n′,m′) ∈ Hom
(
Cp(n,m) ⊗ (n,m) , Cp(n′,m′) ⊗ (n′,m′ )

) (11.11)

as before, the equivariance conditions imply that the allowed non-vanishing components are
given by

Φi
(n,m) := (Wi)(n,m),(n′,m′) for n′ − n = 1 (mod q + 1) , (11.12a)

Ψ(n,m) := (W3)(n,m),(n′,m′) for n′ − n = −2 (mod q + 1) , (11.12b)

for i = 1, 2, together with the analogous conjugate decomposition for Wα; in each instance m′
is implicitly determined by n and m via the requirement (n′,m′ ) ∈ Q0(k, l). The structure of
these endomorphisms thus determines a representation of another quiver Qk,l with the same
vertex set Q0(k, l) as before for the quiver Qk,l, but with a new arrow set consisting of allowed
components (n,m)→ (n′,m′ ).
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11.2 Generalised instanton equations

Similar to Ch. 4, the Hermitian Yang-Mills equations on the complex 3-space C3/Zq+1 can be
regarded in terms of holomorphicity and stability-like conditions.

11.2.1 Quiver relations

The condition that the connection A defines an integrable holomorphic structure on the bun-
dle (11.1) is, as before, equivalent to the vanishing of the (2, 0)- and (0, 2)-parts of the curvature
F , i.e. F0,2 = 0 = F2,0, which in the present case is equivalent to[

Wα,Wβ

]
= 0 and

[
Wα,W β

]
= 0 . (11.13)

The general solutions (11.12) to the equivariance conditions allow for a decomposition of the
generalised instanton equations (11.13) into components given by

(W1)(n,m),(n+1,m′) (W2)(n−1,m′′),(n,m) = (W2)(n,m),(n+1,m′) (W1)(n−1,m′′),(n,m) , (11.14a)

(Wi)(n,m),(n+1,m′) (W3)(n+2,m′′),(n,m) = 0 = (W3)(n,m),(n−2,m′) (Wi)(n−1,m′′),(n,m) , (11.14b)

for (n,m) ∈ Q0(k, l) and i = 1, 2, together with their conjugate equations. Note that in (11.14a)
both combinations are morphisms between the same representation spaces and hence the
commutation relation [W1,W2] = 0 requires only that their difference vanish. On the other
hand, in (11.14b) the two terms are morphisms between different spaces and so the relation
[Wi,W3] = 0 implies that they each vanish individually; in particular, in the generic case the
solution has W3 = 0.

11.2.2 Stability conditions

For invariant connections there is a peculiarity involved in formulating the moment map condi-
tion, see for example [166]. Recalling Ch. 4, the stability-like condition equals ω yF ∈ Centre(g),
where g is the Lie algebra of the structure group. For generic connections the centre of g is trivial
and the usual condition ω yF = 0 follows. However, for invariant connections the structure
group is smaller and the centre can be non-trivial. This implies that there are several moduli
spaces of translationally-invariant (and Zq+1-equivariant) instantons depending on a choice of
element in Centre(g).
In this case one can use any gauge-invariant element

Ξ :=
⊕

(n,m)∈Q0(k,l)
1p(n,m) ⊗ i ξ(n,m) 1n+1 ∈ Centre

(
gk,l
)

(11.15)

from the centre of the Lie algebra

gk,l :=
⊕

(n,m)∈Q0(k,l)
u
(
p(n,m) (n+ 1)

)
, (11.16)

where ξ(n,m) ∈ R are called Fayet-Iliopoulos parameters. Thus the remaining instanton equations
ωC3 yF = −i Ξ read [

W1,W 1
]

+
[
W2,W 2

]
+
[
W3,W 3

]
= −i Ξ . (11.17)

By substituting the general solutions (11.12a) and (11.12b) to the equivariance conditions we

109



11 Translationally invariant instantons

can decompose the generalised instanton equation (11.17) explicitly into component equations

2∑
i=1

(
(Wi)(n,m),(n+1,m′) (W i)(n+1,m′),(n,m) − (W i)(n,m),(n−1,m′) (Wi)(n−1,m′),(n,m)

)
+ (W3)(n,m),(n−2,m′) (W 3)(n−2,m′),(n,m) − (W 3)(n,m),(n+2,m′) (W3)(n+2,m′),(n,m)

= 1p(n,m) ⊗ 1n+1 ξ(n,m) (11.18)

for (n,m) ∈ Q0(k, l).

11.3 Examples

We shall now elucidate this general construction for the three examples C1,0, C2,0 and C1,1. In
each case we highlight the non-vanishing components of the matrices Wα and the representa-
tion (11.8).

11.3.1 C1,0-quiver

The decomposition of the fundamental representation C1,0 into irreducible SU(2)-represen-
tations is given by (B.24). The non-vanishing components can be read off to be (Wi)(0,−2),(1,1)
and their adjoints (W i)(1,1),(0,−2). Thus, there are two complex Higgs fields

Φi := (Wi)(0,−2),(1,1) for i = 1, 2 , (11.19)

which determine a representation of the 2-Kronecker quiver

(0,−2)
Φ1

,,

Φ2

22(1, 1) (11.20)

By (11.8) the representation of the generator h is given by

γ : h 7−→
(
1p(1,1) ⊗ 12 ζq+1 0

0 1p(0,−2) ⊗ 1

)
. (11.21)

Quiver relations The mutual commutativity of the matrices Wα is trivial in this case, and
thus there are no quiver relations among the arrows of (11.20).

Stability conditions Choosing Fayet-Iliopoulos parameters ξ0, ξ1 ∈ R, the requirement of a
stable quiver bundle yields non-holomorphic matrix equations given by

Φ1 Φ†1 + Φ2 Φ†2 = 1p(1,1) ⊗ ξ0 and Φ†1 Φ1 + Φ†2 Φ2 = 1p(0,−2) ⊗ 12 ξ1 . (11.22)

11.3.2 C2,0-quiver

The representation C2,0 is decomposed according to (B.26). The non-vanishing components
can be determined as before to be (Wi)(0,−4),(1,−1), (Wi)(1,−1),(2,2) and (W3)(2,2),(0,−4), together
with their adjoints (W i)(1,−1),(0,−4), (W i)(2,2),(1,−1) and (W 3)(0,−4),(2,2). Thus, there are five
complex Higgs fields

Φi := (Wi)(0,−4),(1,−1) , Φi+2 := (Wi)(1,−1),(2,2) and Ψ := (W3)(2,2),(0,−4) , (11.23a)
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for i = 1, 2, which can be encoded in a representation of the quiver

(0,−4)
Φ1 ,,

Φ2

22(1,−1)
Φ3

,,

Φ4

22(2, 2)

Ψ

ww
(11.24)

Lastly, the representation (11.8) for this example is

γ : h 7−→

1p(2,2) ⊗ 13 ζ
2
q+1 0 0

0 1p(1,−1) ⊗ 12 ζq+1 0
0 0 1p(0,−4) ⊗ 1

 . (11.25)

Quiver relations The holomorphicity condition yields

Φi Ψ = 0 , Ψ Φi+2 = 0 and Φ3 Φ2 = Φ4 Φ1 (11.26)

for i = 1, 2, plus the conjugate equations. The first two sets of quiver relations of (11.26) each
describe the vanishing of a path of the quiver (11.24); an obvious trivial solution of these
equations is Ψ = 0. The last relation expresses equality of two paths with source vertex (0,−4)
and target vertex (2, 2).

Stability conditions Choosing Fayet-Iliopoulos parameters ξ0, ξ1, ξ2 ∈ R, the stability con-
ditions yield

Φ†1 Φ1 + Φ†2 Φ2 −Ψ Ψ† = 1p(0,−4) ⊗ ξ0 , (11.27a)

Φ1 Φ†1 + Φ2 Φ†2 − Φ†3 Φ3 − Φ†4 Φ4 = 1p(1,−1) ⊗ 12 ξ1 , (11.27b)

Φ3 Φ†3 + Φ4 Φ†4 −Ψ†Ψ = 1p(2,2) ⊗ 13 ξ2 . (11.27c)

11.3.3 C1,1-quiver

The decomposition of the adjoint representation C1,1 is given by (B.28). The non-vanishing
components are (Wi)(0,0),(1,3), (Wi)(0,0),(1,−3), (Wi)(1,3),(2,0), (Wi)(1,−3),(2,0) and (W3)(2,0),(0,0),
together with their adjoint maps (W i)(1,3),(0,0), (W i)(1,−3),(0,0), (W i)(2,0),(1,3), (W i)(2,0),(1,−3)
and (W 3)(0,0),(2,0). Thus there are nine complex Higgs fields

Φ±i := (Wi)(0,0),(1,± 3) , Φ±i+2 := (Wi)(1,± 3),(2,0) and Ψ := (W3)(2,0),(0,0) , (11.28)

for i = 1, 2, which can be assembled into a representation of the quiver

(1,+3)

))

Φ+
3 ,Φ

+
4

��
(0, 0)

BBΦ+
1 ,Φ

+
2
66

Φ−1 ,Φ
−
2
(( ��

(2, 0)Ψoo

(1,−3) Φ−3 ,Φ
−
4

BB55

(11.29)
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In this example the generator h of Zq+1 has the representation

γ : h 7−→


1p(1,3) ⊗ 12 ζq+1 0 0 0

0 1p(0,0) ⊗ 1 0 0
0 0 1p(2,0) ⊗ 13 ζ

2
q+1 0

0 0 0 1p(1,−3) ⊗ 12 ζq+1

 . (11.30)

Quiver relations In this case the holomorphicity condition yields the relations

Φ±i Ψ = 0 , Ψ Φ±i+2 = 0 and Φ+
3 Φ+

2 + Φ−3 Φ−2 = Φ+
4 Φ+

1 + Φ−4 Φ−1 (11.31)

for i = 1, 2. Again the first two sets of relations of (11.31) each describe the vanishing of a path
in the associated quiver (11.29) (with the obvious trivial solution Ψ = 0), while the last relation
equates two sums of paths.

Stability conditions Introducing Fayet-Iliopoulos parameters ξ±1 , ξ2, ξ3 ∈ R, from the stabil-
ity conditions one obtains

(Φ+
1 )†Φ+

1 + (Φ+
2 )†Φ+

2 + (Φ−1 )†Φ−1 + (Φ−2 )†Φ−2 −Ψ Ψ† = 1p(0,0) ⊗ ξ0 , (11.32a)

Φ±1 (Φ±1 )† + Φ±2 (Φ±2 )† − (Φ±3 )†Φ±3 − (Φ±4 )†Φ±4 = 1p(1,±3) ⊗ 12 ξ
±
1 , (11.32b)

Φ+
3 (Φ+

3 )† + Φ+
4 (Φ+

4 )† + Φ−3 (Φ−3 )† + Φ−4 (Φ−4 )† −Ψ†Ψ = 1p(2,0) ⊗ 13 ξ2 . (11.32c)
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12 Quiver gauge theories on Calabi-Yau
3-orbifolds: a comparison

In Ch. 10 and 11 we defined Higgs branch moduli spaces of vacua of two distinct quiver gauge
theories on the Calabi-Yau cone over the orbifold S5/Zq+1. In this chapter we shall explore
their constructions in more detail, and describe their similarities and differences.

12.1 Quiver bundles

Having constructed two classes of quiver gauge theories on the conical Calabi-Yau orbifold
C(S5/Zq+1), we now compare the arising quiver graphs and subsequently track down the reason
for the choices made in the Zq+1-action.

12.1.1 General observations

The examples covered Ch. 10 and 11 exhibit different quiver graphs despite both quiver con-
structions being based on the same representation space Ck,l and its decomposition. In the
following, we analyse the resulting quiver bundles.

SU(3)-equivariance Consider the quiver bundle Ek,l over R × S5/Zq+1 (as a special case
of (9.25)). By construction the space of all connections is restricted to those which are both SU(3)-
equivariant and Zq+1-equivariant. For holomorphic quiver bundles, one additionally imposes the
holomorphicity condition on the allowed connections. The general solution to these constraints
(up to gauge equivalence) is given by the ansatz (10.2), where the matrices Xµ satisfy the
equivariance conditions (9.30) and (9.35) as well as the quiver relations (10.4). The induced
quiver bundles have the following structure:

• A single homomorphism (arrow) φ±(n,m) between two Hermitian bundles (vertices) Ep(n,m)

and Ep(n′,m′) if n− n′ = ± 1 and m−m′ = ± 3.

• An endomorphism (vertex loop) ψ(n,m) at each Hermitian bundle (vertex) Ep(n,m) with
non-trivial monopole charge m

2 .

The reason why there is precisely one arrow between any two adjacent vertices is SU(3)-
equivariance, which forces the horizontal component matrices Xa for a = 1, 2, 3, 4 to have
exactly the same Higgs fields φ±(n,m), i.e. SU(3)-equivariance intertwines the horizontal com-
ponents. The vertical component X5 can be chosen independently as it originates from the
Hopf fibration S5 → CP 2. No further constraints arise from Zq+1-equivariance because we
embed Zq+1 ↪→ U(1) ⊂ SU(3). These quivers are a simple extension of the quivers obtained
by [155,156] from dimensional reduction over CP 2, because the additional vertical components
only contribute loops on vertices with m 6= 0. This structure is reminiscent of that of the quivers
of [147] which arise from reduction over 3-dimensional Sasaki-Einstein manifolds.
We recall from Sec. 4.2 that the HYM equations are the intersection of the holomorphicity

condition (10.4) and the stability-like condition (10.5). From the field theory point of view,
they give rise to holomorphic F-term and non-holomorohic D-term constraints. Together they
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12 Quiver gauge theories on Calabi-Yau 3-orbifolds: a comparison

combine into Nahm-type equations considered in Sec. 4.3 and we will come back to this point
in Sec. 12.2.1.

C3-invariance Consider the V-bundle Ek,l over C3/Zq+1 from (11.1). Recall that C(S5) ∼= C3.
In contrast to the former case, we now impose invariance under the translation group C3 acting
on the base as well as Zq+1-equivariance. We additionally require that these invariant connections
induce a holomorphic structure as previously. The general solution to these constraints is given
by the ansatz (11.5), where the matricesWα are constant along the base by (11.6), they commute
with each other, and they solve the Zq+1-equivariance conditions (11.12). The induced quiver
representations have the following characteristic structure:

• Two homomorphisms (arrows) Φi
(n,m) (i = 1, 2) between each pair of Zq+1-representations

(vertices) Cp(n,m) ⊗ (n,m) and Cp(n′,m′) ⊗ (n′,m′ ) if n− n′ = ± 1 in Zq+1.

• One homomorphism (arrow) Ψ(n,m) between each pair of Zq+1-representations (vertices)
Cp(n,m) ⊗ (n,m) and Cp(n′,m′) ⊗ (n′,m′ ) if n− n′ = ± 2 in Zq+1.

The reason why there are exactly two arrows between adjacent vertices is that the chosen
representation (11.8) does not intertwine W1, W2 and acts in the same way on both of them.
Thus, both endomorphisms have the same allowed non-vanishing components independently
of one another, which gives rise to two independent sets of Higgs fields. The next novelty,
compared to the former case, is the additional arrow associated to W3; its existence is again
due to the chosen Zq+1-action. Translational invariance plus Zq+1-equivariance are (in some
sense) weaker constraints than SU(3)-equivariance plus Zq+1-equivariance, and consequently
the allowed number of Higgs fields is larger. On the other hand, holomorphicity seems to impose
the constraint W3 = 0 for generic non-trivial endomorphisms W1 and W2 as discussed in Ch. 11.
Hence, there are two arrows between adjacent vertices, i.e. with n − n′ = ± 1, but no vertex
loops as in the former case.
It follows that the generalised instanton equations (11.13) and (11.17) give rise to non-

linear matrix equations similar to those considered in [166] for moduli spaces of Hermitian
Yang-Mills-type generalised instantons and in [147] for instantons on cones over 3-dimensional
Sasaki-Einstein orbifolds. We will analyse these equations further in Sec. 12.2.2.

12.1.2 Fibrewise Zq+1-actions

Next, we explain the origin of the difference between the choices of Zq+1-representations (9.33)
and (11.8). Consider the generic linear Zq+1-action on C3: Denoting by h the generator of the
cyclic group Zq+1, and choosing (θα) = (θ1, θ2, θ3) ∈ Z3 and (zα) = (z1, z2, z3) ∈ C3, one has

h · (zα) =
(
hαβ z

β) with (hαβ) =

ζ
θ1
q+1 0 0
0 ζθ

2
q+1 0

0 0 ζθ
3
q+1

 . (12.1)

This defines an embedding of Zq+1 into SU(3) if and only if θ1 + θ2 + θ3 = 0 mod q + 1.
However, we also have to account for the representation γ of Zq+1 in the fibres of the bun-

dles (9.25) and (11.1). These bundles are explicitly constructed from SU(3)-representations Ck,l
which decompose under SU(2)×U(1) into a sum of irreducible representations (n,m) from (9.9).
If (n,m) and (n′,m′ ) both appear in the decomposition (9.9), then there exists (r, s) ∈ Z2

≥0
such that n− n′ = ± r and m−m′ = ± 3s.
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12.1 Quiver bundles

SU(3)-equivariance The 1-forms βiq+1 transform under the generic Zq+1-action (12.1) as

βiq+1 7−→ ζθ
i−θ3

q+1 βiq+1 for i = 1, 2 , (12.2)

while η and dτ are invariant. Thus, the equivariance condition for the connection (9.28) becomes

γ(h) (X2i−1 − iX2i) γ(h)−1 = ζ−θ
i+θ3

q+1 (X2i−1 − iX2i) for i = 1, 2 , (12.3a)

γ(h) (X2i−1 + iX2i) γ(h)−1 = ζθ
i−θ3

q+1 (X2i−1 + iX2i) for i = 1, 2 , (12.3b)

γ(h)X5 γ(h)−1 = X5 . (12.3c)

In this case the aim is to embed Zq+1 in such a way that the entire quiver decomposition (9.25)
is automatically Zq+1-equivariant; hence the non-vanishing components of the matrices Xa and
X5 are already prescribed by SU(3)-equivariance. For generic θα it seems quite difficult to realise
this embedding, because if one assumes a diagonal Zq+1-action on the fibre of the form

γ(h) =
⊕

(n,m)∈Q0(k,l)
1p(n,m) ⊗ ζ

γ(n,m)
q+1 1n+1 with γ(n,m) ∈ Z , (12.4)

then these equivariance conditions translate into

γ(n± 1,m+ 3)− γ(n,m) = θi − θ3 mod q + 1 for i = 1, 2 (12.5)

on the non-vanishing components of Xa, a = 1, 2, 3, 4.
In this thesis we specialise to the weights (θα) = (1, 1,−2) and obtain (8.32) for the Zq+1-

action on SU(3)-equivariant 1-forms. From this action we naturally obtain factors ζ± 3
q+1 for the

induced representation π(h). This justifies the choice of γ in (9.33), as m changes by integer
multiples of 3 while n in (12.5) does not have such uniform behaviour.

C3-invariance The modified equivariance condition under (12.1) is readily read off to be

γ(h)Wα γ(h)−1 = ζθ
α

q+1Wα for α = 1, 2, 3 . (12.6)

In contrast to the SU(3)-equivariant case above, no particular form of the matrices Wα is fixed
yet, i.e. here the choice of realisation of the Zq+1-action on the fibres determines the field content.
By the same argument as above, a representation of Zq+1 on the fibres of the form (12.4) allows
the component (Wα)(n,m),(n′,m′) to be non-trivial if and only if

γ(n′,m′ )− γ(n,m) = θα mod q + 1 for α = 1, 2, 3 . (12.7)

For the weights (θα) = (1, 1,−2) we then pick up factors of ζ± 1
q+1 or ζ± 2

q+1, which excludes the
choice (9.33). However, the modification to (11.8) is allowed as n changes in integer increments.

McKay quiver In [147,167] the correspondence between the HYM moduli space for transla-
tionally-invariant and Zq+1-equivariant connections and the representation moduli of the McKay
quiver is employed. The McKay quiver associated to the orbifold singularity C3/Zq+1 and the
weights (θα) = (1, 1,−2) is constructed in exactly the same way as the Ck,l-quivers from Sec. 11,
except that it is based on the regular representation of Zq+1 rather than the representations Ck,l
considered here. It is a cyclic quiver with q+1 vertices labelled by the irreducible representations
of Zq+1, whose underlying graph is the affine extended Dynkin diagram of type Âq, and whose
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12 Quiver gauge theories on Calabi-Yau 3-orbifolds: a comparison

arrow set coincides with those of the Ck,l-quivers. See [173–175] for explicit constructions of
instanton moduli on C3/Zq+1 in this context. Consequently, our considerations do not enjoy
a straightforward comparison to the McKay quiver, which is the reason for the doted arrow
labelled not quite in Fig. 7.2.

12.2 Moduli spaces

We shall now formalise the treatment of the instanton moduli spaces. Since both scenarios are
subsets of HYM-instantons on Calabi-Yau cones, the expositions of Sec. 4.2 apply. Moreover,
the SU(3)-equivariant instantons are really a special case of Sec. 4.3; thus, we will only remark
the specialisations, but do not need to go over the details again. However, for the translationally-
invariant instantons we will discuss the geometric properties in more detail.

12.2.1 SU(3)-equivariance

Consider the space of SU(3)-equivariant connections A(Ek,l) on the bundle (9.25) (for d = 1),
which is an affine space modelled on Ω1(C(S5/Zq+1),EndU(1)(V k,l)

)
. The structure group Gk,l

of the bundle (9.25) is given by (9.24). An element X ∈ Ω1(C(S5/Zq+1),EndU(1)(V k,l)
)
can be

expressed as
X = Xµ e

µ +X6 dt ≡ Yj θj + Yj̄ θ̄
j , (12.8)

once one has chosen the coframe {eµ,dt} of the conformally equivalent cylinder R×S5/Zq+1
with r = exp t. The complexified 1-forms {θj , θ̄j} are defined in (3.6).

Let us now summarise the main ingredients, which follow by direct application of Sec. 4.3. After
transition to the complexified equations (4.32) and rescaling (4.42), we obtain the holomorphicity
conditions [

Y1,Y2
]

= 0 and dYj
ds = 2

[
Yj ,Z

]
for j = 1, 2 , (12.9a)

and the stability-like condition

d
ds
(
Z + Z†

)
+ 2

[
Z,Z†

]
+ 2λ2(s)

2∑
j=1

[
Yj ,Y†j

]
= 0 . (12.9b)

As before, the matrix-valued functions are subject to boundary conditions (4.50). In addition,
the real gauge group and its complexification are

Ĝ k,l := Ω0(R>0,Gk,l
)

and
(
Ĝ k,l

)C := Ω0(R>0, (Gk,l)C
)
. (12.10)

The holomorphicity conditions (12.9a) do define the Kähler space A1,1(Ek,l), on which in turn
equation (12.9b) can be interpreted as moment map

µ : A1,1(Ek,l) −→ ÊndU(1)
(
V k,l)

(
Y1,Y2,Z

)
7−→ d

ds
(
Z + Z†

)
+ 2

[
Z,Z†

]
+ 2λ2(s)

2∑
j=1

[
Yj ,Y†j

]
,

(12.11)

for the real framed gauge group.
Following the discussion from Sec. 4.3, provided we have chosen the quintuple {Tµ}µ=1,...,5 as

regular in the Cartan subalgebra of EndU(1)(V k,l), i.e. the intersection of the centraliser of the
Tµ is only the Cartan subalgebra, then the model solution is solely determined by the Tµ (recall
the exposition around (4.50)). Further assuming each of the two complex linear combinations
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Tj = 1
2(T2j − iT2j−1) for j = 1, 2, to be a regular pair, i.e. the centraliser of each Tj in the

complexified Lie algebra is the complexified Cartan subalgebra, we have an embedding

MSU(3)
k,l −→ Odiag (Y1(0),Y2(0))(

Y1(s),Y2(s),Z(s)
)
7−→

(
Y1(0),Y2(0)

) (12.12)

from the moduli space of solutions, satisfying the boundary conditions (4.50) together with the
equivariance condition imposed by our construction, in the diagonal orbit Odiag (Y1(0),Y2(0)).
The complex dimension of the diagonal orbit can be computed by employing the regularity of
the boundary conditions. Similarly to Sec. 4.3.5 we obtain

dimC (Odiag (Y1(0),Y2(0))) = dimR
(
Gk,l

)
− dimR (U(1)p)

=
∑

(n,m)∈Q0(k,l)
(n+ 1)p(n,m)

(
p(n,m) − 1

)
.

(12.13)

As such, the diagonal orbit is a Kähler subspace of the product OT1 ×OT2 of two regular semi-
simple orbits. The latter is naturally a complex symplectic manifold with the product of the
standard Kirillov-Kostant-Souriau symplectic forms on the orbits [146].

12.2.2 C3-invariance

Now we turn our attention to the space of translationally-invariant connections A(Ek,l) on the
bundle (11.1). The structure group Gk,l of (11.1) (which in this case coincides with the gauge
group) is given by (11.3) and its Lie algebra gk,l by (11.16). A generic element of the tangent
space TAA(Ek,l) at a point A ∈ A(Ek,l) is given by

W = Wα dzα +Wα dz̄α ∈ Ω1(C3/Zq+1, g
k,l) , (12.14)

with constant Wα,Wα for α = 1, 2, 3. Analogous to Sec. 4.2, let us define a metric g on A(Ek,l).
Gauge transformations of tangent vectors w = wα dzα +wα dz̄α are given by wα 7→ Ad(g)wα

for α = 1, 2, 3. We deduce the metric to be

g|A(w,v) := 1
2

3∑
α=1

tr
(
w†α vα +wα v

†
α

)
, (12.15)

and a symplectic form via

ω|A(w,v) := i
2

3∑
α=1

tr
(
w†α vα −wα v

†
α

)
. (12.16)

These definitions follow directly from the translationally-invariant limit of (4.8) and (4.9) (and
agree with those of [166]). Evidently the metric and symplectic structure are gauge-invariant.
Next, we define the subspace of invariant connections that satisfy the holomorphicity condi-

tions (11.13) as

A1,1(Ek,l) =
{(
{Wα}, {Wα}

)
∈ A

(
Ek,l

) ∣∣∣ [Wα,W β

]
= 0 for α, β = 1, 2, 3

}
, (12.17)

which is a finite-dimensional Kähler space by the general considerations of Sec. 4.2.
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Moment map The corresponding moment map can be introduced as before via

µ : A1,1(Ek,l) −→ gk,l(
{Wα}, {Wα}

)
7−→ i

3∑
α=1

[
Wα,Wα

]
,

(12.18)

but in this case it is possible to choose various gauge-invariant levels Ξ from (11.15) and
consequently define different moduli spaces

MC3
k,l(Ξ) = µ−1(Ξ)

/
Gk,l . (12.19)

Gauge group The complete set of instanton equations (11.13) and (11.17) is invariant under
the action of the gauge group (11.3) with the usual transformations

Wα 7−→ Ad(g)Wα for α = 1, 2, 3 (12.20)

for g ∈ Gk,l ↪→ U(p).
In contrast, only the holomorphicity condition (11.13) is invariant under (Gk,l)C gauge trans-

formations; whereas, the equation (11.17) is not invariant under the action of the complex gauge
group.

Stable points The set of stable points is defined, as in Sec. 4.2, to be

A1,1
st
(
Ek,l; Ξ

)
:=
{(
{Wα}, {Wα}

)
∈ A1,1(Ek,l) :

(
Gk,l)C

({Wα},{Wα}) ∩ µ
−1(Ξ) 6= ∅

}
, (12.21)

and by taking the GIT quotient one obtains the Ξ-dependent moduli spaces25

MC3
k,l(Ξ) ∼= A1,1

st
(
Ek,l; Ξ

) / (
Gk,l)C . (12.22)

The moment map (12.18) transforms under g ∈ (Gk,l)C as

µ
(
{Wα}, {Wα}

)
= i

3∑
α=1

[
Wα,Wα

]
7−→ i Ad(g)

3∑
α=1

[
h−1Wα h,Wα

]
, (12.23)

where we introduced h = h(g) = g† g ∈ (Gk,l)C/Gk,l. Thus, h is a positive Hermitian p×p
matrix. Moreover, Ad(g′ )Ξ = Ξ for any g′ ∈ Gk,l. By the embedding Gk,l ↪→ U(p) and the
polar decomposition of an element g ∈ (Gk,l)C into g = h′ exp(iX) for Hermitian h′ ∈ Gk,l and
skew-adjoint X ∈ gk,l, we have

Ad(g)Ξ = Ad(h′ )
(
Ad(exp (iX))Ξ

)
= Ad(h′ )

(
Ξ + i [X,Ξ]

)
= Ad(h′ )Ξ = Ξ , (12.24)

where we used the Baker-Campbell-Hausdorff formula and the fact that Ξ is central in gk,l.
It follows that Centre

(
gk,l
)
⊂ Centre

(
(gk,l)C

)
. Hence, a point

(
{Wα}, {Wα}

)
∈ A1,1(Ek,l) is

stable if and only if there exists a positive Hermitian matrix h (modulo unitary transformations)
satisfying the equation

3∑
α=1

[
h−1Wα h,Wα

]
= −i Ξ . (12.25)

25This description is analogous to the quiver GIT quotients used by [167,173] to describe instanton moduli on
C3/Zq+1 as representation moduli of the McKay quiver.
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12.2 Moduli spaces

By our general constructions the moduli spacesMC3
k,l(Ξ) are Kähler spaces; however, there is

no reason to expect them to be smooth manifolds. Generally, comparing to [166], the canonical
mapMC3

k,l(Ξ)→MC3
k,l(0) is then a partial resolution of singularities for generic Ξ.
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13 Conclusions and outlook

In the second part of this thesis, we explored the Sasakian quiver gauge theories associated to
the Sasaki-Einstein orbifold S5/Zq+1.

The construction of the quiver bundle, based on [54], has been extensively discussed in Ch. 9.
The resulting quiver graphs differ from the quivers associated to the homogeneous Kähler space
SU(3)/S(U(2)×U(1)) of [155] in the additional endomorphisms ψ(n,m), which originate from
the U(1)-fibration S5 → CP 2. The resulting quiver gauge theories are new and have not been
discussed in the literature before. By dimensional reduction over S5, we provided the explicit
expressions for the Yang-Mills-Higgs theory on Md, and discussed the representation-theoretic
implications of the Higgs-branch.

We then first considered the SU(3)-equivariant instantons overC(S5/Zq+1) in order to describe
the vacua of the Sasakian quiver gauge theories. Employing the results of Ch. 4, we described the
Kähler structure of the framed moduli space. Moreover, this space is a finite dimensional Kähler
space that is injectively mapped into a diagonal orbit, which is a finite-dimensional Kähler
subspace of the product of two complex coadjoint orbits, provided the boundary conditions are
regular.

For non-regular boundary conditions, we speculated in [149] that the coadjoint orbits have to
be replaced by the singular nilpotent cone such that the moduli space might exhibit singularities.
However, we have not yet preformed a precise analysis of this case and leave this for future
work.

The construction of the quiver bundle provides quivers without relations, but there are two
ways to impose such, which we subsequently explored. On the one hand, we imposed the
vacuum condition, i.e. vanishing of the scalar potential as in Sec. 9.4; on the other hand, we
enforced a generalised instanton condition as Ch. 10. In the limit of constant Higgs fields, the
generalised instanton equations correctly reproduced the defining equations of the Higgs branch
moduli space. In a different limit, reducing the new Higgs fields, associated to vertex edge
loops of the Sasakian quiver, to the identity, transforms the quiver theory consistently to the
SU(3)-equivariant quiver gauge theory on CP 2.
Secondly, we considered translationally invariant and Zq+1-equivariant instantons. The con-

structed quiver theories differ in two important aspects: (i) the entire set-up concerns constant
matrices, in contrast to the equivariant scenario; and (ii) the resulting quiver graphs have changed.
Moreover, translationally invariant instantons allow to introduce non-trivial FI-parameters, re-
sembling SYM theories on a D-brane world volume. In addition, each instanton moduli space,
i.e. each allowed level-set of the moment map modulo gauge group action, is a finite-dimensional
Kähler space, for which we explicitly constructed the Kähler structure.

Consequently, we constructed two sets of new quiver gauge theories on the Calabi-Yau orbifold
C(S5/Zq+1), with manifestly distinct quiver diagrams and instanton moduli space descriptions.
The distinctions can be traced back to the different invariance conditions imposed. The more
surprising is that we suspect both moduli spaces to have the same orbifold singularities, as
speculated in [149]. Again, the precise statement has yet to be determined and we hope to
report on this in the future.
Lastly, we would like to emphasise that the quiver structure of the Sasakian quiver crucially

depends on the coset G/H under consideration, which follows directly from the construction
of [54]. In contrast to the 3-dimensional case [147], in which S3/Γ accounts for all 3-dimensional
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13 Conclusions and outlook

Sasaki-Einstein orbifolds, the 5-sphere does not exhaust all Sasaki-Einstein 5-manifolds, not even
all cosets. For example, the 5-dimensional Sasaki-Einstein coset (SU(2)× SU(2))/U(1), known
as T 11, has different quiver diagrams and does not allow for a comparison with translational
invariant instantons on its cone, which is the conifold. The details of this case can be found
in [148].
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B Appendix: Sasakian quiver gauge
theories

B.1 Bundles on CP 2

B.1.1 Geometry of CP 2

SU(3)-equivariant 1-forms Consider the row vector β> = (β1, β2). The relations (8.9)
and (8.10) dictate the explicit form of the 1-forms βi and their exterior derivatives as

βi = 1
γ

dyi − 1
γ2 (γ + 1) y

i
2∑
j=1

ȳj dyj , β̄i = 1
γ

dȳi − 1
γ2 (γ + 1) ȳ

i
2∑
j=1

yj dȳj , (B.1a)

dβ1 = −β1 ∧
(
B11 + 3

2 a
)

+ β2 ∧ B̄12 , dβ2 = −β1 ∧B12 + β2 ∧
(
B11 − 3

2 a
)
, (B.1b)

dβ̄1 = −
(
B11 + 3

2 a
)
∧ β̄1 −B12 ∧ β̄2 , dβ̄2 = B̄12 ∧ β̄1 +

(
B11 − 3

2 a
)
∧ β̄2 . (B.1c)

One can regard βi as a basis for the (1, 0)-forms and β̄i as a basis for the (0, 1)-forms of the
complex cotangent bundle over the patch U0 of CP 2 with respect to an almost complex structure
J . The canonical 1-forms dyi and dȳi could equally well be used for a holomorphic decomposition
with respect to J , but the forms βi and β̄i are SU(3)-equivariant.

Hermitian Yang-Mills equations The canonical Kähler 2-form on the patch U0 is given
by

ωCP 2 = −iR2 β> ∧ β̄ = iR2
(
β1 ∧ β̄1 + β2 ∧ β̄2

)
, (B.2)

where R is the radius of the linearly embedded projective line CP 1 ⊂ CP 2. The 1-form B(1)
of (8.11) is then an instanton connection by the following argument: Locally, one can define a
(2, 0)-form Ω proportional to β1 ∧ β2. The HYM equations for a curvature 2-form F are

Ω ∧ F = 0 and ωCP 2 yF = 0 , (B.3)

which translate to F = F 1,1 being a (1, 1)-form for which tr(F 1,1) = 0. As before, the contraction
y between two forms η and η′ is defined as η y η′ := ? (η ∧ ? η′ ). The curvature FB = β̄ ∧β> is a
(1, 1)-form which is u(2)-valued, i.e. tr(FB) = 2a 6= 0. However, Fa = β† ∧ β is also a (1, 1)-form.
Thus the curvature of the connection B(1) = B − 1

2 a12 given by FB(1) = FB − 1
2 Fa 12 is a

(1, 1)-form and by construction traceless; hence B(1) is an su(2)-valued connection satisfying
the HYM equations, i.e. it is an instanton connection.

B.1.2 Hopf fibration and associated bundles

Consider the principal U(1)-bundle S5 = SU(3)/SU(2) → CP 2. One can associate a complex
vector bundle whose fibres carry any representation of the structure group U(1), i.e. a complex
vector space V together with a group homomorphism ρ : U(1)→ GL(V ). Then the associated
vector bundle E is given as E := S5 ×ρ V → CP 2. In particular, one can choose V = m to be
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B Appendix: Sasakian quiver gauge theories

the 1-dimensional irreducible representation of highest weight m ∈ Z. Following [156], one then
generates associated complex line bundles Lm

2
:= (L⊗m)

1
2 .

Chern classes and monopole charges Using the conventions of [156] for CP 2, there is a
normalised volume form

βvol := 1
2π2 β

1 ∧ β̄1 ∧ β2 ∧ β̄2 with
∫
CP 2

βvol = 1 , (B.4)

and the canonical Kähler 2-form (B.2) with

ωCP 2 ∧ ωCP 2 = −
(
2π R2)2 βvol . (B.5)

Consider the connection a from (8.9c) on the line bundle L associated to the Hopf bundle
S5 → CP 2 and the fundamental representation. Since its curvature is Fa = i

R2 ωCP 2 , the total
Chern character of the monopole bundle L is

ch(L) = exp
( i

2π Fa
)

= exp(ξ) (B.6)

where ξ := − 1
2π R2 ωCP 2 . Then one immediately reads off the first Chern class

c1(L) = ξ with
∫
CP 2

ξ ∧ ξ = −1 . (B.7)

Since [ξ] = [c1(L)] generates H2(CP 2,Z) ∼= Z [155], this identifies the first Chern number of L as
−1. Thus L ≡ L1 exists globally, and the dual bundle L−1 has first Chern class c1(L−1) = −c1(L)
and hence first Chern number +1. For all other bundles Lm

2
one takes the connection to be m

2 a,
which changes the first Chern class accordingly to

c1
(
Lm

2

)
= m

2 ξ , (B.8)

and the first Chern number to −m
2 . Hence, only for even values of m do the line bundles Lm

2
exist globally in the sense of conventional bundles. On the other hand, for odd values of m the
line bundles Lm

2
(and also the instanton bundles In for odd values of the isospin n [156]) are

examples of twisted bundles. The obstruction to the global existence of these bundles is the
failure of the cocycle condition for transition functions on triple overlaps of patches, which is
given by a non-trivial integral 3-cocycle representing the Dixmier-Douady class of an abelian
gerbe; see for example [176] for more details. As argued in [156], the Chern number m

2 of the
line bundle L−m2 should be taken as the monopole charge rather than the Hα2-eigenvalue m in
the Biedenharn basis.

B.2 Representations

B.2.1 Biedenharn basis

Let us summarise the relevant details concerning the Biedenharn basis [170–172], which is
defined as the basis of eigenvectors according to (9.8); we follow [155,156] for the presentation
and notation.
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B.2 Representations

Generators The remaining generators of su(3) act on this eigenvector basis as

E±α1

∣∣∣∣∣nq m
〉

= 1
2

√
(n∓ q) (n± q + 2)

∣∣∣∣∣ n
q ± 2m

〉
, (B.9a)

Eα2

∣∣∣∣∣nq m
〉

=
√

n−q−2
2(n+1) Λ+

k,l(n,m)
∣∣∣∣∣n+ 1
q − 1m+ 3

〉
(B.9b)

+
√

n+q
2(n+1) Λ−k,l(n,m)

∣∣∣∣∣n− 1
q − 1m+ 3

〉
,

Eα1+α2

∣∣∣∣∣nq m
〉

=
√

n+q+2
2(n+1) Λ+

k,l(n,m)
∣∣∣∣∣n+ 1
q + 1m+ 3

〉
(B.9c)

+
√

n−q
2(n+1) Λ−k,l(n,m)

∣∣∣∣∣n− 1
q + 1m+ 3

〉
,

with E†α2 = E>α2 = E−α2 and E†α1+α2 = E>α1+α2 = E−(α1+α2). It is convenient to express the
generators as

E
+ (n,m)
α1+α2 =

∑
q∈Qn

√
n+q+2
2(n+1) Λ+

k,l(n,m)
∣∣∣∣∣n+ 1
q + 1m+ 3

〉〈
n
q
m

∣∣∣∣∣ , (B.10a)

E
− (n,m)
α1+α2 =

∑
q∈Qn

√
n−q

2(n+1) Λ−k,l(n,m)
∣∣∣∣∣n− 1
q + 1m+ 3

〉〈
n
q
m

∣∣∣∣∣ , (B.10b)

E+ (n,m)
α2 =

∑
q∈Qn

√
n−q−2
2(n+1) Λ+

k,l(n,m)
∣∣∣∣∣n+ 1
q − 1m+ 3

〉〈
n
q
m

∣∣∣∣∣ , (B.10c)

E− (n,m)
α2 =

∑
q∈Qn

√
n+q

2(n+1) Λ−k,l(n,m)
∣∣∣∣∣n− 1
q − 1m+ 3

〉〈
n
q
m

∣∣∣∣∣ , (B.10d)

where Qn := {−n,−n+ 2, . . . , n− 2, n} and

Λ+
k,l(n,m) = 1√

n+ 2

√(
k+2l

3 + n
2 + m

6 + 2
) (

k−l
3 + n

2 + m
6 + 1

) (
2k+l

3 − n
2 −

m
6

)
, (B.11a)

Λ−k,l(n,m) = 1√
n

√(
k+2l

3 − n
2 + m

6 + 1
) (

l−k
3 + n

2 −
m
6

) (
2k+l

3 + n
2 −

m
6 + 1

)
, (B.11b)

with Λ−k,l(0,m) := 0 [156]. The identity operator Π(n,m) of the representation (n,m) is given by

Π(n,m) =
∑
q∈Qn

∣∣∣∣∣nq m
〉〈

n
q
m

∣∣∣∣∣ . (B.12)
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B Appendix: Sasakian quiver gauge theories

Fields The 1-instanton connection (8.11) is represented in the Biedenharn basis by

B(1) = B11Hα1 +B12Eα1 − (B12Eα1)†

=
∑
n,q,m

(
B11 q

∣∣∣∣∣nq m
〉〈

n
q
m

∣∣∣∣∣+ 1
2 B12

√
(n− q) (n+ q + 2)

∣∣∣∣∣ n
q + 2m

〉〈
n
q
m

∣∣∣∣∣
− 1

2 B̄12

√
(n+ q) (n− q + 2)

∣∣∣∣∣ n
q − 2m

〉〈
n
q
m

∣∣∣∣∣
)

≡
⊕

(n,m)∈Q0(k,l)
B(n,m) ,

(B.13)

where B(n,m) ∈ Ω1(SU(2),End
(

(n,m)
))
. One further introduces matrix-valued 1-forms given

by
β̄q+1 = β̄1

q+1Eα1+α2 + β̄2
q+1Eα2 ≡

⊕
(n,m)∈Q0(k,l)

(
β̄+

(n,m) + β̄−(n,m)

)
, (B.14a)

with the morphism-valued 1-forms

β̄±(n,m) ∈ Ω1
(
S5/Zq+1 , Hom

(
(n,m) , (n± 1,m+ 3)

))
, (B.14b)

and the corresponding adjoint maps

β±(n,m) ∈ Ω1
(
S5/Zq+1 , Hom

(
(n± 1,m+ 3) , (n,m)

))
. (B.14c)

They have the explicit form

β̄±(n,m) =
Λ±k,l(n,m)√

2(n+ 1)
∑
q∈Qn

(√
n± q + 1± 1 β̄1

q+1

∣∣∣∣∣n± 1
q + 1m+ 3

〉〈
n
q
m

∣∣∣∣∣
+
√
n∓ q + 1± 1 β̄2

q+1

∣∣∣∣∣n± 1
q − 1m+ 3

〉〈
n
q
m

∣∣∣∣∣
)
.

