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Rigorous Numerics through Computable Analysis

Constructive analysis as an internal language for TTE
Type theory as a language for constructive mathematics
Type theory as a framework for computer proofs

Computer verified implementation of exact analysis
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Dependent type theory

@ Dependent type theory makes Bishop's notion of
operation/construction precise.

@ Gives a functional programming language like haskell, SML, OCaml
with very expressive type system.

@ Framework for proofs
@ Implementations: Coq, agda, epigram, Idris, ...

@ Extensional DTT is an abstract language for TTE via realizability.
Locally Cartesian closed category, ITW-pretopos.
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Picard-Lindelof Theorem

Consider the initial value problem

Y (z) = v(z, y(x),

where
o

@ v is continuous

@ v is Lipschitz continuous in y:

lv(z,y) —v(z,y")| < Lly — /|
for some L > 0

lv(z,y)| < M

e al <1

o aM < K

To—a
Such problem has a unique solution on [z¢ — a, 2 + al.

Yo + Kt
Yo
Yo — Kt

y(wo) = yo

v:[xo—a,mo—i—a}x[yO—K,yo—i—K]y—)R
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Proof Idea

y' () =v(z,y(x), yl(wo) =10

is equivalent to

yia) = o) + | o(t, (1)) dt
Define
T =w+ [ Pl s
fo(z) = yo O
Jnr1=Tfn

Under the assumptions, T" is a contraction on
C([xo — a,zo + al, [yo — K, yo + KJ).
By the Banach fixpoint theorem, 7" has a fixpoint f and f,, — f.

Formalization: Makarov, S - The Picard Algorithm for Ordinary Differential Equations in Coq
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Metric Spaces

Let (X,d) where d: X — X — R be a metric space.
Let Bray denote d(x,y) <.

A function f: Q" — X is called regular (Strongly Cauchy) if
Vey eo: QF, B(er +e2)(fe1)(fe2).
The completion € X of X is the set of regular functions.

Let X and Y be metric spaces. A function f: X — Y is called
uniformly continuous with modulus 4 if

Ve : Qt Va1 wg : X, B(pe)riwy — Be(fr1)(fra).

For 1,25 : € X, the metric on the completion

B¢X5x1x2 = V€182 : Q+, Bx(€1 +ée+ 52)(%151)(%252).

Metric spaces with uniformly continuous functions form a category.
Completion forms a monad in the category of metric spaces and

uniformly continuous functions.

R. O'Connor, extending work by E. Bishop.
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Completion as a Monad

unit: X - € X :=Azke, x

join: CCX — €X := Az, x(c/2)(g/2)
map: (X =Y) = (€X = CY):= Az, foxopuy
bind: (X - €Y) — (€X — €Y) := joinomap

Define functions Q — Q; lift to €Q — € Q.
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Type Classes

Organize the library using, so-called type classes.
Type classes are parametric record types.

Coq searches for terms of these types automatically during unification.

Logic programming at the type level automates many mathematical
reflexes.

@ Gives uniform notation

@ Algebra hierarchy, abstractions, diamond inheritance
@ Abstract interfaces (like haskell).

S, van der Weegen, Type Classes for Mathematics in Type Theory.
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Type Classes for Mathematical Structures

Class AppRationals AQ {e plus mult zero one inv} ‘{Apart AQ}
‘{Le AQ} ‘{Lt AQ}
{AQtoQ : Cast AQ Q_as_MetricSpace}
‘{!AppInverse AQtoQ} {ZtoAQ : Cast Z AQ}
‘{!AppDiv AQ} ‘{!AppApprox AQ}
‘{'Abs AQ} ‘{!'Pow AQ N} ‘{!ShiftL AQ Z}
‘{V x y : AQ, Decision (x = y)}
‘{V x y : AQ, Decision (x < y)} : Prop := {
aqg_ring :> Q@Ring AQ e plus mult zero one inv ;
ag_trivial_apart :> TrivialApart AQ ;
ag_order_embed :> OrderEmbedding AQtoQ ;
aq_strict_order_embed :> StrictOrderEmbedding AQtoQ ;
ag_ring_morphism :> SemiRing_Morphism AQtoQ ;
ag_dense_embedding :> DenseEmbedding AQtoQ ;
aq_div : V x y k, ball (2 = k) (Papp_div x y k) Cx / ’y) ;
aq_compress : V x k, ball (2 ~ k) (’app_approx x k) (’x) ;
aq_shift :> ShiftLSpec AQ Z (K) ;
aq_nat_pow :> NatPowSpec AQ N (7) ;
ag_ints_mor :> SemiRing_Morphism ZtoAQ
}.

S, Krebbers, Type classes for efficient exact real arithmetic in Coq )
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Instances of Approximate Rationals

Record Dyadic Z := dyadic { mant: Z; expo: Z }.

Represents mant - 2*P°

Instance dy_mult: Mult Dyadic :=
A X y, dyadic (mant x * mant y) (expo x + expo y).

Instance : AppRationals (Dyadic bigZ).
Instance : AppRationals bigQ.

Instance : AppRationals Q.

Waiting for MPFR/Coq interval/flogc . ..
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Efficient Reals

Coq < Check Complete.
Complete : MetricSpace -> MetricSpace

Coq < Check Q_as_MetricSpace.
Q_as_MetricSpace : MetricSpace

Coq < Check AQ_as_MetricSpace.
AQ_as_MetricSpace :
V (AQ : Type) ..., AppRationals AQ -> MetricSpace

Coq < Definition CR := Complete Q_as_MetricSpace.

Coq < Definition AR := Complete AQ_as_MetricSpace.

AR is an instance of Le, Field, SemiRingOrder, etc., from the
MathClasses library.
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Integral

Following M. Bridger, Real Analysis: A Constructive Approach.
Class Integral (f: Q -> CR)

integrate: forall (from: Q) (w: QnonNeg), CR

Notation "

integrate.

Class Integrable ‘{!Integral f}: Prop
integral_additive:

=1
forall (a: Q) bec, [fab+ [f(a+b)c==[fa(b+c);

integral_bounded_prim: forall (from: Q) (width: Qpos) (mid: Q)

(forall x, from <= x <= from + width -> ball r (f x) mid) ->
ball (width * r) (f f from width) (width * mid);
}.

Earlier (abstract, but slower) implementation of integral by O'Connor and S
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Complexity

Rectangle rule:
(b—a)’

b
| @y s - < O,

where | f"(z)| < M for a < x <b.

< M

(b—a)*M

Number of intervals to have the error < e: > o
€

Simpson’s rule:

6

where | (z)] < M for a <z < b.

4 (b — a)5M
2880¢e

Coquand, S A constructive proof of Simpson’s Rule, 2012:
Replace mean value theorem with law of bounded change
Use divided differences, Hermite-Genocci

2

Number of intervals: >

/abf(a;)dx—b_a <f(a)+4f <“+b> +f(b)>‘ Lb-apy,

13/ 14



Conclusions

o Computer verified implementation of simple ODE solver.
o Computing with exact functions.

@ May be seen as an executable specification, speed up with
refinement.
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