(B.15)

Skew-Hermitian basis Similarly to [141], for a given representation Ck,l of the generators
Ii and Iµ defined in (9.2) the decomposition into the Biedenharn basis yields

I1 =
⊕

(n,m)
I

(n,m)
1 =

⊕
± , (n,m)

(
E
± (n,m)
α1+α2 − E

± (n,m)
−α1−α2

)
, (B.16a)

I2 =
⊕

(n,m)
I

(n,m)
2 = −i

⊕
± , (n,m)

(
E
± (n,m)
α1+α2 + E

± (n,m)
−α1−α2

)
, (B.16b)

I3 =
⊕

(n,m)
I

(n,m)
3 =

⊕
± , (n,m)

(
E± (n,m)
α2 − E± (n,m)

−α2

)
, (B.16c)

I4 =
⊕

(n,m)
I

(n,m)
4 = −i

⊕
± , (n,m)

(
E± (n,m)
α2 + E

± (n,m)
−α2

)
, (B.16d)

I5 =
⊕

(n,m)
I

(n,m)
5 = − i

2
⊕

(n,m)
H(n,m)
α2 . (B.16e)

126



B.2 Representations

The commutation relations [Ii, Ia] = f b
ia Ib and [Ii, I5] = 0 induced by (9.4) respectively imply

relations among the components given by

I
(n′,m′)
i I(n,m)

a = I(n,m)
a I

(n,m)
i + f b

ia I
(n,m)
b , (B.17a)

I
(n,m)
i I

(n,m)
5 = I

(n,m)
5 I

(n,m)
i , (B.17b)

where i ∈ {6, 7, 8}, a ∈ {1, 2, 3, 4}, Ii =
⊕

(n,m) I
(n,m)
i and (n′,m′ ) = (n± 1,m+ 3).

B.2.2 Flat connections

One can compute the matrix elements of A0 from (9.12) with respect to the Biedenharn basis.
By choosing an SU(3)-representation Ck,l, which yields an SU(2)-representation by restriction,
one induces a connection A0 on the vector V-bundle

ṼCk,l
Ck,l−−→ G/K̃ with VCk,l := G×K Ck,l (B.18)

associated to the principal V-bundle (8.21). Then the connection A0 can be decomposed into
morphism-valued 1-forms

A0 =
⊕

(n,m)∈Q0(k,l)

(
B(n,m) −

im
2 ηΠ(n,m) + β̄+

(n,m) + β̄−(n,m) − β
+
(n,m) − β

−
(n,m)

)
(B.19)

with respect to this basis. The computation of the vanishing curvature F0 = 0 yields relations
between the different matrix elements given by

dB(n,m) +B(n,m) ∧B(n,m) − im
2 dηΠ(n,m) = β̄+

(n−1,m−3) ∧ β
+
(n−1,m−3) + β̄−(n+1,m−3) ∧ β

−
(n+1,m−3)

+ β+
(n,m) ∧ β̄

+
(n,m) + β−(n,m) ∧ β̄

−
(n,m) , (B.20a)

0 = dβ̄±(n,m) +B(n+1,m+3) ∧ β̄±(n,m) + β̄±(n,m) ∧B(n,m) − 3 i
2 ηΠ(n±1,m+3) ∧ β̄±(n,m) , (B.20b)

0 = β̄+
(n,m) ∧ β̄

−
(n+1,m−3) + β̄−(n+2,m) ∧ β̄

+
(n+1,m−3) , (B.20c)

0 = β̄+
(n,m) ∧ β

−
(n,m) + β−(n+1,m+3) ∧ β̄

+
(n−1,m+3) , (B.20d)

0 = β̄±(n,m) ∧ β̄
±
(n∓1,m−3) , (B.20e)

plus their conjugate equations.

B.2.3 Quiver connections

Alternatively, one can compute the matrix elements of the curvature (9.36c) in the Biedenharn
basis. For this, the curvature F = dA+A ∧A is arranged into components

(F)(n,m),(n′,m′) ∈ Ω2
(
Ek,l , End

(
Ep(n,m) , Ep(n′,m′)

)
⊗ End

(
(n,m) , (n′,m′ )

))
, (B.21)

which can be simplified by using the relations (B.20). We denote the curvature of the connection
A(n,m) on the bundle (9.21) by

F(n,m) := dA(n,m) +A(n,m) ∧A(n,m) (B.22a)
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B Appendix: Sasakian quiver gauge theories

and the bifundamental covariant derivatives of the Higgs fields as

Dφ±(n,m) := dφ±(n,m) +A(n±1,m+3) φ
±
(n,m) − φ

±
(n,m)A(n,m) , (B.22b)

Dψ(n,m) := dψ(n,m) +A(n,m) ψ(n,m) − ψ(n,m)A(n,m) . (B.22c)

Then the non-zero curvature components read as

(F)(n,m),(n,m) =F(n,m) ⊗Π(n,m) −Dψ(n,m) ∧ im
2 ηΠ(n,m)

−
(
ψ(n,m) − 1p(n,m)

)
⊗ im

2 dηΠ(n,m)

+
(
1p(n,m) − φ

+
(n−1,m−3) (φ+)†(n−1,m−3)

)
⊗ β̄+

(n−1,m−3) ∧ β
+
(n−1,m−3)

+
(
1p(n,m) − φ

−
(n+1,m−3) (φ−)†(n+1,m−3)

)
⊗ β̄−(n+1,m−3) ∧ β

−
(n+1,m−3)

+
(
1p(n,m) − (φ+)†(n,m) φ

+
(n,m)

)
⊗ β+

(n,m) ∧ β̄
+
(n,m)

+
(
1p(n,m) − (φ−)†(n,m) φ

−
(n,m)

)
⊗ β−(n,m) ∧ β̄

−
(n,m) , (B.23a)

(F)(n,m),(n±1,m+3) =Dφ±(n,m) ∧ β̄
±
(n,m) −

(
(m+ 3)ψ(n±1,m+3) φ

±
(n,m) (B.23b)

−mφ±(n,m) ψ(n,m) − 3φ±(n,m)

)
⊗ i

2 ηΠ(n±1,m+3) ∧ β̄±(n,m) ,

(F)(n+1,m−3),(n+1,m+3) =
(
φ+

(n,m) φ
−
(n+1,m−3) − φ

−
(n+2,m) φ

+
(n+1,m−3)

)
(B.23c)

⊗ β̄+
(n,m) ∧ β̄

−
(n+1,m−3) ,

(F)(n−1,m+3),(n+1,m+3) = −
(
φ+

(n,m) (φ−)†(n,m) − (φ−)†(n+1,m+3) φ
+
(n−1,m+3)

)
(B.23d)

⊗ β̄+
(n,m) ∧ β

−
(n,m) ,

which are accompanied by the anti-Hermiticity conditions

(F)(n′,m′),(n,m) = −
(
(F)(n,m),(n′,m′)

)†
. (B.23e)

By setting ψ(n,m) = 1p(n,m) for all (n,m) ∈ Q0(k, l), these curvature matrix elements correctly
reproduce those computed in [156] for equivariant dimensional reduction over CP 2.

B.3 Quiver bundle examples

B.3.1 C1,0-quiver

Consider the fundamental 3-dimensional representation C1,0 of G = SU(3). Its decomposition
into irreducible SU(2)-representations is given by

C1,0∣∣
SU(2) = (0,−2) ⊕ (1, 1) , (B.24)

wherein (0,−2) is the SU(2)-singlet and (1, 1) is the SU(2)-doublet. Using the general quiver
construction of Sec. 9.3, the G-action dictates the existence of bundle morphisms

φ := φ+
(0,−2) ∈ Hom

(
Ep(0,−2) , Ep(1,1)

)
, φ† :=

(
φ+)†

(0,−2) ∈ Hom
(
Ep(1,1) , Ep(0,−2)

)
, (B.25a)

ψ0 := ψ(0,−2) ∈ End
(
Ep(0,−2)

)
, ψ1 := ψ(1,1) ∈ End

(
Ep(1,1)

)
. (B.25b)
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B.4 Equivariant dimensional reduction details

B.3.2 C2,0-quiver

The 6-dimensional representation C2,0 of SU(3) splits under restriction to SU(2) as

C2,0∣∣
SU(2) = (2, 2) ⊕ (1,−1) ⊕ (0,−4) . (B.26)

The SU(3)-action intertwines the irreducible SU(2)-modules and the corresponding bundles.
The actions of Eα1+α2 and Eα2 respectively yield Higgs fields

φ0 := φ+
(0,−4) ∈ Hom

(
Ep(0,−4) , Ep(1,−1)

)
, φ1 := φ+

(1,−1) ∈ Hom
(
Ep(1,−1) , Ep(2,2)

)
. (B.27a)

Due to the non-zero restrictions of Hα2 to its eigenspaces (0,−4), (1,−1) and (2, 2), one further
has three bundle endomorphisms

ψ0 := ψ(0,−4) ∈ End
(
Ep(0,−4)

)
, ψ1 := ψ(1,−1) ∈ End

(
Ep(1,−1)

)
,

ψ2 := ψ(2,2) ∈ End
(
Ep(2,2)

)
.

(B.27b)

B.3.3 C1,1-quiver

The 8-dimensional adjoint representation of SU(3) splits under restriction to SU(2) as

C1,1∣∣
SU(2) = (1, 3) ⊕ (0, 0) ⊕ (2, 0) ⊕ (1,−3) . (B.28)

The action of SU(3) implies the existence of the following bundle morphisms: The actions of
Eα1+α2 and Eα2 translate into the Higgs fields

φ+
1 := φ+

(1,−3) ∈ Hom
(
Ep(1,−3) , Ep(2,0)

)
, φ−1 := φ−(1,−3) ∈ Hom

(
Ep(1,−3) , Ep(0,0)

)
, (B.29a)

φ+
0 := φ+

(0,0) ∈ Hom
(
Ep(0,0) , Ep(1,3)

)
, φ−0 := φ−(2,0) ∈ Hom

(
Ep(2,0) , Ep(1,3)

)
, (B.29b)

whereas the action of Hα2 generates

ψ± := ψ(1,± 3) ∈ End
(
Ep(1,±3)

)
. (B.29c)

Note that Hα2 neither introduces endomorphisms on (0, 0) and (2, 0) nor does it intertwine
these SU(2)-multiplets. This follows from the fact that these representations are subspaces of
the kernel of Hα2 , and that Hα2 commutes with the entire Lie algebra su(2).

B.4 Equivariant dimensional reduction details

B.4.1 1-form products on CP 2

The metric on Md × CP 2 is given as

ds2 = ds2
Md + ds2

CP 2 , (B.30)

where
ds2

Md = Gµ′ν′ dxµ
′ ⊗ dxν′ (B.31)

with (xµ′) local real coordinates on the manifold Md and µ′, ν ′, . . . = 1, . . . , d. The metric on
CP 2 is written as

gCP 2 := ds2
CP 2 = R2

(
β1 ⊗ β̄1 + β̄1 ⊗ β1 + β2 ⊗ β̄2 + β̄2 ⊗ β2

)
. (B.32)
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This metric is compatible with the Kähler form (B.2), and by defining the complex structure J via
ωCP 2(·, ·) = gCP 2(·, J ·) on the cotangent bundle of CP 2 one obtains Jβi = iβi and Jβ̄i = −i β̄i
for i = 1, 2. The corresponding Hodge operator is denoted ?CP 2 , with the non-vanishing 1-form
products

?CP 21 = R4 β1 ∧ β̄1 ∧ β2 ∧ β̄2 = 2
(
π R2)2 βvol , (B.33a)

β̄1 ∧ ?CP 2β1 = β̄2 ∧ ?CP 2β2 = β1 ∧ ?CP 2 β̄1 = β2 ∧ ?CP 2 β̄2 = 2π2R2 βvol , (B.33b)

?CP 2 β̄1 ∧ β1 = β2 ∧ β̄2 , ?CP 2 β̄2 ∧ β2 = β1 ∧ β̄1 , (B.33c)

?CP 2 β̄1 ∧ β2 = β̄1 ∧ β2 , ?CP 2 β̄2 ∧ β1 = β̄2 ∧ β1 . (B.33d)

For later use we shall also need to compute various products involving matrix-valued 1-forms.
Firstly, we have26

tr
β±(n,m) ∧ ?CP 2 β̄±(n,m)

Λ±k,l(n,m)2 = 2π2R2 (n+ 1± 1)βvol , (B.34a)

tr
β±(n,m) ∧ β̄

±
(n,m) ∧ ?CP 2

(
β±(n,m) ∧ β̄

±
(n,m)

)†
Λ±k,l(n,m)4 = 2π2 (n+ 1± 1)βvol , (B.34b)

tr
β̄±(n,m) ∧ β

±
(n,m) ∧ ?CP 2

(
β̄±(n,m) ∧ β

±
(n,m)

)†
Λ±k,l(n,m)4 = 2π2 (n+ 1± 1)2

n+ 1 βvol , (B.34c)

tr
β̄+

(n,m) ∧ β̄
−
(n+1,m−3) ∧ ?CP 2

(
β̄+

(n,m) ∧ β̄
−
(n+1,m−3)

)†
Λ+
k,l(n,m)2 Λ−k,l(n+ 1,m− 3)2 = 2π2 n+ 1

3 βvol , (B.34d)

tr
β̄+

(n,m) ∧ β
−
(n,m) ∧ ?CP 2

(
β̄+

(n,m) ∧ β
−
(n,m)

)†
Λ+
k,l(n,m)2 Λ−k,l(n,m)2 = 2π2 n (n+ 2)

n+ 1 βvol . (B.34e)

The trace formulas (B.34) will have to be supplemented by

tr
β+

(n,m) ∧ β̄
+
(n,m) ∧ ?CP 2

(
β−(n,m) ∧ β̄

−
(n,m)

)†
Λ+
k,l(n,m)2 Λ−k,l(n,m)2 = 2π2 2n (n+ 2)

3(n+ 1) βvol , (B.35a)

tr
β̄+

(n−1,m−3) ∧ β
+
(n−1,m−3) ∧ ?CP 2

(
β̄−(n+1,m−3) ∧ β

−
(n+1,m−3)

)†
Λ+
k,l(n− 1,m− 3)2 Λ−k,l(n+ 1,m− 3)2 = 2π2 2(n+ 1)

3 βvol , (B.35b)

tr
β±(n,m) ∧ β̄

±
(n,m) ∧ ?CP 2

(
β̄±(n∓1,m−3) ∧ β

±
(n∓1,m−3)

)†
Λ±k,l(n,m)2 Λ±k,l(n∓ 1,m− 3)2 = −2π2 n (n+ 2)

n+ 1∓ 1 βvol , (B.35c)

tr
β±(n,m) ∧ β̄

±
(n,m) ∧ ?CP 2

(
β̄∓(n±1,m−3) ∧ β

∓
(n±1,m−3)

)†
Λ±k,l(n,m)2 Λ∓k,l(n± 1,m− 3)2 = 2π2

(
n (n+ 2)

3(n+ 1± 1) (B.35d)

− (n+ 1)
)
βvol

26The expressions (B.34) correct the trace formulas from [156, Eq. (B.7)].
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and one additionally needs the traces

tr
β±(n,m) ∧ β̄

±
(n,m)

Λ±k,l(n,m)2 = − i
2R2 (n+ 1± 1)ωCP 2 = ?CP 2 tr

(
β±(n,m) ∧ β̄

±
(n,m)

)†
Λ±k,l(n,m)2 , (B.36a)

tr
β̄±(n∓1,m−3) ∧ β

±
(n∓1,m−3)

Λ±k,l(n∓ 1,m− 3)2 = i
2R2 (n+1)ωCP 2 = ?CP 2 tr

(
β̄±(n∓1,m−3) ∧ β

±
(n∓1,m−3)

)†
Λ±k,l(n∓ 1,m− 3)2 . (B.36b)

B.4.2 1-form products on S5

Let us write the metric (9.39) in the form

ds2
S5 = gij

(
βiϕ ⊗ β̄jϕ + β̄jϕ ⊗ βiϕ

)
+ g55 η ⊗ η = 2R2 δab e

a ⊗ eb + r2 e5 ⊗ e5 , (B.37)

for i, j = 1, 2 and a, b = 1, 2, 3, 4, where r is the radius of the S1-fibre of the Hopf bundle
S5 → CP 2. The corresponding Hodge operator is denoted ?S5 . Define the normalised volume
form ηvol on S5 as

?S51 = −(2π)3 r R4 ηvol with βvol ∧ η = −4π ηvol = − 2
π2 e

12345

and
∫
S5
ηvol = 1 .

(B.38)

In the computation of the reduced action (9.42) we employ the identities

eµ ∧ ?S5eν = √g gµν e12345 =


4π3 r R2 ηvol , µ = ν = a ,
(2π)3 R4

r ηvol , µ = ν = 5
0 , µ 6= ν ,

, (B.39a)

eµν ∧ ?S5eρσ =


√
g gµρ gνσ e12345 , µ = ρ, ν = σ ,

−√g gµσ gνρ e12345 , µ = σ, ν = ρ
0 , otherwise ,

, (B.39b)

eab ∧ ?S5eab = 2π3 r ηvol and ea5 ∧ ?S5ea5 = 4π3 R2

r ηvol . (B.39c)

We can reduce the action of the Hodge operator in 5 dimensions to the action of ?CP 2 from
App. B.4.1 to get

?S5βiϕ = r
(
?CP 2βiϕ

)
∧ η , ?S5 β̄iϕ = r

(
?CP 2 β̄iϕ

)
∧ η , (B.40a)

?S5

(
βiϕ ∧ β̄jϕ

)
= r

(
?CP 2βiϕ ∧ β̄jϕ

)
∧ η , ?S5

(
βiϕ ∧ βjϕ

)
= r

(
?CP 2βiϕ ∧ βjϕ

)
∧ η , (B.40b)

?S5

(
η ∧ βiϕ

)
= 1

r ?CP 2 βiϕ , ?S5

(
η ∧ β̄iϕ

)
= 1

r ?CP 2 β̄iϕ , (B.40c)

?S5η = 2(π R2)2

r βvol , η ∧ ?S5η = − (2π)3 R4

r ηvol . (B.40d)

We can additionally compute

dη = −2ω3 = i
(
β1
ϕ ∧ β̄1

ϕ + β2
ϕ ∧ β̄2

ϕ

)
= − 1

R2 ωCP 2 , (B.41a)

?S5dη = − 1
R2 ?S5 ωCP 2 = − r

R2 (?CP 2ωCP 2) ∧ η = r
R2 ωCP 2 ∧ η , (B.41b)
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dη ∧ ?S5dη = −2(2π)3 r ηvol , (B.41c)

wherein we used ?CP 2ωCP 2 = −ωCP 2 and (B.5). Note that due to the structure of the extension
from CP 2 to S5, the matrices accompanying contributions from η or dη are always proportional
to the identity operators Π(n,m); thus their inclusion does not alter the trace formulas of
App. B.4.1.

B.4.3 Yang-Mills action

The reduction of (9.40) proceeds by expanding

trF ∧ ?F = −
∑

(n,m)∈Q0(k,l)
tr
(
F ∧ ?F†

)
(n,m),(n,m) . (B.42)

We insert the explicit non-vanishing components (B.23), rescale the horizontal Higgs fields

φ±(n,m) −→
1

Λ±
k,l

(n,m) φ
±
(n,m) (B.43)

as in [156] (but not the vertical Higgs fields ψ(n,m)), and evaluate the traces over the representa-
tion spaces (n,m) for each weight (n,m) ∈ Q0(k, l) using the matrix products from App. B.4.1
and the relations of App. B.4.2. Finally, one then integrates over S5 using the unit volume form
ηvol introduced in App. B.4.2. The dimensionally reduced Yang-Mills action on Md then reads
as27

S = 2π3 r R4

g̃2

∫
Md

ddx
√
G

∑
(n,m)∈Q0(k,l)

tr
(

(n+ 1)
(
F(n,m)

)†
µ′ν′

(
F(n,m)

)µ′ν′
+ n+ 2

R2
(
Dµ′φ

+
(n,m)

)†
Dµ′φ+

(n,m) + n+ 1
R2 Dµ′φ

+
(n−1,m−3)

(
Dµ′φ+

(n−1,m−3)
)†

+ n

R2
(
Dµ′φ

−
(n,m)

)†
Dµ′φ−(n,m) + n+ 1

R2 Dµ′φ
−
(n+1,m−3)

(
Dµ′φ−(n+1,m−3)

)†
+ n+ 2

R4

(
Λ+
k,l(n,m)2 1p(n,m) − (φ+)†(n,m) φ

+
(n,m)

)2

+ n

R4

(
Λ−k,l(n,m)2 1p(n,m) − (φ−)†(n,m) φ

−
(n,m)

)2

+ n+ 1
nR4

(
Λ+
k,l(n− 1,m− 3)2 1p(n,m) − φ

+
(n−1,m−3) (φ+)†(n−1,m−3)

)2

+ (n+ 1)2

(n+ 2)R4

(
Λ−k,l(n+ 1,m− 3)2 1p(n,m) − φ

−
(n+1,m−3) (φ−)†(n+1,m−3)

)2

+ 2(n+ 3)
3R4

∣∣∣φ+
(n,m) φ

−
(n+1,m−3) −

Λ+
k,l(n,m) Λ−k,l(n+ 1,m− 3)

Λ+
k,l(n+ 1,m− 3) Λ−k,l(n+ 2,m)

φ−(n+2,m) φ
+
(n+1,m−3)

∣∣∣2
+ 2n (n+ 2)

(n+ 1)R4

∣∣∣φ+
(n,m) (φ−)†(n,m)

−
Λ+
k,l(n,m) Λ−k,l(n,m)

Λ+
k,l(n− 1,m+ 3) Λ−k,l(n+ 1,m+ 3)

(φ−)†(n+1,m+3) φ
+
(n−1,m+3)

∣∣∣2
+ 4n (n+ 2)

3(n+ 1)R4

((
Λ+
k,l(n,m)2 1p(n,m) − (φ+)†(n,m) φ

+
(n,m)

)
27By setting ψ(n,m) = 1p(n,m) for all (n,m) ∈ Q0(k, l) and r = 1

4π in (B.44) we obtain the quiver gauge theory
action for equivariant dimensional reduction over the complex projective plane CP 2; this reduction eliminates
the last nine lines of (B.44) and the resulting expression corrects [156, Eq. (3.5)].
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×
(
Λ−k,l(n,m)2 1p(n,m) − (φ−)†(n,m) φ

−
(n,m)

))
− 2(n+ 2)

R4

((
Λ+
k,l(n,m)2 1p(n,m) − (φ+)†(n,m) φ

+
(n,m)

)
×
(
Λ+
k,l(n− 1,m− 3)2 1p(n,m) − φ

+
(n−1,m−3) (φ+)†(n−1,m−3)

))
+ 2
R4

( n
3 − n− 1

) ((
Λ+
k,l(n,m)2 1p(n,m) − (φ+)†(n,m) φ

+
(n,m)

)
×
(
Λ−k,l(n+ 1,m− 3)2 1p(n,m) − φ

−
(n+1,m−3) (φ−)†(n+1,m−3)

))
+ 2
R4

( n+ 2
3 − n− 1

) ((
Λ−k,l(n,m)2 1p(n,m) − (φ−)†(n,m) φ

−
(n,m)

)
×
(
Λ+
k,l(n− 1,m− 3)2 1p(n,m) − φ

+
(n−1,m−3) (φ+)†(n−1,m−3)

))
− 2n
R4

((
Λ−k,l(n,m)2 1p(n,m) − (φ−)†(n,m) φ

−
(n,m)

)
×
(
Λ−k,l(n+ 1,m− 3)2 1p(n,m) − φ

−
(n+1,m−3) (φ−)†(n+1,m−3)

))
+ 4(n+ 1)

3R4

((
Λ+
k,l(n− 1,m− 3)2 1p(n,m) − φ

+
(n−1,m−3) (φ+)†(n−1,m−3)

)
×
(
Λ−k,l(n+ 1,m− 3)2 1p(n,m) − φ

−
(n+1,m−3) (φ−)†(n+1,m−3)

))
+ (n+ 1)m2

4r2 Dµ′ψ(n,m)
(
Dµ′ψ(n,m)

)† + 2(n+ 1)m2

R4

(
ψ(n,m) − 1p(n,m)

)2

− m (n+ 2)
R4

((
Λ+
k,l(n,m)2 1p(n,m) − (φ+)†(n,m) φ

+
(n,m)

) (
ψ(n,m) − 1p(n,m)

))
− mn

R4

((
Λ−k,l(n,m)2 1p(n,m) − (φ−)†(n,m) φ

−
(n,m)

) (
ψ(n,m) − 1p(n,m)

))
+ m (n+ 1)

R4

((
Λ+
k,l(n− 1,m− 3)2 1p(n,m) − φ

+
(n−1,m−3) (φ+)†(n−1,m−3)

) (
ψ(n,m) − 1p(n,m)

))
+ m (n+ 1)

R4

((
Λ−k,l(n+ 1,m− 3)2 1p(n,m) − φ

−
(n+1,m−3) (φ−)†(n+1,m−3)

) (
ψ(n,m) − 1p(n,m)

))
+ n+ 1

4R2 r2

∣∣∣mψ(n,m) φ
+
(n−1,m−3) − (m− 3)φ+

(n−1,m−3) ψ(n−1,m−3) − 3φ+
(n−1,m−3)

∣∣∣2
+ n+ 1

4R2 r2

∣∣∣mψ(n,m) φ
−
(n+1,m−3) − (m− 3)φ−(n+1,m−3) ψ(n+1,m−3) − 3φ−(n+1,m−3)

∣∣∣2
+ n+ 2

4R2 r2

∣∣∣(m+ 3)ψ(n+1,m+3) φ
+
(n,m) −mφ+

(n,m)ψ(n,m) − 3φ+
(n,m)

∣∣∣2
+ n

4R2 r2

∣∣∣(m+ 3)ψ(n−1,m+3) φ
−
(n,m) −mφ−(n,m) ψ(n,m) − 3φ−(n,m)

∣∣∣2) . (B.44)

Note that while the trace in (9.42) is taken over the full fibre space V k,l of the equivariant vector
bundle (9.22), in (B.44) the trace over the SU(2)×U(1)-representations (n,m) has already been
evaluated.
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14 Introduction and motivation
The moduli spaces of supersymmetric gauge theories with 8 supercharges have generically two
branches: the Higgs and the Coulomb branch. In this third part of the thesis we focus on
3-dimensional N = 4 gauge theories, for which both branches are hyper-Kähler spaces. Despite
this fact, the branches are fundamentally different.

14.1 3-dimensional gauge theories with 8 supercharges

A 3-dimensional N = 4 supersymmetric Yang-Mills theory (SYM) is defined by two choices: (i)
a gauge group G, which is a compact Lie group, and (ii) a matter content, which corresponds
to a quaternionic representation R of G. The field theory then comprises a vector multiplet,
transforming in the adjoint representation of G. The multiplet contains the Yang-Mills field A
and a triplet of real scalar fields (φ1, φ2, φ3) taking values in g = Lie(G) at a given point. In
addition, there are hypermultiplets, describing the matter content, transforming in the chosen
representation R. The hypermultiplets contain a total of 4N real scalars for some N ≥ 0. To
completely determine the Lagrangian, one needs to add gauge couplings for each factor in G as
well as masses and FI-parameters, where the latter two serve as deformation parameters.

The R-symmetry group is SU(2)L× SU(2)R, wherein the three scalars of the vector multiplet
transform as triplet under SU(2)L, but are trivial under SU(2)R. In addition, there is a global
symmetry group GH×GC . The Higgs branch global symmetry GH is given by the normaliser of
G inside the hyper-Kähler isometry group USp(N) modulo the action of G. More interestingly
here is the Coulomb branch global symmetry GC that arises due to abelian factors in the
gauge group, i.e. in the ultraviolet regime GC = U(1)#U(1) factors in G. The infrared GC may
be enhanced to a non-abelian group whose maximal torus is precisely the UV group, see for
instance [177] or the analyis of [178,179].

14.1.1 Higgs branch

The Higgs branchMH is understood as hyper-Kähler quotient

MH = R4N///G (14.1)

in which the vanishing locus of the N = 4 F-terms is quotient by the complexified gauge group.
The F-term equations play the role of complex hyper-Kähler moment maps, while the transition
to the complexified gauge group eliminates the necessity to impose the D-term constraints. The
quaternionic dimension of the quotient equals N − dim(G). Moreover, this classical description
is sufficient as the Higgs branch is protected from quantum corrections. The explicit quotient
construction can be supplemented by the study of the Hilbert series, which allows to gain further
understanding ofMH as a complex space.

14.1.2 Coulomb branch

Classically, the Coulomb branchMC is the hyper-Kähler space

Mclass
C ≈

(
R3 × S1

)rk(G)
/WG (14.2)
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14 Introduction and motivation

where WG is the Weyl group of G and rk(G) denotes the rank of G, which coincides with the
quaternionic dimension of MC . This conclusion is based on the following arguments: in the
vacuum, the scalar fields in the vector multiplet may acquire non-trivial vacuum expectation
values (VEVs) and the terms in the scalar potential ∼ |[φi, φj ]|2 enforce that all VEVs lie in
the same Cartan subalgebra. Thus, the scalar VEVs parametrise a R3·rk(G). However, this is
an insufficient description and one needs to consider the VEVs of so-called dual photons. In 3
dimensions, one can (Hodge-)dualise an abelian field strength F = dA to a periodic scalar γ via
dγ = ?F . Assuming that the choice of VEVs breaks G to its maximal torus T ⊂ G (or G being
abelian), one introduces rk(G) dual photons, each parametrising an S1. Lastly, the remaining
gauge group acting after the choice of a Cartan subalgebra is precisely the Weyl group, which
then completes the classical description ofMC .

Nonetheless, there are two remaining points to be addressed: firstly, the geometry and topology
of MC are affected by quantum corrections. Secondly, the above description only holds for
abelian groups or complete breaking of the gauge group. Following [180, 181], an accurate
description of the classical Coulomb branch is

Mclass
C ≈

[(
R3·rk(G) \Υ

)
×
(
S1
)rk(G)

]
/WG , (14.3)

with Υ the locus where the set of vector multiplet scalars φi does not fully break G to its
maximal torus. In terms of W-boson masses MW

j , one could characterise Υ =
{∏

j

∣∣MW
j

∣∣ = 0
}
.

Thus, in the complement of Υ the (classical) Coulomb branch of an non-abelian theory coincides
with an abelian moduli space.

The quantum corrections comprise perturbative and non-perturbative contributions. For an
abelian theory there are no non-perturbative corrections, and the perturbative expansion is
exhaustive at 1-loop level [181]. In addition, the 1-loop corrections to the Coulomb branch can
be computed [177,182,183]. It turns out that the metric onMC is schematically given by

ds2 = Uabd~φa · d~φb + (U−1)ab
(
g−2
a dγa + ~ωac · d~φc

) (
g−2
b dγb + ~ωbd · d~φd

)
, (14.4)

which is the hyper-Kähler metric on a generalised Taub-NUT space. It describes an (S1)rk(G)-
fibration over R3·rk(G), in which an S1 shrinks to a point whenever a hypermultiplet becomes
massless. Interestingly, the perturbative metric at one-loop level for a non-abelian Coulomb
branch [180, 184–187] can be cast in the same form as (14.4), but the form of Uab and, conse-
quently, the Dirac connection ~ω differ. We can sketch the contributions to Uab as follows:

Uab ∼ 1
g2
a

δab +
∑
i

pre-factor
|Mi|︸ ︷︷ ︸

hypermultiplets

−
dim(G)−rk(G)∑

j=1

pre-factor
|MW

j |︸ ︷︷ ︸
vector multiplets

, (14.5)

it is worth pointing out that hypermultiplets and vector multiplets contribute with opposite
signs. Moreover, the W-boson masses are a true non-abelian effect. In contrast, non-perturbative
corrections are more delicate to handle, but one can employ a non-renormalisation theorem,
which states that the chiral ring is independent of the gauge couplings ga. As non-perturbative
corrections are dominated by exp(−C |MW

j |/g2
a), due to the instanton action, one could suppress

the non-perturbative effects in the limit minj |MW
j | � maxa ga. Evidently, this line of thought

runs into trouble if the gauge group is not completely broken, i.e. a configuration in Υ, or if the
theory is strongly coupled. In addition, Coulomb branches of non-abelian gauge theories are
still not fully understood as there is no (Hodge-)dualisation of non-abelian gauge fields known.

Recently, the understanding of the Coulomb branch has been subject of active research from

142



14.2 Monopole formula

various viewpoints: the authors of [181] aim to provide a description for the quantum-corrected
Coulomb branch of any 3d N = 4 gauge theory, with particular emphasis on the full Poisson
algebra of the chiral ring C[MC ]. In particular, by the understanding of abelian Coulomb
branches it is hoped that an abelianisation map can be constructed, which would allow to map
any non-abelian Coulomb branch into an abelian problem. In contrast, a rigorous mathematical
definition of the Coulomb branch itself lies at the heart of the attempts presented in [188–190].
In this part, we take the perspective centred around the monopole formula proposed in [191];
that is, the computation of the Hilbert series for the Coulomb branch allows to gain information
onMC as a complex space.

14.1.3 3-dimensional mirror symmetry

Intriligator and Seiberg [177] introduced a non-perturbative duality known as 3d mirror sym-
metry. This duality exchanges three pairs of objects for a pair of dual theories, these are (i) the
SU(2)L and SU(2)R, (ii) the Higgs and Coulomb branch, and (ii) the masses and FI-parameters.
The original examples concerned the class of Kronheimer gauge theories, constructed in [163],
and revealed a connection between ALE spaces and the moduli space of instantons for the
corresponding ADE gauge group. Since the Higgs branch is classically exact, while the Coulomb
branch is not, quantum effects in one theory arise classically in the dual and vice versa.

In particular, 3d mirror symmetry was crucial in the understanding of the quantum corrected
Coulomb branch [47,48], because (i) this duality applies also for abelian theories, (ii) it is known
how to construct mirror duals for any abelian theory, (iii) all (abelian) mirror pairs can be
derived from some basic mirror pairs, and (iv) the relevant topological soliton is known.

The last point is particularly interesting, as the belief was that the identification of soliton-like
solutions in one theory and re-writing the theory in these topological variables might yield the
mirror dual theory.

14.2 Monopole formula

The modern treatment of Coulomb branches in 3-dimensional gauge theories with 8 supercharges
relies on the use of so-called monopole operators. Before exploring the details, let us briefly recall
the set-up. Select an N = 2 subalgebra in the N = 4 algebra, which implies a decomposition of
the N = 4 vector multiplet into an N = 2 vector multiplet (the bosonic sector contains a gauge
field A and a real adjoint scalar σ) and an N = 2 chiral multiplet (containing a complex adjoint
scalar Φ) which transforms in the adjoint representation of the gauge group G. In addition, the
selection of an N = 2 subalgebra is equivalent to the choice of a complex structure onMC and
MH , which is the reason why one studies the branches only as complex and not as hyper-Kähler
spaces. This is intuitively clear as the selection of the N = 2 subalgebra determines which
two out of the three adjoint scalars (φ1, φ2, φ3) are combined into the holomorphic (or chiral)
combination Φ = φ1 + iφ2, while the remaining real scalar field is σ = φ3, for example. By the
same reasoning, the 4N real scalars from the N = 4 hypermultiplets are paired up to complex
linear combinations by the N = 2 choice to fit into the complex scalar fields of the chiral
multiplets.

14.2.1 Monopole operators

The description of the Coulomb branch relies on ’t Hooft monopole operators [192], which are
local disorder operators [47] defined by specifying a Dirac monopole singularity

A± ∼
m

2 (±1− cos θ) dϕ (14.6)
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for the gauge field, where m ∈ g = Lie(G) and (θ, ϕ) are coordinates on the 2-sphere around
the insertion point. An important consequence is that the generalised Dirac quantisation condi-
tion [193]

exp (2πim) = 1G (14.7)

has to hold. As proven in [194], the set of solutions to (14.7) equals the weight lattice Λw(Ĝ) of
the GNO (or Langlands) dual group Ĝ, which is uniquely associated to the gauge group G.
For Coulomb branches of supersymmetric gauge theories, the monopole operators need to

be supersymmetric as well, see for instance [48]. In a pure N = 2 theory, the supersymmetry
condition amounts to the singular boundary condition

σ ∼ m

2r for r →∞ , (14.8)

for the real adjoint scalar in the N = 2 vector multiplet. Moreover, an N = 4 theory also allows
for a non-vanishing vacuum expectation value of the complex adjoint scalar Φ of the adjoint-
valued chiral multiplet. Compatibility with supersymmetry requires the real and imaginary part
of Φ to take values in the centraliser hm of the magnetic weight m in g, i.e. in the Lie algebra
of the residual gauge group Hm = StabG(m). This phenomenon gives rise to the distinction
between two sets of monopole operators. Following [191], an N = 2 BPS monopole operator, i.e.
an operator with the singularity (14.6) of the gauge field and the boundary condition (14.8) for
the real scalar, is denoted as bare monopole operator if the VEV of Φ vanishes, and is denoted
as dressed monopole operator if the VEV takes a non-trivial value in hm.

14.2.2 Hilbert series

Studying the hyper-Kähler metric is a reasonable endeavour for the Higgs branch, as it is
classically correct; in contrast, the (semi-classical) hyper-Kähler metric on the Coulomb branch
is only reliable at weak coupling and if the corrections exhaust at 1-loop. It is assumed that
all hypermultiplets and all W-bosons are massive. An alternative, algebraic perspective can be
taken by the studying the chiral ring, i.e. the ring of holomorphic functions (in the superfields)
subject to constraints imposed by the vacuum conditions.

On any finitely generated, graded, commutative algebra A = ⊕i∈NAi over a field K, such as
a polynomial ring in finitely many variables, one can introduce the Hilbert function on each
graded piece Ai via

HF : Ai 7→ dimK(Ai) . (14.9a)

One then defines a formal power series in a dummy variable t (in physics literature fugacity) as
generating function

HSA(t) :=
∑
i∈N

HF(Ai) ti , (14.9b)

which is then called Hilbert series.
Suppose our moduli space is finitely generated and the chiral ring is denoted by R over the

complex field. The vacuum conditions provide a set of relations which translate into an ideal I
of R, such that the moduli space is then described by the R-module R/I of chiral functions. It
is a well-known result, see for instance [195], that the Hilbert series of R/I is a rational function
of the form

HSR/I(t) = K(t)∏N
l=1(1− tdl)

(14.10)

where dl denotes the degrees for the N generators and K(t) is an integer polynomial, sometimes
denoted K-polynomial. The Hilbert series is not a topological invariant of the variety in question,
but does depend on the embedding. However, one can extract various properties from the Hilbert
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series such as the (Krull) dimension of R/I which equals the order of the pole of HS at t = 1.
Moreover, by Stanley’s Gorenstein criterion [196] the symmetry properties of the Hilbert series
can be used to infer properties of the considered algebra. In [197,198] this palindromic symmetry
of the numerator indicated the Calabi-Yau property of the (affine) variety under consideration.

The application of Hilbert series to supersymmetric gauge theories has been pioneered by [199–
202] in the context of counting BPS operators and gauge invariants. In particular, for the Higgs
branch of 3d N = 4 SYM this perspective amounts to using the Molien formula by integrating
rational functions with the Haar measure, see for instance [203]. In the physical picture, the
Hilbert series counts gauge invariant chiral operators, graded according to their dimension
and quantum numbers under global symmetries. Moreover, the Hilbert series contains the full
information of the quantum numbers of the chiral operators and all the relations among them.

For the Coulomb branch, the algebraic approach is less straightforward as the classical moduli
space receives quantum corrections. Some hints were available by 3-dimensional mirror symmetry,
but it was the realisation of the authors of [191] that counting dressed monopole operators is
the key.
Particularly useful tools for studying commutative algebras and their Hilbert series are the

plethystic exponential and the plethystic logarithm. These provide a systematic method for the
study of generators and relations in the chiral ring of gauge theories. We refer to App. C for
further details.

14.2.3 The formula

Dressed monopole operators and G-invariant functions of Φ are believed to generate the entire
chiral ring C[MC ]. The corresponding Hilbert series allows for two points of view: seen via
the monopole formula, each operator is precisely counted once in the Hilbert series — no over-
counting appears. Evaluating the Hilbert series as rational function, however, provides an over-
complete set of generators that, in general, satisfies relations. In order to count polynomials
in the chiral ring, a notion of degree or dimension is required. Fortunately, in a CFT one
employs the conformal dimension ∆, which for BPS states agrees with the SU(2)R highest
weight. Following [48,178,179,204], the conformal dimension of a BPS bare monopole operator
of GNO-charge m is given by

∆(m) = 1
2

n∑
i=1

∑
ρ∈Ri

|ρ(m)| −
∑
α∈Φ+

|α(m)| , (14.11)

where Ri denotes the set of all weights ρ of the G-representation in which the i-th flavour of
N = 4 hypermultiplets transform. Moreover, Φ+ denotes the set of positive roots α of the Lie
algebra g and provides the contribution of the N = 4 vector multiplet. The pairing ρ(m) of
weights ρ (which includes roots α) with magnetic weights m is defined by the duality pairing
between weights and coweights of G (explained in Sec. 15.1.3 and 15.2.1). Bearing in mind the
proposed classification of 3d N = 4 theories by [178], we restrict ourselves to good theories (i.e.
∆ > 1

2 for all BPS monopoles).
If the centre Z(Ĝ) is non-trivial, then the monopole operators can be charged under this

topological symmetry group and one can refine the counting on the chiral ring.
Putting all the pieces together, the by now well-established monopole formula of [191] reads

HSG(t, z) =
∑

m∈Λw
(
Ĝ
)
/W

Ĝ

zJ(m)t∆(m)PG(t,m) . (14.12)

Here, the fugacity t counts the SU(2)R-spin, while the (multi-)fugacity z counts the quantum
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numbers J(m) of the topological symmetry Z(Ĝ).

14.3 Outline

This part serves three purposes: firstly, we provide a geometric derivation of a sufficient set
of monopole operators, called the Hilbert basis, that generates the entire chiral ring. Secondly,
employing the Hilbert basis allows an explicit summation of (14.12), which we demonstrate for
rk(G) = 2 explicitly. Thirdly, we provide various examples for all rank two gauge groups and
display how the knowledge of the Hilbert basis completely determines the Hilbert series.

The remainder of this third part is organised as follows: Ch. 15 is devoted to the exposition of
our main points: after recapitulating basics on (root and weight) lattices and rational polyhedral
cones in Sec. 15.1, we explain in Sec. 15.2 how the conformal dimension decomposes the Weyl
chamber of Ĝ into a fan. Intersecting the fan with the weight lattice Λw(Ĝ) introduces affine
semi-groups, which are finitely generated by a unique set of irreducible elements — the Hilbert
basis. Moving on to Sec. 15.3, we collect mathematical results that interpret the dressing factors
PG(t,m) as Poincaré series for the set of Hm-invariant polynomials on the Lie algebra hm.
Finally, we explicitly sum the unrefined Hilbert series in Sec. 15.4 and the refined Hilbert series
in 15.5 utilising the knowledge about the Hilbert basis. After establishing the generic results,
we provide a comprehensive collection of examples for all rank two gauge groups in Ch. 16-21.
Lastly, Ch. 22 concludes.
The contents of this part originate from a collaboration [205] with A. Hanany.
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15 Hilbert basis for monopole operators

The monopole formula allows to compute the Hilbert series for the Coulomb branch as an
algebraic variety. Although the physical picture is quite clear, the actual computation can be
very cumbersome and the extraction of the chiral ring generators is not at all clear. Here, we
introduce the concept of Hilbert bases for affine semi-groups by examining the structure of the
monopole formula. In particular, the interplay between the Weyl chamber of the GNO-dual
group, which provides the summation range, and the conformal dimension, as the employed
grading, is a vital ingredient for our consideration. This will partly resolve the tedious nature
of the summation and identifies the set of generators.

15.1 Preliminaries

Let us recall some basic properties of Lie algebras, cf. [206], and combine them with the de-
scription of strongly convex rational polyhedral cones and affine semi-groups, cf. [207]. Moreover,
we recapitulate the definition and properties of the GNO-dual group, which can be found
in [194,208].

15.1.1 Root and weight lattices of g

Let G be a Lie group with semi-simple Lie algebra g and rk(G) = r. Moreover, G̃ is the universal
covering group of G, i.e. the unique simply connected Lie group with Lie algebra g. Choose a
maximal torus T ⊂ G and the corresponding Cartan subalgebra t ⊂ g. Denote by Φ the set of
all roots α ∈ t∗. By the choice of a hyperplane, one divides the root space into positive Φ+ and
negative roots Φ−. In the half-space of positive roots one introduces the simple positive roots
as irreducible basis elements and denotes their set by Φs. The roots span a lattice Λr(g) ⊂ t∗,
the root lattice, with basis Φs.
Besides roots, one can always choose a basis in the complexified Lie algebra that gives rise

to the notion of coroots α∨ ∈ t which satisfy α (β∨) ∈ Z for any α, β ∈ Φ. Define α∨ to be a
simple coroot if and only if α is a simple root. Then the coroots span a lattice Λ∨r (g) in t, called
the coroot lattice of g.
The dual lattice Λw(g) of the coroot lattice is the set of points µ ∈ t∗ for which µ(α∨) ∈ Z

for all α ∈ Φ. This lattice is called weight lattice of g. Choosing a basis B of simple coroots

B :=
{
α∨ | α ∈ Φs

}
⊂ t , (15.1)

one readily defines a basis for the dual space via

B∗ := {λα | α ∈ Φs} ⊂ t∗ for λα
(
β∨
)

= δα,β , ∀α, β ∈ Φs . (15.2)

The basis elements λα are precisely the fundamental weights of g (or G̃) and they are a basis
for the weight lattice.

Analogous, the dual lattice Λmw(g) ⊂ t of the root lattice is the set of points m ∈ t such that
α(m) ∈ Z for all α ∈ Φ. In particular, the coroot lattice is a sublattice of Λmw(g).

As a remark, the lattices defined so far solely depend on the Lie algebra g, or equivalently on
G̃, but not on G. Because any group defined via G̃/Γ for Γ ⊂ Z(G̃) has the same Lie algebra.
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15.1.2 Weight and coweight lattice of G

The weight lattice of the group G is the lattice of the infinitesimal characters, i.e. a character
χ : T→ U(1) is a homomorphism, which is then uniquely determined by the derivative at the
identity. Let X ∈ t then χ(exp (X)) = exp (iµ(X)), wherein µ ∈ t∗ is an infinitesimal character
or weight of G. The weights form then a lattice Λw(G) ⊂ t∗, because the exponential map
translates the multiplicative structure of the character group into an additive structure. Most
importantly, the following inclusion of lattices holds:

Λr(g) ⊂ Λw(G) ⊂ Λw(g) . (15.3)

Note that the weight lattice Λw of g equals the weight lattice of the universal cover G̃.
As before, the dual lattice for Λw(G) in t is readily defined

Λ∗w(G) := Hom (Λw(G),Z) = ker
{

t → T
X 7→ exp(2πiX)

}
. (15.4)

As we see, the coweight lattice Λ∗w(G) is precisely the set of solutions to the generalised Dirac
quantisation condition (14.7) for G. In addition, an inclusion of lattices holds

Λ∨r (g) ⊂ Λ∗w(G) ⊂ Λmw(g) , (15.5)

which follows from dualising (15.3).

15.1.3 GNO-dual group and algebra

Following [194,208], a Lie algebra ĝ is the magentic dual of g if its roots coincide with the coroots
of g. Hence, the Weyl groups of g and ĝ agree. The magnetic dual group Ĝ is, by definition, the
unique Lie group with Lie algebra ĝ and weight lattice Λw(Ĝ) equal to Λ∗w(G). In physics, Ĝ is
called the GNO-dual group; while in mathematics, it is known under Langlands dual group.

15.1.4 Polyhedral cones

A (particular) rational convex polyhedral cone in t is a set σB of the form

σB ≡ Cone(B) =

 ∑
α∨∈B

fα∨ α
∨ | fα∨ ≥ 0

 ⊆ t (15.6)

where B ⊆ Λ∨r , the basis of simple coroots, is finite. Moreover, we note that σB is a strongly
convex cone, i.e. {0} is a face of the cone, and of maximal dimension, i.e. dim(σB) = r. Fol-
lowing [207], such cones σB are generated by the ray generators of their edges, where the ray
generators in this case are precisely the simple coroots of g.
For a polyhedral cone σB ⊆ t one naturally defines the dual cone

σ∨B = {m ∈ t∗ | m(u) ≥ 0 for all u ∈ σB} ⊆ t∗ . (15.7)

One can prove that σ∨B equals the rational convex polyhedral cone generated by B∗, i.e.

σ∨B = σB∗ = Cone(B∗) =

 ∑
λ∈B∗

gλ λ | gλ ≥ 0

 ⊆ t∗ , (15.8)
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15.2 Effect of conformal dimension

which is well-known under the name (closed) principal Weyl chamber. By the very same argu-
ments as above, the cone σB∗ is generated by its ray generators, which are the fundamental
weights of g.

For any m ∈ t and d ≥ 0, let us define an affine hyperplane Hm,d and closed linear half-spaces
H±m,d in t∗ via

Hm,d := {µ ∈ t∗ | µ(m) = d} ⊆ t∗ , (15.9a)
H±m,d := {µ ∈ t∗ | µ(m) ≥ ±d} ⊆ t∗ . (15.9b)

If d = 0 then Hm,0 is hyperplane through the origin, sometimes denoted as central affine
hyperplane. Following [209, Thm. 1.3], a cone σ ⊂ Rn is finitely generated if and only if it is
the finite intersection of central closed linear half spaces.
This result allows to make contact with the usual definition of the Weyl chamber. Since we

know that σB∗ is finitely generated by the fundamental weights {λα} and the dual basis is {α∨},
one arrives at σB∗ = ∩α∈ΦsH

+
α∨,0; thus, the dominant Weyl chamber is obtained by cutting the

root space along the hyperplanes orthogonal to some root and selecting the cone which has only
positive entries.

Remark Consider the group SU(2), then the fundamental weight is simply 1
2 such that

ΛSU(2)
w = SpanZ(1

2) = Z ∪ {Z + 1
2}. Moreover, the corresponding cone (Weyl chamber) will

be denoted by σSU(2)
B∗ = Cone(1

2).

15.2 Effect of conformal dimension

Next, while considering the conformal dimension ∆(m) as map between two Weyl chambers
we will stumble across the notion of affine semi-groups, which are known to constitute the
combinatorial background for toric varieties [207].

15.2.1 Conformal dimensions — revisited

Recalling the conformal dimension ∆ to be interpreted as the highest weight under SU(2)R, it
can be understood as the following map28

∆ : σ
Ĝ
B∗ ∩ Λw(Ĝ) → σ

SU(2)
B∗ ∩ Λw(SU(2))

m 7→ ∆(m)
. (15.10)

Where σĜ
B∗ is the cone spanned by the fundamental weights of ĝ, i.e. the dual basis of the simple

roots Φs of g. Likewise, σSU(2)
B∗ is the Weyl chamber for SU(2)R. Upon continuation, ∆ becomes

a map between the dominant Weyl chamber of Ĝ and SU(2)R

∆ : σ
Ĝ
B∗ → σ

SU(2)
B∗

m 7→ ∆(m)
. (15.11)

By definition, the conformal dimension (14.11) has two types of contributions: firstly, a positive
contribution |ρ(m)| for a weight ρ ∈ Λw(G) ⊂ t∗ and a magnetic weight m ∈ Λw(Ĝ) ⊂ t̂∗. By
definition Λw(Ĝ) = Λ∗w(G); thus, m is a coweight of G and ρ(m) is the duality paring. Secondly,
a negative contribution −|α(m)| for a positive root α ∈ Φ+ of g. By the same arguments, α(m)
28With respect to the use in the monopole formula.
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15 Hilbert basis for monopole operators

is the duality pairing of weights and coweights. The paring is also well-defined on the entire the
cone.

15.2.2 Fan generated by conformal dimension

The individual absolute values in ∆ allow for another interpretation: we use them to associate
a collection of affine central hyperplanes and closed linear half-spaces

H±µ,0 =
{
m ∈ t

∣∣ ± µ(m) ≥ 0
}
⊂ t and Hµ,0 =

{
m ∈ t

∣∣ µ(m) = 0
}
⊂ t . (15.12)

Here, µ ranges over all weights ρ and all positive roots α appearing in the theory. If two weights
µ1, µ2 are (integer) multiples of each other, then Hµ1,0 = Hµ2,0 and we can reduce the number
of relevant weights. From now on, denote by Γ the set of weights ρ and positive roots α which
are not multiples of one another. Then the conformal dimension contains Q := |Γ| ∈ N distinct
hyperplanes such that there exist 2Q different finitely generates cones

σε1,ε2,...,εQ := Hε1
µ1,0 ∩H

ε2
µ2,0 ∩ · · · ∩H

εQ
µQ,0 ⊂ t with εi = ± for i = 1, . . . , Q . (15.13)

By construction, each cone σε1,ε2,...,εQ is a strongly convex29 rational polyhedral cone, which is of
dimension r whenever σε1,ε2,...,εQ 6= {0}. Consequently, each non-trivial cone is generated by its
ray generators and these can be chosen to be lattice points of Λw(Ĝ). Moreover, the restriction
of ∆ to any σε1,ε2,...,εQ yields a linear map, because we effectively resolved the absolute values
by defining these cones.
It is, however, sufficient to restrict the considerations to the Weyl chamber of Ĝ; hence, we

simply intersect the cones with the hyperplanes defining σĜ
B∗ , i.e.

Cp ≡ Cε1,ε2,...,εQ := σε1,ε2,...,εQ ∩ σ
Ĝ
B∗ with p = (ε1, ε2, . . . , εQ) . (15.14)

Naturally, we would like to know for which µ ∈ Λw(G) the hyperplane Hµ,0 intersects the Weyl
chamber σĜ

B∗ non-trivially, i.e. not only in the origin. Let us emphasis the differences of the
Weyl chamber (and their dual cones) of G and Ĝ:

σG
B∗=Cone

(
λα | λα(β∨)=δα,β , ∀α, β ∈ Φs

)
⊂ t∗

∗←→ σG
B=Cone

(
α∨ | ∀α ∈ Φs

)
⊂ t, (15.15a)

σĜ
B∗=Cone (mα | β(mα)=δα,β , ∀α, β ∈ Φs) ⊂ t

∗←→ σĜ
B=Cone (α | ∀α ∈ Φs) ⊂ t∗. (15.15b)

It is possible to prove the following statements:

1. If µ ∈ Int
(
σĜ
B ∪ (−σĜ

B)
)
, i.e. µ =

∑
α∈Φs

gαα where either all gα > 0 or all gα < 0 , then

Hµ,0 ∩ σĜ
B∗ = {0}.

2. If µ ∈ ∂
(
σĜ
B ∪ (−σĜ

B)
)
and µ 6= 0, i.e. µ =

∑
α∈Φs

gαα where at least one gα = 0, then

Hµ,0 intersects σĜ
B∗ at one of its boundary faces.

3. If µ /∈ σĜ
B ∪ (−σĜ

B), i.e. µ =
∑
α∈Φs

gαα with at least one gα > 0 and at least one gβ < 0,
then

(
Hµ,0 ∩ σĜ

B∗

)
\ {0} 6= ∅.

29The set of weights Γ contains always the simple roots, whose associated hyperplanes give a Weyl chamber of
the GNO dual group. Thus, the cones are subcones of strongly convex cones.
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15.2 Effect of conformal dimension

Consequently, a weight µ ∈ Λw(G) appearing in ∆ leads to a hyperplane intersect-
ing the Weyl chamber of Ĝ non-trivially if and only if neither µ nor −µ lies in the
rational cone spanned by the simple roots Φs of G.
Therefore, the contributions −|α(m)|, for α ∈ Φ+, of the vector multiplet never yield a relevant
hyperplane. From now on, assume that trivial cones Cp are omitted in the index set I for p.
The appropriate geometric object to consider is then the fan F∆ ⊂ t defined by the family
F∆ = {Cp , p ∈ I} in t. A fan F is a family of non-empty polyhedral cones such that (i) every
non-empty face of a cone in F is a cone in F and (ii) the intersection of any two cones in F is
a face of both. In addition, the fan F∆ defined above is a pointed fan, because {0} is a cone in
F∆ (called the trivial cone).

15.2.3 Semi-groups

Although we already know the cone generators for the fan F∆, we have to distinguish them
from the generators of F∆ ∩ Λw(Ĝ), i.e. we need to restrict to the weight lattice of Ĝ. The first
observation is that

Sp := Cp ∩ Λw(Ĝ) for p ∈ I (15.16)

are semi-groups, i.e. sets with an associative binary operation. This is because the addition of
elements is commutative, but there is no inverse defined as subtraction would lead out of the cone.
Moreover, the Sp satisfy further properties, which we now simply collect, see for instance [209].
Firstly, the Sp are affine semi-groups, which are semi-groups that can be embedded in Zn for
some n. Secondly, every Sp possesses an identity element, here m = 0, and such semi-groups
are called monoids. Thirdly, the Sp are positive because the only invertible element is m = 0.
Now, according to Gordan’s Lemma [207, 209], we know that every Sp is finitely generated,

because all Cp’s are finitely generated, rational polyhedral cones. Even more is true, since the
division into the Cp is realised via affine hyperplanes Hµi,0 passing through the origin, the Cp
are strongly convex rational cones of maximal dimension. Then [207, Prop. 1.2.22.] holds and
we know that there exist a unique minimal generating set for Sp, which is called Hilbert basis.

The Hilbert basis H(Sp) is defined via

H(Sp) := {m ∈ Sp | m is irreducible} , (15.17)

where an element is called irreducible if and only if m = x + y for x, y ∈ Sp implies x = 0 or
y = 0. The importance of the Hilbert basis is that it is a unique, finite, minimal set of irreducible
elements that generate Sp. Moreover, H(Sp) always contains the ray generators of the edges of
Cp. The elements of H(Sp) are sometimes called minimal generators.
As a remark, there exist various algorithms for computing the Hilbert basis, which are, for

example, discussed in [195,210]. For the computations presented in this part, we used the Sage
module Toric varieties programmed by A. Novoseltsev and V. Braun.
After the exposition of the idea to employ the conformal dimension to define a fan in the

Weyl chamber of Ĝ, for which the intersection with the weight lattice leads to affine semi-groups,
we now state the main consequence:
The collection {H(Sp) , p ∈ I} of all Hilbert bases is the set of necessary (bare)
monopole operators for a theory with conformal dimension ∆.
At this stage we did not include the Casimir invariance described by the dressing factors

PG(t,m). For a generic situation, the bare and dressed monopole operators for a GNO-charge
m ∈ H(Sp) for some p are all necessary generators for the chiral ring C[MC ]. However, there
will be scenarios for which there exists a further reduction of the number of generators. For
those cases, we will comment and explain the cancellations.
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15 Hilbert basis for monopole operators

15.3 Dressing of monopole operators

One crucial ingredient of the monopole formula of [191] are the dressing factors PG(t,m) and
this section provides an algebraic understanding. We refer to [206,211,212] for the exposition
of the mathematical details used here.
It is known that in N = 4 the N = 2 BPS-monopole operator Vm is compatible with a

constant background of the N = 2 adjoint complex scalar Φ, provided Re(Φ) and Im(Φ) take
values on the Lie algebra hm of the residual gauge group Hm ⊂ G, i.e. the stabiliser of m in G.
Consequently, each bare monopole operator Vm is compatible with any Hm-invariant polynomial
on hm. We will now argue that the dressing factors PG(t,m) are to be understood as Hilbert
(or Poincaré) series for this so-called Casimir-invariance.

15.3.1 Chevalley-Restriction theorem

Let G be a Lie group of rank l with a semi-simple Lie algebra g over C and G acts via the adjoint
representation on g. Denote by P(g) the algebra of all polynomial functions on g. The action of
G extends to P(g) and I(g)G denotes the set of G-invariant polynomials in P(g). In addition,
denote by P(h) the algebra of all polynomial functions on h. The Weyl group WG, which acts
naturally on h, acts also on P(h), and I(h)WG denotes the Weyl-invariant polynomials on h.
The Chevalley-Restriction Theorem now states

I(g)G ∼= I(h)WG , (15.18)

where the isomorphism is given by the restriction map p 7→ p|h for p ∈ I(g)G.
Therefore, the study of Hm-invariant polynomials on hm is reduced to WHm-invariant poly-

nomials on a Cartan subalgebra tm ⊂ hm.

15.3.2 Finite reflection groups

It is due to a theorem by Chevalley [213], in the context of finite reflection groups, that there
exist l algebraically independent homogeneous elements p1, . . . , pl of positive degrees di, for
i = 1, . . . , l, such that

I(h)WG = C [p1, . . . , pl] . (15.19)

In addition, the degrees di satisfy

|WG| =
l∏

i=1
di and

d∑
i=1

(di − 1) = number of reflections in WG . (15.20)

The degrees di are unique [212] and tabulated for all Weyl groups, see for instance [212, Sec.
3.7]. However, the generators pi themselves are not uniquely determined.

15.3.3 Poincaré or Molien series

On the one hand, the Poincaré series for the I(h)WG is simply given by

PI(h)WG (t) =
l∏

i=1

1
1− tdi . (15.21)
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On the other hand, since h is a l-dimensional complex vector space and WG a finite group, the
generating function for the invariant polynomials is known as Molien series [214]

PI(h)WG (t) = 1
|WG|

∑
g∈WG

1
det (1− t g) . (15.22)

Therefore, the dressing factors PG(t,m) in the Hilbert series (14.12) for the Coulomb branch
are the Poincaré series for graded algebra of Hm-invariant polynomials on hm.

15.3.4 Harish-Chandra isomorphism

In [191], the construction of the PG(t,m) is based on Casimir invariants of G and Hm; hence, we
need to make contact with that idea. Casimir invariants live in the centre Z(U(g)) of the universal
enveloping algebra U(g) of g. Fortunately, the Harish-Candra isomorphism [215] provides us
with

Z(U(g)) ∼= I(h)WG . (15.23)

Consequently, Z(U(g)) is a polynomial algebra with l algebraically independent homogeneous
elements that have the same positive degrees di as the generators of I(h)WG . It is known that
for semi-simple groups G these generators can be chosen to be the rk(G) Casimir invariants; i.e.
the space of Casimir-invariants is freely generated by l generators (together with the unity).

15.3.5 Conclusions

So far, G (and Hm) had been restricted to be semi-simple. However, in most cases Hm is a direct
product group of semi-simple Lie groups and U(1)-factors. We proceed in two steps: firstly, U(1)
acts trivially on its Lie-algebra ∼= R, thus all polynomials are invariant and we obtain

I(R)U(1) = R[x] and PU(1)(t) = 1
1− t . (15.24)

Secondly, each factor Gi of a direct product G1×· · ·×GM acts via the adjoint representation on
its own Lie algebra gi and trivially on all other gj for j 6= i. Hence, the space of G1 × · · · ×GM -
invariant polynomials on g1 ⊕ · · · ⊕ gM factorises into the product of the I(gi)Gi such that

I(⊕igi)
∏
i
Gi =

∏
i

I(gi)Gi and P
I(⊕igi)

∏
i

Gi
(t) =

∏
i

PI(gi)Gi (t) . (15.25)

For abelian groups G, the Hilbert series for the Coulomb branch factorises in the Poincaré
series G-invariant polynomials on g times the contribution of the (bare) monopole operators. In
contrast, the Hilbert series does not factorise for non-abelian groups G as the stabiliser Hm ⊂ G
depends on m.

15.4 Consequences for unrefined Hilbert series

The aforementioned partition of the Weyl chamber σĜ
B∗ into a fan, induced by the conformal

dimension ∆, and the subsequent collection of semi-groups in Λw(Ĝ)/WĜ provides an immediate
consequence for the unrefined Hilbert series. For simplicity, we illustrate the consequences for
a rank two example. Assume that the Weyl chamber is divided into a fan generated the 2-
dimensional cones C(2)

p for p = 1, . . . , L, as sketched in Fig. 15.1b. For each cone, one has
two 1-dimensional cones C(1)

p−1, C
(1)
p and the trivial cone C(0) = {0} as boundary, i.e. ∂C(2)

p =
C

(1)
p−1 ∪ C

(1)
p , where C(1)

p−1 ∩ C
(1)
p = C(0).
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Figure 15.1: A representative fan, which is spanned by the 2-dimensional cones C(2)
p for

p = 1, . . . , L, is displayed in 15.1a. In addition, 15.1b contains a 2-dimensional cone with a
Hilbert basis of the two ray generators (black) and two additional minimal generators (blue).
The ray generators span the fundamental parallelotope (red region).

The Hilbert basis H(S(2)
p ) for S(2)

p := C
(2)
p ∩ ΛĜ

w contains the ray generators {xp−1, xp}, such
that H(S(1)

p ) = {xp}, and potentially other minimal generators upκ for κ in some finite index
set. Although any element s ∈ S(2)

p can be generated by {xp−1, xp, {upκ}κ}, the representation
s = a0xp−1 + a1xp +

∑
κ bκu

p
κ is not unique. Therefore, great care needs to be taken if one

would like to sum over all elements in S
(2)
p . A possible realisation employs the fundamental

parallelotope, also known as (the closure of) the fundamental mesh:

P(C(2)
p ) := {a0xp−1 + a1xp | 0 ≤ a0, a1 ≤ 1} , (15.26)

see also Fig. 15.1b. The number of points contained in P(C(2)
p ) is computed by the discriminant

d(C(2)
p ) := |det(xp−1, xp)| . (15.27)

However, as known from solid state physics, the discriminant counts each of the four boundary
lattice points by 1

4 ; thus, there are d(C(2)
p ) − 1 points in the interior. Remarkably, each point

s ∈ Int(P(C(2)
p )) is given by positive integer combinations of the {upκ}κ alone. A translation of

P(C(2)
p ) by non-negative integer combinations of the ray-generators {xp−1, xp} fills the entire

semi-group S(2)
p and each point is only realised once.

Now, we employ this fact to evaluate the un-refined Hilbert series explicitly.

HSG(t) =
∑

m∈Λw(Ĝ)/W
Ĝ

t∆(m)PG(t,m)

= PG(t, 0) +
L∑
p=0

PG(t, xp)
∑
np>0

tnp∆(xp) +
L∑
p=1

∑
np−1,np>0

PG(t, xp−1 + xp)t∆(np−1xp−1+npxp)

+
L∑
p=1

∑
s∈Int(P(C(2)

p ))

∑
np−1,np≥0

PG(t, s)t∆(s+np−1xp−1+npxp)

154



15.4 Consequences for unrefined Hilbert series

= PG(t, 0) +
L∑
p=0

PG(t, xp)
t∆(xp)

1− t∆(xp) +
L∑
p=1

PG(t, xp−1 + xp) t∆(xp−1)+∆(xp)(
1− t∆(xp−1)

) (
1− t∆(xp))

+
L∑
p=1

∑
s∈Int(P(C(2)

p ))

PG(t, s) t∆(s)(
1− t∆(xp−1)

) (
1− t∆(xp))

= PG(t, 0)∏L
p=0

(
1− t∆(xp))

{
L∏
q=0

(
1− t∆(xq)

)
+

L∑
q=0

PG(t, xq)
PG(t, 0) t

∆(xq)
L∏
r=0
r 6=q

(
1− t∆(xr)

)
(15.28)

+
L∑
q=1

PG(t, C(2)
q )

PG(t, 0)

[
t∆(xq−1)+∆(xq) +

∑
s∈Int(P(C(2)

q ))

t∆(s)
] L∏

r=0
r 6=q−1,q

(
1− t∆(xr)

)}
.

Next, we utilise that the classical dressing factors, for rank two examples, only have three
different values: in the 2-dimensional interior of the Weyl chamber W , the residual gauge
group is the maximal torus T and PG(t, IntW ) ≡ P2(t) =

∏2
i=1

1
(1−t) . Along the 1-dimensional

boundaries, the residual gauge group is a non-abelian subgroup H such that T ⊂ H ⊂ G and the
PG(t, ∂W \{0}) ≡ P1(t) =

∏2
i=1

1
(1−tbi ) , for the two degree bi Casimirs of H. At the 0-dimensional

boundary of the boundary, the group is unbroken and PG(t, 0) ≡ P0(t) =
∏2
i=1

1
(1−tdi ) contains

the Casimir invariants of G of degree di. Thus, there are a few observations to be addressed.

1. The numerator of (15.28), which is everything in the curly brackets {. . .}, starts with a
one and is a polynomial with integer coefficients, which is required for consistency.

2. The denominator of (15.28) is given by PG(t, 0)/
∏L
p=0(1− t∆(xp)) and describes the poles

due to the Casimir invariants of G and the bare monopole (xp,∆(xp)) which originate
from ray generators xp.

3. The numerator has contributions ∼ t∆(xp) for the ray generators with pre-factors P1(t)
P0(t) − 1

for the two outermost rays p = 0, p = L and pre-factors P2(t)
P0(t) − 1 for the remaining ray

generators. None of the two pre-factors has a constant term as Pi(t → 0) = 1 for each
i = 0, 1, 2. Also deg(1/P0(t)) ≥ deg(1/P1(t)) ≥ deg(1/P2(t)) = 2 and

P2(t)
P0(t) = (1− td1)(1− td2)

(1− t)(1− t) =
d1−1∑
i=0

d2−1∑
j=0

ti+j (15.29)

is a polynomial for any rank two group. For the examples considered here, we also obtain

P1(t)
P0(t) = (1− td1)(1− td2)

(1− tb1)(1− tb2) = (1− tk1b1)(1− tk2b2)
(1− tb1)(1− tb2) =

b1−1∑
i=0

b2−1∑
j=0

ti·k1+j·k2 (15.30)

for some k1, k2 ∈ N. In summary, (PG(t,xp)
PG(t,0) − 1)t∆(xp) describes the dressed monopole

operators corresponding to the ray generators xp.

4. The finite sums
∑
s∈Int(P(C(2)

p )) t
∆(s) are entirely determined by the conformal dimensions

of the minimal generators upκ.
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5. The first contributions for the minimal generators upκ are of the form

P2(t)
P0(t) t

∆(upκ) =
d1−1∑
i=0

d2−1∑
j=0

ti+j+∆(upκ) , (15.31)

which then comprise the bare and the dressed monopole operators simultaneously.

6. If C(2)
p is simplicial, i.e. H(S(2)

p ) = {xp−1, xp}, then the sum over s ∈ Int(P(C(2)
p )) in (15.28)

is zero, as the interior is empty. Also indicated by d(C(2)
p ) = 1.

In conclusion, the Hilbert series (15.28) suggests that ray generators are to be expected in the
denominator, while other minimal generators are manifest in the numerator. Moreover, the entire
Hilbert series is determined by a finite set of numbers: the conformal dimensions of the minimal
generators {∆(xp) | p = 0, 1, . . . , L} and {{∆(u(p)

κ ) | κ = 1, . . . , d(C(2)
p )− 1} | p = 1, . . . , L} as

well as the classical dressing factors.
Moreover, the dressing behaviour, i.e. number and degree, of a minimal generator m is de-

scribed by the quotient PG(t,m)/PG(t, 0). Consolidating evidence for this statement comes from
the analysis of the plethystic logarithm, which we present in App. C. Together, the Hilbert
series and the plethystic logarithm allow a better understanding of the chiral ring.

We illustrate the formula (15.28) for the two simplest cases in order to hint on the differences
that arise if d(C(2)

p ) > 1 for cones within the fan.

15.4.1 Example: one simplicial cone

Adapting the result (15.28) to one cone C(2)
1 with Hilbert basis {x0, x1}, we find

HS =
1 +

(
P1(t)
P0(t) − 1

)
(t∆(x0) + t∆(x1)) +

(
1− 2P1(t)

P0(t) + P2(t)
P0(t)

)
t∆(x0)+∆(x1)∏2

i=1(1− tdi)
∏1
p=0(1− t∆(xp))

. (15.32)

Examples treated in this part are as follows: firstly, the representation [2, 0] for the quotients
Spin(4), SO(3) × SU(2), SU(2) × SO(3), PSO(4) of Sec. 18.2; secondly, USp(4) for the case
N3 = 0 of Sec. 19.5; thirdly, G2 in the representations [1, 0], [0, 1] and [2, 0] of Sec. 20.2. The
corresponding expression for the plethystic logarithm is provided in (C.16).

15.4.2 Example: one non-simplicial cone

Adapting the result (15.28) to one cone C(2)
1 with Hilbert basis {x0, x1, {uκ}}, fundamental

parallelotope P, and discriminant d > 1, we find

HS =
1 +

(
P1(t)
P0(t) − 1

)
(t∆(x0) + t∆(x1)) +

(
1− 2P1(t)

P0(t) + P2(t)
P0(t)

)
t∆(x0)+∆(x1) + P2(t)

P0(t)
∑
s∈Int(P) t

∆(s)∏2
i=1(1− tdi)

∏1
p=0(1− t∆(xp))

.

(15.33)

An example for this case is SO(4) with representation [2, 0] treated in Sec. 18.2. For the plethystic
logarithm we refer to (C.17).
The difference between (15.32) and (15.33) lies in the finite sum added in the numerator

which accounts for the minimal generators that are not ray generators.
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15.5 Consequences for refined Hilbert series

15.5 Consequences for refined Hilbert series

If the centre Z(Ĝ) of the GNO-dual group Ĝ is a non-trivial Lie-group of rank rk(Z(Ĝ)) = ρ,
one introduces additional fugacities ~z ≡ (zi) for i = 1, . . . , ρ such that the Hilbert series
counts operators according to SU(2)R-spin ∆(m) and topological charges ~J(m) ≡ (Ji(m)) for
i = 1, . . . , ρ. Let us introduce the notation

~z
~J(m) :=

ρ∏
i=1

z
Ji(m)
i suchthat ~z

~J(m1+m2) = ~z
~J(m1)+ ~J(m2) = ~z

~J(m1) · ~z ~J(m2) , (15.34)

where we assumed each component Ji(m) to be a linear function in m. By the very same
arguments as in (15.28), one can evaluate the refined Hilbert series explicitly and obtains

HSG(t, ~z) =
∑

m∈ΛĜ
w/WĜ

~z
~J(m)t∆(m)PG(t,m)

= PG(t, 0)∏L
p=0

(
1− ~z ~J(xp)t∆(xp)

){ L∏
q=0

(
1− ~z ~J(xq)t∆(xq)

)
(15.35)

+
L∑
q=0

PG(t, xq)
PG(t, 0) ~z

~J(xq)t∆(xq)
L∏
r=0
r 6=q

(
1− ~z ~J(xr)t∆(xr)

)

+
L∑
q=1

PG(t, C(2)
q )

PG(t, 0)

[
~z
~J(xq−1)+ ~J(xq)t∆(xq−1)+∆(xq)

+
∑

s∈Int(P(C(2)
q ))

~z
~J(s)t∆(s)

] L∏
r=0

r 6=q−1,q

(
1− ~z ~J(xr)t∆(xr)

)}
.

The interpretation of the refined Hilbert series (15.35) remains the same as before: the mini-
mal generators, i.e. their GNO-charge, SU(2)R-spin, topological charges ~J , and their dressing
factors, completely determine the Hilbert series. In principle, this data makes the (sometimes
cumbersome) explicit summation of (14.12) obsolete.
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16 Case: U(1)× U(1)

In this chapter we analyse the abelian product U(1) × U(1). By construction, the Hilbert
series simplifies as the dressing factors are constant throughout the lattice of magnetic weights.
Consequently, abelian theories do not exhibit dressed monopole operators.

16.1 Set-up

The weight lattice of the GNO-dual of U(1) is simply Z and no Weyl-group exists due the
abelian character; thus, Λw( ̂U(1)×U(1)) = Z2. Moreover, since U(1) × U(1) is abelian the
classical dressing factors are the same for any magnetic weight (m1,m2), i.e.

PU(1)×U(1)(t,m1,m2) = 1
(1− t)2 , (16.1)

which reflects the two degree one Casimir invariants.

16.2 Two types of hypermultiplets

Set-up To consider a rank 2 abelian gauge group of the form U(1)×U(1) requires a delicate
choice of matter content. If one considers N1 hypermultiplets with charges (a1, b1) ∈ N2 under
U(1)×U(1), then the conformal dimension reads

∆1h-plet(m1,m2) = N1
2 |a1m1 + b1m2| for (m1,m2) ∈ Z2 . (16.2a)

However, there exists an infinite number of points {m1 = b1k,m2 = −a1k, k ∈ Z} with zero
conformal dimension, i.e. the Hilbert series does not converge due to a decoupled U(1). Fixing
this symmetry would reduce the rank to one.

Fortunately, we can circumvent this problem by introducing a second set ofN2 hypermultiplets
with charges (a2, b2) ∈ N2, such that the matrix(

a1 b1
a2 b2

)
(16.2b)

has maximal rank. The relevant conformal dimension then reads

∆2h-plet(m1,m2) =
2∑
j=1

Nj

2 |ajm1 + bjm2| for (m1,m2) ∈ Z2 . (16.2c)

Nevertheless, this set-up would introduce four charges and the summation of the Hilbert series
becomes tricky. We evade the difficulties by the choice a2 = b1 and b2 = −a1. Dealing with such
a scenario leads to summation bounds such as

am1 ≥ bm2 ⇔ m1 ≥ b
am2 ⇔ m1 ≥ d bam2e , (16.2d)

am1 < bm2 ⇔ m1 <
b
am2 ⇔ m1 < d bam2e − 1 . (16.2e)
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16 Case: U(1)×U(1)

Having the summation variable within a floor or ceiling function seems to be an elaborate task
with Mathematica. Therefore, we simplify the setting by assuming ∃ k ∈ N such that b1 = ka1.
Then we arrive at

∆2h-plet(m1,m2) = a1
2 (N1 |m1 + km2|+N2 |km1 −m2|) for (m1,m2) ∈ Z2 . (16.2f)

For this conformal dimension, there exists exactly one point (m1,m2) with zero conformal
dimension — the trivial solution. Further, by a redefinition of N1 and N2 we can consider
a1 = 1.

Hilbert basis Consider the conformal dimension (16.2f) for a1 = 1. By resolving the absolute

m1

m2

S
(2)
1

S
(2)
2S

(2)
3

S
(2)
4

Figure 16.1: The dashed lines correspond the km1 = m2 and m1 = −km2 and divide
the lattice Z2 into four semi-groups S(2)

j for j = 1, 2, 3, 4. The black circles denote the ray
generators, while the blue circles complete the Hilbert basis for S(2)

1 , red circled points complete
the basis for S(2)

2 . Green circles correspond to the remaining minimal generators of S(2)
3 and

orange circled points are the analogue for S(2)
4 . (Here, the example is k = 4.)

values, we divide Z2 into four semi-groups

S
(2)
1 =

{
(m1,m2) ∈ Z2| (km1 ≥ m2) ∧ (m1 ≥ −km2)

}
, (16.3a)

S
(2)
2 =

{
(m1,m2) ∈ Z2| (km1 ≥ m2) ∧ (m1 ≤ −km2)

}
, (16.3b)

S
(2)
3 =

{
(m1,m2) ∈ Z2| (km1 ≤ m2) ∧ (m1 ≥ −km2)

}
, (16.3c)

S
(2)
4 =

{
(m1,m2) ∈ Z2| (km1 ≤ m2) ∧ (m1 ≤ −km2)

}
, (16.3d)
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16.2 Two types of hypermultiplets

which all descend from 2-dimensional rational polyhedral cones. The situation is depicted in
Fig. 16.1.
Next, one needs to compute the Hilbert basis H(S) for each semi-group S. In this example,

it follows from the drawing that

H(S(2)
1 ) =

{
(k,−1),

{
(1, l)

∣∣ l = 0, 1, . . . , k
}}

, (16.4a)

H(S(2)
2 ) =

{
(−1,−k),

{
(l,−1)

∣∣ l = 0, 1, . . . , k
}}

, (16.4b)

H(S(2)
3 ) =

{
(−k, 1),

{
(−1,−l)

∣∣ l = 0, 1, . . . , k
}}

, (16.4c)

H(S(2)
4 ) =

{
(1, k),

{
(−l, 1)

∣∣ l = 0, 1, . . . , k
}}

. (16.4d)

For a fixed k ≥ 1 we obtain 4(k + 1) basis elements.

Hilbert series We then compute the following Hilbert series

HSkU(1)×U(1)(t, z1, z2) = 1
(1− t)2

∑
m1,m2∈Z

zm1
1 zm2

2 t∆2h-plet(m1,m2) , (16.5)

for which we obtain
HSkU(1)×U(1)(t, z1, z2) = R(t, z1, z2)

P (t, z1, z2) , (16.6a)

with denominator

P (t, z1, z2) = (1− t)2
(

1− 1
z1
t
kN2−N1

2

)(
1− z1t

kN2−N1
2

)(
1− 1

z2
t
kN1−N2

2

)(
1− z2t

kN1−N2
2

)
×
(

1− 1
z1
t
kN2+N1

2

)(
1− z1t

kN2+N1
2

)(
1− 1

z2
t
kN1+N2

2

)(
1− z2t

kN1+N2
2

)
(16.6b)

×
(

1− 1
z1zk2

t
1
2 (k2+1)N1

)(
1− z1z

k
2 t

1
2 (k2+1)N1

)
×
(

1− zk1
z2
t

1
2 (k2+1)N2

)(
1− z2

zk1
t

1
2 (k2+1)N2

)
,

while the numerator R(t, z1, z2) is too long to be displayed, as it contains 1936 monomials.
Nonetheless, one can explicitly verify a few properties of the Hilbert series. For example, the
Hilbert series (16.6) has a pole of order 4 at t→ 1, because R(1, z1, z2) = 0 and the derivatives
dn
dtnR(t, z1, z2)|t=1 = 0 for n = 1, 2, . . . 9 (at least for z1 = z2 = 1). Moreover, the degrees of
numerator and denominator depend on the relations between N1, N2, and k; however, one can
show that the difference in degrees is precisely 2, i.e. it matches the quaternionic dimension of
the moduli space.

Discussion Analysing the plethystic logarithm and the Hilbert series, the monopole operators
corresponding to the Hilbert basis can be identified as follows: Eight poles of the Hilbert
series (16.6) can be identified with monopole generators as shown in Tab. 16.1a. Studying the
plethystic logarithm clearly displays the remaining set, which is displayed in Tab. 16.1b.

Remark A rather special case of (16.2c) is a2 = 0 = b1, for which the theory becomes the
product of two U(1)-theories with N1 or N2 electrons of charge a or b, respectively. In detail,

161



16 Case: U(1)×U(1)

(m1,m2) ∆(m1,m2) (m1,m2) ∆(m1,m2)

(1, 0), (−1, 0) 1
2 (N1 + kN2) (0, 1), (0,−1) 1

2 (kN1 +N2)
(1, k), (−1,−k) 1

2
(
1 + k2)N1 (−k, 1), (k,−1) 1

2
(
1 + k2)N2

(a) The minimal generators which are poles of the Hilbert series. The second row comprises the ray
generators.

(m1,m2) ∆(m1,m2) (m1,m2) ∆(m1,m2)

(1, l), (−1,−l) 1
2N1(kl + 1) + 1

2N2(k − l) (−l, 1), (l,−1) 1
2N1(k − l) + 1

2N2(kl + 1)
(b) The minimal generators, labelled by l = 1, 2, . . . , k − 1, which are neither poles of the Hilbert series
nor ray generators.

Table 16.1: The set of bare monopole operators for a U(1) × U(1) theory with conformal
dimension (16.2f).

the conformal dimension is simply

∆2h-plet(m1,m2) a2=0=b1= N1
2 |am1|+

N2
2 |bm2| for (m1,m2) ∈ Z2 , (16.7)

such that the Hilbert series becomes

HSa,bU(1)2(t, z1, z2) = 1− taN1

(1− t)
(

1− z1t
aN1

2
)(

1− 1
z1
t
aN1

2
) × 1− tbN2

(1− t)
(

1− z2t
bN2

2
)(

1− 1
z2
t
bN2

2
)

= HSaU(1)(t, z1, N1)×HSbU(1)(t, z2, N2) . (16.8)

For the unrefined Hilbert series, that is z1 = 1 = z2, the rational function HSaU(1)(t,N) equals the
Hilbert series of the (abelian) ADE-orbifold C2/Za·N , see for instance [31]. Thus, the U(1)×U(1)
Coulomb branch is the product of two A-type singularities.
Quite intuitively, taking the corresponding limit k → 0 in (16.6) yields the product

lim
k→0

HSkU(1)×U(1)(t, z1, z2) = HSU(1)(t, z1, N1)×HSU(1)(t, z2, N2) , (16.9)

which are U(1) theories withN1 andN2 electrons of unit charge. The unrefined rational functions
are the Hilbert series of ZN1 and ZN2 singularities in the ADE-classification. From Fig. 16.1 one
observes that in the limit k → 0 the relevant rational cones coincide with the four quadrants of
R2 and the Hilbert basis reduces to the cone generators.

16.3 Reduced moduli space of one SO(5)-instanton

Consider the Coulomb branch of the quiver gauge theory depicted in Fig. 16.2 with conformal
dimension given by

∆(m1,m2) = 1
2 (|m1|+ |m1 − 2m2|) . (16.10)

Instead of associating (16.10) with the quiver of Fig. 16.2, one could equally well understand it
as a special case of a U(1)2 theory with two different hypermultiplets (16.2c).
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16.3 Reduced moduli space of one SO(5)-instanton

U(1) U(1)

U(1)

Figure 16.2: Quiver gauge theory whose Coulomb branch is the reduced moduli space of one
SO(5)-instanton.

Hilbert basis Similar to the previous case, the conformal dimensions induces a fan which, in
this case, is generated by four 2-dimensional cones

C
(2)
1 = Cone ((2, 1), (0, 1)) , C

(2)
2 = Cone ((2, 1), (0,−1)) , (16.11a)

C
(2)
3 = Cone ((−2,−1), (0,−1)) , C

(2)
4 = Cone ((−2,−1), (0, 1)) . (16.11b)

The intersection with the Z2 lattice defines the semi-groups S(2)
p := C

(2)
p ∩Z2 for which we need

to compute the Hilbert bases. Fig. 16.3 illustrates the situation and we obtain

H(S(2)
1 ) = {(2, 1), (1, 1), (0, 1)} , H(S(2)

2 ) = {(2, 1), (1, 0), (0,−1)} , (16.12a)

H(S(2)
3 ) = {(−2,−1), (−1,−1), (0,−1)} , H(S(2)

4 ) = {(−2,−1), (−1, 0), (0, 1)} . (16.12b)

m1

m2

S
(2)
1

S
(2)
2S

(2)
3

S
(2)
4

Figure 16.3: The dashed lines correspond the m1 = 2m2 and m1 = 0 and divide the lattice
Z2 into four semi-groups S(2)

j for j = 1, 2, 3, 4. The black circles denote the ray generators,
while the red circles complete the Hilbert bases for S(2)

1 and S(2)
3 . Blue circled lattice points

complete the bases for S(2)
2 and S(2)

4 .

Hilbert series The Hilbert series is evaluated to

HSSO(5)
U(1)2 (t, z1, z2) = R(t, z1, z2)

(1− t)2
(
1− t

z2

)
(1− z2t)

(
1− t

z2
1z2

) (
1− z2

1z2t
) , (16.13a)

R(t, z1, z2) = 1 + t

(
z1 + 1

z1
+ z1z2 + 1

z1z2

)
(16.13b)
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16 Case: U(1)×U(1)

− 2t2
(

1 + z1 + 1
z1

+ z1z2 + 1
z1z2

)
+ t3

(
z1 + 1

z1
+ z1z2 + 1

z1z2

)
+ t4 .

The Hilbert series (16.13) has a pole of order 4 at t = 1, because one can explicitly verify
that R(t = 1, z1, z2) = 0, d

dtR(t, z1, z2)|t=1 = 0, but d2

dt2R(t, z1, z2)|t=1 6= 0. Thus, the complex
dimension of the moduli space is 4. Moreover, the difference in degrees of numerator and
denominator is 2, which equals the quaternionic dimension of the Coulomb branch.

Plethystic logarithm The plethystic logarithm for this scenario reads

PL(HSSO(5)
U(1)2 ) =

(
2 + z2

1z2 + 1
z2

1z2
+ z1z2 + 1

z1z2
+ z1 + 1

z1
+ z2 + 1

z2

)
t (16.14)

−
(

4 + z2
1 + 1

z2
1

+ z2 + 1
z2

+ z2
1z

2
2 + 1

z2
1z

2
2

+ z2
1z2 + 1

z2
1z2

+ 2z1 + 2
z1

+ 2z1z2 + 2
z1z2

)
t2 +O(t3) .

Symmetry enhancement The information conveyed by the Hilbert basis (16.12), the Hilbert
series (16.13), and the plethystic logarithm (16.14) is that there are eight minimal generators
of conformal dimension one which, together with the two Casimir invariants, span the adjoint
representation of SO(5). It is known [31, 33] that (16.13) is the Hilbert series for the reduced
moduli space of one SO(5)-instanton over C2.

16.4 Reduced moduli space of one SU(3)-instanton

The quiver gauge theories associated to the affine Dynkin diagram Ân have been studied in [191].
Here, we consider the Coulomb branch of the Â2 quiver gauge theory as depicted in Fig. (16.4)
and with conformal dimension given by

∆(m1,m2) = 1
2 (|m1|+ |m2|+ |m1 −m2|) . (16.15)

U(1) U(1)

U(1) U(1)

Figure 16.4: Quiver gauge theory whose Coulomb branch is the reduced moduli space of one
SU(3)-instanton.

Hilbert basis Similar to the previous case, the conformal dimensions induces a fan which, in
this case, is generated by six 2-dimensional cones

C
(2)
1 = Cone ((0, 1), (1, 1)) , C

(2)
2 = Cone ((1, 1), (1, 0)) , (16.16a)
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16.4 Reduced moduli space of one SU(3)-instanton

C
(2)
3 = Cone ((1, 0), (0,−1)) , C

(2)
4 = Cone ((0,−1), (−1,−1)) , (16.16b)

C
(2)
5 = Cone ((−1,−1), (−1, 0)) , C

(2)
6 = Cone ((−1, 0), (0, 1)) . (16.16c)

The intersection with the Z2 lattice defines the semi-groups S(2)
p := C

(2)
p ∩Z2 for which we need

to compute the Hilbert bases. Fig. 16.5 illustrates the situation. We compute the Hilbert bases
to read

H(S(2)
1 ) = {(0, 1), (1, 1)} H(S(2)

2 ) = {(1, 1), (1, 0))} , (16.17a)

H(S(2)
3 ) = {(1, 0), (0,−1)} H(S(2)

4 ) = {(0,−1), (−1,−1)} , (16.17b)

H(S(2)
5 ) = {(−1,−1), (−1, 0)} H(S(2)

6 ) = {(−1, 0), (0, 1)} . (16.17c)

m1

m2

S
(2)
1 S

(2)
2

S
(2)
3S

(2)
4S

(2)
5

S
(2)
6

Figure 16.5: The dashed lines correspond the m1 = m2, m1 = 0, and m2 = 0 and divide the
lattice Z2 into six semi-groups S(2)

j for j = 1, . . . , 6. The black circled points denote the ray
generators, which coincide with the minimal generators.

Hilbert series The Hilbert series is readily computed and reads

HSSU(3)
U(1)2 (t, z1, z2) = R(t, z1, z2)

P (t, z1, z2) , (16.18a)

P (t, z1, z2) = (1− t)2
(

1− 1
z1
t

)
(1− z1t)

(
1− 1

z2
t

)
(1− z2t) (16.18b)

×
(

1− 1
z1z2

t

)
(1− z1z2t) ,

R(t, z1, z2) = 1−
(

3 + z1 + 1
z1

+ z2 + 1
z2

+ z1z2 + 1
z1z2

)
t2 (16.18c)

+ 2
(

2 + z1 + 1
z1

+ z2 + 1
z2

+ z1z2 + 1
z1z2

)
t3

−
(

3 + z1 + 1
z1

+ z2 + 1
z2

+ z1z2 + 1
z1z2

)
t4 + t6 .

The Hilbert series (16.18) has a pole of order 4 as t → 1, because R(t=1, z1, z2) = 0 and
dn
dtnR(t, z1, z2)|t=1,z1=z2=1 = 0 for n = 1, 2, 3. Thus, the Coulomb branch is of complex dimension
4. In addition, the difference in degrees of numerator and denominator is 2, which equals the
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16 Case: U(1)×U(1)

quaternionic dimension of the moduli space.

Plethystic logarithm

PL(HSSU(3)
U(1)2 ) =

(
2 + z1 + 1

z1
+ z2 + 1

z2
+ z1z2 + 1

z1z2

)
t (16.19)

−
(

3 + z1 + 1
z1

+ z2 + 1
z2

+ z1z2 + 1
z1z2

)
t2 +O(t3)

Symmetry enhancement The information conveyed by the Hilbert basis (16.17), the Hilbert
series (16.18), and the plethystic logarithm (16.19) is that there are six minimal generators of
conformal dimension one which, together with the two Casimir invariants, span the adjoint
representation of SU(3). As proven in [191], the Hilbert series (16.18) can be resumed as

HSSU(3)
U(1)2 (t, z1, z2) =

∞∑
k=0

χ[k,k]t
k (16.20)

with χ[k,k] being the character of the SU(3)-representation [k, k]. Therefore, this theory has an
explicit SU(3)-enhancement in the Coulomb branch. It is known [28] that (16.20) is the reduced
instanton moduli space of one SU(3)-instanton over C2.
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17 Case: U(2)

In this chapter we aim to consider two classes of U(2) gauge theories wherein U(2) ∼= SU(2)×U(1),
i.e. this is effectively an SU(2) theory with varying U(1)-charge. As a unitary group, U(2) is
self-dual under GNO-duality.

17.1 Set-up

To start with, let consider the two view points and elucidate the relation between them.

U(2) view point The GNO-dual group of U(2) is U(2) itself; hence, the weight lattice
is Λw(U(2)) ∼= Z2. Moreover, the Weyl-group is S2 and acts via permuting the two Cartan
generators; consequently, Λw(U(2))/S2 = {(m1,m2) ∈ Z2 : m1 ≥ m2}.

U(1)× SU(2) view point Considering U(1)× SU(2), we need to find the weight lattice of
the GNO-dual, i.e. find all solutions to the Dirac quantisation condition, see for instance [194].
Since we consider the product, the exponential in (14.7) factorises in exp(2πi n TU(1)) and
exp(2πi m TSU(2)), where the T ’s are the Cartan generators. Besides the solution

(n,m) ∈ H0 := Z2 = Z× Λw(SO(3)) = Z× Λr(SU(2)) (17.1a)

corresponding to the weight lattice of U(1)× SO(3), there exists also the solution

(n,m) ∈ H1 := Z2 + (1
2 ,

1
2) =

(
Z + 1

2

)
× (Λw(SU(2)) \ Λr(SU(2))) , (17.1b)

for which both factors are equal to −1. The action of the Weyl-group S2 restricts then to
non-negative m i.e. H+

0 = H0 ∩ {m ≥ 0} and H+
1 = H1 ∩ {m ≥ 0}.

Relation between both To identify both views with one another, we select the U(1) as
diagonally embedded, i.e. identify the charges as follows:

n := m1+m2
2

m := m1−m2
2

}
⇔

{
m1 = n+m
m2 = n−m . (17.2)

The two classes of U(2)-representations under consideration in this chapter are

[1, a] with χ
U(2)
[1,a] = ya+1

1 ya2 + ya1y
a+1
2 , (17.3a)

[2, a] with χ
U(2)
[2,a] = ya+2

1 ya2 + ya+1
1 ya+1

2 + ya1y
a+2
2 , (17.3b)

for a ∈ N0 and χ are the group character. Following (17.2), we define the fugacities

q := √y1 y2 for U(1) and x :=
√
y1
y2

for SU(2), (17.4)
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17 Case: U(2)

and consequently observe

χ
U(2)
[1,a] = q2a+1

(
x+ 1

x

)
= χ

U(1)
2a+1 · χ

SU(2)
[1] , (17.5a)

χ
U(2)
[2,a] = q2a+2

(
x2 + 1 + 1

x2

)
= χ

U(1)
2a+2 · χ

SU(2)
[2] , (17.5b)

where the SU(2)-characters are defined via

χ
SU(2)
[L] =

L
2∑

r=−L2

x2r . (17.5c)

Therefore, the family [1, a] corresponds to the fundamental representation of SU(2) with odd
U(1)-charge 2a+ 1; while the family [2, a] represents the adjoint representation of SU(2) with
even U(1)-charge 2a+ 2.

Dressing factors Lastly, the calculation employs the classical dressing function

PU(2)(t2,m) :=


1

(1−t2)2 ,m 6= 0
1

(1−t2)(1−t4) ,m = 0
, (17.6)

as presented in [191]. (Note that we rescaled t to be t2 for later convenience.) Following the
discussion of App. C, monopoles with m 6= 0 have precisely one dressing by a U(1) Casimir due
to PU(2)(t2,m)/PU(2)(t2, 0) = 1 + t2. In contrast, there are no dressed monopole operators for
m = 0.

Remark The Lie group U(2) is not semi-simple and, thus, the dominant Weyl-chamber of the
GNO-dual U(2) is not a strongly convex cone. Nevertheless, by the affine central hyperplanes
induced by ∆, all the rational cones in the resulting fan will be strongly convex, and we can
employ the results of Ch. 15.

17.2 N hypermultiplets in fundamental representation of SU(2)
The conformal dimension for a U(2) theory with N hypermultiplets transforming in [1, a] is
given as

∆(n,m) = N

2
(
|(2a+ 1) · n+m|+ |(2a+ 1) · n−m|

)
− 2|m| (17.7)

such that the Hilbert series is computed via

HS[1,a]
U(2)(t, z) =

∑
n,m

PU(2)(t2,m) t2∆(n,m)z2n , (17.8)

where the ranges of n,m have been specified above. Here we use the fugacity t2 instead of t to
avoid half-integer powers.

Hilbert basis The conformal dimension (17.7) divides Λw(U(2))/S2 into semi-groups via the
absolute values |m|, |(2a+ 1)n+m|, and |(2a+ 1)n−m|, which we understand as hyperplanes.
Thus, there are three semi-groups

S
(2)
+ =

{
(m,n) ∈ ΛU(2)

w /S2 | (n ≥ 0) ∧ (0 ≤ m ≤ (2a+ 1)n)
}
, (17.9a)
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17.2 N hypermultiplets in fundamental representation of SU(2)

S
(2)
0 =

{
(m,n) ∈ ΛU(2)

w /S2 | − (2a+ 1)n ≤ m ≤ (2a+ 1)n
}
, (17.9b)

S
(2)
− =

{
(m,n) ∈ ΛU(2)

w /S2 | (n ≤ 0) ∧ (0 ≤ m ≤ −(2a+ 1)n)
}

(17.9c)

originating from 2-dimensional cones, see Fig. 17.1. Since all these semi-groups S(2)
± , S(2)

0 are
finitely generated, one can compute the Hilbert basis H(Sp) for each p and obtains

H(S(2)
± ) =

{
(0,±1), {(l + 1

2 ,±
1
2) | l = 0, 1, . . . , a}

}
, (17.10a)

H(S(2)
0 ) =

{
(a+ 1

2 ,
1
2), (1, 0), (a+ 1

2 ,−
1
2)
}
. (17.10b)

m

n

S
(2)
+

S
(2)
0

S
(2)
−

H+
0

H+
1

Figure 17.1: The Weyl-chamber for the example a = 4. The black circled lattice points are
the ray generators. The blue circled lattice points complete the Hilbert basis (together with two
ray generators) for S(2)

+ ; while the red circled points analogously complete the Hilbert basis for
S

(2)
− . The green circled point represents the remaining minimal generator for S(2)

0 .

Hilbert series Computing the Hilbert series yields

HS[1,a]
U(2)(t, z,N) = R(t, z)

P (t, z) , (17.11a)

P (t, z) =
(
1− t2

)2 (
1− t4

) (
1− t2N−4

) (
1− 1

z2 t
(4a+2)N

) (
1− z2t(4a+2)N

)
(17.11b)

×
(
1− 1

z t
(2a+1)(N−2)

) (
1− zt(2a+1)(N−2)

)
,

R(t, z) = 1− t2 + t2N−2 − t2N + 2t4aN−4a+2N − t4aN−8a+2N−4 − t4aN−8a+2N−2 (17.11c)
− 2t4aN−4a+4N−4 + t4aN−8a+4N−6 + t4aN−8a+4N−4 + t8aN+4N + t8aN+4N+2

− 2t8aN−4a+4N − t8aN+6N−2 − t8aN+6N + 2t8aN−4a+6N−4 − t12aN−8a+6N−4

+ t12aN−8a+6N−2 − t12aN−8a+8N−6 + t12aN−8a+8N−4

+
(
z + 1

z

) (
t2aN−4a+N − t2aN+N+2 + t2aN+3N−2 − t2aN−4a+3N−4 + t6aN+3N+2

− t6aN−8a+3N−2 − t6aN+5N−2 + t6aN−8a+5N−6 − t10aN−4a+5N + t10aN−8a+5N−2
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17 Case: U(2)

+ t10aN−4a+7N−4 − t10aN−8a+7N−6
)

+
(
z2 + 1

z2

) (
t4aN−4a+2N − t4aN+2N + t4aN+4N − t4aN−4a+4N−4 − t8aN−4a+4N

+ t8aN−8a+4N−4 + t8aN−4a+6N−4 − t8aN−8a+6N−4) .
The Hilbert series (17.11) has a pole of order 4 at t → 1, because R(t = 1, z) = 0 and
dn
dtnR(t, z)|t=1 = 0 for n = 1, 2, 3. Hence, the moduli space is of (complex) dimension 4. As a
comment, the additional (1− t2)-term in the denominator can be cancelled with a corresponding
term in the numerator either explicitly for each a = fixed or for any a, but the resulting
expressions are not particularly insightful.

Discussion The four poles of the Hilbert series (17.11), which are graded as z±2 and z±1, can
be identified with the four ray generators (0,±1) and (a+ 1

2 ,±
1
2), i.e. they correspond to bare

monopole operators. In addition, the bare monopole operator for the minimal generator (1, 0)
is present in the denominator (17.11b), too.
In contrast, the family of monopoles {(l + 1

2 ,±
1
2) , l = 0, 1, . . . , a− 1} is not directly visible

in the Hilbert series, but can be deduced unambiguously from the plethystic logarithm. These
monopole operators correspond the minimal generators of S(2)

± which are not ray generators.
Tab. 17.1 provides as summary of the monopole generators and their properties. As a remark,

(m,n) (m1,m2) 2∆(m,n) H(m,n) dressings

(1, 0) (1,−1) 2N − 4 U(1)2 1 by U(1)

(l + 1
2 ,

1
2), for l = 0, 1, . . . , a (l + 1,−l) (2a+ 1)N − 2(2l + 1) U(1)2 1 by U(1)

(l + 1
2 ,−

1
2), for l = 0, 1, . . . , a (l,−(l + 1)) (2a+ 1)N − 2(2l + 1) U(1)2 1 by U(1)

(0,±1) ±(1, 1) (4a+ 2)N U(2) none
Table 17.1: Bare and dressed monopole operators for the family [1, a] of U(2)-representations.

the family of monopole operators (l + 1
2 ,±

1
2) is not always completely present in the plethystic

logarithm. We observe that l-th bare operator is a generator if N ≥ 2(a − l + 1), while the
dressing of the l-th object is a generator if N > 2(a− l + 1). The reason for the disappearance
lies in a relation at degree ∆(1, 0) + ∆(a+ 1

2 ,±
1
2) + 2, which coincides with ∆(l + 1

2 ,±
1
2) for

N − 1 = 2(a− l+ 1), such that the terms cancel in the PL. (See also App. C for the degrees of
the first relations.) Thus, for large N all above listed objects are generators.

17.2.1 Case: a = 0, complete intersection

For the choice a = 1, we obtain the Hilbert series for the 2-dimensional fundamental represen-
tation [1, 0] of U(2) as

HS[1,0]
U(2)(t, z,N) =

(
1− t2N

) (
1− t2N−2

)
(1− t2) (1− t4)

(
1− 1

z t
N
)

(1− ztN )
(
1− 1

z t
N−2

)
(1− ztN−2)

(17.12)

which agrees with the results of [191].
Let us comment on the reduction of generators compared to the Hilbert basis (17.10). The

minimal generators have conformal dimensions 2∆(1
2 ,±

1
2) = N − 2, 2∆(1, 0) = 2N − 4, and

2∆(0,±1) = 2N . Thus, (1, 0) is generated by (1
2 ,±

1
2) and (0,±1) are generated by utilising the

dressed monopoles of (1
2 ,±

1
2) and suitable elements in their Weyl-orbits.
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17.3 N hypermultiplets in adjoint representation of SU(2)

17.3 N hypermultiplets in adjoint representation of SU(2)

The conformal dimension for a U(2)-theory with N hypermultiplets transforming in the adjoint
representation of SU(2) and arbitrary even U(1)-charge is given by

∆(n,m) = N

2
(
|(2a+ 2)n+ 2m|+ |(2a+ 2)n|+ |(2a+ 2)n− 2m|

)
− 2|m| . (17.13)

Already at this stage, one can define the four semi-groups induced by the conformal dimension,
which originate from 2-dimensional cones

S
(2)
2,± =

{
(m,n) ∈ ΛU(2)

w /S2 | (m ≥ 0) ∧ (m ≤ ±(a+ 1)n) ∧ (±n ≥ 0)
}
, (17.14a)

S
(2)
1,± =

{
(m,n) ∈ ΛU(2)

w /S2 | (m ≥ 0) ∧ (m ≥ ±(a+ 1)n) ∧ (±n ≥ 0)
}
. (17.14b)

It turns out that the precise form of the Hilbert basis depends on the divisibility of a by 2; thus,
we split the considerations in two cases: a = 2k − 1 and a = 2k.

17.3.1 Case: a = 1 mod 2

Hilbert basis The collection of semi-groups (17.14) is depicted in Fig. 17.2. As before, we
compute the Hilbert basis H for each semi-group:

H(S(2)
2,±) =

{
(0,±1), (2k,±1), {(j + 1

2 ,±
1
2) | j = 0, . . . , k − 1}

}
, (17.15a)

H(S(2)
1,±) =

{
(2k,±1), (k + 1

2 ,±
1
2), (1, 0)

}
. (17.15b)

m

n

S
(2)
2,+

S
(2)
1,+

S
(2)
1,−

S
(2)
2,−

H+
0

H+
1

Figure 17.2: The Weyl-chamber for odd a, here with the example a = 3. The black circled
lattice points correspond to the ray generators originating from the fan. The blue/red circled
points are the remaining minimal generators for S(2)

2,±, respectively. Similarly, the orange/green
circled point are the generators that complete the Hilbert basis for S(2)

1,±.
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17 Case: U(2)

Hilbert series The computation of the Hilbert series yields

HS[2,2k−1]
U(2) (t, z,N) = R(t, z,N)

P (t, z,N) , (17.16a)

P (t, z,N) =
(
1− t2

)2 (
1− t4

) (
1− t4N−4

) (
1− 1

z2 t
12kN

) (
1− z2t12kN

)
(17.16b)

×
(
1− 1

z2 t
12kN−8k

) (
1− z2t12kN−8k

)
,

R(t, z,N) = 1− t2 + t4N−2 − t4N t24kN + t24kN+2 − t24kN−16k − t24kN−16k+2 (17.16c)
− t24kN+4N−2 − t24kN+4N + t24kN−16k+4N + t24kN−16k+4N−2 − t48kN−16k

+ t48kN−16k+2 + t48kN−16k+4N − t48kN−16k+4N−2

+
(
z + 1

z

)(
− t6kN+2 + t6kN−4k+2 + t6kN−4k+2N−2 − t6kN−4k+2N+2 + t6kN+4N−2

− t6kN−4k+4N−2 + t18kN+2 − t18kN−4k+2 + t18kN−8k+2 − t18kN−12k+2

− t18kN−4k+2N−2 + t18kN−4k+2N+2 − t18kN−12k+2N−2 + t18kN−12k+2N+2

− t18kN+4N−2 + t18kN−4k+4N−2 − t18kN−8k+4N−2 + t18kN−12k+4N−2 + t30kN−4k+2

− t30kN−8k+2 + t30kN−12k+2 − t30kN−16k+2 + t30kN−4k+2N−2 − t30kN−4k+2N+2

+ t30kN−12k+2N−2 − t30kN−12k+2N+2 − t30kN−4k+4N−2 + t30kN−8k+4N−2

− t30kN−12k+4N−2 + t30kN−16k+4N−2 − t42kN−12k+2 + t42kN−16k+2

− t42kN−12k+2N−2 + t42kN−12k+2N+2 + t42kN−12k+4N−2 − t42kN−16k+4N−2
)

+
(
z2 + 1

z2

)(
− t12kN + t12kN−8k+2 + t12kN+4N − t12kN−8k+4N−2 + t36kN−16k

− t36kN−8k+2 − t36kN−16k+4N + t36kN−8k+4N−2
)

+
(
z3 + 1

z3

)(
− t18kN−4k+2 + t18kN−8k+2 − t18kN−4k+2N−2 + t18kN−4k+2N+2

+ t18kN−4k+4N−2 − t18kN−8k+4N−2 − t30kN−8k+2 + t30kN−12k+2

+ t30kN−12k+2N−2 − t30kN−12k+2N+2 + t30kN−8k+4N−2 − t30kN−12k+4N−2
)
.

Inspection of the Hilbert series (17.16) reveals that it has a pole of order 4 as t → 1 because
R(t = 1, z,N) = 0, d

dtR(t, z,N)|t=1 = 0, and dn
dtnR(t, z,N)|t=1,z=1 = 0 for n = 2, 3.

Discussion The denominator of the Hilbert series (17.16) displays poles for the five bare
monopole operators (0,±1), (2k,±1), and (1, 0), which are ray generators and charged under
U(1)J as ±2, ±2, and 0, respectively. The remaining operators, corresponding to the minimal
generators which are not ray generators, are apparent in the analysis of the plethystic logarithm.
The relevant bare and dressed monopole operators are summarised in Tab. 17.2.

The plethystic logarithm, moreover, displays that not always all monopoles of the family
(j + 1

2 ,±
1
2) are generators (in the sense of the PL). The observation is: if k − j < N then the

j-th operator (bare as well as dressed) is truly a generator in the PL. The reason behind lies in
a relation at degree ∆(k − 1

2 ,±
1
2) + ∆(1, 0), which coincides with ∆(j + 1

2 ,±
1
2) for k − j = N .

(See also App. C.) Hence, for large enough N all above listed operators are generators.

172
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(m,n) (m1,m2) 2∆(m,n) H(m,n) dressings

(1, 0) (1,−1) 4N − 4 U(1)2 1 by U(1)

(j + 1
2 ,

1
2), j=0, . . . , k−1 (j + 1,−j) 6kN − 4j − 2 U(1)2 1 by U(1)

(j + 1
2 ,−

1
2), j=0, . . . , k−1 (j,−(j + 1)) 6kN − 4j − 2 U(1)2 1 by U(1)

(k + 1
2 ,

1
2) (k + 1,−k) 6kN + 2N − 4k − 2 U(1)2 1 by U(1)

(k + 1
2 ,−

1
2) (k,−(k + 1)) 6kN + 2N − 4k − 2 U(1)2 1 by U(1)

(0,±1) ±(1, 1) 12kN U(2) none
(2k, 1) (2k + 1, 1− 2k) 12kN − 8k U(1)2 1 by U(1)

(2k,−1) (2k − 1,−(2k + 1)) 12kN − 8k U(1)2 1 by U(1)
Table 17.2: Summary of the monopole operators for odd a.

17.3.2 Case: a = 0 mod 2

Hilbert basis The diagram for the minimal generators is provided in Fig. 17.3. Again, the
appearing (bare) monopoles correspond to the Hilbert basis of the semi-groups:

H(S(2)
2,±) =

{
(0,±1), {(j + 1

2 ,±
1
2) , j = 0, 1, . . . , k}

}
, (17.17a)

H(S(2)
1,±) =

{
(k + 1

2 ,±
1
2), (1, 0)

}
. (17.17b)

m

n

S
(2)
2,+

S
(2)
1,+

S
(2)
1,−

S
(2)
2,−

H+
0

H+
1

Figure 17.3: The Weyl-chamber for a = 0 mod 2, here with the example a = 4. The black
circled lattice points correspond to the ray generators originating from the fan. The blue/red
circled points are the remaining minimal generators for S(2)

2,±, respectively.

Hilbert series The computation of the Hilbert series for this case yields

HS[2,2k]
U(2) (t, z,N) = R(t, z,N)

P (t, z,N) , (17.18a)
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17 Case: U(2)

P (t, z,N) =
(
1− t2

)2 (
1− t4

) (
1− t4N−4

) (
1− 1

z t
6kN−4k+3N−2

) (
1− zt6kN−4k+3N−2

)
×
(
1− 1

z2 t
12kN+6N

) (
1− z2t12kN+6N

)
, (17.18b)

R(t, z,N) = 1− t2 + t4N−2 − t4N + 2t12kN−4k+6N − t12kN−8k+6N−4 − t12kN−8k+6N−2

− 2t12kN−4k+10N−4 + t12kN−8k+10N−6 + t12kN−8k+10N−4 + t24kN+12N (17.18c)
+ t24kN+12N+2 − 2t24kN−4k+12N − t24kN+16N−2 − t24kN+16N + 2t24kN−4k+16N−4

− t36kN−8k+18N−4 + t36kN−8k+18N−2 − t36kN−8k+22N−6 + t36kN−8k+22N−4

+
(
z + 1

z

)(
− t6kN+3N+2 + t6kN−4k+3N + t6kN+7N−2 − t6kN−4k+7N−4 + t18kN+9N+2

− t18kN−8k+9N−2 − t18kN+13N−2 + t18kN−8k+13N−6 − t30kN−4k+15N

+ t30kN−8k+15N−2 + t30kN−4k+19N−4 − t30kN−8k+19N−6
)

+
(
z2 + 1

z2

)(
− t12kN+6N + t12kN−4k+6N + t12kN+10N − t12kN−4k+10N−4

− t24kN−4k+12N + t24kN−8k+12N−4 + t24kN−4k+16N−4 − t24kN−8k+16N−4
)
.

The Hilbert series (17.18) has a pole of order 4 as t→ 1 because one can explicitly verify that
R(t = 1, z,N) = 0, d

dtR(t, z,N)|t=1 = 0, and dn
dtnR(t, z,N)|t=1,z=1 = 0 for n = 2, 3.

Discussion The five monopoles corresponding to the ray generators, i.e. (0,±1), (k+ 1
2 ,±

1
2),

and (1, 0), appear as poles in the Hilbert series (17.18) and are charged under U(1)J as ±2,
±1, and 0, respectively. The remaining minimal generator can be deduced by inspecting the
plethystic logarithm. We summarise the monopole generators in Tab. 17.3. Similarly to the

(m,n) (m1,m2) 2∆(m,n) H(m,n) dressings

(1, 0) (1,−1) 4N − 4 U(1)2 1 by U(1)

(j + 1
2 ,

1
2), for j = 0, 1, . . . , k (j + 1,−j) 6kN + 3N − 4j − 2 U(1)2 1 by U(1)

(j + 1
2 ,−

1
2), for j = 0, 1, . . . , k (j,−(j + 1)) 6kN + 3N − 4j − 2 U(1)2 1 by U(1)

(0,±1) ±(1, 1) 12kN + 6N U(2) none
Table 17.3: Summary of the monopole operators for even a.

case of odd a, the plethystic logarithm displays that not always all monopoles of the family
(j + 1

2 ,±
1
2) are generators. The observation is: if k − j + 1 ≥ N then the j-th bare operator is

a generator in the PL, while for k − j + 2 ≥ N then also the dressing of the j-th monopole is
a generator. The reason behind lies, again, in a relation at degree ∆(k − 1

2 ,±
1
2) + ∆(1, 0) + 2,

which coincides with ∆(j + 1
2 ,±

1
2) for k − j = N . (See also App. C for the degrees of the first

relations.) Hence, for large enough N all above listed operators are generators.

17.4 Direct product of SU(2) and U(1)

A rather simple example is obtained by considering the non-interacting product of an SU(2)
and a U(1) theory. Nonetheless, it illustrates how the rank two Coulomb branches contain the
product of rank one Coulomb branches as subclasses.
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17.4 Direct product of SU(2) and U(1)

As first example, take N1 fundamentals of SU(2) and N2 hypermultiplets charged under U(1)
with charges a ∈ N. The conformal dimension is given by

∆(m,n) = (N1 − 2)|m|+ N2 · a
2 |n| for m ∈ N and n ∈ Z (17.19)

and the dressing factor splits as

PSU(2)(t,m, n) = PSU(2)(t,m)× PU(1)(t, n) , (17.20)

such that the Hilbert series factorises

HS[1],a
SU(2)×U(1)(t,N1, N2) = HS[1]

SU(2)(t,N1)×HSaU(1)(t,N2) . (17.21)

The rank one Hilbert series have been presented in [191]. Moreover, HSaU(1)(t,N2) equals the
Aa·N2−1 singularity C2/Za·N2 ; whereas HS[1]

SU(2)(t,N1) is precisely the DN1 singularity.
The second, follow-up example is simply a theory comprise of N1 hypermultiplets in the

adjoint representation of SU(2) and N2 hypermultiplets charged under U(1) as above. The
conformal dimension is modified to

∆(m,n) = 2(N1 − 1)|m|+ N2 · a
2 |n| for m ∈ N and n ∈ Z (17.22)

and Hilbert series is obtained as

HS[2],a
SU(2)×U(1)(t,N1, N2) = HS[2]

SU(2)(t,N1)×HSaU(1)(t,N2) . (17.23)

Applying the results of [191], HS[2]
SU(2)(t,N1) is the Hilbert series of the D2N1-singularity on C2.

Summarising, the direct product of these SU(2)-theories with U(1)-theories results in mod-
uli spaces that are products of A and D type singularities, which are complete intersections.
Moreover, any non-trivial interactions between these two gauge groups, as discussed in Sec. 17.2
and 17.3, leads to a very elaborate expression for the Hilbert series as rational functions. Also,
the Hilbert basis becomes an important concept for understanding the moduli space.
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18 Case: A1 × A1

This chapter concerns all Lie groups with Lie algebra D2, which allows to study products of
the rank one gauge groups SO(3) and SU(2), but also the proper rank two group SO(4).

18.1 Set-up

Let us consider the Lie algebra D2 ∼= A1 × A1. Following [194], there are five different groups
with this Lie algebra. The reason is that the universal covering group S̃O(4) of SO(4) has a non-
trivial centre Z(S̃O(4)) = Z2 ×Z2 of order 4. The quotient of S̃O(4) by any of the five different
subgroups Z(S̃O(4)) yields a Lie group with the same Lie algebra. Fortunately, working with
SO(4) allows to use the isomorphism S̃O(4) = Spin(4) ∼= SU(2)×SU(2). We can summarise the
setting as displayed in Tab. 18.1. Here, we employed ŜU(2) = SO(3) and that for semi-simple

Quotient isomorphic group G GNO-dual Ĝ Z(Ĝ) GNO-charges (m1,m2)

S̃O(4)
{1} SU(2)× SU(2) SO(3)× SO(3) {1} K [0]

S̃O(4)
Z2×{1} SO(3)× SU(2) SU(2)× SO(3) Z2 × {1} K [0] ∪K [1]

S̃O(4)
diag(Z2) SO(4) SO(4) Z2 K [0] ∪K [2]

S̃O(4)
{1}×Z2

SU(2)× SO(3) SO(3)× SU(2) {1} × Z2 K [0] ∪K [3]

S̃O(4)
Z2×Z2

SO(3)× SO(3) SU(2)× SU(2) Z2 × Z2 K [0] ∪K [1] ∪K [2] ∪K [3]

Table 18.1: All the Lie groups that arise taking the quotient of S̃O(4) by a subgroup of its
centre; hence, their Lie algebra is D2.

groups G1, G2
Ĝ1 ×G2 = Ĝ1 × Ĝ2 (18.1)

holds [194]. Moreover, the GNO-charges are defined via the following sublattices of the weight
lattice of Spin(4) (see also Fig. 18.1)

K [0] =
{

(m1,m2) | mi = pi ∈ Z , p1 + p2 = even
}
, (18.2a)

K [1] =
{

(m1,m2) | mi = pi + 1
2 , pi ∈ Z , p1 + p2 = even

}
, (18.2b)

K [2] =
{

(m1,m2) | mi = pi ∈ Z , p1 + p2 = odd
}
, (18.2c)

K [3] =
{

(m1,m2) | mi = pi + 1
2 , pi ∈ Z , p1 + p2 = odd

}
. (18.2d)

The important consequence of this set-up is that the fan defined by the conformal dimension
will be the same for a given representation in each of the five quotients, but the semi-groups will
differ due to the different lattices Λw(Ĝ) used in the intersection. Hence, we will find different
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18 Case: A1 ×A1

m1

m2

K [0] lattice

K [1] lattice

K [2] lattice

K [3] lattice

Weyl chamber m1 ≥ |m2|

Figure 18.1: The four different sublattices of the covering group of SO(4). One recognises
the root lattice ΛS̃O(4)

r = K [0] and the weight lattice ΛS̃O(4)
w = K [0] ∪K [1] ∪K [2] ∪K [3].

Hilbert basis in each quotient group. Nevertheless, we are forced to consider representations on
the root lattice as we otherwise cannot compare all quotients.

18.1.1 Dressings

In addition, we have chosen to parametrise the principal Weyl chamber via m1 ≥ |m2| such
that the classical dressing factors are given by [191]

PA1×A1(t,m1,m2) =


1

(1−t2)2 for m1 = m2 = 0 ,
1

(1−t)(1−t2) for m1 = |m2| > 0 ,
1

(1−t)2 for m1 > |m2| ≥ 0 .
(18.3)

Regardless of the quotient S̃O(4)/Γ, the space of Casimir invariance is 2-dimensional. We choose
a basis30 such that the two degree 2 Casimir invariants stem either from SU(2) or SO(3), i.e.

diag(Φ) = (φ1, φ2) −→ C(i)
2 = (φi)2 . (18.4)

Next, we can clarify all relevant bare and dressed monopole operators for an (m1,m2) that is a
minimal generator. There are two cases: On the one hand, for m2 = ±m1, i.e. at the boundary
of the Weyl chamber, the residual gauge group is either U(1)i × SU(2)j or U(1)i × SO(3)j (for
i, j = 1, 2 and i 6= j), depending on the quotient under consideration. Thus, only the degree
1 Casimir invariant of the U(1)i can be employed for a dressing, as the Casimir invariant of
SU(2)j or SO(3)j belongs to the quotient S̃O(4)/Γ itself. Hence, we get

V dress,0
(m1,±m1) = (m1,±m1) and V dress,1

(m1,±m1) = φi (m1,±m1) . (18.5a)

Alternatively, we can apply the results of App. C and deduce the dressing behaviour at the
boundary of the Weyl chamber to be PA1×A1(t,m1,±m1)/PA1×A1(t, 0, 0) = 1 + t, i.e. only one
dressed monopole arises.
On the other hand, for m1 > |m2| ≥ 0, i.e. in the interior of the Weyl chamber, the residual

30In a different basis, the Casimir invariants for SO(4) are the quadratic Casimir and the Pfaffian.
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18.2 Representation [2, 0]

gauge group is U(1)2. From the resulting two degree 1 Casimir invariants one constructs the
following monopole operators:

V dress,0
(m1,m2) = (m1,m2) −→

 V dress,1,i
(m1,m2) = φi (m1,m2) , for i = 1, 2

V dress,2
(m1,m2) = φ1φ2 (m1,m2) .

(18.5b)

Using App. C, we obtain that monopole operators with GNO-charge in the interior of the Weyl
chamber exhibit the following dressings PA1×A1(t,m1,m2)/PA1×A1(t, 0, 0) = 1 + 2t+ t2, which
agrees with our discussion above.

18.2 Representation [2, 0]

The conformal dimension for this case reads

∆(m1,m2) = (N − 1) (|m1 +m2|+ |m1 −m2|) . (18.6)

Following the ideas outlined earlier, the conformal dimension (18.6) defines a fan in the dominant
Weyl chamber. In this example, ∆ is already a linear function on the entire dominant Weyl
chamber; thus, we generate a fan which just consists of one 2-dimensional rational cone

C(2) =
{

(m1 ≥ m2) ∧ (m1 ≥ −m2)
}
. (18.7)

18.2.1 Quotient Spin(4)

Hilbert basis Starting from the fan (18.7) with the cone C(2), the Hilbert basis for the
semi-group S(2) := C(2) ∩K [0] is simply given by the ray generators

H(S(2)) =
{

(1, 1), (1,−1)
}
, (18.8)

see for instance Fig. 18.2. Both minimal generators exhibit a bare monopole operator and one
dressed operators, as explained in (18.5).

m1

m2

K [0] lattice

S(2)

Figure 18.2: The semi-group S(2) and its ray-generators (black circled points) for the quotient
Spin(4) and the representation [2, 0].
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18 Case: A1 ×A1

Hilbert series We compute the Hilbert series to

HS[2,0]
Spin(4)(t,N) =

(
1− t4N−2

)2

(1− t2)2 (1− t2N−2)2 (1− t2N−1)2 , (18.9)

which is a complete intersection with 6 generators and 2 relations. The generators are given in
Tab. 18.2.

object (m1,m2) lattice ∆(m1,m2) H(m1,m2) dressings

Casimirs — — 2 — —
monopole (1,±1) K [0] 2N − 2 U(1)× SU(2) 1 by U(1)

Table 18.2: Bare and dressed monopole generators for a Spin(4) gauge theory with matter
transforming in [2, 0].

Remark The Hilbert series (18.9) can be compared to the case of SU(2) with n fundamentals
and na adjoints such that 2N = n+ 2na, cf. [191]. One derives at

HS[2,0]
Spin(4)(t,N) = HS[1]+[2]

SU(2) (t, n, na)×HS[1]+[2]
SU(2) (t, n, na) , (18.10)

which equals the product of two D2N singularities. As a consequence, the minimal generator
(1, 1) belongs to one SU(2) Hilbert series with adjoint matter content, while (1,−1) belongs to
the other.

18.2.2 Quotient SO(4)

The centre of the GNO-dual SO(4) is a Z2, which we choose to count if (m1,m2) belongs to
K [0] or K [2]. A realisation is given by

zm1+m2 =
{
zeven = 1 for (m1,m2) ∈ K [0] ,

zodd = z for (m1,m2) ∈ K [2] .
(18.11)

In other words, z is a Z2-fugacity.

Hilbert basis The semi-group S(2) := C(2) ∩
(
K [0] ∪K [2]

)
has a Hilbert basis as displayed

in Fig. 18.3 or explicitly
H(S(2)) =

{
(1,±1), (1, 0)

}
. (18.12)

Hilbert series The Hilbert series for SO(4) is given by

HS[2,0]
SO(4)(t, z,N) = 1 + t2N−2 + 2t2N−1 + zt2N + 2zt2N−1 + zt4N−2

(1− t2)2 (1− t2N−2) (1− zt2N−2)
, (18.13)

which is a rational function with a palindromic polynomial of degree 4N −2 as numerator, while
the denominator is of degree 4N . Hence, the difference in degrees is 2, i.e. the quaternionic
dimension of the moduli space. In addition, the denominator (18.13) has a pole of order 4 at
t→ 1, which equals the complex dimension of the moduli space.
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18.2 Representation [2, 0]

m1

m2

K [0] lattice

K [2] latticeS(2)

Figure 18.3: The semi-group S(2) and its ray-generators (black circled points) for the quotient
SO(4) and the representation [2, 0]. The red circled lattice point completes the Hilbert basis for
S(2).

Plethystic logarithm Analysing the PL yields for N ≥ 3

PL(HS[2,0]
SO(4)) = 2t2 + zt∆(1,0)(1 + 2t2 + t2) + 2t∆(1,±1)(1 + t)

− t2∆(1,0)(1 + 2(1 + z)t+ (6 + 4z)t2 + 2(1 + z)t3 + t4) + . . .
(18.14)

and for N = 2
PL(HS[2,0]

SO(4)) = 2t2 + zt2(1 + 2t+ t2) + 2t2(1 + t)

− t4(1 + 2(1 + z)t+ (6 + 4z)t2) + . . .
(18.15)

such that we have generators as summarised in Tab. 18.3.

object (m1,m2) lattice ∆(m1,m2) H(m1,m2) dressings

Casimirs — — 2 — —
monopole (1, 0) K [2] 2N − 2 U(1)×U(1) 3 by U(1)2

monopole (1,±1) K [0] 2N − 2 U(1)× SU(2) 1 by U(1)
Table 18.3: Bare and dressed monopole generators for a SO(4) gauge theory with matter
transforming in [2, 0].

Gauging a Z2 Although the Hilbert series (18.13) is not a complete intersection, the gauging
of the topological Z2 reproduces the Spin(4) result (18.9), that is

HS[2,0]
Spin(4)(t,N) = 1

2
(
HS[2,0]

SO(4)(t, z=1, N) + HS[2,0]
SO(4)(t, z=− 1, N)

)
. (18.16)

18.2.3 Quotient SO(3)× SU(2)

The dual group is SU(2)× SO(3) and the summation extends over (m1,m2) ∈ K [0] ∪K [1]. The
non-trivial centre Z2 × {1} gives rise to a Z2-action, which we choose to distinguish the two
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18 Case: A1 ×A1

lattices K [0] and K [1] as follows:

zm1+m2
1 =

z
p1+p2
1 = zeven

1 = 1 for (m1,m2) ∈ K [0] ,

z
p1+ 1

2 +p2+ 1
2

1 = zeven+1
1 = z1 for (m1,m2) ∈ K [1] .

(18.17)

Hilbert basis The semi-group S(2) := C(2) ∩
(
K [0] ∪K [1]

)
has a Hilbert basis comprised of

the ray generators. We refer to Fig. 18.4 and provide the minimal generators for completeness:

H(S(2)) =
{

(1
2 ,

1
2), (1,−1)

}
. (18.18)

m1

m2

K [0] lattice

K [1] latticeS(2)

Figure 18.4: The semi-group S(2) for the quotient SO(3) × SU(2) and the representation
[2, 0]. The black circled points are the ray generators.

Hilbert series Computing the Hilbert series and using explicitly the Z2-properties of z1 yields

HS[2,0]
SO(3)×SU(2)(t, z1, N) =

(
1− t2N

) (
1− t4N−2

)
(1− t2)2 (1− t2N−2) (1− t2N−1) (1− z1tN−1) (1− z1tN )

, (18.19)

which is a complete intersection with 6 generators and 2 relations. The generators are displayed
in Tab. 18.4.

object (m1,m2) lattice ∆(m1,m2) H(m1,m2) dressings

Casimirs — — 2 — —
monopole (1

2 ,
1
2) K [1] N − 1 U(1)× SU(2) 1 by U(1)

monopole (1,−1) K [0] 2N − 2 U(1)× SU(2) 1 by U(1)
Table 18.4: Bare and dressed monopole generators for a SO(3) × SU(2) gauge theory with
matter transforming in [2, 0].
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18.2 Representation [2, 0]

Remark Comparing to the case of SU(2) with na adjoints and SO(3) with n fundamentals
presented in [191], we can re-express the Hilbert series (18.19) as the product

HS[2,0]
SO(3)×SU(2)(t, z1, N) = HS[1]

SO(3)(t, z1, n = N)×HS[2]
SU(2)(t, na = N) , (18.20)

where the z1-grading belongs to SO(3) with N fundamentals. The minimal generator (1
2 ,

1
2) is

the minimal generator for SO(3) with N fundamentals, while (1,−1) is the minimal generator
for SU(2) with N adjoints.

18.2.4 Quotient SU(2)× SO(3)

The dual group is SO(3)× SU(2) and the summation extends over (m1,m2) ∈ K [0] ∪K [3]. The
non-trivial centre {1} × Z2 gives rise to a Z2-action, which we choose to distinguish the two
lattices K [0] and K [3] as follows:

zp1+p2
2 =

{
zeven

2 = 1 for (m1,m2) ∈ K [0] ,

zodd
2 = z2 for (m1,m2) ∈ K [3] .

(18.21)

Hilbert basis The semi-group S(2) := C(2) ∩
(
K [0] ∪K [3]

)
has as Hilbert basis the set of ray

generators
H(S(2)) =

{
(1, 1), (1

2 ,−
1
2)
}
. (18.22)

Fig. 18.5 depicts the situation. We observe that bases (18.18) and (18.22) are related by reflection
along the m2 = 0 axis, which in turn corresponds to the interchange of K [1] and K [3].

m1

m2

K [0] lattice

K [3] latticeS(2)

Figure 18.5: The semi-group S(2) for the quotient SU(2) × SO(3) and the representation
[2, 2]. The black circled points are the ray generators.

Hilbert series Similar to the previous case, employing the Z2-properties of z2 we obtain the
following Hilbert series:

HS[2,0]
SU(2)×SO(3)(t, z2, N) =

(
1− t2N

) (
1− t4N−2

)
(1− t2)2 (1− t2N−2) (1− t2N−1) (1− z2tN−1) (1− z2tN )

, (18.23)
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18 Case: A1 ×A1

which is a complete intersection with 6 generators and 2 relations. We summarise the generators
in Tab. 18.5.

object (m1,m2) lattice ∆(m1,m2) H(m1,m2) dressings

Casimirs — — 2 — —
monopole (1

2 ,−
1
2) K [3] N − 1 U(1)× SU(2) 1 by U(1)

monopole (1, 1) K [0] 2N − 2 U(1)× SU(2) 1 by U(1)
Table 18.5: Bare and dressed monopole generators for a SU(2) × SO(3) gauge theory with
matter transforming in [2, 0].

Remark Also, the equivalence

HS[2,0]
SO(3)×SU(2)(t, z1, N) z1↔z2←−−−−−−→ HS[2,0]

SU(2)×SO(3)(t, z2, N) (18.24)

holds, which then also implies

HS[2,0]
SU(2)×SO(3)(t, z2, N) = HS[1]

SO(3)(t, z2, n = N)×HS[2]
SU(2)(t, na = N) . (18.25)

Thus, the moduli space is a product of two complete intersections.

18.2.5 Quotient PSO(4)

Taking the quotient with respect to the entire centre of S̃O(4) yields the projective group PSO(4),
which has as GNO-dual Spin(4) ∼= SU(2)× SU(2). Consequently, the summation extends over
the whole weight lattice K [0]∪K [1]∪K [2]∪K [3] and there is an action of Z2×Z2 on this lattice,
which is chosen as displayed in Tab. 18.6.

lattice Z2 × Z2 Z̃2 × Z̃2

K [0] (z1)0, (z2)0 (w1)0, (w2)0

K [1] (z1)1, (z2)0 (w1)1, (w2)1

K [2] (z1)0, (z2)1 (w1)0, (w2)1

K [3] (z1)1, (z2)1 (w1)1, (w2)0

Table 18.6: The Z2×Z2 distinguishes the four different lattice K [j], j = 0, 1, 2, 3. The choice
of fugacities z1, z2 is used in the computation, while the second choice w1, w2 is convenient
for gauging PSO(4) to SU(2)× SO(3).

Hilbert basis The semi-group S(2) := C(2) ∩
(
K [0] ∪K [1] ∪K [2] ∪K [3]

)
has a Hilbert basis

that is determined by the ray generators. Fig. 18.6 depicts the situation and the Hilbert basis
reads

H(S(2)) =
{

(1
2 ,

1
2), (1

2 ,−
1
2)
}
. (18.26)
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18.2 Representation [2, 0]

m1

m2
K [0] lattice

K [1] lattice

K [2] lattice

K [3] lattice

S(2)

Figure 18.6: The semi-group S(2) and its ray-generators (black circled points) for the quotient
PSO(4) and the representation [2, 0].

Hilbert series An evaluation of the Hilbert series yields

HS[2,0]
PSO(4)(t, z1, z2, N)=

(
1− t2N

)2

(1− t2)2 (1− z1tN−1) (1− z1tN ) (1− z1z2tN−1) (1− z1z2tN )
, (18.27)

which is a complete intersection with 6 generators and 2 relations. Tab. 18.7 summarises the
generators with their properties.

object (m1,m2) lattice ∆(m1,m2) H(m1,m2) dressings

Casimirs — — 2 — —
monopole (1

2 ,
1
2) K [1] N − 1 U(1)× SU(2) 1 by U(1)

monopole (1
2 ,−

1
2) K [3] N − 1 U(1)× SU(2) 1 by U(1)

Table 18.7: Bare and dressed monopole generators for a PSO(4) gauge theory with matter
transforming in [2, 0].

Gauging a Z2 Now, we utilise the Z2 × Z2 global symmetry to recover the Hilbert series for
all five quotients solely from the PSO(4) result. Firstly, to obtain the SO(4) result, we need to
average out the contributions of K [1] and K [3], which is achieved for z1 → ±1 (we relabel z2 for
consistence), see also Tab. 18.6. This yields

HS[2,0]
SO(4)(t, z,N) = 1

2

(
HS[2,0]

PSO(4)(t, z1=1, z2=z,N)

+ HS[2,0]
PSO(4)(t, z1=− 1, z2=z,N)

)
.

(18.28a)

Secondly, a subsequent gauging leads to the Spin(4) result as demonstrated in (18.16), because
one averages theK [2] contributions out. Thirdly, one can gauge the other Z2-factor corresponding
to z2 → ±1, which then eliminates the contributions of K [2] and K [3] due to the choices of
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18 Case: A1 ×A1

Tab. 18.6. The result then reads

HS[2,0]
SO(3)×SU(2)(t, z1, N) = 1

2

(
HS[2,0]

PSO(4)(t, z1, z2=1, N)

+ HS[2,0]
PSO(4)(t, z1, z2=− 1, N)

)
.

(18.28b)

Lastly, for obtaining the SU(2)× SO(3) Hilbert series one needs to eliminate the K [1] and K [2]

contributions. For that, we have to redefine the Z2-fugacities conveniently. One choice is

z1 · z2 7→ w1 , z1 7→ w1 · w2 , and z2 7→ w2 , (18.28c)

which is consistent in Z2 × Z2. The effect on the lattices is summarised in Tab. 18.6. Hence,
w2 → ±1 has the desired effect and leads to

HS[2,0]
SU(2)×SO(3)(t, z2=w1, N) = 1

2

(
HS[2,0]

PSO(4)(t, w1, w2=1, N)

+ HS[2,0]
PSO(4)(t, w1, w2=− 1, N)

)
.

(18.28d)

Consequently, the Hilbert series for all five quotients can be computed from the PSO(4)-result
by gauging Z2-factors.

Remark As for most of the cases in this section, the Hilbert series (18.27) can be written
as a product of two complete intersections. Employing the results of [191] for SO(3) with n
fundamentals, we obtain

HS[2,0]
PSO(4)(t, z1, z2, N) = HS[1]

SO(3)(t, z1, n = N)×HS[1]
SO(3)(t, z1z2, n = N) . (18.29)

18.3 Representation [2, 2]

Let us study the representation [2, 2] to further compare the results for the five different quotient
groups. The conformal dimension reads

∆(m1,m2) = N(|m1 −m2|+ |m1 +m2|+ 2 |m1|+ 2 |m2|)− |m1 −m2| − |m1 +m2| . (18.30)

As described in the introduction, the conformal dimension (18.30) defines a fan in the dominant
Weyl chamber, which is spanned by two 2-dimensional rational cones

C
(2)
± =

{
(m1 ≥ ±m2) ∧ (m2 ≥ ±0)

}
. (18.31)

18.3.1 Quotient Spin(4)

Hilbert basis Starting from the fan (18.31) defined by the cones C(2)
± , the Hilbert bases for

the semi-groups S(2)
± := C

(2)
± ∩ K [0] are simply given by the ray generators, see for instance

Fig. 18.7.
H(S(2)

± ) =
{

(1,±1), (2, 0)
}
. (18.32)
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18.3 Representation [2, 2]

m1

m2

K [0] lattice

S
(2)
+

S
(2)
−

Figure 18.7: The semi-groups and their ray-generators (black circled points) for the trivial
quotient Spin(4) and the representation [2, 2].

Hilbert series The GNO-dual SO(3)×SO(3) has a trivial centre and the Hilbert series reads

HS[2,2]
Spin(4)(t,N) = 1 + t6N−2 + 2t6N−1 + 2t8N−3 + t8N−2 + t14N−4

(1− t2)2 (1− t6N−2) (1− t8N−4)
. (18.33)

The numerator of (18.33) is a palindromic polynomial of degree 14N −4; while the denominator
is a polynomial of degree 14N − 2. Hence, the difference in degree is two, which equals the
quaternionic dimension of the moduli space. In addition, denominator of (18.33) has a pole of
order four at t = 1, which equals the complex dimension of the moduli space.

Plethystic logarithm The plethystic logarithm takes the form

PL(HS[2,2]
Spin(4)) = 2t2 + 2t∆(1,±1)(1 + t) + t∆(2,0)(1 + 2t+ t2) (18.34)

− t2∆(1,±1)(1 + 2t+ 3t2 + 2t3 + 4t4 + 2t5 + 3t6 + 2t7 + t8) + . . .

The appearing terms agree with the minimal generators of the Hilbert bases (18.7). One has
two independent degree two Casimir invariants. Further, there are monopole operators of GNO-
charge (1, 1) and (1,−1) at conformal dimension 6N − 2 with an independent dressed monopole
generator of conformal dimension 6N − 1 for both charges. Moreover, there is a monopole
operator of GNO-charge (2, 0) at dimension 8N − 4 with two associated dressed monopole
operators at dimension 8N − 3 and one at 8N − 2.

18.3.2 Quotient SO(4)

Hilbert basis The semi-groups S(2)
± := C

(2)
± ∩

(
K [0] ∪K [2]

)
have Hilbert bases which again

equal (the now different) ray generators. The situation is depicted in Fig. 18.8 and the Hilbert
bases are as follows:

H(S(2)
± ) =

{
(1,±1), (1, 0)

}
. (18.35)
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m1
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K [0] lattice

K [2] lattice
S

(2)
+

S
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−

Figure 18.8: The semi-groups and their ray-generators (black circled points) for the quotient
SO(4) and the representation [2, 2].

Hilbert series The Hilbert series reads

HS[2,2]
SO(4)(t, z,N) = 1 + zt4N + 2zt4N−1 + t6N−2 + 2t6N−1 + zt10N−2

(1− t2)2 (1− zt4N−2) (1− t6N−2)
. (18.36)

The numerator of (18.36) is a palindromic polynomial of degree 10N − 2 (neglecting the de-
pendence on z); while the denominator is a polynomial of degree 10N . Hence, the difference in
degree is two, which matches the quaternionic dimension of the moduli space. Moreover, the
denominator has a pole of order four at t = 1, which equals the complex dimension ofMC .

Plethystic logarithm Studying the PL, we observe

PL(HS[2,2]
SO(4)) = 2t2 + zt∆(1,0)(1 + 2t2 + t) + 2t∆(1,±1)(1 + t) (18.37)

− t2∆(1,0)+2(3 + 2t2 + t2 + 2t3 + 4t4 + 2t5 + t6 + 2t7 + 3t8) + . . .

such that we can associate the generators as follows: two degree two Casimir invariants of
SO(4), i.e. the quadratic Casimir and the Pfaffian; a monopole of GNO-charge (1, 0) ∈ K [2] at
conformal dimension 4N − 2 with two dressings at dimension 4N − 1 and another dressing at
4N ; and two monopole operators of GNO-charges (1, 1), (1,−1) ∈ K [0] at dimension 6N − 2
with each one dressed monopole at dimension 6N − 1.

Gauging the Z2 In addition, one can gauge the topological Z2 in (18.36) and obtains

HS[2,2]
Spin(4)(t,N) = 1

2
(
HS[2,2]

SO(4)(t, z=1, N) + HS[2,2]
SO(4)(t, z=− 1, N)

)
. (18.38)

18.3.3 Quotient SO(3)× SU(2)

Hilbert basis The semi-groups S(2)
± := C

(2)
± ∩

(
K [0] ∪K [1]

)
have Hilbert bases that go beyond

the set of ray generators. We refer to Fig. 18.9 and the Hilbert bases are obtained as follows:

H(S(2)
+ ) =

{
(1

2 ,
1
2), (2, 0)

}
and H(S(2)

− ) =
{

(1,−1), (3
2 ,−

1
2), (2, 0)

}
. (18.39)
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m1

m2

K [0] lattice

K [1] lattice
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(2)
+

S
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−

Figure 18.9: The semi-groups for the quotient SO(3)× SU(2) and the representation [2, 2].
The black circled points are the ray generators and the red circled point completes the Hilbert
basis for S(2)

− .

Hilbert series The Hilbert series is computed to be

HS[2,2]
SO(3)×SU(2)(t, z1, N) = R(t, z1, N)

(1− t2)2 (1− t6N−2) (1− t8N−4)
, (18.40a)

R(t, z1, N) = 1 + z1t
3N−1(1 + t) + t6N−2(1 + 2t) + z1t

7N−3(1 + 2t+ t2)
+ t8N−3(2 + t) + z1t

11N−4(1 + t) + t14N−4 . (18.40b)

Again, the numerator of (18.40) is a palindromic polynomial of degree 14N − 4; while the
denominator is a polynomial of degree 14N − 2. Hence, the difference in degree is two, which
matches the quaternionic dimension of the moduli space. Also, the denominator has a pole of
order four at t = 1, which equals the complex dimension of the moduli space.

Plethystic logarithm The inspection of the PL for N ≥ 2 reveals

PL(HS[2,2]
SO(3)×SU(2)) = 2t2 + z1t

∆( 1
2 ,

1
2 )(1 + t) + t∆(1,±1)(1 + t− t2) (18.41)

+ z1t
∆(1+ 1

2 ,−1+ 1
2 )(1 + 2t+ t2) + t∆(2,0)(1 + 2t+ t2)

− z1t
3∆( 1

2 ,
1
2 )(1 + 2t+ t2) + . . . .

We summarise the generators in Tab. 18.8.

18.3.4 Quotient SU(2)× SO(3)

Hilbert basis The semi-groups S(2)
± := C

(2)
± ∩

(
K [0] ∪K [3]

)
have Hilbert bases that go beyond

the set of ray generators. Fig. 18.10 depicts the situation and the Hilbert bases are computed
to be

H(S(2)
+ ) =

{
(1, 1), (3

2 ,
1
2), (2, 0)

}
and H(S(2)

− ) =
{

(1
2 ,−

1
2), (2, 0)

}
. (18.42)
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(m1,m2) lattice ∆(m1,m2) H(m1,m2) dressings

(1
2 ,

1
2) K [1] 3N − 1 U(1)× SU(2) 1 by U(1)

(1,−1) K [0] 6N − 2 U(1)× SU(2) 1 by U(1)
(3

2 ,−
1
2) K [1] 7N − 3 U(1)×U(1) 3 by U(1)2

(2, 0) K [0] 8N − 4 U(1)×U(1) 3 by U(1)2

Table 18.8: The generators for the chiral ring of a SO(3)× SU(2) gauge theory with matter
in [2, 2].

We observe that the bases (18.39) and (18.42) are related by reflection along the m2 = 0 axis,
which in turn corresponds to the interchange of K [1] and K [3].

m1

m2

K [0] lattice

K [3] lattice
S

(2)
+

S
(2)
−

Figure 18.10: The semi-groups for the quotient SU(2)× SO(3) and the representation [2, 2].
The black circled points are the ray generators and the red circled point completes the Hilbert
basis for S(2)

+ .

Hilbert series The Hilbert series reads

HS[2,2]
SU(2)×SO(3)(t, z2, N) = R(t, z2, N)

(1− t2)2 (1− t6N−2) (1− t8N−4)
, (18.43a)

R(t, z2, N) = 1 + z2t
3N−1(1 + t) + t6N−2(1 + 2t) + z2t

7N−3(1 + 2t+ t2)
+ t8N−3(2 + t) + z2t

11N−4(1 + t) + t14N−4 . (18.43b)

The numerator of (18.43) is palindromic polynomial of degree 14N − 4; while the denominator
is a polynomial of degree 14N − 2. Hence, the difference in degree is two, which equals the
quaternionic dimension of the moduli space. In addition, the denominator has a pole of order
four at t = 1, which matches the complex dimension of the moduli space.

As before, comparing the quotients SO(3)×SU(2) and SU(2)×SO(3) as well as the symmetry
of (18.30), it is natural to expect the relationship

HS[2,2]
SO(3)×SU(2)(t, z1, N) z1↔z2←−−−−−−→ HS[2,2]

SU(2)×SO(3)(t, z2, N) , (18.44)

which is verified explicitly for (18.40) and (18.43).
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18.3 Representation [2, 2]

Plethystic logarithm The equivalence to SO(3)× SU(2) is further confirmed by the inspec-
tion of the PL for N ≥ 2

PL(HS[2,2]
SU(2)×SO(3)) = 2t2 + z2t

∆( 1
2 ,−

1
2 )(1 + t) + t∆(1,1)(1 + t− t2) (18.45)

+ z2t
∆( 3

2 ,
1
2 )(1 + 2t+ t2) + t∆(2,0)(1 + 2t+ t2) + . . . ,

where we can summarise the monopole generators as in Tab. 18.9. Note the change in GNO-

(m1,m2) lattice ∆(m1,m2) H(m1,m2) dressings

(1
2 ,−

1
2) K [3] 3N − 1 U(1)× SU(2) 1 by U(1)

(1, 1) K [0] 6N − 2 U(1)× SU(2) 1 by U(1)
(3

2 ,
1
2) K [3] 7N − 3 U(1)×U(1) 3 by U(1)2

(2, 0) K [0] 8N − 4 U(1)×U(1) 3 by U(1)2

Table 18.9: The generators for the chiral ring of a SU(2)× SO(3) gauge theory with matter
in [2, 2].

charges in accordance with the use of K [3] instead of K [1].

18.3.5 Quotient PSO(4)

Hilbert basis The semi-groups S(2)
± := C

(2)
± ∩

(
K [0] ∪K [1] ∪K [2] ∪K [3]

)
have Hilbert bases

that are determined by the ray generators. Fig. 18.11 depicts the situation and the Hilbert bases
read

H(S(2)
± ) =

{
(1

2 ,±
1
2), (1, 0)

}
. (18.46)

m1

m2
K [0] lattice

K [1] lattice

K [2] lattice

K [3] lattice

S
(2)
+

S
(2)
−

Figure 18.11: The semi-groups and their ray-generators (black circled points) for the quotient
PSO(4) and the representation [2, 2].

Hilbert series The Hilbert series reads

HS[2,2]
PSO(4)(t, z1, z2, N) = R(t, z1, z2, N)

(1− t2)2 (1− t6N−2) (1− z2t4N−2)
, (18.47a)
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18 Case: A1 ×A1

R(t, z1, z2, N) = 1 + z1t
3N−1(1 + t) + z1z2t

3N−1(1 + t) + z2t
4N−1(2 + t) (18.47b)

+ t6N−2(1 + 2t) + z1z2t
7N−2(1 + t)

+ z1t
7N−2(1 + t) + z2t

10N−2 .

The numerator of (18.47) is a palindromic polynomial of degree 10N −2; while the denominator
is a polynomial of degree 10N . Hence, the difference in degree is two, which corresponds to the
quaternionic dimension ofMC . Similarly to the previous cases, the denominator of (18.47) has
a pole of order four at t = 1, which equals the complex dimension of the moduli space.

Gauging a Z2 As before, by gauging the Z2-factor corresponding to z1 we recover the SO(4)-
result

HS[2,2]
SO(4)(t, z,N) = 1

2

(
HS[2,2]

PSO(4)(t, z1=1, z2=z,N)

+ HS[2,2]
PSO(4)(t, z1=− 1, z2=z,N)

)
,

(18.48a)

while gauging the Z2-factor with fugacity z2 provides the SO(3)× SU(2)-result

HS[2,2]
SO(3)×SU(2)(t, z1, N) = 1

2

(
HS[2,2]

PSO(4)(t, z1, z2=1, N)

+ HS[2,2]
PSO(4)(t, z1, z2=−1, N)

)
.

(18.48b)

Furthermore, employing the redefined fugacities w1, w2 of (18.28c) one reproduces the Hilbert
series for SU(2)× SO(3) as follows:

HS[2,2]
SU(2)×SO(3)(t, z2=w1, N) = 1

2

(
HS[2,2]

PSO(4)(t, w1, w2=1, N)

+ HS[2,2]
PSO(4)(t, w1, w2=−1, N)

)
.

(18.48c)

Therefore, one can obtain the Hilbert series for all five quotients from the PSO(4)-result (18.47)
by employing the Z2-gaugings (18.38) and (18.48).

Plethystic logarithm Inspecting the PL leads to

PL(HS[2,2]
PSO(4)) = 2t2 + z1t

∆( 1
2 ,

1
2 )(1 + t) + z1z2t

∆( 1
2 ,−

1
2 )(1 + t)

+ z2t
∆(1,0)(1 + 2t+ t2) + . . .

(18.49)

such that we can summarise the monopole generators as in Tab. 18.10.

(m1,m2) lattice ∆(m1,m2) H(m1,m2) dressings

(1
2 ,

1
2) K [1] 3N − 1 U(1)× SU(2) 1 by U(1)

(1
2 ,−

1
2) K [3] 3N − 1 U(1)× SU(2) 1 by U(1)

(1, 0) K [2] 4N − 2 U(1)×U(1) 3 by U(1)2

Table 18.10: The generators for the chiral ring of a PSO(4) gauge theory with matter trans-
forming in the representation [2, 2].
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18.4 Representation [4, 2]

18.4 Representation [4, 2]
The conformal dimension for this case reads

∆(m1,m2) = N
(
|3m1 −m2|+ |m1 − 3m2|+ |m1 +m2|+ 3 |m1 −m2|+ 2 |m1|+ 2 |m2|

)
− |m1 +m2| − |m1 −m2| . (18.50)

The interesting feature of this representation is its asymmetric behaviour under exchange of
m1 and m2. As before, the conformal dimension (18.50) defines a fan in the dominant Weyl
chamber that is spanned by three 2-dimensional cones

C
(2)
1 =

{
(m1 ≥ −m2) ∧ (m2 ≤ 0)

}
, (18.51a)

C
(2)
2 =

{
(m1 ≥ 3m2) ∧ (m2 ≥ 0)

}
, (18.51b)

C
(2)
3 =

{
(m1 ≥ m2) ∧ (m1 ≤ 3m2)

}
. (18.51c)

18.4.1 Quotient Spin(4)

Hilbert basis Starting from the fan (18.51) with cones C(2)
p (for p = 1, 2, 3), the Hilbert bases

for the semi-groups S(2)
p := C

(2)
p ∩K [0] are simply given by the ray generators:

H(S(2)
1 ) =

{
(2, 0), (1,−1)

}
, H(S(2)

2 ) =
{

(3, 1), (2, 0)
}
, H(S(2)

3 ) =
{

(1, 1), (3, 1)
}
, (18.52)

which is apparent from Fig. 18.12.

m1

m2

K [0] lattice
S

(2)
3

S
(2)
2

S
(2)
1

Figure 18.12: The semi-groups and their ray-generators (black circled points) for the quotient
Spin(4) and the representation [4, 2].

Hilbert series The Hilbert series reads

HS[4,2]
Spin(4)(t,N) = R(t,N)

(1− t2)2 (1− t18N−2) (1− t20N−4) (1− t26N−6)
, (18.53a)

R(t,N) = 1 + t10N−2(1 + t) + t18N−1 + t20N−4(1 + 3t+ t2) (18.53b)
+ t26N−5(2 + t)− t28N−4(1 + t) + t36N−7(1 + t)
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18 Case: A1 ×A1

− t38N−6(1 + 2t)− t44N−8(1 + 3t+ t2)− t46N−9

− t54N−9(1 + t)− t64N−10 .

The numerator of (18.53) is an anti-palindromic polynomial of degree 64N − 10, while the
denominator is of degree 64N − 8. Consequently, the difference in degree is two. Moreover,
the rational function (18.53) has a pole of order four as t → 1 because R(t=1, N) = 0, but
d
dtR(t,N)|t=1 6= 0.

Plethystic logarithm Inspecting the PL yields for N ≥ 3

PL(HS[4,2]
Spin(4)) = 2t2 + t∆(1,1)(1 + t) + t∆(1,−1)(1 + t) + t∆(2,0)(1 + 2t)

+ t∆(3,1)(1 + 2t+ t2)− t∆(1,1)+∆(1,−1)(1 + 2t+ t2) (18.54)
− t∆(1,1)+∆(2,0)(1 + 3t+ 3t2 + t3) + . . .

leads to an identification of generators as in Tab. 18.11. We observe that (2, 0) has only 2

object (m1,m2) lattice ∆(m1,m2) H(m1,m2) # dressings

Casimirs — — 2 — —
monopole (1, 1) K [0] 10N − 2 U(1)× SU(2) 1 by U(1)
monopole (1,−1) K [0] 18N − 2 U(1)× SU(2) 1 by U(1)
monopole (2, 0) K [0] 20N − 4 U(1)×U(1) 2 by U(1)2

monopole (3, 1) K [0] 26N − 6 U(1)×U(1) 3 by U(1)2

Table 18.11: The chiral ring generators for a Spin(4) gauge theory with matter transforming
in [4, 2].

dressings, although we would expect 3. We know from other examples that there should be a
relation at 2∆(1, 1) + 2 = 20N − 2 which is precisely the dimension of the second dressing of
(2, 0). (See also App. C.)

18.4.2 Quotient SO(4)

Hilbert basis The semi-groups S(2)
p := C

(2)
p ∩

(
K [0] ∪K [2]

)
have Hilbert bases as shown in

Fig. 18.13 or explicitly:

H(S(2)
1 ) =

{
(1, 0), (1,−1)

}
, H(S(2)

2 ) =
{

(3, 1), (1, 0)
}
, (18.55a)

H(S(2)
3 ) =

{
(1, 1), (2, 1), (3, 0)

}
. (18.55b)

Hilbert series A computation then yields

HS[4,2]
SO(4)(t, z,N) = R(t, z,N)

(1− t2)2 (1− t10N−2) (1− t18N−2) (1− t26N−6) (1− zt10N−2)
, (18.56a)

R(t, z,N) = 1 + t10N−1 + zt10N−1(2 + t) + zt18N−4(1 + 2t+ t3) + t18N−1

− zt20N−4(1 + 3t+ t2) + 2t26N−5(2 + t) (18.56b)
− t28N−6(1 + 2t+ 2t2 + 2t3)− zt28N−3
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18.4 Representation [4, 2]

m1
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K [0] lattice
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2
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1

Figure 18.13: The semi-groups for the quotient SO(4) and the representation [4, 2]. The
black circled points are the ray generators and the red circled point completes the Hilbert basis
for S(2)

3 .

− t36N−7 − zt36N−7(2 + 2t+ 2t2 + t3) + zt38N−6(1 + 2t)
− t44N−8(1 + 3t+ t2) + zt46N−9 + t46N−8(1 + 2t+ t2)
+ t54N−10(1 + 2t) + zt54N−9 + zt64N−10 .

The numerator (18.56b) is a palindromic polynomial of degree 64N−10, while the denominator is
of degree 64N−8. Consequently, the difference of the degree is two. Also, the Hilbert series (18.56)
has a pole of order four as t → 1, because R(t=1, z,N) = 0 and d

dtR(t, z,N)|t=1 = 0, but
d2

dt2R(t, z,N)|t=1 6= 0.

Plethystic logarithm Inspecting the PL reveals

PL(HS[4,2]
SO(4)) = 2t2 + zt∆(1,0)(1 + 2t+ t2) + t∆(1,1)(1 + t) + zt∆(2,1)(1 + 2t+ t2)

+ t∆(1,−1)(1 + t)− zt2∆(1,0)(1 + 3t+ 3t2 + t3) (18.57)
− t2∆(1,1)+2(4 + 2t+ t2) + t∆(3,1)(1 + 2t+ t2) + . . . ,

such that the monopole generators can be summarised as in Tab. 18.12.

object (m1,m2) lattice ∆(m1,m2) H(m1,m2) dressings

Casimirs — — 2 — —
monopole (1, 0) K [2] 10N − 2 U(1)×U(1) 3 by U(1)2

monopole (1, 1) K [0] 10N − 2 U(1)× SU(2) 1 by U(1)
monopole (2, 1) K [2] 18N − 4 U(1)×U(1) 3 by U(1)2

monopole (1,−1) K [0] 18N − 2 U(1)× SU(2) 1 by U(1)
monopole (3, 1) K [0] 26N − 6 U(1)×U(1) 3 by U(1)2

Table 18.12: The chiral ring generators for a SO(4) gauge theory with matter transforming
in [4, 2].
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18 Case: A1 ×A1

Gauging the Z2 Again, one can gauge the finite symmetry to recover the Spin(4) Hilbert
series

HS[4,2]
Spin(4)(t,N) = 1

2
(
HS[4,2]

SO(4)(t, z=1, N) + HS[4,2]
SO(4)(t, z=− 1, N)

)
. (18.58)

18.4.3 Quotient SO(3)× SU(2)

Hilbert basis The semi-groups S(2)
p := C

(2)
p ∩

(
K [0] ∪K [1]

)
(for p = 1, 2, 3) have Hilbert

bases that go beyond the set of ray generators. We refer to Fig. 18.14 and the Hilbert bases are
obtained as follows:

H(S(2)
1 ) =

{
(2, 1), (3

2 ,−
1
2), (1,−1)

}
, H(S(2)

2 ) =
{

(3, 1), (5
2 ,

1
2), (2, 0)

}
, (18.59a)

H(S(2)
3 ) =

{
(1, 1), (3, 1)

}
. (18.59b)

m1

m2

K [0] lattice

K [1] lattice

S
(2)
3

S
(2)
2

S
(2)
1

Figure 18.14: The semi-groups for the quotient SO(3)× SU(2) and the representation [4, 2].
The black circled points are the ray generators, the red circled point completes the Hilbert basis
for S(2)

2 , while the green circled point completes the Hilbert basis of S(2)
1 .

Hilbert series We compute the Hilbert series to

HS[4,2]
SO(3)×SU(2)(t, z1, N) = R(t, z1, N)

(1− t2)2 (1− t18N−2) (1− t20N−4) (1− t26N−6)
, (18.60a)

R(t, z1, N) = 1 + z1t
5N−1(1 + t) + t10N−2(1 + t) + z1t

15N−3(1 + t) (18.60b)
+ t18N−1 + z1t

19N−3(1 + 2t+ t3)
+ t20N−4(1 + 3t+ t2) + z1t

23N−5(1 + 2t− t3)
+ t26N−5(2 + t)− t28N−4(1 + t) + z1t

31N−6(1 + t)
− z1t

33N−5(1 + t) + t36N−7(1 + t)− t38N−6(1 + 2t)
+ z1t

41N−8(1− 2t2 − t3)− t44N−8(1 + 3t+ t2)
− z1t

45N−9(1 + 2t+ t2)− t46N−9 − z1t
49N−8(1 + t)

− t54N−9(1 + t)− z1t
59N−10(1 + t)− t64N−10 .
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18.4 Representation [4, 2]

The numerator of (18.60) is an anti-palindromic polynomial of degree 64N − 10, while the
denominator is of degree 64N − 8. Thus, the difference in degrees is again 2. In addition,
the Hilbert series (18.60) has a pole of order 4 as t → 1, because R(t=1, z1, N) = 0, but
d
dtR(t, z1, N)|t=1 6= 0.

Plethystic logarithm Analysing the PL yields

PL = 2t2 + z1t
∆( 1

2 ,
1
2 )(1 + t)− t∆( 1

2 ,
1
2 )+2 + t∆(1,−1)(1 + t) (18.61)

+ z1t
∆( 3

2 ,−
1
2 )(1 + 2t+ t2) + t∆(2,0)(1 + 2t+ t2)

+ z1t
∆( 5

2 ,
1
2 )(1 + 2t+ 1)− z1t

∆( 1
2 ,

1
2 )+∆(1,−1)(1 + 2t+ t2)

− t∆( 1
2 ,

1
2 )+∆( 3

2 ,−
1
2 )(1 + 3t+ 3t2 + t3)

− z1t
∆( 1

2 ,
1
2 )+∆(2,0)(1 + 3t+ 3t2 + t3)

+ t∆(3,1)(1 + 2t+ t2) + . . . ,

verifies the set of generators as presented in Tab. 18.13. The coloured term indicates that we

object (m1,m2) lattice ∆(m1,m2) H(m1,m2) dressings

Casimirs — — 2 — —
monopole (1

2 ,
1
2) K [1] 5N − 1 U(1)× SU(2) 1 by U(1)

monopole (1,−1) K [0] 18N − 2 U(1)× SU(2) 1 by U(1)
monopole (3

2 ,−
1
2) K [1] 19N − 3 U(1)×U(1) 3 by U(1)2

monopole (2, 0) K [0] 20N − 4 U(1)×U(1) 3 by U(1)
monopole (5

2 ,
1
2) K [1] 23N − 5 U(1)×U(1) 3(2) by U(1)2

monopole (3, 1) K [0] 26N − 6 U(1)×U(1) 3 by U(1)2

Table 18.13: The chiral ring generators for a SO(3) × SU(2) gauge theory with matter
transforming in [4, 2].

suspect a cancellation between one dressing of (5
2 ,

1
2) and one relation because ∆(5

2 ,
5
2) + 2 =

23N − 3 = ∆(1
2 ,

1
2) + ∆(1,−1) = 5N − 1 + 18N − 2.

18.4.4 Quotient SU(2)× SO(3)

Hilbert basis The semi-groups S(2)
p := C

(2)
p ∩

(
K [0] ∪K [3]

)
(for p = 1, 2, 3) have Hilbert

bases consisting of the ray generators as shown in Fig. 18.15 and we obtain explicitly

H(S(2)
1 ) =

{
(2, 0), (1

2 ,−
1
2)
}
, H(S(2)

2 ) =
{

(3
2 ,

1
2), (2, 0)

}
, H(S(2)

3 ) =
{

(1, 1), (3
2 ,

1
2)
}
. (18.62)

Hilbert series We compute the Hilbert series to

HS[4,2]
SU(2)×SO(3)(t, z2, N) = R(t, z2, N)

(1− t2)2 (1− t18N−2) (1− t20N−4) (1− t26N−6)
, (18.63a)

R(t, z2, N) = 1 + z2t
9N−1(1 + t) + t10N−2(1 + t) + z2t

13N−3(1 + 2t+ t2)
+ t18N−1 + t20N−4(1 + 3t+ t2) + z2t

23N−5(1 + 2t+ t2)
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18 Case: A1 ×A1

m1

m2

K [0] lattice

K [3] lattice

S
(2)
3

S
(2)
2

S
(2)
1

Figure 18.15: The semi-groups for the quotient SU(2)× SO(3) and the representation [4, 2].
The black circled points are the ray generators.

+ t26N−5(2 + t)− t28N−4(1 + t) + z2t
29N−4(1 + t) (18.63b)

− z2t
31N−5(1 + 2t+ t2) + z2t

33N−7(1 + 2t+ t2)
− z2t

35N−7(1 + t) + t36N−7(1 + t)− t38N−6(1 + 2t)
− z2t

41N−7(1 + 2t+ t2)− t44N−8(1 + 3t+ t2)
− t46N−9 − z2t

51N−9(1 + 2t+ t2)− t54N−9(1 + t)
− z2t

55N−10(1 + t)− t64N−10 .

As before, we can try to compare the quotients SO(3) × SU(2) and SU(2) × SO(3). However,
due to the asymmetry in m1, m2 or the asymmetry of the fan in the Weyl chamber, the Hilbert
series for the two quotients are not related by an exchange of z1 and z2. We will comment on
the correct gauging of Z2 subgroups in the next subsection.

Plethystic logarithm Upon analysing the PL we find

PL(HS[4,2]
SU(2)×SO(3)) = 2t2 + z2t

∆( 1
2 ,−

1
2 )(1 + t) + t∆(1,1)(1 + t) + z2t

∆( 3
2 ,

1
2 )(1 + 2t+ t2)

− t2∆( 1
2 ,−

1
2 )+2 − z2t

∆( 1
2 ,−

1
2 )+∆(1,1)(1 + 2t+ t2) (18.64)

+ t∆(2,0)(1 + 2t)− t∆( 1
2 ,−

1
2 )+∆( 3

2 ,
1
2 )(1 + 3t+ 3t2 + t3) + . . . ,

through which one identifies the generators as given in Tab. 18.14. The terms in the denominator
of the Hilbert series can be seen to reproduce these generators

(1− t18N−2) = (1− z2t
9N−1)(1 + z2t

9N−1) , (18.65a)
(1− t26N−6) = (1− z2t

13N−3)(1 + z2t
13N−3) . (18.65b)

Unfortunately, we are unable to reduce the numerator accordingly.
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18.4 Representation [4, 2]

object (m1,m2) lattice ∆(m1,m2) H(m1,m2) dressings

Casimirs — — 2 — —
monopole (1

2 ,−
1
2) K [3] 9N − 1 U(1)× SU(2) 1 by U(1)

monopole (1, 1) K [0] 10N − 2 U(1)× SU(2) 1 by U(1)
monopole (3

2 ,
1
2) K [3] 13N − 3 U(1)×U(1) 3 by U(1)2

monopole (2, 0) K [0] 20N − 4 U(1)×U(1) 3 by U(1)2

Table 18.14: The chiral ring generators for a SU(2) × SO(3) gauge theory with matter
transforming in [4, 2].

18.4.5 Quotient PSO(4)

Hilbert basis The semi-groups S(2)
p := C

(2)
p ∩

(
K [0] ∪K [1] ∪K [2] ∪K [3]

)
(for p = 1, 2, 3) have

Hilbert bases that are determined by the ray generators. Fig. 18.16 depicts the situation and
the Hilbert bases read:

H(S(2)
1 ) =

{
(1, 0), (1

2 ,−
1
2)
}
, H(S(2)

2 ) =
{

(3
2 ,

1
2), (1, 0)

}
,

H(S(2)
3 ) =

{
(1

2 ,
1
2), (3

2 ,
1
2)
}
.

(18.66)

m1

m2
K [0] lattice

K [1] lattice

K [2] lattice

K [3] lattice

S
(2)
3

S
(2)
2

S
(2)
1

Figure 18.16: The semi-groups and their ray-generators (black circled points) for the quotient
PSO(4) and the representation [4, 2].

Hilbert series We obtain the following Hilbert series

HS[4,2]
PSO(4)(t, z1, z2, N) = R(t, z1, z2, N)

P (t, z1, z2, N) , (18.67a)

P (t, z1, z2, N) =
(
1− t2

)2 (
1− t10N−2

) (
1− z2t

10N−2
)

(18.67b)

×
(
1− t18N−2

) (
1− t26N−6

)
,

R(t, z1, z2, N) = 1 + z1t
5N−1(1 + t) + z1z2t

9N−1(1 + t) + z1z2t
9N + t10N−1 (18.67c)

+ z2t
10N−1(2 + t) + z1z2t

13N−3(1 + 2t+ t2)− z1z2t
15N−3(1 + t)
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18 Case: A1 ×A1

+ z2t
18N−4(1 + 2t+ t2) + t18N−1 − z1z2t

19N−3(1 + t)
+ z1t

19N−2(1 + t)− z2t
20N−4(1 + 3t+ t2)− z1t

23N−3(1 + t)
+ t26N−5(2 + t)− t28N−6(1 + 2t+ 2t2 + 2t3)− z2t

28N−3

− z1t
29N−4(1 + t) + z1t

31N−6(1 + t)− z1z2t
31N−5(1 + 2t+ t)

− z1t
33N−7(1 + 2t+ t2) + z1z2t

33N−5(1 + t)
− z1z2t

35N−7(1 + t)− z2t
36N−7(2 + 2t+ 2t2 + t3)− t36N−7

+ z2t
38N−6(1 + 2t)− z1z2t

41N−8(1 + t)− t44N−8(1 + 3t+ t2)
+ z1z2t

45N−9(1 + t)− z1t
45N−8(1 + t)

+ z2t
46N−9 + t46N−8(1 + 2t+ t2)− z1t

49N−8(1 + t)
+ z1t

51N−9(1 + 2t+ t2) + t54N−10(1 + 2t) + z2t
54N−9

+ z1t
55N−10(1 + t) + z1z2t

59N−10(1 + t) + z2t
64N−10 .

The numerator of (18.67) is a palindromic polynomial of degree 64N − 10, while the denomina-
tor is of degree 64N − 8. Hence, the difference in degrees is again 2. Moreover, the Hilbert se-
ries (18.67) has a pole of order 4 as t→ 1 because R(1, z1, z2, N) = 0 and d

dtR(t, z1, z2, N)|t→1 =
0, while d2

dt2R(t, z1, z2, N)|t→1 6= 0.

Plethystic logarithm Working with the PL instead reveals further insights

PL(HS[4,2]
PSO(4)) = 2t2 + z1t

∆( 1
2 ,

1
2 )(1 + t) + z1z2t

∆( 1
2 ,−

1
2 )(1 + t) + z2t

∆(1,0)(1 + 2t+ t2) (18.68)

− t2∆( 1
2 ,

1
2 )+2 + z1z2t

∆( 3
2 ,

1
2 )(1 + 2t+ t2)

− z2t
∆( 1

2 ,
1
2 )+∆( 1

2 ,
1
2 )(1 + 2t+ t2)

− z1z2t
∆( 1

2 ,
1
2 )+∆(1,0)(1 + 3t+ 3t2 + t3) + . . . .

The list of generators, together with their properties, is provided in Tab. 18.15.

object (m1,m2) lattice ∆(m1,m2) H(m1,m2) dressings

Casimirs — — 2 — —
monopole (1

2 ,
1
2) K [1] 5N − 1 U(1)× SU(2) 1 by U(1)

monopole (1
2 ,−

1
2) K [3] 9N − 1 U(1)× SU(2) 1 by U(1)

monopole (1, 0) K [2] 10N − 2 U(1)×U(1) 3 by U(1)2

monopole (3
2 ,

1
2) K [3] 13N − 3 U(1)×U(1) 3 by U(1)2

Table 18.15: The chiral ring generators for a PSO(4) gauge theory with matter transforming
in [4, 2].

Gauging a Z2 The global Z2 × Z2 symmetry allows us to compute the Hilbert series for all
five quotients from the PSO(4) result. We start by gauging the Z2-factor with fugacity z1 (and
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18.5 Comparison to O(4)

relabel z2 as z) and recover the SO(4)-result

HS[4,2]
SO(4)(t, z,N) = 1

2

(
HS[4,2]

PSO(4)(t, z1=1, z2=z,N)

+ HS[4,2]
PSO(4)(t, z1=− 1, z2=z,N)

)
.

(18.69a)

In contrast, gauging the other Z2-factor with fugacity z1 provides the SO(3)× SU(2)-result

HS[4,2]
SO(3)×SU(2)(t, z1, N) = 1

2

(
HS[4,2]

PSO(4)(t, z1, z2=1, N)

+ HS[4,2]
PSO(4)(t, z1, z2=−1, N)

)
.

(18.69b)

Lastly, switching to w1, w2 fugacities as in (18.28c) allows to recover the Hilbert series for
SU(2)× SO(3) as follows:

HS[4,2]
SU(2)×SO(3)(t, z2=w1, N) = 1

2

(
HS[4,2]

PSO(4)(t, w1, w2=1, N)

+ HS[4,2]
PSO(4)(t, w1, w2=−1, N)

)
.

(18.69c)

In conclusion, the PSO(4) result is sufficient to obtain the remaining four quotients by gauging
of various Z2 global symmetries as in (18.69) and (18.58).

18.5 Comparison to O(4)

In this section we explore the orthogonal group O(4), related to SO(4) by Z2. To begin with, we
summarise the set-up as presented in [216, App. A]. The dressing factor PO(4)(t) and the GNO
lattice of O(4) equal those of SO(5). Moreover, the dominant Weyl chamber is parametrised
by (m1,m2) subject to m1 ≥ m2 ≥ 0. Graphically, the Weyl chamber is the upper half of the
yellow-shaded region in Fig. 18.1 with the lattices K [0]∪K [2] present. Consequently, the dressing
function is given as

PO(4)(t,m1,m2) =



1
(1−t2)(1−t4) , m1 = m2 = 0 ,

1
(1−t)(1−t2) , m1 = m2 > 0 ,

1
(1−t)(1−t2) , m1 > 0, m2 = 0 ,

1
(1−t)2 , m1 > m2 > 0 .

(18.70)

It is apparent that O(4) has a different Casimir invariant as SO(4), which comes about as the
Levi-Civita tensor ε is not an invariant tensor under O(4). In other words, the Pfaffian of SO(4)
is not a invariant of O(4).
Now, we provide the Hilbert series for the three different representations studied above.

18.5.1 Representation [2, 0]

The conformal dimension is the same as in (18.6) and the rational cone of the Weyl chamber is
simply

C(2) = Cone ((1, 0), (1, 1)) , (18.71)
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18 Case: A1 ×A1

such that the cone generators and the Hilbert basis for S(2) := C(2) ∩
(
K [0] ∪K [2]

)
coincide.

The upper half-space of Fig. 18.3 depicts the situation.
The Hilbert series is then computed to read

HS[2,0]
O(4)(t,N) = 1 + 2t2N−1 + 2t2N + 2t2N+1 + t4N

(1− t2) (1− t4) (1− t2N−2)2 , (18.72)

which clearly displays the palindromic numerator, the order four for t→ 1, and the order two
pole for t→∞, i.e. the difference in degrees of denominator and numerator is two. By inspection
of (18.72) and use of the plethystic logarithm

PL(HS[2,0]
O(4)) = t2 + t4 + t∆(1,0)(1 + t+ t2 + t3) + t∆(1,1)(1 + t+ t2 + t3)−O(t2∆(1,0)+2) , (18.73)

for N ≥ 2, we can summarise the generators as in Tab. 18.16. The different dressing behaviour

object (m1,m2) lattice ∆(m1,m2) H(m1,m2) dressings

Casimirs — — 2, 4 — —
monopole (1, 0) K [2] 2N − 2 U(2) 3
monopole (1, 1) K [0] 2N − 2 U(1)×O(2) 3

Table 18.16: Bare and dressed monopole generators for an O(4) gauge theory with matter
transforming in [2, 0].

of the O(4) monopole generators (1, 0) and (1, 1) compared to their SO(4) counterparts can be
deduced from dividing the relevant dressing factor by the trivial one. In detail

PO(4)(t, {(1, 0) or (1, 1)})
PO(4)(t, 0, 0) = (1− t2)(1− t4)

(1− t)(1− t2) = 1 + t+ t2 + t3 . (18.74)

18.5.2 Representation [2, 2]
The conformal dimension is the same as in (18.30) and the rational cone of the Weyl chamber
is still

C(2) = Cone ((1, 0), (1, 1)) , (18.75)

such that the cone generators and the Hilbert basis for S(2) := C(2) ∩
(
K [0] ∪K [2]

)
coincide.

The upper half-space of Fig. 18.8 depicts the situation. We note that the Weyl chamber for
SO(4) is already divided into a fan by two rational cones, while the Weyl chamber for O(4) is
not.
The computation of the Hilbert series then yields

HS[2,2]
O(4)(t,N) = 1 + t4N−1 + t4N + t4N+1 + t6N−1 + t6N + t6N+1 + t10N

(1− t2) (1− t4) (1− t4N−2) (1− t6N−2) . (18.76)

Again, the rational function clearly displays a palindromic numerator, an order four pole for
t → 1, and an order two pole for t → ∞, i.e. the difference in degrees of denominator and
numerator is two. By inspection of (18.76) and use of the plethystic logarithm

PL(HS[2,2]
O(4)) = t2 + t4 + t∆(1,0)(1 + t+ t2 + t3) + t∆(1,1)(1 + t+ t2 + t3)−O(t2∆(1,0)+2) , (18.77)

for N ≥ 2, we can summarise the generators as in Tab. 18.17. The dressings behave as discussed
earlier.
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18.5 Comparison to O(4)

object (m1,m2) lattice ∆(m1,m2) H(m1,m2) dressings

Casimirs — — 2, 4 — —
monopole (1, 0) K [2] 4N − 2 U(2) 3
monopole (1, 1) K [0] 6N − 2 U(1)×O(2) 3

Table 18.17: Bare and dressed monopole generators for an O(4) gauge theory with matter
transforming in [2, 2].

18.5.3 Representation [4, 2]
The conformal dimension is given in (18.50) and the Weyl chamber is split into a fan generated
by two rational cones

C
(2)
2 = Cone ((1, 0), (3, 1)) and C

(2)
3 = Cone ((3, 1), (1, 1)) , (18.78)

where we use the notation of the SO(4) setting, see the upper half plan of Fig. 18.13. The
Hilbert bases for S(2)

p := C
(2)
p ∩

(
K [0] ∪K [2]

)
differ from the cone generators and are obtained

as
H(S(2)

2 ) = {(1, 0), (3, 1)} and H(S(2)
3 ) = {(3, 1), (2, 1), (1, 1)} . (18.79)

The computation of the Hilbert series then yields

HS[4,2]
O(4)(t,N) = R(t,N)

(1− t2) (1− t4) (1− t10N−2) (1− t26N−6) , (18.80a)

R(t,N) = 1 + t10N−2 + 2t10N−1 + 2t10N + 2t10N+1 (18.80b)
+ t18N−4 + 2t18N−3 + 2t18N−2 + 2t18N−1 + t18N

+ 2t26N−5 + 2t26N−4 + 2t26N−3 + t26N−2 + t36N−4

As before, the rational function (18.80) clearly displays a palindromic numerator, an order four
pole for t→ 1, and an order two pole for t→∞, i.e. the difference in degrees of denominator
and numerator is two. By inspection of (18.80) and use of the plethystic logarithm

PL(HS[4,2]
O(4)) = t2 + t4 + t∆(1,0)(1 + t+ t2 + t3) + t∆(1,1)(1 + t+ t2 + t3) (18.81)

+ t∆(2,1)(1 + 2(t+ t2 + t3) + t4)
− t∆(1,0)+∆(1,1)(1 + 2t+ 5t2 + 6t3 + 7t4 + 4t5 + 3t6)
+ t∆(3,1)(1 + 2(t+ t2 + t3) + t4)−O(t∆(1,0)+∆(2,1)) ,

for N ≥ 2, we can summarise the generators as in Tab. 18.18. The dressing behaviour of (1, 0),

object (m1,m2) lattice ∆(m1,m2) H(m1,m2) dressings

Casimirs — — 2, 4 — —
monopole (1, 0) K [2] 10N − 2 U(2) 3
monopole (1, 1) K [0] 10N − 2 U(1)×O(2) 3
monopole (2, 1) K [2] 18N − 4 U(1)2 7
monopole (3, 1) K [0] 26N − 6 U(1)2 7

Table 18.18: Bare and dressed monopole generators for an O(4) gauge theory with matter
transforming in [4, 2].
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18 Case: A1 ×A1

(1, 1) is as discussed earlier; however, we need to describe the dressings of (2, 1) and (3, 1) as it
differs from the SO(4) counterparts. Again, we compute the quotient of the dressing factor of
the maximal torus divided by the trivial one, i.e.

PO(4)(t,m1 > m2 > 0)
PO(4)(t, 0, 0) = (1− t2)(1− t4)

(1− t)2 = 1 + 2(t+ t2 + t3) + t4 . (18.82)

Consequently, each bare monopole (2, 1), (3, 1) is accompanied by seven dressings, which is in
agreement with (18.81).
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19 Case: USp(4)

This chapter is devoted to the study of the compact symplectic group USp(4) with corresponding
Lie algebra C2. GNO-duality relates them with the special orthogonal group SO(5) and the Lie
algebra B2.

19.1 Set-up

For studying the non-abelian group USp(4), we start by providing the contributions of Na,b

hypermultiplets in various representations [a, b] of USp(4) to the conformal dimension

∆[1,0]
h−plet = N1,0

∑
i

|mi| , (19.1a)

∆[0,1]
h−plet = N0,1

(∑
i<j

|mi −mj |+
∑
i<j

|mi +mj |
)
, (19.1b)

∆[2,0]
h−plet = 2N2,0

∑
i

|mi|+N2,0
(∑
i<j

|mi −mj |+
∑
i<j

|mi +mj |
)
, (19.1c)

∆[0,2]
h−plet = 2N0,2

∑
i

|mi|+ 3N0,2
(∑
i<j

|mi −mj |+
∑
i<j

|mi +mj |
)
, (19.1d)

∆[1,1]
h−plet = 2N1,1

∑
i

|mi|+N1,1
(∑
i<j

(|2mi −mj |+ |mi − 2mj |) (19.1e)

+
∑
i<j

(|2mi +mj |+ |mi + 2mj |)
)
,

∆[3,0]
h−plet = 5N3,0

∑
i

|mi|+N3,0
(∑
i<j

(|2mi −mj |+ |mi − 2mj |) (19.1f)

+
∑
i<j

(|2mi +mj |+ |mi + 2mj |)
)
,

where i, j = 1, 2, and the contribution of the vector multiplet is given by

∆V−plet = −2
∑
i

|mi| −
(∑
i<j

|mi −mj |+
∑
i<j

|mi +mj |
)
. (19.1g)

Such that we will consider the following conformal dimension

∆(m1,m2) = (N1 − 2)(|m1|+ |m2|) + (N2 − 1) (|m1 −m2|+ |m1 +m2|) (19.2a)
+N3 (|2m1 −m2|+ |m1 − 2m2|+ |2m1 +m2|+ |m1 + 2m2|)

and we can vary the representation content via

N1 = N1,0 + 2N2,0 + 2N0,2 + 2N1,1 + 5N3,0 , (19.2b)
N2 = N0,1 +N2,0 + 3N0,2 , (19.2c)
N3 = N1,1 +N3,0 . (19.2d)
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19 Case: USp(4)

The Hilbert series is computed as usual

HSUSp(4)(t,N) =
∑

m1≥m2≥0
t∆(m1,m2)PUSp(4)(t,m1,m2) , (19.3)

where the summation for m1,m2 has been restricted to the principal Weyl chamber of the
GNO-dual group SO(5), whose Weyl group is S2 n (Z2)2. Thus, we use the reflections to restrict
to non-negative mi ≥ 0 and the permutations to restrict to a ordering m1 ≥ m2. The classical
dressing factor takes the following form [191]:

PUSp(4)(t,m1,m2) =


1

(1−t)2 , m1 > m2 > 0 ,
1

(1−t)(1−t2) , (m1 > m2 = 0) ∨ (m1 = m2 > 0) ,
1

(1−t2)(1−t4) , m1 = m2 = 0 .
(19.4)

19.2 Hilbert basis

The conformal dimension (19.2a) divides the dominant Weyl chamber of SO(5) into a fan. The
intersection with the corresponding weight lattice Λw(SO(5)) introduces semi-groups Sp, which
are sketched in Fig. 19.1. As displayed, the set of semi-groups (and rational cones that constitute
the fan) differ if N3 6= 0. The Hilbert bases for both case are readily computed, because they
coincide with the set of ray generators.

• For N3 6= 0, which is displayed in Fig. 19.1a, there exists one hyperplane |m1 − 2m2| = 0
which non-trivially intersects the Weyl chamber. Therefore, Λw(SO(5))/WSO(5) becomes
a fan generated by two 2-dimensional cones. The Hilbert bases of the corresponding
semi-groups are computed to

H(S(2)
+ ) =

{
(1, 1), (2, 1)

}
, H(S(2)

− ) =
{

(2, 1), (1, 0)
}
. (19.5)

• ForN3 = 0, as shown in Fig. 19.1b, there exists no hyperplane that intersects the dominant
Weyl chamber non-trivially. As a consequence, the Λw(SO(5))/WSO(5) is described by one
rational polyhedral cone of dimension 2. The Hilbert basis for the semi-group is given by

H(S(2)) =
{

(1, 1), (1, 0)
}
. (19.6)

19.3 Dressings

Before evaluating the Hilbert series, let us analyse the classical dressing factors for the minimal
generators (19.5) or (19.6). Firstly, the classical Lie group USp(4) has two Casimir invariants
of degree 2 and 4 and can they can be written as tr(Φ2) =

∑2
i=1(φi)2 and tr(Φ4) =

∑2
i=1(φi)4,

respectively. Again, we employed the diagonal form of the adjoint valued scalar field Φ.
Secondly, the bare monopole operator corresponding to GNO-charge (1, 0) has conformal

dimension N1+2N2 +6N3−4 and the residual gauge group is H(1,0) = U(1)×SU(2), i.e. allowing
for dressings by degree 1 and 2 Casimirs. The resulting set of bare and dressed monopoles is

V dress,0
(1,0) = (1, 0) + (−1, 0) + (0, 1) + (0,−1) , (19.7a)

V dress,2
(1,0) = ((1, 0) + (−1, 0)) (φ2)2 + ((0, 1) + (0,−1)) (φ1)2 , (19.7b)

V dress,1
(1,0) = ((1, 0)− (−1, 0))φ1 + ((0, 1)− (0,−1))φ2 , (19.7c)
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m1

m2

S
(2)
+

S
(2)
−

(a) N3 6= 0

m1

m2

S(2)

(b) N3 = 0

Figure 19.1: The various semi-groups for USp(4) depending on whether N3 6= 0 or N3 = 0.
For both cases the black circled points are the ray generators.

V dress,3
(1,0) = ((1, 0)− (−1, 0)) (φ1)3 + ((0, 1)− (0,−1)) (φ2)3 . (19.7d)

Thirdly, the bare monopole operators of GNO-charge (1, 1) has conformal dimension 2N1 +
2N2 + 8N3− 6 and residual gauge group H(1,1) = U(1)×SU(2). The bare and dressed monopole
operators can be written as

V dress,0
(1,1) = (1, 1) + (1,−1) + (−1, 1) + (−1,−1) , (19.8a)

V dress,2
(1,1) = ((1, 1) + (−1,−1))((φ1)2 + (φ2)2) + (1,−1)(φ2)2 + (−1, 1)(φ1)2 , (19.8b)

V dress,1
(1,1) = (1, 1)(φ1 + φ2) + (−1,−1)(−φ1 − φ2) + (1,−1)(−φ2) + (−1, 1)(−φ1) , (19.8c)

V dress,3
(1,1) = (1, 1)((φ1)3 + (φ2)3) + (−1,−1)(−(φ1)3 − (φ2)3) (19.8d)

+ (1,−1)(−(φ2)3) + (−1, 1)(−(φ1)3) .

The two magnetic weights (1, 0), (1, 1) lie at the boundary of the dominant Weyl chamber such
that the dressing behaviour can be predicted by PUSp(4)(t,m1,m2)/PUSp(4)(t, 0, 0) = 1+t+t2+t3,
following App. C. The above description of the bare and dressed monopole operators is therefore
a valid choice of generating elements for the chiral ring.

Lastly, the bare monopole for (2, 1) has conformal dimension 3N1 + 4N2 + 12N3 − 10 and
residual gauge group H(2,1) = U(1)2. Thus, the dressing proceeds by two independent degree 1
Casimir invariants.

V dress,0
(2,1) = (2, 1) + (2,−1) + (−2, 1) + (1, 2) + (1,−2) + (−1, 2) + (−1,−2) + (−2,−1)

≡ (2, 1) + (2,−1) + (−2, 1) + (−2,−1) + permutations , (19.9a)

V dress,2j−1,1
(2,1) = (2, 1)(φ1)2j−1 + (2,−1)(φ1)2j−1 + (−2, 1)(−φ1)2j−1 (19.9b)

+ (−2,−1)(−φ1)2j−1 + permutations for j = 1, 2 ,

V dress,2j−1,2
(2,1) = (2, 1)(φ2)2j−1 + (2,−1)(−φ2)2j−1 + (−2, 1)(φ2)2j−1 (19.9c)

+ (−2,−1)(−φ2)2j−1 + permutations for j = 1, 2 ,

V dress,2,1
(2,1) = (2, 1)(φ1)2 + (2,−1)(−(φ1)2) + (−2, 1)(−(φ1)2) (19.9d)

+ (−2,−1)(φ1)2 + permutations ,
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19 Case: USp(4)

V dress,2,2
(2,1) = (2, 1)(φ1φ2) + (2,−1)(−φ1φ2) + (−2, 1)(−φ1φ2) (19.9e)

+ (−2,−1)(φ1φ2) + permutations ,

V dress,4
(2,1) = (2, 1)(φ3

1φ2) + (2,−1)(−(φ1)3φ2) + (−2, 1)(−(φ1)3φ2) (19.9f)

+ (−2,−1)((φ1)3φ2) + permutations .

The number and the degrees of dressed monopole operators of charge (2, 1) are consistent with
the quotient PUSp(4)(t,m1 > m2 > 0)/PUSp(4)(t, 0, 0) = 1 + 2t + 2t2 + 2t3 + t4 of the dressing
factors.

For generic values of N1,N2 and N3 the Coulomb branch will be generated by the two Casimir
invariants together with the bare and dressed monopole operators corresponding to the minimal
generators of the Hilbert bases. However, we will encounter choices of the three parameters
such that the set of monopole generators can be further reduced; for example, in the case of
complete intersections.

19.4 Generic case

The computation for arbitrary N1, N2, and N3 yields

HSUSp(4)(t,N1, N2, N3) = R(t,N1, N2, N3)
P (t,N1, N2, N3) , (19.10a)

with

P (t,N1, N2, N3) =
(
1− t2

) (
1− t4

) (
1− tN1+2N2+6N3−4

) (
1− t2N1+2N2+8N3−6

)
(19.10b)

×
(
1− t3N1+4N2+12N3−10

)
,

R(t,N1, N2, N3) = 1 + tN1+2N2+6N3−3(1 + t+ t2) + t2N1+2N2+8N3−5(1 + t+ t2) (19.10c)
+ t3N1+4N2+12N3−9(2 + 2t+ 2t2 + t3)
− t3N1+4N2+14N3−10(1 + 2t+ 2t2 + 2t3)
− t4N1+6N2+18N3−13(1 + t+ t2)− t5N1+6N2+20N3−15(1 + t+ t2)
− t6N1+8N2+26N3−16 .

The numerator (19.10c) is an anti-palindromic polynomial of degree 6N1 + 8N2 + 26N3 − 16;
while the denominator is of degree 6N1 + 8N2 + 26N3− 14. The difference in degrees is 2, which
equals the quaternionic dimension of the moduli space. In addition, the pole of (19.10) at t→ 1
is of order 4, which matches the complex dimension of the moduli space. For that, one verifies
explicitly R(t = 1, N1, N2, N3) = 0, but d

dtR(t,N1, N2, N3)|t=1 6= 0.

Consequently, the above interpretation of bare and dressed monopoles from the Hilbert
series (19.10) is correct for generic choices of N1, N2, and N3. In particular, N3 6= 0 for this
arguments to hold. Moreover, we will now exemplify the effects of the Casimir invariance in
various special case of (19.10) explicitly. There are cases for which the inclusion of the Casimir
invariance, i.e. dressed monopole operators, leads to a reduction of basis of monopole generators.
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19.5 Category N3 = 0

19.5 Category N3 = 0

19.5.1 Representation [1, 0]

Hilbert series This choice is realised for N1 = N , N2 = N3 = 0, and the Hilbert series
simplifies drastically to a complete intersection

HS[1,0]
USp(4)(t,N) = (1− t2N−4)(1− t2N−2)

(1− t2)(1− t4)(1− tN−4)(1− tN−3)(1− tN−2)(1− tN−1) , (19.11)

which was first obtained in [191]. Due to the complete intersection property, the plethystic
logarithm terminates and for N > 4 we obtain

PL(HS[1,0]
USp(4)) = t2 + t4 + tN−4(1 + t+ t2 + t3)− t2N−4 − t2N−2 . (19.12)

Hilbert basis Naively, the Hilbert series (19.11) should be generated by the Hilbert ba-
sis (19.6) plus their dressings. However, due to the particular form of (19.2a) in the rep-
resentation [1, 0] and the Casimir invariance, the bare monopole operator of GNO-charge
(1, 1) can be generated by the dressings of (1, 0). To see this, let us consider the Weyl-orbit
OW(1, 0) =

{
(1, 0), (0, 1), (−1, 0), (0,−1)

}
and note the conformal dimensions align suitably, i.e.

∆(V dress,1
(1,0) ) = N − 3, while ∆(V dress,0

(1,1) ) = 2N − 6. Thus, we can symbolically write

V dress,0
(1,1) = V dress,1

(1,0) + V dress,1
(0,1) . (19.13)

The moduli space is then generated by the Casimir invariants and the bare and dressed monopole
operators corresponding to (1, 0), but this is to be understood as a rather non-generic situation.

19.5.2 Representation [0, 1]

This choice is realised for N2 = N , and N1 = N3 = 0 and the Hilbert series simplifies to

HS[0,1]
USp(4)(t,N) = 1 + t2N−5 + t2N−4 + 2t2N−3 + t2N−2 + t2N−1 + t4N−6

(1− t2) (1− t4) (1− t2N−6) (1− t2N−4) . (19.14)

The Hilbert series (19.14) has a pole of order 4 at t = 1 as well as a palindromic polynomial as
numerator. Moreover, the result (19.14) reflects the expected basis of monopole operators as
given in the Hilbert basis (19.6).

19.5.3 Representation [2, 0]

This choice is realised for N1 = 2N , N2 = N , and N3 = 0 and the Hilbert series reduces to

HS[2,0]
USp(4)(t,N) = 1 + t4N−3 + t4N−2 + t4N−1 + t6N−5 + t6N−4 + t6N−3 + t10N−6

(1− t2) (1− t4) (1− t4N−4) (1− t6N−6) . (19.15)

Also, the rational function (19.15) has a pole of order 4 for t→ 1 and a palindromic numerator.
Evaluating the plethystic logarithm yields for all N > 1

PL(HS[2,0]
USp(4)) = t2 + t4 + t4N−4(1 + t+ t2 + t3) (19.16)

+ t6N−6(1 + t+ t2 + t3)− t8N−6 +O(t8N−5) .
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19 Case: USp(4)

This proves that bare monopole operators, corresponding to the the minimal generators of (19.6),
together with their dressing generate all other monopole operators.

19.5.4 Representation [0, 2]
For N1 = 2N , N2 = 3N , and N3 = 0 and the Hilbert series is given by

HS[0,2]
USp(4)(t,N) = 1 + t8N−3 + t8N−2 + t8N−1 + t10N−5 + t10N−4 + t10N−3 + t18N−6

(1− t2) (1− t4) (1− t8N−4) (1− t10N−6) . (19.17)

Evaluating the plethystic logarithm yields for all N > 1

PL(HS[0,2]
USp(4)) = t2 + t4 + t8N−4(1 + t+ t2 + t3) (19.18a)

+ t10N−6(1 + t+ t2 + t3)− t16N−6 +O(t16N−5) ,

and for N = 1

PL(HS[0,2]
USp(4)) = t2 + t4 + t4(1 + t+ t2 + t3) (19.18b)

+ t4(1 + t+ t2 + t3)− 3t10 +O(t11) .

The inspection of the Hilbert series (19.17), together with the PL, proves that Hilbert basis (19.6),
alongside all their dressings, are a sufficient set for all monopole operators.

19.6 Category N3 6= 0
19.6.1 Representation [1, 1]
This choice corresponds to N1 = 2N , N2 = 0, and N3 = N and we obtain the Hilbert series as

HS[1,1]
USp(4)(t,N) = R(t,N)

(1− t2) (1− t4) (1− t8N−4) (1− t12N−6) (1− t18N−10) , (19.19a)

R(t,N) = 1 + t8N−3(1 + t+ t2) + t12N−5(1 + t+ t2) (19.19b)
+ t18N−9(2 + 2t+ 2t2 + t3)− t20N−10(1 + 2t+ 2t2 + 2t3)
− t26N−13(1 + t+ t2)− t30N−15(1 + t+ t2)− t38N−16 .

Considering the plethystic logarithm, we observe the following behaviour:

• For N ≥ 5

PL(HS[1,1]
USp(4)) = t2 + t4 + t8N−4(1 + t+ t2 + t3) + t12N−6(1 + t+ t2 + t3) (19.20a)

− t2(8N−4)+2(1 + t+ 2t2 + t3 + t4)
+ t18N−10(1 + 2t+ 2t2 + 2t3 + t4)
− t20N−10(1 + 2t+ 3t2 + 4t3 + 3t4 + 2t5 + t6) + . . .

• For N = 4

PL(HS[1,1]
USp(4)) = t2 + t4 + t28(1 + t+ t2 + t3) + t42(1 + t+ t2 + t3) (19.20b)

− t58(1 + t+ 2t2 + t3 + t4)
+ t62(1 + 2t+ 2t2 + 2t3 + t4)
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− t70(1 + 2t+ 3t2 + 4t3 + 3t4 + 2t5 + t6) + . . .

We see, employing the previous results for N > 4, that the bare monopole (2, 1) and the
last relation at t62 coincide. Hence, the term ∼ t62 disappears from the PL.

• For N = 3

PL(HS[1,1]
USp(4)) = t2 + t4 + t20(1 + t+ t2 + t3) + t30(1 + t+ t2 + t3) (19.20c)

− t42(1 + t+ 2t2 + t3 + t4)
+ t44(1 + 2t+ 2t2 + 2t3 + t4)
− t70(1 + 2t+ 3t2 + 4t3 + 3t4 + 2t5 + t6) + . . .

We see, employing again the previous results for N > 4, that the some monopole contribu-
tions of (2, 1) and the some of the relations coincide, cf. the coloured terms. Hence, there
are, presumably, cancellations between generators and relations. (See also App. C.)

• For N = 2

PL(HS[1,1]
USp(4)) = t2 + t4 + t12(1 + t+ t2 + t3) + t18(1 + t+ t2 + t3) (19.20d)

− t26(1 + t+ 2t2 + t3 + t4)
+ t26(1 + 2t+ 2t2 + 2t3 + t4)
− t30(1 + 2t+ 3t2 + 4t3 + 3t4 + 2t5 + t6) + . . .

= t2 + t4 + t12(1 + t+ t2 + t3) + t18(1 + t+ t2 + t3) (19.20e)
+ t26(0 + t+ 0 + t3 + 0)
− t30(1 + 2t+ 3t2 + 4t3 + 3t4 + 2t5 + t6) + . . .

• For N = 1

PL(HS[1,1]
USp(4)) = t2 + 2t4 + t5 + 2t6 + 2t7 + 2t8 + 3t9 − t11 + . . . (19.20f)

Summarising, the Hilbert series (19.19) and its plethystic logarithm display that the minimal
generators of (19.5) are indeed the basis for the bare monopole operators, and the corresponding
dressings generate the remaining operators.

19.6.2 Representation [3, 0]
For the choice N1 = 5N , N2 = 0, and N3 = N , the Hilbert series is given by

HS[3,0]
USp(4)(t,N) = R(t,N)

(1− t2) (1− t4) (1− t11N−4) (1− t18N−6) (1− t27N−10) , (19.21a)

R(t,N) = 1 + t11N−3(1 + t+ t2) + t18N−5(1 + t+ t2) (19.21b)
+ t27N−9(2 + 2t+ 2t2 + t3)− t29N−10(1 + 2t+ 2t2 + 2t3)
− t38N−13(1 + t+ t2)− t45N−15(1 + t+ t2)− t56N−16 .

The inspection of the plethystic logarithm provides further insights:

• For N ≥ 3

PL(HS[3,0]
USp(4)) = t2 + t4 + t11N−4(1 + t+ t2 + t3) + t18N−6(1 + t+ t2 + t3) (19.22a)
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− t2(11N−4)+2(1 + t+ 2t2 + t3 + t4)
+ t27N−10(1 + 2t+ 2t2 + 2t3 + t4)
− t(11N−4)+(18N−6)(1 + 2t+ 3t2 + 4t3 + 3t4 + 2t5 + t6) + . . .

• For N = 2

PL(HS[3,0]
USp(4)) = t2 + t4 + t18(1 + t+ t2 + t3) + t30(1 + t+ t2 + t3) (19.22b)

− t38(1 + t+ 2t2 + t3 + t4)
+ t44(1 + 2t+ 2t2 + 2t3 + t4)
− t48(1 + 2t+ 3t2 + 4t3 + 3t4 + 2t5 + t6) + . . .

We see that, presumably, one generator and one relation cancel at t48.

• For N = 1

PL(HS[3,0]
USp(4)) = t2 + t4 + t7(1 + t+ t2 + t3) + t12(1 + t+ t2 + t3)− t16 − t20 + . . .

(19.22c)

Again, we confirm that the minimal generators of the Hilbert basis (19.5) are the relevant
generators (together with their dressings) for the moduli space.
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20 Case: G2

Here, we explore the Coulomb branch for the only exceptional simple Lie group of rank two.

20.1 Set-up

The group G2 has irreducible representations labelled by two Dynkin labels and the dimension
formula reads

dim[a, b] = 1
120(a+ 1)(b+ 1)(a+ b+ 2)(a+ 2b+ 3)(a+ 3b+ 4)(2a+ 3b+ 5) . (20.1)

In the following, we study the representations given in Tab. 20.1. The three categories defined
are due to the similar form of the conformal dimensions.

Dynkin label [1, 0] [0, 1] [2, 0] [1, 1] [0, 2] [3, 0] [4, 0] [2, 1]

Dim. 7 14 27 64 77 77 182 189
category 1 category 2 category 3

Table 20.1: An overview of the G2-representations considered in this chapter.

The Weyl group of G2 is D6 and the GNO-dual group is another G2. Any element in the
Cartan subalgebra h = span(H1, H2) can be written as H = n1H1 + n2H2. Restriction to the
principal Weyl chamber is realised via n1, n2 ≥ 0.

The group G2 has two Casimir invariants of degree 2 and 6. Therefore, the classical dressing
function is [191]

PG2(t, n1, n2) =


1

(1−t2)(1−t6) , n1 = n2 = 0 ,
1

(1−t)(1−t2) , n1 > 0, n2 = 0 or n1 = 0, n2 > 0 ,
1

(1−t)2 , n1, n2 > 0 .
(20.2)

20.2 Category 1

Hilbert basis The representations [1, 0], [0, 1], and [2, 0] schematically have conformal dimen-
sions of the form

∆(n1, n2) =
∑
j

Aj |ajn1 + bjn2|+B1|n1|+B2|n2| (20.3)

for aj , bj ∈ N and Aj , B1, B2 ∈ Z. As a consequence, the usual fan within the Weyl chamber is
simply one 2-dimensional rational polyhedral cone

C(2) = Cone((1, 0), (0, 1)) . (20.4)
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The intersection with the weight lattice Λw(G2) yields the relevant semi-group S(2), as depicted
in Fig. 20.1. The Hilbert bases are trivially given by the ray generators

H(S(2)) =
{

(1, 0), (0, 1)
}
. (20.5)

n1

n2

S(2)

Figure 20.1: The semi-group S(2) for the representations [1, 0], [0, 1], and [2, 0] obtained from
the G2 Weyl chamber (considered as rational cone) and its ray generators (black circled points).

Dressings The two minimal generators lie at the boundary of the Weyl chamber and, therefore,
have residual gauge group H(1,0) = H(0,1) = U(2). Recalling that G2 has two Casimir invariants
C2, C6 at degree 2 and 6, one can analyse the dressed monopole operators associated to (1, 0)
and (0, 1).
The residual gauge group U(2) ⊂ G2 has a degree one Casimir C1 := φ1 + φ2 and a degree

two Casimir C2 := φ2
1 +φ2

2. Again, we employed the diagonal form of the adjoint-valued scalar Φ.
Consequently, the bare monopole V dress,0

(0,1) exhibits five dressed monopoles V dress,i
(0,1) (i = 1, . . . , 5)

of at degrees ∆(0, 1) + 1, . . . ,∆(0, 1) + 5. Since the highest degree Casimir invariant is of order
6 and the degree 2 Casimir invariant of G2 differs from the pure sum of squares [217], one can
build all dressings as follows:

C1(0, 1) , C2(0, 1) , C1C2(0, 1) , C2
1C2(0, 1) , (C1C

2
2 + C2

1C2)(0, 1) . (20.6)

The very same arguments applies for the bare and dressed monopole generators associated
to (1, 0). Thus, we expect six monopole operators: one bare V dress,0

(1,0) and five dressed V dress,i
(1,0)

(i = 1, . . . , 5).
Comparing with App. C, we find that a magnetic weight at the boundary of the dominant Weyl

chamber has dressings given by PG2(t, {n1 = 0 or n2 = 0})/PG2(t, 0, 0) = 1 + t+ t2 + t3 + t4 + t5,
which is then consistent with the exposition above.

We will now exemplify the three different representations.

20.2.1 Representation [1, 0]

The relevant computation has been presented in [191] and the conformal dimension reads

∆(n1, n2) =N(|n1 + n2|+ |2n1 + n2|+ |n1|) (20.7)
− (|n1 + n2|+ |2n1 + n2|+ |3n1 + n2|+ |3n1 + 2n2|+ |n1|+ |n2|) .
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Evaluating the Hilbert series for N > 3 yields

HS[1,0]
G2

(t,N) = 1 + t2N−4 + t2N−3 + t2N−2 + t2N−1 + t4N−5

(1− t2) (1− t6) (1− t2N−6) (1− t2N−5) . (20.8)

We observe that the numerator of (20.8) is a palindromic polynomial of degree 4N − 5; while,
the denominator has degree 4N − 3. Hence, the difference in degree between denominator and
numerator is 2, which equals the quaternionic dimension of moduli space. In addition, the
Hilbert series (20.8) has a pole of order 4 as t → 1, which matches the complex dimension of
the moduli space.
As discussed in [191], the plethystic logarithm has the following behaviour:

PL(HS[1,0]
G2

(t,N)) = t2 + t6 + t2N−6(1 + t+ t2 + t3 + t4 + t5)− t4N−8 + . . . . (20.9)

Hilbert basis According to [191], the monopole corresponding to GNO-charge (1, 0), which
has ∆(1, 0) = 4N − 10, can be generate. Again, this is due to the specific form (20.7).

20.2.2 Representation [0, 1]

Hilbert series For this representation, the conformal dimension is given as

∆(n1, n2) = (N − 1)(|n1 + n2|+ |2n1 + n2|+ |3n1 + n2|+ |3n1 + 2n2|+ |n1|+ |n2|) , (20.10)

and the computation of the Hilbert series for N > 1 yields

HS[0,1]
G2

(t,N) = 1 + t6N−5(1 + t+ t2 + t3 + t4) + t10N−9(1 + t+ t2 + t3 + t4) + t16N−10

(1− t2) (1− t6)
(
1− t6(N−1)) (1− t10(N−1)) .

(20.11)
The numerator of (20.11) is a palindromic polynomial of degree 16N−10; while, the denominator
is of degree 16N − 8. Hence, the difference in degree between denominator and numerator is 2,
which matches the quaternionic dimension of moduli space. Moreover, the Hilbert series has a
pole of order 4 as t→ 1, i.e. it equals complex dimension of the moduli space. Employing the
knowledge of the Hilbert basis (20.5), the appearing objects in (20.11) can be interpreted as in
Tab. 20.2.

object ∆(n1, n2) H(n1,n2)

Casimir C2 2 —
C6 6 —

bare monopole V dress,0
(0,1) 6(N − 1) U(2)

dressings (i = 1, . . . , 5) V dress,i
(0,1) 6(N − 1) + i —

bare monopole V dress,0
(1,0) 10(N − 1) U(2)

dressings (i = 1, . . . , 5) V dress,i
(1,0) 10(N − 1) + i —

Table 20.2: The chiral ring generators for a G2 gauge theory and matter transforming in
[0, 1].
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20 Case: G2

Plethystic logarithm For N ≥ 3 the PL takes the form

PL(HS[0,1]
G2

(t,N)) = t2 + t6 + t6(N−1)(1 + t+ t2 + t3 + t4 + t5)

+ t10(N−1)(1 + t+ t2 + t3 + t4 + t5)− t12N−10 + . . . ,
(20.12)

while for N = 2 the PL is

PL(HS[0,1]
G2

(t, 2)) = t2 + t6 + t6(1 + t+ t2 + t3 + t4 + t5)
+ t10(1 + t+ t2 + t3)− 2t16 + . . . .

(20.13)

In other words, the 4th and 5th dressing of (1, 0) are absent, because they can be generated.
(See also App. C for the degrees of the first relations.)

20.2.3 Representation [2, 0]

Hilbert series For this representation, the conformal dimensions is given by

∆(n1, n2) =N
(
2 |n1 + n2|+ 2 |2n1 + n2|+ |3n1 + n2|+ |2n1 + 2n2|+ |3n1 + 2n2| (20.14)

+ |4n1 + 2n2|+ 2 |n1|+ |2n1|+ |n2|
)

− (|n1 + n2|+ |2n1 + n2|+ |3n1 + n2|+ |3n1 + 2n2|+ |n1|+ |n2|) .

The calculation for the Hilbert series is analogous to the previous cases and we obtain

HS[2,0]
G2

(t,N) = 1 + t12N−5(1 + t+ t2 + t3 + t4) + t22N−9(1 + t+ t2 + t3 + t4) + t34N−10

(1− t2) (1− t6) (1− t12N−6) (1− t22N−10) .

(20.15)
One readily observes, the numerator of (20.15) is a palindromic polynomial of degree 34N − 10
and the denominator is of degree 34N − 8. Hence, the difference in degree between denominator
and numerator is 2, which is precisely the quaternionic dimension of moduli space. Also, the
Hilbert series has a pole of order 4 as t→ 1, which equals the complex dimension of the moduli
space. Having in mind the minimal generators (20.5), the appearing objects in (20.15) can be
summarised as in Tab. 20.3.

object ∆(n1, n2) H(n1,n2)

Casimir C2 2 —
C6 6 —

bare monopole V dress,0
(0,1) 12N − 6 U(2)

dressings (i = 1, . . . , 5) V dress,i
(0,1) 12N − 6 + i —

bare monopole V dress,0
(1,0) 22N − 10 U(2)

dressings (i = 1, . . . , 5) V dress,i
(1,0) 22N − 10 + i —

Table 20.3: The chiral ring generators for a G2 gauge theory and matter transforming in the
representation [2, 0].

Plethystic logarithm We complement the Hilbert series by its PL for all values of N .
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20.3 Category 2

• For N ≥ 3 the PL takes the form

PL(HS[2,0]
G2

(t,N)) = t2 + t6 + t12N−6(1 + t+ t2 + t3 + t4 + t5)
+ t22N−10(1 + t+ t2 + t3 + t4 + t5)− t12N−10 + . . .

(20.16)

• While for N = 2 the PL is

PL(HS[2,0]
G2

(t, 2)) = t2 + t6 + t18(1 + t+ t2 + t3 + t4 + t5)
+ t34(1 + t+ t2 + t3)− 2t40 + . . .

(20.17)

By the very same reasoning as before, V dress,4
(1,0) and V dress,5

(1,0) can be generated by monopoles
associated to (0, 1).

• Moreover, for N = 1 the PL looks as follows

PL(HS[2,0]
G2

(t, 1)) = t2 + t6 + t6(1 + t+ t2 + t3 + t4 + t5) + t12(1 + t)− t16 + . . . (20.18)

Looking at the conformal dimensions reveals that the missing dressed monopoles of GNO-
charge (1, 0) can be generated.

20.3 Category 2

Hilbert basis The representations [1, 1], [0, 2], and [3, 0] schematically have conformal dimen-
sions of the form

∆(n1, n2) =
∑
j

Aj |ajn1 + bjn2|+B1|n1|+B2|n2|+ C|n1 − n2| (20.19)

for aj , bj ∈ N and Aj , B1, B2, C ∈ Z. The novelty of this conformal dimension, compared
to (20.3), is the difference |n1 − n2|, i.e. a hyperplane that intersects the Weyl chamber non-
trivially. As a consequence, there is a fan generated by two 2-dimensional rational polyhedral
cones

C
(2)
1 = Cone((1, 0), (1, 1)) and C

(2)
2 = Cone((1, 1), (0, 1)) . (20.20)

The intersection with the weight lattice Λw(G2) yields the relevant semi-groups Sp (p = 1, 2),
as depicted in Fig. 20.2. The Hilbert bases are again given by the ray generators

H(S(2)
1 ) =

{
(1, 0), (1, 1)

}
and H(S(2)

2 ) =
{

(1, 1), (0, 1)
}
. (20.21)

Dressings The three minimal generators have different residual gauge groups, as two lie on
the boundary and one in the interior of the Weyl chamber. The GNO-charges (1, 0) and (0, 1)
are to be treated as in Sec. 20.2.
The novelty is the magnetic weight (1, 1) with H(1,1) = U(1)2. Thus, the dressing can be

constructed with two independent U(1)-Casimir invariants, proportional to φ1 and φ2. We choose
a basis of dressed monopoles

V dress,j,α
(1,1) = (1, 1)(φα)j , for j = 1, . . . 5 , α = 1, 2 , (20.22a)

V dress,6
(1,1) = (1, 1)

(
(φ1)6 + (φ2)6

)
. (20.22b)
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20 Case: G2

n1

n2

S
(2)
2

S
(2)
1

Figure 20.2: The semi-groups S(2)
p (p = 1, 2) for the representations [1, 1], [0, 2], and [3, 0]

obtained from the G2 Weyl chamber (considered as rational cone) and their ray generators
(black circled points).

The reason behind the large number of dressings of the bare monopole (1, 1) lies in the delicate
G2 structure [217], i.e. the degree two Casimir C2 is not just the sum of the squares of φi and
the next G2-Casimir C6 is by four higher in degree and has a complicated structure as well.
The number and degrees of the dressed monopole operators associated to (1, 1) can be

confirmed by PG2(t, n1 > 0, n2 > 0)/PG2(t, 0, 0) = 1 + 2t+ 2t2 + 2t3 + 2t4 + 2t5 + t6, following
App. C.

We will now exemplify the three different representations.

20.3.1 Representation [1, 1]

Hilbert series The conformal dimension of the 64-dimensional representation is given by

∆(n1, n2) = N
(
|n1 − n2|+ 8 |n1 + n2|+ 8 |2n1 + n2|+ 2 |3n1 + n2|+ |4n1 + n2| (20.23)

+ |n1 + 2n2|+ 2 |3n1 + 2n2|+ |5n1 + 2n2|+ |4n1 + 3n2|+ |5n1 + 3n2|

+ 8 |n1|+ 2 |n2|
)

−
(
|n1 + n2|+ |2n1 + n2|+ |3n1 + n2|+ |3n1 + 2n2|+ |n1|+ |n2|

)
.

Computing the Hilbert series provides the following expression

HS[1,1]
G2

(t,N) = R(t,N)
(1− t2) (1− t6) (1− t36N−6) (1− t64N−10) (1− t98N−16) , (20.24a)

R(t,N) = 1 + t36N−5(1 + t+ t2 + t3 + t4) + t64N−9(1 + t+ t2 + t3 + t4) (20.24b)
+ t98N−15(2 + 2t+ 2t2 + 2t3 + 2t4 + t5)
− t100N−16(1 + 2t+ 2t2 + 2t3 + 2t4 + 2t5)
− t134N−21(1 + t+ t2 + t3 + t4)− t162N−25(1 + t+ t2 + t3 + t4)− t198N−26 .

The numerator (20.24b) is a anti-palindromic polynomial of degree 198N − 26; whereas the
denominator is of degree 198N − 24. Hence, the difference in degree between denominator and
numerator is 2, which coincides with the quaternionic dimension of moduli space. The Hilbert
series (20.24) has a pole of order 4 as t→ 1, which agrees with the complex dimension of the
moduli space. (One can explicitly show that R(t = 1, N) = 0, but d

dtR(t,N)|t=1 6= 0.) The
appearing operators agree with the general setting outline above and we summarise them in
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20.3 Category 2

Tab. 20.4. The new monopole corresponds to GNO-charge (1, 1) and displays a different dressing

object ∆(n1, n2) H(n1,n2)

Casimir C2 2 —
C6 6 —

bare monopole V dress,0
(0,1) 134N − 6 U(2)

dressings (i = 1, . . . , 5) V dress,i
(0,1) 134N − 6 + i —

bare monopole V dress,0
(1,0) 238N − 10 U(2)

dressings (i = 1, . . . , 5) V dress,i
(1,0) 238N − 10 + i —

bare monopole V dress,0
(1,1) 364N − 16 U(1)×U(1)

dressings (i = 1, . . . , 5;α = 1, 2) V dress,i,α
(1,1) 364N − 16 + i —

dressing V dress,6
(1,1) 364N − 16 + 6 —

Table 20.4: The chiral ring generators for a G2 gauge theory and matter content transforming
in [1, 1].

behaviour than (1, 0) and (0, 1). The reason behind lies in the residual gauge group being U(1)2.

Plethystic logarithm Although the bare monopole V dress,0
(1,1) is generically a necessary genera-

tor due to its origin as an ray generators of (20.21), not all dressings V dress
(1,1) might be independent.

• For N ≥ 4 the PL takes the form

PL(HS[1,1]
G2

(t,N)) = t2 + t6 + t36N−6(1 + t+ t2 + t3 + t4 + t5) (20.25)
+ t64N−10(1 + t+ t2 + t3 + t4 + t5)
− t2(36N−6)+2(1 + t+ 2t2 + 2t3 + 3t4 + 2t5 + 2t6 + t7 + t8)
+ t98N−16(1 + 2t+ 2t2 + 2t3 + 2t4 + 2t5 + t6)− t100N−16 + . . .

• For N = 3 the PL is

PL(HS[1,1]
G2

(t,N = 3)) = t2 + t6 + t102(1 + t+ t2 + t3 + t4 + t5) (20.26)
+ t182(1 + t+ t2 + t3 + t4 + t5)
− t206(1 + t+ 2t2 + 2t3 + 3t4 + 2t5 + 2t6 + t7 + t8)
+ t278(1 + 2t+ 2t2 + 2t3 + 2t4 + 2t5)− 2t285 + . . .

Here, ∆(1, 0) + ∆(0, 1) = 284 is precisely the conformal dimension of V dress,6
(1,1) ; i.e. it is

generated and absent from the PL.

• For N = 2 the PL is

PL(HS[1,1]
G2

(t,N = 2)) = t2 + t6 + t66(1 + t+ t2 + t3 + t4 + t5) (20.27)
+ t118(1 + t+ t2 + t3 + t4 + t5)
− t134(1 + t+ 2t2 + 2t3 + 3t4 + 2t5 + 2t6 + t7 + t8)
+ t180(1 + 2t+ 2t2 + 2t3 + t4)− 2t186 + . . .
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20 Case: G2

Here, ∆(1, 0) + ∆(0, 1) = 184 is precisely the conformal dimension of V dress,4,α
(1,1) ; i.e. only

one of the dressings by the fourth power of a U(1)-Casimir is a generator. Consequently,
the other one is absent from the PL.

• For N = 1 the PL is

PL(HS[1,1]
G2

(t,N = 1)) = t2 + t6 + t30(1 + t+ t2 + t3 + t4 + t5) (20.28)
+ t54(1 + t+ t2 + t3 + t4 + t5)
− t62(1 + t+ 2t2 + 2t3 + 3t4 + 2t5 + 2t6 + t7 + t8)
+ t82(1 + 2t+ t2)− t62 + . . .

Here, ∆(1, 0) + ∆(0, 1) = 64 is precisely the conformal dimension of V dress,2,α
(1,1) ; i.e. only

one of the dressings by the second power of a U(1)-Casimir is a generator. Consequently,
the other one is absent from the PL.

20.3.2 Representation [3, 0]

Hilbert series The conformal dimension in this representation is given by

∆(n1, n2) = N
(
|5n1 + 3n2|+ |5n1 + 2n2|+ |4n1 + 3n2|+ |4n1 + n2|+ |n1 + 2n2|

+ |n1 − n2|+ 10
(
|2n1 + n2|+ |n1 + n2|+ |n1|

)
+ 3

(
|3n1 + 2n2| (20.29)

+ |3n1 + n2|+ |n2|
))

−
(
|n1 + n2|+ |2n1 + n2|+ |3n1 + n2|+ |3n1 + 2n2|+ |n1|+ |n2|

)
,

such that we obtain for the Hilbert series

HSG2 [3, 0](t,N) = R(t,N)
(1− t2) (1− t6) (1− t46N−6) (1− t82N−10) (1− t126N−16) , (20.30a)

R(t,N) = 1 + t46N−5(1 + t+ t2 + t3 + t4) + t82N−9(1 + t+ t2 + t3 + t4) (20.30b)
+ t126N−15(2 + 2t+ 2t2 + 2t3 + 2t4 + t5)
− t128N−16(1 + 2t+ 2t2 + 2t3 + 2t4 + 2t5)
− t172N−21(1 + t+ t2 + t3 + t4)− t208N−25(1 + t+ t2 + t3 + t4)− t254N−26 .

The numerator (20.30b) is a anti-palindromic polynomial of degree 254N − 26; while the
denominator is of degree 254N − 24. Hence, the difference in degree between denominator and
numerator is 2, which coincides with the quaternionic dimension of moduli space. The Hilbert
series (20.30) has a pole of order 4 as t→ 1, which equals the complex dimension of the moduli
space. (One can explicitly show that R(t = 1, N) = 0, but d

dtR(t,N)|t=1 6= 0.) Interpreting
the appearing operators leads to a list of chiral ring generators as presented in Tab. 20.5. The
behaviour of the Hilbert series is absolutely identical to the case [1, 1], because the conformal
dimension is structurally identical. Therefore, we do not provide further details.

20.3.3 Representation [0, 2]

Hilbert series The conformal dimension reads as follows:

∆(n1, n2) = N
(
|5n1 + 3n2|+ |5n1 + 2n2|+ |4n1 + 3n2|+ |4n1 + n2|+ |n1 + 2n2|
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object ∆(n1, n2) H(n1,n2)

Casimir C2 2 —
C6 6 —

bare monopole V dress,0
(0,1) 46N − 6 U(2)

dressings (i = 1, . . . , 5) V dress,i
(0,1) 46N − 6 + i —

bare monopole V dress,0
(1,0) 82N − 10 U(2)

dressings (i = 1, . . . , 5) V dress,i
(1,0) 82N − 10 + i —

bare monopole V dress,0
(1,1) 126N − 16 U(1)×U(1)

dressings (i = 1, . . . , 5;α = 1, 2) V dress,i,α
(1,1) 126N − 16 + i —

dressing V dress,6
(1,1) 126N − 16 + 6 —

Table 20.5: The chiral ring generators for a G2 gauge theory and matter transforming in
[3, 0].

+ |n1 − n2|+ 10
(
|2n1 + n2|+ |n1 + n2|+ |n1|

)
(20.31)

+ 5
(
|3n1 + 2n2|+ |3n1 + n2|+ |n2|

))
−
(
|n1 + n2|+ |2n1 + n2|+ |3n1 + n2|+ |3n1 + 2n2|+ |n1|+ |n2|

)
.

The computation of the Hilbert series results in

HS[0,2]
G2

(t,N) = R(t,N)
(1− t2) (1− t6) (1− t52N−6) (1− t90N−10) (1− t140N−16) , (20.32a)

R(t,N) = 1 + t52N−5(1 + t+ t2 + t3 + t4) + t90N−9(1 + t+ t2 + t3 + t4) (20.32b)
+ t140N−15(2 + 2t+ 2t2 + 2t3 + 2t4 + t5)
− t142N−16(1 + 2t+ 2t2 + 2t3 + 2t4 + 2t5)
− t192N−21(1 + t+ t2 + t3 + t4)− t230N−25(1 + t+ t2 + t3 + t4)− t282N−26 .

The numerator (20.32b) is a anti-palindromic polynomial of degree 282N − 26; while, the
denominator is of degree 282N − 24. Hence, the difference in degree between denominator and
numerator is 2, which agrees with the quaternionic dimension of moduli space. The Hilbert
series (20.32) has a pole of order 4 as t→ 1, which equals complex dimension of the moduli space.
(One can explicitly show that R(t = 1, N) = 0, but d

dtR(t,N)|t=1 6= 0.) Tab. 20.6 summarises
the appearing operators. The behaviour of the Hilbert series is identical to the cases [1, 1] and
[3, 0], because the conformal dimension is structurally identical. Again, we do not provide further
details.

20.4 Category 3

Hilbert basis Investigating the representations [2, 1] and [4, 0], one recognises the common
structural form of the conformal dimensions

∆(n1, n2) =
∑
j

Aj |ajn1 + bjn2|+B1|n1|+B2|n2|+ C|n1 − n2|+D|2n1 − n2| (20.33)
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20 Case: G2

object ∆(n1, n2) H(n1,n2)

Casimir C2 2 —
C6 6 —

bare monopole V dress,0
(0,1) 52N − 6 U(2)

dressings (i = 1, . . . , 5) V dress,i
(0,1) 52N − 6 + i —

bare monopole V dress,0
(1,0) 90N − 10 U(2)

dressings (i = 1, . . . , 5) V dress,i
(1,0) 90N − 10 + i —

bare monopole V dress,0
(1,1) 140N − 16 U(1)×U(1)

dressings (i = 1, . . . , 5;α = 1, 2) V dress,i,α
(1,1) 140N − 16 + i —

dressing V dress,6
(1,1) 140N − 16 + 6 —

Table 20.6: The chiral ring generators for a G2 gauge theory and matter transforming in
[0, 2].

for aj , bj ∈ N and Aj , B1, B2, C,D ∈ Z. The novelty of this conformal dimension, compared
to (20.3) and (20.19), is the difference |2n1 − n2|, i.e. a second hyperplane that intersects the
Weyl chamber non-trivially. As a consequence, the Weyl chamber is decomposed into a fan
generated by three rational polyhedral cones of dimension 2. These are

C
(2)
1 = Cone((1, 0), (1, 1)) , C

(2)
2 = Cone((1, 1), (1, 2)) ,

C
(2)
3 = Cone((1, 2), (0, 1)) .

(20.34)

The intersection with the weight lattice Λw(G2) yields the relevant semi-groups Sp (for p =
1, 2, 3), as depicted in Fig. 20.3. The Hilbert bases are again given by the ray generators

H(S(2)
1 ) =

{
(1, 0), (1, 1)

}
, H(S(2)

2 ) =
{

(1, 1), (1, 2)
}
,

H(S(2)
3 ) =

{
(1, 2), (0, 1)

}
.

(20.35)

n1

n2

S
(2)
3 S

(2)
2

S
(2)
1

Figure 20.3: The semi-groups S(2)
p (p=1,2,3) for the representations [2, 1] and [4, 0] obtained

from the G2 Weyl chamber (considered as rational cone) and their ray generators (black circled
points).
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20.4 Category 3

Dressings Compared to Sec. 20.2 and 20.3, the additional magnetic weight (1, 2) has the same
dressing behaviour as (1, 1), because the residual gauge groups is U(1)2, too. Thus, the additional
necessary monopole operators are the bare operator V dress,0

(1,2) and the dressed monopoles V dress,i,α
(1,2)

for i = 1, . . . , 5, α = 1, 2 as well as V dress,6
(1,2) .

We will now exemplify the three different representations.

20.4.1 Representation [4, 0]

Hilbert series The conformal dimension reads

∆(n1, n2) = N
(
3 |n1 − n2|+ |2n1 − n2|+ 27 |n1 + n2|+ 30 |2n1 + n2|+ 7 |3n1 + n2| (20.36)

+ 3 |4n1 + n2|+ |5n1 + n2|+ 3 |n1 + 2n2|+ 7 |3n1 + 2n2|+ 3 |5n1 + 2n2|
+ |2n1 + 3n2|+ 3 |4n1 + 3n2|+ 3 |5n1 + 3n2|+ |7n1 + 3n2|+ |5n1 + 4n2|

+ |7n1 + 4n2|+ 27 |n1|+ 7 |n2|
)

−
(
|n1 + n2|+ |2n1 + n2|+ |3n1 + n2|+ |3n1 + 2n2|+ |n1|+ |n2|

)
,

from which we compute the Hilbert series to be

HS[4,0]
G2

(t,N) = R(t,N)
(1− t2) (1− t6) (1− t134N−6) (1− t238N−10) (1− t364N−16) (1− t496N−22) ,

(20.37a)
R(t,N) = 1 + t134N−5(1 + t+ t2 + t3 + t4) + t238N−9(1 + t+ t2 + t3 + t4) (20.37b)

+ t364N−15(2 + 2t+ 2t2 + 2t3 + 2t4 + t5)
− t372N−16(1 + 2t+ 2t2 + 2t3 + 2t4 + 2t5)
+ t496N−21(2 + 2t+ 2t2 + 2t3 + 2t4 + t5)
− t498N−22(1 + 3t+ 3t2 + 3t3 + 3t4 + 3t5 + t6)
− t602N−25(1 + t+ t2 + t3 + t4)− t630N−27(1 + t+ t2 + t3 + t4)
− t734N−32(1 + 3t+ 3t2 + 3t3 + 3t4 + 3t5 + t6)
+ t736N−32(1 + 2t+ 2t2 + 2t3 + 2t4 + 2t5)
− t860N−37(2 + 2t+ 2t2 + 2t3 + 2t4 + t5)
+ t868N−38(1 + 2t+ 2t2 + 2t3 + 2t4 + 2t5)
+ t994N−43(1 + t+ t2 + t3 + t4) + t1098N−47(1 + t+ t2 + t3 + t4) + t1232N−48 .

The numerator (20.37b) is a palindromic polynomial of degree 1232N−48; while, the denomina-
tor is of degree 1232N−46. Hence, the difference in degree between denominator and numerator
is 2, which equals the quaternionic dimension of moduli space. The Hilbert series (20.37) has
a pole of order 4 as t → 1, which coincides with the complex dimension of the moduli space.
(One can explicitly show that R(t = 1, N) = 0 and d

dtR(t,N)|t=1 = 0, but d2

dt2R(t,N)|t=1 6= 0.)
The appearing operators can be summarised as in Tab. 20.7. The new monopole corresponds to
GNO-charge (1, 2) and displays the same dressing behaviour as (1, 1). Contrary to the cases [1, 1],
[3, 0], and [0, 2], the bare and dressed monopoles of GNO-charge (1, 1) are always independent
generators as

∆(1, 1) = 364N − 16 < 372N − 16 = 134N − 6 + 238N − 10 = ∆(0, 1) + ∆(1, 0) (20.38)
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20 Case: G2

object ∆(n1, n2) H(n1,n2)

Casimir C2 2 —
C6 6 —

bare monopole V dress,0
(0,1) 134N − 6 U(2)

dressings (i = 1, . . . , 5) V dress,i
(0,1) 134N − 6 + i —

bare monopole V dress,0
(1,0) 238N − 10 U(2)

dressings (i = 1, . . . , 5) V dress,i
(1,0) 238N − 10 + i —

bare monopole V dress,0
(1,1) 364N − 16 U(1)×U(1)

dressings (i = 1, . . . , 5;α = 1, 2) V dress,i,α
(1,1) 364N − 16 + i —

dressing V dress,6
(1,1) 364N − 16 + 6 —

bare monopole V dress,0
(1,2) 496N − 22 U(1)×U(1)

dressings (i = 1, . . . , 5;α = 1, 2) V dress,i,α
(1,2) 496N − 22 + i —

dressing V dress,6
(1,2) 496N − 22 + 6 —

Table 20.7: The chiral ring generators for a G2 gauge theory and hypermultiplets transforming
in [4, 0].

holds for all N ≥ 1.

Plethystic logarithm By means of the minimal generators (20.35), the bare monopole
V dress,0

(1,2) is a necessary generator. Nevertheless, not all dressings V dress
(1,2) need to be independent.

For N ≥ 1 the PL takes the form

PL(HS[0,2]
G2

(t,N)) = t2 + t6 + t134N−6(1 + t+ t2 + t3 + t4 + t5) (20.39)
+ t238N−10(1 + t+ t2 + t3 + t4 + t5)
− t2(134N−6)+2(1 + t+ 2t2 + 2t3 + 3t4 + 2t5 + 2t6 + t7 + t8)
+ t364N−16(1 + 2t+ 2t2 + 2t3 + 2t4 + 2t5 + t6)− t372N−16 . . .

Based purely in conformal dimension and GNO-charge, we can argue the following:

• For N = 3, ∆(1, 1) + ∆(0, 1) = 1472 is precisely the conformal dimension of V dress,6
(1,2) , i.e.

it is generated.

• For N = 2, ∆(1, 1) + ∆(0, 1) = 974 equals the conformal dimension of V dress,4,α
(1,2) , i.e. only

one of the dressings by the fourth power of a U(1)-Casimir is a generator.

• For N = 1, ∆(1, 1)+∆(0, 1) = 476 matches the conformal dimension of V dress,2,α
(1,2) , i.e. only

one of the dressings by the second power of a U(1)-Casimir is a generator.

20.4.2 Representation [2, 1]
Hilbert series The conformal dimension reads

∆(n1, n2) = N
(
3 |n1 − n2|+ |2n1 − n2|+ 24 |n1 + n2|+ 24 |2n1 + n2|+ 8 |3n1 + n2| (20.40)

+ 3 |4n1 + n2|+ |5n1 + n2|+ 3 |n1 + 2n2|+ 8 |3n1 + 2n2|+ 3 |5n1 + 2n2|
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+ |2n1 + 3n2|+ 3 |4n1 + 3n2|+ 3 |5n1 + 3n2|+ |7n1 + 3n2|+ |5n1 + 4n2|

+ |7n1 + 4n2|+ 24 |n1|+ 8 |n2|
)

−
(
|n1 + n2|+ |2n1 + n2|+ |3n1 + n2|+ |3n1 + 2n2|+ |n1|+ |n2|

)
,

from which we compute the Hilbert series to be

HS[2,1]
G2

(t,N) = R(t,N)
(1− t2) (1− t6) (1− t132N−6) (1− t232N−10) (1− t356N−16) (1− t486N−22) ,

(20.41a)
R(t,N) = 1 + t132N−5(1 + t+ t2 + t3 + t4) + t232N−9(1 + t+ t2 + t3 + t4) (20.41b)

+ t356N−15(2 + 2t+ 2t2 + 2t3 + 2t4 + t5)
− t364N−16(1 + 2t+ 2t2 + 2t3 + 2t4 + 2t5)
+ t486N−21(2 + 2t+ 2t2 + 2t3 + 2t4 + t5)
− t488N−22(1 + 3t+ 3t2 + 3t3 + 3t4 + 3t5 + t6)
− t588N−25(1 + t+ t2 + t3 + t4)− t618N−27(1 + t+ t2 + t3 + t4)
− t718N−32(1 + 3t+ 3t2 + 3t3 + 3t4 + 3t5 + t6)
+ t720N−32(1 + 2t+ 2t2 + 2t3 + 2t4 + 2t5)
− t842N−37(2 + 2t+ 2t2 + 2t3 + 2t4 + t5)
+ t850N−38(1 + 2t+ 2t2 + 2t3 + 2t4 + 2t5)
+ t974N−43(1 + t+ t2 + t3 + t4) + t1074N−47(1 + t+ t2 + t3 + t4) + t1206N−48.

The numerator (20.41b) is a palindromic polynomial of degree 1206N − 48; whereas, the de-
nominator is of degree 1206N − 46. Hence, the difference in degree between denominator and
numerator is 2, which agrees with the quaternionic dimension of moduli space. The Hilbert

object ∆(n1, n2) H(n1,n2)

Casimir C2 2 —
C6 6 —

bare monopole V dress,0
(0,1) 132N − 6 U(2)

dressings (i = 1, . . . , 5) V dress,i
(0,1) 132N − 6 + i —

bare monopole V dress,0
(1,0) 232N − 10 U(2)

dressings (i = 1, . . . , 5) V dress,i
(1,0) 232N − 10 + i —

bare monopole V dress,0
(1,1) 356N − 16 U(1)×U(1)

dressings (i = 1, . . . , 5;α = 1, 2) V dress,i,α
(1,1) 356N − 16 + i —

dressing V dress,6
(1,1) 356N − 16 + 6 —

bare monopole V dress,0
(1,2) 486N − 22 U(1)×U(1)

dressings (i = 1, . . . , 5;α = 1, 2) V dress,i,α
(1,2) 486N − 22 + i —

dressing V dress,6
(1,2) 486N − 22 + 6 —

Table 20.8: The chiral ring generators for a G2 gauge theory and matter transforming in
[2, 1].
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20 Case: G2

series (20.41) has a pole of order 4 as t → 1, which equals the complex dimension of the
moduli space. (One can explicitly show that R(t = 1, N) = 0 and d

dtR(t,N)|t=1 = 0, but
d2

dt2R(t,N)|t=1 6= 0.) The list of appearing operators is presented in Tab. 20.8. Due to the
structure of the conformal dimension the behaviour of the [2, 1] representation is identical to
that of [4, 0]. Consequently, we do not discuss further details.
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21 Case: SU(3)
The last rank two example we would like to cover is SU(3), for which the computation takes
a detour over the corresponding U(3) theory, similar to [191]. The advantage is that we can
simultaneously investigate the rank three example U(3) and demonstrate that the method of
Hilbert bases for semi-groups works equally well in higher rank cases.

21.1 Set-up

In the following, we systematically study a number of SU(3) representation, where we understand
a SU(3)-representation [a, b] as an U(3)-representation with a fixed U(1)-charge.

Preliminaries for U(3) The GNO-dual group of U(3), which is again a U(3), has a weight
lattice characterised by m1,m2,m3 ∈ Z and the dominant Weyl chamber is given by the
restriction m1 ≥ m2 ≥ m3, cf. [191]. The classical dressing factors associated to the interior and
boundaries of the dominant Weyl chamber are the following:

PU(3)(t2,m1,m2,m3) =


1

(1−t2)3 , m1 > m2 > m3 ,
1

(1−t2)2(1−t4) , (m1 = m2 > m3) ∨ (m1 > m2 = m3) ,
1

(1−t2)(1−t4)(1−t6) , m1 = m2 = m3 .

(21.1)

Note that we already introduced the fugacity t2 instead of t. Moreover, the GNO-dual U(3) has
a non-trivial centre, i.e. Z(U(3)) = U(1)J ; thus, the topological symmetry is a U(1)J counted
by zm1+m2+m3 .

The contributions of N(a,b) hypermultiplets transforming in [a, b] to the conformal dimension
are as follows:

∆[1,0]
h−plet =

N(1,0)
2

∑
i

|mi| , (21.2a)

∆[2,0]
h−plet =

3N(2,0)
2

∑
i

|mi| , (21.2b)

∆[1,1]
h−plet = N(1,1)

∑
i<j

|mi −mj | , (21.2c)

∆[3,0]
h−plet =

3N(3,0)
2

∑
i

|mi|+N[3,0]
∑
i<j

|mi −mj | , (21.2d)

∆[2,2]
h−plet = 3N(2,2)

∑
i

|mi|+ 4N(2,2)
∑
i<j

|mi −mj | , (21.2e)

∆[2,1]
h−plet = 4N(2,1)

∑
i

|mi|+
N(2,1)

2
∑
i<j

(|2mi −mj |+ |mi − 2mj |) , (21.2f)

where i, j = 1, 2, 3. In addition, the contribution of the vector multiplet reads as

∆v−plet = −
∑
i<j

|mi −mj | . (21.3)
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21 Case: SU(3)

Consequently, one can study a pretty wild matter content if one considers the conformal dimen-
sion to be of the form

∆(m1,m2,m3) = NF

2
∑
i

|mi|+ (NA − 1)
∑
i<j

|mi −mj |

+ NR

2
∑
i<j

(|2mi −mj |+ |mi − 2mj |) ,
(21.4)

and the relation to the various representations (21.2) is established via

NF = N(1,0) + 3N(2,0) + 3N(3,0) + 6N(2,2) + 4N(2,1) , (21.5a)
NA = N(1,1) +N(3,0) + 4N(2,2) , (21.5b)
NR = N(2,1) . (21.5c)

Preliminaries for SU(3) As noted in [191], the reduction from U(3) to SU(3) (with the same
matter content) is realised by averaging over U(1)J , for the purpose of setting m1 +m2 +m3 = 0,
and multiplying by (1− t2), such that tr(Φ) = 0 holds for the adjoint scalar Φ. In other words

HS[a,b]
SU(3)(t

2) = (1− t2)
∮
|z|=1

dz
2πizHS[a,b]

U(3)(t
2, z) . (21.6)

As a consequence, the conformal dimension for SU(3) itself is obtained from (21.4) via

∆(m1,m2) := ∆(m1,m2,m3)
∣∣
m3=−m1−m2

. (21.7)

The Weyl chamber is now characterised bym1 ≥ max{m2,−2m2}. Multiplying (21.1) by (1−t2)
and employing m3 = −m1 −m2 results in the classical dressing factors for SU(3)

PSU(3)(t2,m1,m2) =


1

(1−t2)2 , m1 > max{m2,−2m2} ,
1

(1−t2)(1−t4) , (m1 = m2) ∨ (m1 = −2m2) ,
1

(1−t4)(1−t6) , m1 = m2 = 0 .
(21.8)

21.2 Hilbert basis

21.2.1 Fan and cones for U(3)

Following the ideas outline previously, Λw(Û(3))/WU(3) can be described as a collection of
semi-groups that originate from a fan. Since this is our first 3-dimensional example, we provide
a detail description on how to obtain the fan. Consider the absolute values |am1 + bm2 + cm2|
in (21.7) as Hesse normal form for the hyperplanes

~n · ~m ≡

ab
c

 ·
m1
m2
m3

 = 0 (21.9)

which pass through the origin. Take all normal vectors ~nj , define the matrices Mi,j = (~ni, ~nj)T
(for i < j) and compute the null spaces (or kernel) Ki,j := ker(Mi,j). Linear algebra tell us that
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21.2 Hilbert basis

dim(Ki,j) ≥ 1, but by the specific form31 of ∆ we have the stronger condition rk(Mi,j) = 2 for
all i < j; thus, we always have dim(Ki,j) = 1. Next, we select a basis vector ei,j of Ki,j and
check if ei,j or −ei,j intersect the Weyl-chamber. If it does, then it is going to be an edge for the
fan and, more importantly, will turn out to be a ray generator (provided one defines ei,j via the
intersection with the corresponding weight lattice). Now, one has to define all 3-dimensional
cones, merge them into a fan, and, lastly, compute the Hilbert bases. The program Sage is a
convenient tool for such tasks.
As two examples, we consider the conformal dimension (21.7) for NR = 0 and NR 6= 0 and

preform the entire procedure. That is: firstly, compute the edges of the fan; secondly, define the
all 3-dimensional cones; and, thirdly, compute the Hilbert bases.

Case NR = 0 In this circumstance, we deduce the following edges1
0
0

 ,
1

1
0

 ,
1

1
1

 ,
 0

0
−1

 ,
 0
−1
−1

 ,
−1
−1
−1

 . (21.10)

All these vectors are on the boundaries of the Weyl chamber. The set of 3-dimensional cones
that generate the corresponding fan is given by

C
(3)
1 = Cone


1

0
0

 ,
1

1
0

 ,
1

1
1


 , C

(3)
2 = Cone


1

0
0

 ,
1

1
0

 ,
 0

0
−1


 , (21.11a)

C
(3)
3 = Cone


1

0
0

 ,
 0
−1
−1

 ,
 0

0
−1


 , C(3)

4 = Cone


−1
−1
−1

 ,
 0
−1
−1

 ,
 0

0
−1


 . (21.11b)

A computation shows that all four cones are strictly convex, smooth, and simplicial. The Hilbert
bases for the resulting semi-groups consist solely of the ray generators

H(S(3)
1 ) =


1

0
0

 ,
1

1
0

 ,
1

1
1


 , H(S(3)

2 ) =


1

0
0

 ,
1

1
0

 ,
 0

0
−1


 , (21.12a)

H(S(3)
3 ) =


1

0
0

 ,
 0
−1
−1

 ,
 0

0
−1


 , H(S(3)

4 ) =


−1
−1
−1

 ,
 0
−1
−1

 ,
 0

0
−1


 . (21.12b)

From the above, we expect 6 bare monopole operators plus their dressings for a generic theory
with NR = 0. Since all ray generators lie at the boundary of the Weyl chamber, the residual
gauge groups are U(3) for ±(1, 1, 1) and U(2)×U(1) for the other four GNO-charges.

Case NR 6= 0 Here, we compute the following edges:1
0
0

 ,
1

1
0

 ,
1

1
1

 ,
2

1
0

 ,
2

1
1

 ,
2

2
1

 ,
4

2
1

 , (21.13a)

31∆ is homogeneous and all hyperplanes pass through the origin; hence, no two hyperplanes can be parallel. This
implies that no two normal vectors can be multiplies of each other.
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 0
0
−1

 ,
 0
−1
−1

 ,
−1
−1
−1

 ,
 0
−1
−2

 ,
−1
−1
−2

 ,
−1
−2
−2

 ,
−1
−2
−4

 . (21.13b)

Now, we need to proceed and define all 3-dimensional cones that constitute the fan and, in turn,
will lead to the semi-groups that we wish to study. We obtain the following 16 cones:

C
(3)
1 = Cone


1

0
0

 ,
2

1
0

 ,
4

2
1


 , C

(3)
2 = Cone


4

2
1

 ,
1

0
0

 ,
2

1
1


 , (21.14a)

C
(3)
3 = Cone


2

2
1

 ,
1

1
0

 ,
2

1
0


 , C

(3)
4 = Cone


2

2
1

 ,
2

1
0

 ,
4

2
1


 , (21.14b)

C
(3)
5 = Cone


2

2
1

 ,
4

2
1

 ,
2

1
1


 , C

(3)
6 = Cone


2

2
1

 ,
2

1
1

 ,
1

1
1


 , (21.14c)

C
(3)
7 = Cone


 0

0
−1

 ,
1

0
0

 ,
2

1
0


 , C

(3)
8 = Cone


 0

0
−1

 ,
1

1
0

 ,
2

1
0


 , (21.14d)

C
(3)
9 = Cone


 0

0
−1

 ,
 0
−1
−2

 ,
1

0
0


 , C

(3)
10 = Cone


 0
−1
−2

 ,
 0
−1
−1

 ,
1

0
0


 , (21.14e)

C
(3)
11 = Cone


 0

0
−1

 ,
 0
−1
−2

 ,
−1
−2
−4


 , C(3)

12 = Cone


 0

0
−1

 ,
−1
−2
−4

 ,
−1
−1
−2


 , (21.14f)

C
(3)
13 = Cone


 0
−1
−2

 ,
−1
−2
−4

 ,
 0
−1
−1


 , C(3)

14 = Cone


 0
−1
−1

 ,
−1
−2
−4

 ,
−1
−2
−2


 , (21.14g)

C
(3)
15 = Cone


−1
−2
−4

 ,
−1
−2
−2

 ,
−1
−1
−2


 , C(3)

16 = Cone


−1
−2
−2

 ,
−1
−1
−2

 ,
−1
−1
−1


 . (21.14h)

All of the rational polyhedral cones are strictly convex and simplicial, but only the cones Cp for
p = 1, 2, 3, 6, . . . , 13, 16 are smooth. Now, we compute the Hilbert bases for semi-groups S(3)

p for
p = 1, 2, . . . , 16 and obtain

H(S(3)
1 )=


1

0
0

 ,
2

1
0

 ,
4

2
1


 , H(S(3)

2 )=


4

2
1

 ,
1

0
0

 ,
2

1
1


 , (21.15a)

H(S(3)
3 )=


2

2
1

 ,
1

1
0

 ,
2

1
0


 , H(S(3)

4 )=


2

2
1

 ,
2

1
0

 ,
4

2
1

 ,
3

2
1


 , (21.15b)

H(S(3)
5 )=


2

2
1

 ,
4

2
1

 ,
2

1
1

 ,
3

2
1


 , H(S(3)

6 )=


2

2
1

 ,
2

1
1

 ,
1

1
1


 , (21.15c)
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21.2 Hilbert basis

H(S(3)
7 )=


 0

0
−1

 ,
1

0
0

 ,
2

1
0


 , H(S(3)

8 )=


 0

0
−1

 ,
1

1
0

 ,
2

1
0


 , (21.15d)

H(S(3)
9 )=


 0

0
−1

 ,
 0
−1
−2

 ,
1

0
0


 , H(S(3)

10 )=


 0
−1
−2

 ,
 0
−1
−1

 ,
1

0
0


 , (21.15e)

H(S(3)
11 )=


 0

0
−1

 ,
 0
−1
−2

 ,
−1
−2
−4


 , H(S(3)

12 )=


 0

0
−1

 ,
−1
−2
−4

 ,
−1
−1
−2


 , (21.15f)

H(S(3)
13 )=


 0
−1
−2

 ,
−1
−2
−4

 ,
 0
−1
−1


 , H(S(3)

14 )=


 0
−1
−1

 ,
−1
−2
−4

 ,
−1
−2
−2

 ,
−1
−2
−3


 , (21.15g)

H(S(3)
15 )=


−1
−2
−4

 ,
−1
−2
−2

 ,
−1
−1
−2

 ,
−1
−2
−3


 , H(S(3)

16 )=


−1
−2
−2

 ,
−1
−1
−2

 ,
−1
−1
−1


 . (21.15h)

We observe that there are four semi-groups Sp for p = 4, 5, 14, 15 for which the Hilbert bases
exceeds the set of ray generators by an additional element. Consequently, we expect 16 bare
monopoles plus their dressings for a generic theory with NR 6= 0. However, the dressings exhibit
a much richer structure compared to NR = 0, because some minimal generators lie in the interior
of the Weyl chamber. The residual gauge groups are U(3) for ±(1, 1, 1); U(2)×U(1) for (1, 0, 0),
(0, 0,−1), (1, 1, 0), (0,−1,−1), (2, 1, 1), (−1,−1,−2), (2, 2, 1), and (−1,−2,−2); and U(1)3 for
(2, 1, 0), (0,−1,−2),(4, 2, 1), (−1,−2,−4), (3, 2, 1), and (−1,−2,−3).

21.2.2 Fan and cones for SU(3)

The conformal dimension (21.7) divides the Weyl chamber of the GNO-dual into two different
fans, depending on NR = 0 or NR 6= 0.

Case NR = 0 For this situation, which is depicted in Fig. 21.1a, there are the following three
rays ∼ |m1|, |m1 −m2|, |m1 + 2m2| present that intersect the Weyl chamber non-trivially. The
corresponding fan is generated by two 2-dimensional cones

C
(2)
1 = Cone((2,−1), (1, 0)) and C

(2)
2 = Cone((1, 0), (1, 1)) . (21.16)

The Hilbert bases for the semi-groups, obtained by intersecting the cones with the weight lattice,
are solely given by the ray generators, i.e.

H(S(2)
1 ) =

{
(2,−1), (1, 0)

}
and H(S(2)

2 ) =
{

(1, 0), (1, 1)
}
. (21.17)

As a consequence, we expect three bare monopole operators (plus dressings) for a generic
NR = 0 theory. The residual gauge group is SU(2)×U(1) for (2,−1) and (1, 1), because these
GNO-charges are at the boundary of the Weyl-chamber. In contrast, (1, 0) has residual gauge
group U(1)2 as it lies in the interior of the dominant Weyl chamber.

Case NR 6= 0 For this circumstance, there are two additional rays ∼ |m1−2m2|, |m1 + 3m2|
present, compared to NR = 0, that intersect the Weyl chamber non-trivially. We refer to

231



21 Case: SU(3)

Fig. 21.1b. The corresponding fan is now generated by four 2-dimensional cones

C
(2)
1− = Cone((2,−1), (3,−1)) , C

(2)
1+ = Cone((3,−1), (1, 0)) , (21.18a)

C
(2)
2− = Cone((1, 0), (2, 1)) , C

(2)
2+ = Cone((2, 1), (1, 1)) . (21.18b)

The Hilbert bases for the resulting semi-groups are given by the ray generators, i.e.

H(S(2)
1−) =

{
(2,−1), (3,−1)

}
, H(S(2)

1+) =
{

(3,−1), (1, 0)
}
, (21.19a)

H(S(2)
2−) =

{
(1, 0), (2, 1)

}
, H(S(2)

2+) =
{

(2, 1), (1, 1)
}
. (21.19b)

Judging from the Hilbert bases, there are five bare monopole operators present in the generic
case. The residual gauge group for (1, 0), (3,−1), and (2, 1) is U(1)2, as they lie in the interior.
For (1, 1) and (2,−1) the residual gauge group is SU(2)×U(1), because these points lie at the
boundary of the Weyl chamber.

m1

m2

(a) NR = 0

m1

m2

(b) NR 6= 0

Figure 21.1: The semi-groups for SU(3) and the corresponding ray generators (black circled
points).

21.3 Casimir invariance

Now, we need to discuss the dressed monopole operators associated to each element of the
Hilbert basis. For U(3) we will heavily rely on the results of App. C; while we can provide a
more detailed description for the dressings in the SU(3) case.

21.3.1 Dressings for U(3)
Following the description of dressed monopole operators as in [191], we diagonalise the adjoint-
valued scalar Φ along the moduli space, i.e.

diag Φ = (φ1, φ2, φ3) . (21.20)

Moreover, the Casimir invariants of U(3) can then be written as Cj = tr(Φj) =
∑3
l=1(φl)j for

j = 1, 2, 3. We will now elaborate on the possible dressed monopole operators by means of the
insights gained in Sec. 15.3 and App. C.
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21.3 Casimir invariance

To start with, for a monopole with GNO-charge such that H(m1,m2,m3) = U(3) the dressings
are described by

PU(3)(t,m1,m1,m1)
PU(3)(t, 0) − 1 = 0 , (21.21)

i.e. there are no dressings, because the Casimir invariants of the centraliser H(m1,m2,m3) are
identical to those of G, since the groups coincide. Prominent examples are the (bare) monopoles
of GNO-charge ±(1, 1, 1).
Next, a monopole of GNO-charge such that H(m1,m2,m3) = U(1) × U(2) exhibit dressings

governed by

PU(3)(t,m1,m2,m3)
PU(3)(t, 0) − 1 = (1− t2)(1− t4)(1− t6)

(1− t2)2(1− t4) − 1 = t2 + t4 , (21.22)

implying there to be exactly one dressing by a degree 2 Casimir and one dressing by a degree
4 Casimir. The two degree 2 Casimir invariants of H(m1,m2,m3), one by U(1) and one by U(2),
are not both independent because there is the overall Casimir C1 of U(3). Therefore, only one
of them leads to an independent dressed monopole generator. The second dressing is then due
to the second Casimir of U(2). For example, the monopole of GNO-charge (1, 1, 0), (0,−1,−1),
(2, 1, 1), (−1,−2,−2), (2, 2, 1), and (−1,−2,−2) exhibit these two dressings options.

Lastly, if the residual gauge group is H(m1,m2,m3) = U(1)3 then the dressings are determined
via

PU(3)(t,m1,m2,m3)
PU(3)(t, 0) − 1 = (1− t2)(1− t4)(1− t6)

(1− t2)3 − 1 = 2t2 + 2t4 + t6 . (21.23)

Consequently, there are generically five dressings for each such bare monopole operator. Exam-
ples for this instance are (2, 1, 0), (0,−1,−2), (3, 2, 1), (−1,−2,−3), (4, 2, 1), (−1,−2,−4).

21.3.2 Dressings for SU(3)

To determine the dressings, we take the adjoint scalar Φ and diagonalise it, keeping in mind
that it now belongs to SU(3), that is

diagΦ = (φ1, φ2,−(φ1 + φ2)) . (21.24)

Recalling that each φi has dimension one, we can write down the dressings (in the dominant
Weyl chamber): (1, 0) can be dressed by two independent U(1)-Casimir invariants, i.e. directly
by φ1 and φ2

V
dress,(0,0)

(1,0) ≡ (1, 0) −→

V
dress,(1,0)

(1,0) ≡ φ1 (1, 0) ,
V

dress,(0,1)
(1,0) ≡ φ2 (1, 0) ,

(21.25)

such that the dressings have conformal dimension ∆(1, 0) + 1. Next, out of the three degree 2
combinations of φi, only two of them are independent and we choose them to be

V
dress,(0,0)

(1,0) ≡ (1, 0) −→

V
dress,(2,0)

(1,0) ≡ φ2
1 (1, 0) ,

V
dress,(0,2)

(1,0) ≡ φ2
2 (1, 0) ,

(21.26)

and these second order dressings have conformal dimension ∆(1, 0)+2. Finally, one last dressing
is possible

V
dress,(0,0)

(1,0) ≡ (1, 0) −→ V
dress,(3,0)+(0,3)

(1,0) ≡ (φ3
1 + φ3

2) (1, 0) , (21.27)
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21 Case: SU(3)

having dimension ∆(1, 0) + 3. Alternatively, we utilise App. C and compute the number and
degrees of the dressed monopole operators of magnetic charge (1, 0) via the quotient of dressing
factors PSU(3)(t2, 1, 0)/PSU(3)(t2, 0, 0) = 1 + 2t2 + 2t4 + t6.

The two monopoles of GNO-charge (1, 1) and (2,−1) have residual gauge group SU(2)×U(1),
i.e. the monopoles can be dressed by a degree one Casmir invariant of the U(1) and by a degree
two Casimir invariant of the SU(2). These increase the dimensions by one and two, respectively.
Consequently, we obtain

V dress,0
(1,1) ≡ (1, 1) −→

V
dress,U(1)

(1,1) ≡ (φ1 + φ2) (1, 1) ,
V

dress,SU(2)
(1,1) ≡ (φ2

1 + φ2
2) (1, 1) ,

(21.28)

and similarly

V dress,0
(2,−1) ≡ (2,−1) −→

V
dress,U(1)

(2,−1) ≡ (φ1 + φ2) (2,−1) ,
V

dress,SU(2)
(2,−1) ≡ (φ2

1 + φ2
2) (2,−1) .

(21.29)

Since the magnetic weights (1, 1), (2,−1) lie at the boundary of the dominant Weyl chamber,
we can derive the dressing behaviour via PSU(3)(t2, (1, 1) or (2,−1))/PSU(3)(t2, 0, 0) = 1+ t2 + t4

and obtain agreement with our choice of generators.

The remaining monopoles of GNO-charge (2, 1) and (3,−1) can be treated analogously to
(1, 0) and we obtain

V
dress,(0,0)

(2,1) ≡ (2, 1) −→



V
dress,(1,0)

(2,1) ≡ φ1 (2, 1) ,
V

dress,(0,1)
(2,1) ≡ φ2 (2, 1) ,
V

dress,(2,0)
(2,1) ≡ φ2

1 (2, 1) ,
V

dress,(0,2)
(2,1) ≡ φ2

2 (2, 1) ,
V

dress,(3,0)+(0,3)
(2,1) ≡ (φ3

1 + φ3
2) (2, 1) ,

(21.30)

V
dress,(0,0)

(3,−1) ≡ (3,−1) −→



V
dress,(1,0)

(3,−1) ≡ φ1 (3,−1) ,
V

dress,(0,1)
(3,−1) ≡ φ2 (3,−1) ,
V

dress,(2,0)
(3,−1) ≡ φ2

1 (3,−1) ,
V

dress,(0,2)
(3,−1) ≡ φ2

2 (3,−1) ,
V

dress,(3,0)+(0,3)
(3,−1) ≡ (φ3

1 + φ3
2) (3,−1) .

(21.31)

There can be circumstances in which not all dressings for the minimal generators determined
by the Hilbert bases (21.19) are truly independent. However, this will only occur for special
configurations of (NF , NA, FR) and, therefore, is considered as non-generic case.

21.4 Category NR = 0

At first, we restrict to a matter content consisting of hypermultiplets transforming in the
fundamental or adjoint representation of SU(3). From (21.5), we know that this choice includes
several other representations as well.
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21.4 Category NR = 0

21.4.1 NF hypermultiplets in [1, 0] and NA hypermultiplets in [1, 1]

Intermediate step at U(3) The conformal dimension (21.4) reduces for NR = 0 to the
following:

∆(m1,m2,m3) = NF

2
∑
i

|mi|+ (NA − 1)
∑
i<j

|mi −mj | . (21.32)

The Hilbert series is then readily computed

HS[1,0]+[1,1]
U(3) (NF , NA, t, z) = R(NF , NA, t, z)

P (NF , NA, t, z)
, (21.33a)

P (NF , NA, t, z) =
3∏
j=1

(
1− t2j

) (
1− 1

z t
4NA+NF−4

) (
1− zt4NA+NF−4

)
(21.33b)

×
(
1− 1

z2 t
4NA+2NF−4

) (
1− z2t4NA+2NF−4

) (
1− 1

z3 t
3NF

) (
1− z3t3NF

)
R(NF , NA, t, z) = 1 + t8NA+2NF−2 − t8NA+4NF−8(1 + 2t2 + 2t4) (21.33c)

+ 2t8NA+6NF−8(1− t6) + t8NA+8NF−6(2 + 2t2 + t4)− t8NA+10NF−8

+ t16NA+6NF−10 − t16NA+12NF−10 − t6NF

+
(
z + 1

z

)(
t4NA+NF−2(1 + t2) + t4NA+7NF−4 − t4NA+5NF−4(1 + t2 + t4)

− t8NA+3NF−6(1 + t2) + t8NA+9NF−6(1 + t2)− t12NA+5NF−6

+ t12NA+7NF−10(1 + t2 + t4)− t12NA+11NF−10(1 + t2)
)

+
(
z2 + 1

z2

)(
t4NA+2NF−2 + t4NA+2NF − t4NA+4NF−4(1 + t2 + t4)

+ t4NA+8NF−4 − t12NA+4NF−6

+ t12NA+8NF−10(1 + t2 + t4)− t12NA+10NF−10(1 + t2)
)

+
(
z3 + 1

z3

)(
t8NA+3NF−2 − t8NA+5NF−6(1 + t2 + t4)

+ t8NA+7NF−8(1 + t2 + t4)− t8NA+9NF−8
)
.

One can verify that R(NF , NA, t = 1, z) = 0 and dn
dtnR(NF , NA, t, z)|t=1,z=1 = 0 for n = 1, 2.

Thus, the Hilbert series (21.33) has a pole of order 6, which matches the dimension of the moduli
space. Moreover, one can compute the degree of the numerator (21.33c) to be 12NF +16NA−10
and the degree of the denominator (21.33b) to be 12NF + 16NA − 4, such that their difference
equals the dimension of the moduli space. The interpretation follows the results (21.12) obtained
from the Hilbert bases and we summarise the minimal generators in Tab. 21.1.

Reduction to SU(3) Following the prescription (21.6), we derive the following Hilbert series:

HS[1,0]+[1,1]
SU(3) (NF , NA, t) = R(NF , NA, t)

(1− t4) (1− t6) (1− t8NA+2NF−8) (1− t12NA+4NF−12) , (21.34a)

R(NF , NA, t) = 1 + t8NA+2NF−6(2 + 2t2 + t4) (21.34b)
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21 Case: SU(3)

(m1,m2,m3) 2∆(m1,m2,m3) H(m1,m2,m3)

(1, 0, 0) (0, 0,−1) NF + 4NA − 4 U(1)×U(2)
(1, 1, 0) (0,−1,−1) 2NF + 4NA − 4 U(1)×U(2)
(1, 1, 1) (−1,−1,−1) 3NF U(3)

Table 21.1: The monopole generators for a U(3) gauge theory with NR = 0 that together with
the Casimir invariants generate the chiral ring.

+ t12NA+4NF−12(1 + 2t2 + 2t4) + t20NA+6NF−14 .

An inspection yields that the numerator (21.34b) is a palindromic polynomial of degree 20NA +
6NF − 14; while the degree of the denominator is 20NA + 6NF − 10. Thus, the difference in the
degrees is 4, which equals the complex dimension of the moduli space. In addition, the Hilbert
series (21.34) has a pole of order four at t → 1, which agrees with the dimension of Coulomb
branch as well.
The minimal generators of (21.17) are given by V dress,(0,0)

(1,0) with 2∆(1, 0) = 8NA + 2NF − 8,
and V dress,0

(1,1) and V dress,0
(2,−1) with 2∆(2,−1) = 2∆(1, 1) = 12NA + 4NF − 12. The dressed monopole

operators are as described in Sec. 21.3.2.

21.4.2 N hypermultiplets in [1, 0]

Considering N hypermultiplets in the fundamental representation is on extreme case of (21.4),
as NA = 0 = NR. We recall the results of [191] and discuss them in the context of Hilbert bases
for semi-groups.

Intermediate step at U(3) The Hilbert series has been computed to read

HS[1,0]
U(3)(N, t, z) =

3∏
j=1

1− t2N+2−2j

(1− t2j)(1− ztN+2−2j)(1− tN+2−2j

z )
. (21.35)

Notably, it is a complete intersection in which the (bare and dressed) monopole operators of
GNO-charge (1, 0, 0) and (0, 0,−1) generate all other monopole operators. The expected minimal
generators (1, 1, 0), (0,−1,−1), (1, 1, 1), and (−1,−1,−1) are now generated because

V dress,0
(1,1,0) = V dress,1

(1,0,0) + V dress,1
(0,1,0) , (21.36a)

V dress,0
(1,1,0) = V dress,2

(1,0,0) + V dress,2
(0,1,0) + V dress,2

(0,0,1) . (21.36b)

Reduction to SU(3) The reduction leads to

HS[1,0]
SU(3)(N, t) = 1 + t2N−6 + 2t2N−4 + t2N−2 + t4N−8

(1− t4)(1− t6)(1− t2N−6)(1− t2N−8) . (21.37)

Although the form of the Hilbert series (21.37) is suggestive: it has a pole of order 4 for t→ 1
and the numerator is palindromic, there is one drawback: no monopole operator of conformal
dimension (2N − 6) exists. Therefore, we provide a equivalent rational function to emphasis the
minimal generators:

HS[1,0]
SU(3)(N, t) = 1 + t2N−6(2 + 2t2 + t4) + t4N−12(1 + 2t2 + 2t4) + t6N−14

(1− t4)(1− t6)(1− t2N−8)(1− t4N−12) . (21.38)

236



21.4 Category NR = 0

The equivalent form (21.38) still has a pole of order 4 and a palindromic numerator. Moreover,
the monopole generators are clearly visible, as we know the set of minimal generators (21.17),
and can be summarise for completeness: 2∆(1, 0) = 2N−8 and 2∆(1, 1) = 2∆(2,−1) = 4N−12.

21.4.3 N hypermultiplets in [1, 1]

Investigating N hypermultiplets in the adjoint representation is another extreme case of (21.4)
as NF = 0 = NR. The conformal dimension in this circumstance reduces to

∆(m1,m2,m3) = (N − 1)
∑
i<j

|mi −mj | , (21.39)

and we notice that there is the shift symmetry mi → mi + a present. Due to this, the naive
calculation of the U(3) Hilbert series is divergent, which we understand as follows: Define overall
U(1)-charge M := m1 +m2 +m3, then the Hilbert series becomes

HS(1,1)
U(3) =

∑
M∈Z

∑
m1,m2

m1≥max (m2,M−2m2)

t2(N−1)(3m1+3m2−2M+|m1−m2|) zM

× PU(3)(t,m1,m2,m3) .
(21.40)

Since we want to use the U(3)-calculation as an intermediate step to derive the SU(3)-case, the
only meaningful choice to fix the shift-symmetry is m1 +m2 +m3 = 0. But then

HS(1,1)
U(3),fixed =

∑
m1,m2

m1≥max (m2,−2m2)

t2(N−1)(3m1+3m2+|m1−m2|) PU(3)(t,m1,m2,−m1 −m2) (21.41)

and the transition to SU(3) is simply

HS(1,1)
SU(3) = (1− t2)

∫
|z|=1

dz
2πz

∑
m1,m2

m1≥max (m2,−2m2)

t2(N−1)(3m1+3m2+|m1−m2|)

× PU(3)(t,m1,m2,−m1 −m2)

=
∑

m1,m2
m1≥max (m2,−2m2)

t2(N−1)(3m1+3m2+|m1−m2|) PSU(3)(t,m1,m2) . (21.42)

The computation then yields

HS(1,1)
SU(3) = 1 + t8N−6(2 + 2t2 + t4) + t12N−12(1 + 2t2 + 2t4) + t20N−14

(1− t4) (1− t6) (1− t8N−8) (1− t12N−12) . (21.43)

We see that numerator of (21.43) is a palindromic polynomial of degree 20N − 14; while the
degree of the denominator is 20N −10. Hence, the difference in the degrees is 4, which coincides
with the complex dimension of the moduli space. The same holds for the order of the pole
of (21.43) at t→ 1.
The interpretation of the appearing monopole operators, and their dressings, is completely

analogous to (21.34) and reproduces the picture concluded from the Hilbert bases (21.12). To
be specific, 2∆(1, 0) = 8N − 8 and 2∆(1, 1) = 2∆(2,−1) = 12N − 12.
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21 Case: SU(3)

21.4.4 N hypermultiplets in [3, 0]

Intermediate step at U(3) The conformal dimension reads

∆(m1,m2,m3) = 3
2N

∑
i

|mi|+ (N − 1)
∑
i<j

|mi −mj | . (21.44)

We then obtain for N > 2 the following Hilbert series:

HS[3,0]
U(3)(t, z) = R(N, t, z)

P (N, t, z) , (21.45a)

P (N, t, z) =
3∏
j=1

(
1− t2j

) (
1− 1

z t
7N−4

) (
1− zt7N−4

) (
1− 1

z2 t
10N−4

) (
1− z2t10N−4

)
×
(
1− 1

z3 t
9N
) (

1− z3t9N
)
, (21.45b)

R(N, t, z) = 1 + t14N−2 − t18N − t20N−8 − 2t20N−6 − 2t20N−4 + 2t26N−8 − 2t26N−2 (21.45c)
+ 2t32N−6 + 2t32N−4 + t32N−2 + t34N−10 − t38N−8 − t52N−10

+ (z + 1
z )
(
t7N−2 + t7N − t17N−6 − t17N−4 − t19N−4 − t19N−2 − t19N + t25N−4

− t27N−6 + t33N−10 + t33N−8 + t33N−6 + t35N−6 + t35N−4 − t45N−10 − t45N−8
)

+ (z2 + 1
z2 )
(
t10N−2 + t10N − t16N−4 − t16N−2 − t16N − t24N−6 + t28N−4 + t36N−10

+ t36N−8 + t36N−6 − t42N−10 − t42N−8
)

+ (z3 + 1
z3 )
(
t17N−2 − t23N−6 − t23N−4 − t23N−2 + t29N−8 + t29N−6

+ t29N−4 − t35N−8
)
.

The Hilbert series (21.45) has a pole of order 6 as t → 1, because R(N, t = 1, z) = 0 and
dn
dtnR(N, t, z)|t=1 = 0 for n = 1, 2. Therefore, the moduli space is 6-dimensional. Also, the degree
of (21.45c) is 52N − 10, while the degree of (21.45b) us 52N − 4; thus, the difference in degrees
equals the dimension of the moduli space.

As this example is merely a special case of (21.33), we just summarise the minimal generators
in Tab. 21.2.

(m1,m2,m3) 2∆(m1,m2,m3) H(m1,m2,m3)

(1, 0, 0) (0, 0,−1) 7N − 4 U(1)×U(2)
(1, 1, 0) (0,−1,−1) 10N − 4 U(1)×U(2)
(1, 1, 1) (−1,−1,−1) 9N U(3)

Table 21.2: The monopole generators for a U(3) gauge theory with matter transforming in
[3, 0] that together with the Casimir invariants generate the chiral ring.

Reduction to SU(3) Following the recipe (21.6), we obtain for the Hilbert series the following
rational function:

HS[3,0]
SU(3)(t) = 1 + t14N−6(2 + 2t2 + t4) + t24N−12(1 + 2t2 + 2t4) + t38N−14

(1− t4) (1− t6) (1− t14N−8) (1− t24N−12) (21.46)
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21.5 Category NR 6= 0

It is apparent that the numerator of (21.46) is a palindromic polynomial of degree 38N − 14;
while the degree of the denominator is 38N − 10; hence, the difference in the degrees is 4, which
equals the complex dimension of the moduli space.

The structure of (21.46) is merely a special case of (21.34), and the conformal dimensions of
the minimal generators are 2∆(1, 0) = 14N − 8 and 2∆(1, 1) = 2∆(2,−1) = 24N − 12.

21.5 Category NR 6= 0

In this section, we allow an non-vanishing number of hypermultiplets transforming in the
representation [2, 1]. As outlined in Sec. 21.2, the fan becomes a more sophisticated and we
expect several new monopole operators to appear as minimal generators.

21.5.1 NF hypermultiplets in [2, 1], NA hypermultiplets in [1, 1], and NR

hypermultiplets in [2, 1]

Intermediate step at U(3) The conformal dimension reads

2∆(m1,m2,m3) = (4NR +NA)
3∑
i=1
|mi|+NR

∑
i<j

(|2mi −mj |+ |mi − 2mj |) (21.47)

+ 2(NA − 1)
∑
i<j

|mi −mj | .

The Hilbert series reads

HS[1,0]+[1,1]+[2,1]
U(3) (t, z) = R(NF , NA, NR, t, z)

P (NF , NA, NR, t, z)
, (21.48a)

P (NF , NA, NR, t, z) =
3∏
j=1

(
1− t2j

)(
1− tNF+4NA+10NR−4

z

)(
1− ztNF+4NA+10NR−4

)

×
(

1− t2NF+4NA+16NR−4

z2

)(
1− z2t2NF+4NA+16NR−4

)
×
(

1− t3NF+18NR

z3

)(
1− z3t3NF+18NR

)
(21.48b)

×
(

1− t3NF+8NA+24NR−8

z3

)(
1− z3t3NF+8NA+24NR−8

)
×
(

1− t4NF+4NA+24NR−4

z4

)(
1− z4t4NF+4NA+24NR−4

)
×
(

1− t5NF+4NA+30NR−4

z5

)(
1− z5t5NF+4NA+30NR−4

)
×
(

1− t7NF+12NA+46NR−12

z7

)(
1− z7t7NF+12NA+46NR−12

)
,

and the numerator R(NF , NA, NR, t, z) is too long to be displayed, because it contains 28650
monomials. One can verified explicitly that R(NF , NA, NR, t = 1, z) = 0 and, moreover,
dn
dtnR(NF , NA, NR, t, z)|t=1,z=1 = 0 for all n = 1, 2 . . . , 10. Therefore, the Hilbert series (21.48)
has a pole of order 6 at t = 1, which equals the dimension of the moduli space. In addition,
R(NF , NA, NR, t, z) is a polynomial of degree 50NF + 72NA + 336NR − 66, while the denomi-
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21 Case: SU(3)

nator (21.48b) is of degree 50NF + 72NA + 336NR − 60. The difference in degrees reflects the
dimension of the moduli space as well.
Following the analysis of the Hilbert bases (21.19), we identify the bare monopole operators

and provide their conformal dimensions in Tab. 21.3. The result (21.48) has been tested against

(m1,m2,m3) 2∆(m1,m2,m3) H(m1,m2,m3)

(1, 0, 0) (0, 0,−1) NF + 4NA + 10NR − 4 U(1)×U(2)
(1, 1, 0) (0,−1,−1) 2NF + 4NA + 16NR − 4 U(1)×U(2)
(1, 1, 1) (−1,−1,−1) 3NF + 18NR U(3)
(2, 1, 0) (0,−1,−2) 3NF + 8NA + 24NR − 8 U(1)3

(2, 1, 1) (−1,−1,−2) 4NF + 4NA + 24NR − 4 U(1)×U(2)
(2, 2, 1) (−1,−2,−2) 5NF + 4NA + 30NR − 4 U(1)×U(2)
(3, 2, 1) (−1,−2,−3) 6NF + 8NA + 38NR − 8 U(1)3

(4, 2, 1) (−1,−2,−4) 7NF + 12NA + 46NR − 12 U(1)3

Table 21.3: The monopole generators for a U(3) gauge theory with a mixture of matter
transforming in [1, 0], [1, 1], and [2, 1].

the independent calculations of the cases: N hypermultiplets in [1, 0]; NF hypermultiplets
in [1, 0] together with NA hypermultiplets in [1, 1]; and N hypermultiplets in [2, 1]. All the
calculations agree.

Reduction to SU(3) The Hilbert series for the SU(3) theory reads

HS[1,0]+[1,1]+[2,1]
SU(3) (NF , NA, NR, t) = R(NF , NA, NR, t)

P (NF , NA, NR, t)
, (21.49a)

P (NF , NA, NR, t) =
(
1− t4

) (
1− t6

) (
1− t2NF+8NA+20NR−8

)
(21.49b)

×
(
1− t4NF+12NA+36NR−12

) (
1− t6NF+20NA+54NR−20

)
,

R(NF , NA, NR, t) = 1 + t2NF+8NA+20NR−6(2 + 2t2 + t4) (21.49c)
+ t4NF+12NA+36NR−12(1 + 2t2 + 2t4)
+ t6NF+20NA+54NR−20(1 + 4t2 + 4t4 + 2t6)
− t6NF+20NA+56NR−20(2 + 4t2 + 4t4 + t6)
− t8NF+28NA+74NR−26(2 + 2t2 + t4)
− t10NF+32NA+90NR−32(1 + 2t2 + 2t4)− t12NF+40NA+110NR−34 .

Again, the numerator (21.49c) is an anti-palindromic polynomial of degree 12NF + 40NA +
110NR− 34; while the denominator (21.49b) is of degree 12NF + 40NA + 110NR− 30, such that
the difference is again 4.

The minimal generators from (21.19) are now realised with the following conformal dimensions:
2∆(1, 0) = 2NF + 8NA + 20NR − 8, 2∆(1, 1) = 2∆(2,−1) = 4NF + 12NA + 36NR − 12, and
2∆(2, 1) = 2∆(3,−1) = 6NF + 20NA + 54NR − 20. Moreover, the appearing dressed monopoles
are as described in Sec. 21.3.2.

Remark The SU(3) result (21.49) has been tested against the independent calculations of
the cases: N hypermultiplets in [1, 0]; N hypermultiplets in [1, 1]; NF hypermultiplets in [1, 0]
together with NA hypermultiplets in [1, 1]; and N hypermultiplets in [2, 1]. All the calculations
agree.
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21.5 Category NR 6= 0

Dressings of (2, 1) and (3,−1) From the generic analysis (21.19) the bare monopoles of
GNO-charges (3,−1) and (2, 1) are necessary generators. However, not all of their dressings
need to be independent generators, see for instance the degrees of the first relations in App. C.

• NR = 0: (2, 1) and (3,−1) are generated by (1, 0), (1, 1), and (2,−1), which is the generic
result of (21.17).

• NR = 1: Here, (2, 1) and (3,−1) are independent, but not all of their dressings, as we see

(2, 1) = (1, 1) + (1, 0) and ∆(2, 1) + 1 = ∆(1, 1) + ∆(1, 0) . (21.50)

Hence, only one of the degree one dressings V dress,(1,0)
(2,1) , V dress,(0,1)

(2,1) is independent, while
the other can be generated. (Same holds for (3,−1).)

• NR = 2: Here, (2, 1) and (3,−1) are independent, but not all of their dressings, as we see

(2, 1) = (1, 1) + (1, 0) and ∆(2, 1) + 2 = ∆(1, 1) + ∆(1, 0) . (21.51)

Hence, only one of the degree two dressings V dress,(2,0)
(2,1) , V dress,(0,2)

(2,1) is independent, while
the other can be generated. However, both degree one dressings V dress,(1,0)

(2,1) , V dress,(0,1)
(2,1) are

independent. (Same holds for (3,−1).)

• NR = 3: Here, (2, 1) and (3,−1) are independent, but still not all of their dressings, as we
see

(2, 1) = (1, 1) + (1, 0) and ∆(2, 1) + 3 = ∆(1, 1) + ∆(1, 0) . (21.52)

Hence, the degree three dressing V dress,(3,0)+(0,3)
(2,1) is not independent. However, both degree

one dressings V dress,(1,0)
(2,1) , V dress,(0,1)

(2,1) and both degree two dressings V dress,(2,0)
(2,1) , V dress,(0,2)

(2,1)
are independent. (Same holds for (3,−1).)

• NR ≥ 4: The bare and the all dressed monopoles corresponding to (2, 1) and (3,−1) are
independent.

21.5.2 N hypermultiplets in [2, 1]

Intermediate step at U(3) The conformal dimension reads

2∆(m1,m2,m3) = 4N
3∑
i=1
|mi|+N

∑
i<j

(|2mi −mj |+ |mi − 2mj |)− 2
∑
i<j

|mi −mj | . (21.53)

From the calculations we obtain the Hilbert series

HS[2,1]
U(3)(N, t, z) = R(N, t, z)

P (N, t, z) , (21.54a)

P (N, t, z) =
3∏
j=1

(
1− t2j

)(
1− t10N−4

z

)(
1− zt10N−4

)(
1− t16N−4

z2

)(
1− z2t16N−4

)

×
(

1− t18N

z3

)(
1− z3t18N

)(
1− t24N−8

z3

)(
1− z3t24N−8

)
(21.54b)
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×
(

1− t24N−4

z4

)(
1− z4t24N−4

)(
1− t30N−4

z5

)(
1− z5t30N−4

)
×
(

1− t46N−12

z7

)(
1− z7t46N−12

)
,

and the numerator R(N, t, z) is with 13492 monomials too long to be displayed. Nevertheless,
we checked explicitly that R(N, t = 1, z) = 0 and dn

dtnR(N, t, z)|t=1,z=1 = 0 for all n = 1, 2 . . . , 10.
Therefore, the Hilbert series (21.54) has a pole of order 6 at t = 1, which equals the dimension
of the moduli space. In addition, the degree of R(N, t, z) is 296N − 62, while the denomina-
tor (21.54b) is of degree 296N − 56; therefore, the difference in degrees is again equal to the
dimension of the moduli space.
The Hilbert series (21.54) appears as special case of (21.48) and as such the appearing

monopole operators are the same. For completeness, we provide in Tab. 21.4 the conformal
dimensions of all minimal (bare) generators (21.15). The GNO-charge (3, 2, 1) is not apparent in

(m1,m2,m3) 2∆(m1,m2,m3) H(m1,m2,m3)

(1, 0, 0) (0, 0,−1) 10N − 4 U(1)×U(2)
(1, 1, 0) (0,−1,−1) 16N − 4 U(1)×U(2)
(1, 1, 1) (−1,−1,−1) 18N U(3)
(2, 1, 0) (0,−1,−2) 24N − 8 U(1)3

(2, 1, 1) (−1,−1,−2) 24N − 4 U(1)×U(2)
(2, 2, 1) (−1,−2,−2) 30N − 4 U(1)×U(2)
(3, 2, 1) (−1,−2,−3) 38N − 8 U(1)3

(4, 2, 1) (−1,−2,−4) 46N − 12 U(1)3

Table 21.4: The monopole generators for a U(3) gauge theory with matter transforming in
[2, 1] that generate the chiral ring (together with the Casimir invariants).

the Hilbert series, but we know it to be present due to the analysis of the Hilbert bases (21.15).

Reduction to SU(3) After reduction (21.6) of (21.54) to SU(3) we obtain the following
Hilbert series:

HS
(2,1)
SU(3) = R(N, t)

(1− t4) (1− t6) (1− t20N−8) (1− t36N−12) (1− t54N−20) , (21.55a)

R(N, t) = 1 + t20N−6(2 + 2t2 + t4) + t36N−12(1 + 2t2 + 2t4) (21.55b)
+ t54N−20(1 + 4t2 + 4t4 + 2t6)− t56N−20(2 + 4t2 + 4t4 + t6)
− t74N−26(2 + 2t2 + t4)− t90N−32(1 + 2t2 + 2t4)− t110N−34 .

The numerator of (21.55b) is an anti-palindromic polynomial of degree 110N − 34; while the
numerator is of degree 110N − 30. Consequently, the difference in degree reflects the complex
dimension of the moduli space.
The Hilbert series (21.55) is merely a special case of (21.49) and, thus, the appearing (bare

and dressed) monopole operators are the same. For completeness we provide their conformal
dimensions: 2∆(1, 0) = 20N −8, 2∆(1, 1) = 2∆(2,−1) = 36N −12, and 2∆(2, 1) = 2∆(3,−1) =
54N − 20.
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22 Conclusions and outlook

In this last part we introduced a geometric concept to identify and compute the set of bare and
dressed monopole operators that are sufficient to describe the entire chiral ring C[MC ] of any
3-dimensional N = 4 gauge theory. The methods can be summarised as follows:

1. The matter content together with the positive roots of the gauge group G define the
conformal dimension, which in turn defines an arrangement of hyperplanes that divides
the dominant Weyl chamber of Ĝ into a fan.

2. The intersection of the fan with the weight lattice of the GNO-dual group leads to a
collection of affine semi-groups. All semi-groups are finitely generated and the unique,
finite generating set is called Hilbert basis.

3. The knowledge of the minimal generators, together with their properties SU(2)R-spin,
residual gauge group Hm, and topological charges J(m), is sufficient to explicitly sum and
determine the Hilbert series as rational function.

Most importantly, the entire procedure works for any rank of the gauge group, as indicated
in Ch. 21 for U(3). For the majority of this third part we, however, have chosen to provide a
comprehensive collection of rank two examples.

Utilising the fan and the Hilbert bases for each semi-group also allows to deduce the dressing
behaviour of monopole operators. The number of dressed operators is determined by a ratio
of orders of Weyl groups, while the degrees are determined by the ratio of the dressing factors
associated to the GNO-charge m divided by the dressing factor of the trivial monopole m = 0.

With the advent of Hilbert bases for affine semi-groups, there are a various points we hope to
address in the future. The subject of combinatorial commutative algebra, see for instance [195],
provides a variety of plausible links to the monopole formula:
• To each affine semi-group S one can associate a semi-group ring K[S] over a field K, which
is isomorphic to a polynomial ring in as many variables as elements in the Hilbert basis
of S module a so-called lattice ideal. The lattice ideal captures the relations among the
minimal generators, which is a manifestation of the instance that the Hilbert basis is a
generating set, but not necessarily a linearly independent set.

• The Hilbert series for a semi-group ring is in spirit cunningly similar to the monopole
formula, i.e. one counts monomials associated to each point in S. Hence, we suspect that
the contribution of each semi-group to the monopole formula can be understood as Hilbert
series of a semi-group ring. Moreover, these semi-group rings are naturally multi-graded
and it is reasonable to expect that the corresponding Hilbert series allows to include the
counting of quantum numbers with respect to global symmetries.

• Building on semi-group rings, the form of the Hilbert series is dictated by the contribution
of the Hilbert basis in the denominator and a polynomial with integer coefficients in the
numerator, which is known as K-polynomial. The K-polynomial in turn is determined by
the free resolution of the lattice ideal. Hence, we suspect that the free resolution provides
all syzygies for the Hilbert basis of a semi-group, which might yield some insight in the
relations on the Coulomb branch itself.
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In addition, the monopole formula is a delicate mixture of two phenomena: (i) the classical
dressing factors PG(t,m), which we argued to be Poincaré series, and (ii) the Hilbert series for
affine semi-groups. The dressing factors are sensitive to the bulk and boundary structure of the
Weyl chamber of the GNO dual group; whereas, the Hilbert series for semi-groups are sensitive
to the fan induced by the conformal dimension, i.e. by the matter content. Therefore, we hope
to describe the monopole formula as a twisted product of the Poincaré series and the Hilbert
series, which might improved geometric understanding of the Coulomb branch.
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C Appendix: Plethystic logarithm

In this appendix we summarise the main properties of the plethystic logarithm. Starting with
the definition, for a mulit-valued function f(t1, . . . , tm) with f(0, . . . , 0) = 1, one defines

PL[f ] :=
∞∑
k=1

µ(k)
k

log
(
f(tk1, . . . , tkm)

)
, (C.1)

where µ(k) denotes the Möbius function [199]. Some basic properties include

PL[f · g] = PL[f ] + PL[g] and PL
[ 1∏

n(1− tn)an

]
=
∑
n

an t
n . (C.2)

The plethystic logarithm is accompanied by the plethystic exponential which is defined by

PE[f ] := exp
( ∞∑
k=1

f(tk1, . . . , tkm)− f(0, . . . , 0)
k

)
. (C.3)

It follows that the PE and PL are the inverse of one another. The plethystic exponential
provides a means of symmetrisation of its argument. Given, for example, a freely generated,
graded, commutative algebra A with algebraically independent generators {tr}, then the PE of
the function

∑
r tr equals

PE
[∑
r

tr

]
=
∏
r

PE[tr] = 1∏
r(1− tr)

= 1 +
∑
r

tr +
∑
r≤s

tr ts + . . . . (C.4)

Thus, the PE provides the Hilbert series of A as it counts all possible symmetric polynomials
in the generators. The PL, on the other hand, does the opposite and allows to study to what
extend a given function is the symmetrisation of another. Hence, we employ the plethystic
logarithm to identify generators and relations. For further details on the so-called plethystic
program we refer to [199–202].

Now, we wish to compute the plethystic logarithm. Given a Hilbert series as rational function,
i.e. of the form (15.28) or (15.35), the denominator can be taken care of by means of (C.2), while
the numerator is a polynomial with integer coefficients. In order to obtain an approximation of
the PL, we employ the following two equivalent transformations for the numerator:

PL
[
1 + atn +O(tn+1)

]
= PL

[
(1− tn)a

(
1 + atn +O(tn+1)

)
(1− tn)a

]
= atn + PL

[
1 +O(tn+1)

]
, (C.5a)

PL
[
1− atn +O(tn+1)

]
= PL

[
(1− tn)a (1 + tn)a

(
1− atn +O(tn+1)

)
(1− t2n)a

]
= −atn + at2n + PL

[
1 +O(tn+1)

]
. (C.5b)

Now, we derive an approximation of the PL for a generic rank two gauge group in terms of t∆.
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More precisely, consider the Hilbert basis {Xi} then we provide an approximation of the PL up
to second order, i.e.

PL = Casimir inv.+
{
t∆(Xi)-terms

}
+
{
t∆(Xi)+∆(Xj)-terms

}
+O

(
t∆(Xi)+∆(Xj)+∆(Xk)

)
(C.6)

Considering (15.28), the numerator is denoted by R(t), while the denominator Q(t) is given by

Q(t) =
2∏
i=1

(1− tdi)
L∏
p=0

(
1− t∆(xp)

)
, (C.7)

with di the degrees of the Casimir invariants. Then expand the numerator as follows:

R(t) = 1 +
L∑
q=0

(
PG(t, xq)
PG(t, 0) − 1

)
t∆(xq) +

L∑
q=0

∑
s∈Int(P(C(2)

q ))

PG(t, s)
PG(t, 0) t

∆(s) (C.8)

−
L∑

q,p=0
q 6=p

(
PG(t, xq)
PG(t, 0) −

1
2

)
t∆(xp)+∆(xq) +

L∑
q=1

PG(t, C(2)
q )

PG(t, 0) t∆(xq−1)+∆(xq)

−
L∑
q=1

∑
s∈Int(P(C(2)

q ))

L∑
r=0

r 6=q−1,q

PG(t, s)
PG(t, 0) t

∆(s)+∆(xr) .

Note that the appearing factor 1
2 avoids double counting when changing summation

∑
q<p to∑

q 6=p. Still, the numerator is a polynomial with integer coefficients. The PL then reads

PL [HSG(t)] =
2∑
i=1

tdi +
L∑
p=0

t∆(xp) + PL [R(t)] . (C.9)

By step (C.5a) we factor out the order t∆(xq) and t∆(s) terms. However, this introduces further
terms at order t∆(xq)+∆(s) and so forth, which are given by

−

 L∑
q=0

(
PG(t, xq)
PG(t, 0) − 1

)
t∆(xq) +

L∑
q=1

∑
s∈Int(P(C(2)

q ))

PG(t, s)
PG(t, 0) t

∆(s)


2

. (C.10)

Subsequently factoring the terms of this order by means of (C.5b), one derives at the following
expressing of the PL

PL [HSG(t)] =
2∑
i=1

tdi +
L∑
q=0

PG(t, xq)
PG(t, 0) t∆(xq) +

L∑
q=1

∑
s∈Int(P(C(2)

p ))

PG(t, s)
PG(t, 0) t

∆(s) (C.11)

−
L∑

q,p=0
q 6=p

(
PG(t, xq)
PG(t, 0) −

1
2

)
t∆(xp)+∆(xq) +

L∑
q=1

PG(t, C(2)
q )

PG(t, 0) t∆(xq−1)+∆(xq)

−
L∑
q=1

∑
s∈Int(P(C(2)

q ))

L∑
r=0

r 6=q−1,q

PG(t, s)
PG(t, 0) t

∆(s)+∆xr
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−
L∑

q,p=0

(
PG(t, xq)
PG(t, 0) − 1

)(
PG(t, xp)
PG(t, 0) − 1

)
t∆(xq)+∆(xp)

− 2
L∑
p=0

L∑
q=1

(
PG(t, xp)
PG(t, 0) − 1

) ∑
s∈Int(P(C(2)

q ))

PG(t, s)
PG(t, 0) t

∆(xp)+∆(s)

−
L∑

q,p=1

∑
s∈Int(P(C(2)

p ))

∑
s′∈Int(P(C(2)

q ))

PG(t, s)
PG(t, 0)

PG(t, s′)
PG(t, 0) t

∆(s)+∆(s′)

+ PL
[
1 +O

(
t∆(Xi)+∆(Xj)+∆(Xj)

)]
.

Strictly speaking, the truncation (C.11) is only meaningful if

max{∆(X)}+ max{di|i = 1, 2} < min{∆(X) + ∆(Y )} = 2 ·min{∆(X)}
for X,Y = xq or s , s ∈ Int(P(C(2)

p )), q = 0, 1, . . . , l
(C.12)

holds. Only in this case do the positive contributions, i.e. the generators, of the first line in (C.11)
not mix with the negative contributions, i.e. first syzygies or relations, of the remaining lines.
Moreover, the condition (C.12) ensures that the remained O

(
t∆(Xi)+∆(Xj)+∆(Xk)

)
does not

spoil the truncation.
From the examples of Ch. 16-21, we see that (C.12) is at most satisfied for scenarios with

just a few generators, but not for elaborate cases. Nevertheless, there are some observations we
summarise as follows:
• The bare and dressed monopole operators associated to the GNO-charge m are described

by PG(t,m)
PG(t,0) t

∆(m). In particular, we emphasis that the quotient of dressing factors provides
information on the number and degrees of the dressed monopole operators.

• The previous observation provides an upper bound on the number of dressed monopole
operators associated to a magnetic weight m. In detail, the value of PG(t,m)

PG(t,0) at t = 1 equals
the number of bare and dressed monopole operators associated to m. Let {di} and {bi},
for i = 1, . . . , rk(G) denote the degree of the Casimir invariants for G and Hm, respectively.
Then

# dressed monopoles
+1 bare monopole = lim

t→1

PG(t,m)
PG(t, 0) = lim

t→1

∏rk(G)
i=1

(
1− tdi

)
∏rk(G)
j=1

(
1− tbj

)
=
∏rk(G)
i=1 di∏rk(G)
j=1 bj

= |WG|
|WHm |

,

(C.13)

where the last equality holds because the order of the Weyl group equals the product of
the degrees of the Casimir invariants. Since WHm ⊂ WG is a subgroup of the finite group
WG, Lagrange’s theorem implies that |WG|

|WHm |
∈ N holds.

The situation becomes obvious whenever m belongs to the interior of the Weyl chamber,
because Hm = T and thus

# dressed monopoles
+1 bare monopole

∣∣∣∣∣ interior of
Weyl chamber

= |WG| and PG(t,m)
PG(t, 0) =

rk(G)∏
i=1

di−1∑
li=0

tli . (C.14)

• The significance of the PL is limited, as, for instance, a positive contribution ∼ t∆(X1) can
coincide with a negative contribution ∼ t∆(X2)+∆(X3), but this does not necessarily imply
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that the object of degree ∆(X1) can be generated by others. The situation becomes clearer
if there exists an additional global symmetry Z(Ĝ) on the moduli space. The truncated
PL for (15.35) is obtained from (C.11) by the replacement

t∆(X) 7→ ~z
~J(X) t∆(X) . (C.15)

Then the syzygy ~z ~J(X2+X3)t∆(X2)+∆(X3) can cancel the generator ~z ~J(X1)t∆(X1) only if the
symmetry charges agree ~z ~J(X1) = ~z

~J(X2+X3), in addition to the SU(2)R iso-spin.

Lastly, we illustrate the truncation with the two simplest examples:

Example: one simplicial cone For the Hilbert series (15.32) we obtain

PL =
2∑
i=1

tdi + P1(t)
P0(t)

(
t∆(x0) + t∆(x1)

)
−
(

2P1(t)
P0(t) − 1− P2(t)

P0(t)

)
t∆(x0)+∆(x1) (C.16)

−
(
P1(t)
P0(t)

)2 (
t2∆(x0) + t2∆(x1) + 2t∆(x0)+∆(x1)

)
+ . . . .

Example: one non-simplicial cone In contrast, for the Hilbert series (15.33) we arrive at

PL =
2∑
i=1

tdi + P1(t)
P0(t)

(
t∆(x0) + t∆(x1)

)
+

∑
s∈IntP

P2(t)
P0(t) t

∆(s) (C.17)

−
(

2P1(t)
P0(t) − 1− P2(t)

P0(t)

)
t∆(x0)+∆(x1)

−
(
P1(t)
P0(t)

)2 (
t2∆(x0) + t2∆(x1) + 2t∆(x0)+∆(x1)

)
− 2

(
P1(t)
P0(t) − 1

)
P2(t)
P0(t)

∑
s∈IntP

(
t∆(s)+∆(x0) + t∆(s)+∆(x1)

)

−
∑

s∈IntP

∑
s′∈IntP

(
P2(t)
P0(t)

)2
t∆(s)+∆(s′) + . . . .
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