
1. Spectra, ring spectra

A∞-ring spectrum: An A∞-ring spectrum is a ring spectrum E whose multiplication is
associative up to all higher homotopies. Classically this has been described as an action of
an A∞-operad on E; in more modern terms, an A∞-ring spectrum can be realized by an
associative S-algebra, symmetric, or orthogonal ring spectrum.

E∞-ring spectrum: An E∞-ring spectrum is a ring spectrum E whose multiplication is
associative and commutative up to all higher homotopies. Classically this has been described
as an action of an E∞-operad on E; in more modern terms, an E∞-ring spectrum can be
realized by an associative, commutative S-algebra, symmetric, or orthogonal ring spectrum.

Even periodic cohomology theory; weakly even periodic theory: A multiplicative co-
homology E theory is even periodic if π∗(E) is concentrated in even degrees and π2(E)
contains a unit. It is weakly periodic if π2(E) is an invertible π0(E) module, and π2k(E) ∼=
π2(E)⊗k for all k ∈ Z.

S-module; (commutative) S-algebra: The category of S-modules is one of various point-
set models of spectra with a strictly symmetric monoidal smash product, and historically
the first. An S-module is indexed not by the natural numbers, but by the finite-dimensional
sub-vector spaces of a universe, i.e. an infinite-dimensional real inner product space. It
has more structure, though: it is also a module over the sphere spectrum S with respect
to a smash product of so-called L-spectra, which in turn are algebras for a monad derived
from the linear isometries operad. The category of S-modules very easily generalizes to
equivariant spectra, but its definition is arguably more complicated than symmetric or
orthogonal spectra.

Symmetric ((commutative) ring) spectrum: Symmetric spectra are one of various point-
set models of spectra with a strictly symmetric monoidal smash product. A symmetric
spectrum consists of a sequence of spaces Xn with operations of the symmetric group Σn

and maps σ : Xn ∧ S1 → Xn+1 such that the composite Xn ∧ Sm
σm

−−→ Xn+m is Σn × Σn-
equivariant. An advantage of the symmetric spectrum model of homotopy theory is its
simplicity, however they are difficult to use in an equivariant context. A symmetric ring
spectrum is a monoid with respect to the smash product; a symmetric commutative ring
spectrum a commutative monoid.

Orthogonal ((commutative) ring) spectrum: Orthogonal spectra are one of various point-
set models of spectra with a strictly symmetric monoidal smash product. It is a middle
ground between S-modules and symmetric spectra. Their definition is identical to symmet-
ric spectra, but the symmetric groups Σn are replaced by the orthogonal groups O(n). An
advantage over symmetric spectra is the possibility to use this setup in an equivariant con-
text. Orthogonal (commutative) ring spectra are definied in an analogous way to symmetric
(commutative) ring spectra.

Units, space of, GL1(R): If R is an A∞-ring spectrum, the space of units of R is defined to
be the subspace GL1(R) ⊂ Ω∞R which is the union of those components that represent an
invertible element in the ring π0R.

Units, spectrum of, gl1(R): If R is an E∞-ring spectrum, the space GL1(R) of units of R
is naturally the zeroth space of a connective spectrum gl1(R), the spectrum of units of R.

2. Localization

Arithmetic square: Sullivan’s arithmetic square is a way to recover a spectrum X from its
p-completions and its Q-localization. That is, X is equivalent to the homotopy limit of the
diagram

∏
p LpX → LQ(

∏
p LpX) ← LQX. There is a similar arithmetic square when X

is a space, in which X can be recovered as the homotopy limit of this diagram given the
additional condition that X be nilpotent. More generally, the pullback of the arithmetic
square is the HZ-localization of a space.
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Bousfield localization; E-localization: Bousfield localization of model categories is a homotopy-
theoretic analogue of the usual localization of a category C, with respect to a collection of
morphisms I. The localization C[I−1] is the universal category receiving a functor from C
and such that the image of the morphisms in I are all isomorphisms. Similarly, the Bous-
field localization of a model category C, with respect to a collection of morphisms I, is
the universal model category receiving a left Quillen functor from C, and such that image
of the morphisms in I are all weak equivalences. For a given spectrum E, the Bousfield
localization of spectra or spaces with respect to the collection of E-equivalences (that is,
morphisms f such E∗(f) is an isomorphism), is referred to as Bousfield localization with
respect to E. The fibrant replacement in the resulting model category X → LEX is then
called the Bousfield localization of X with respect to E.

Bousfield-Kuhn functor: A functor Φn from spaces to spectra that factorsK(n)-localization
as LK(n) = Φn ◦ Ω∞. The existence of Φn implies that if two spectra have equivalent k-
connected covers for some k ∈ N, then their K(n) localizations agree.

E-acyclic: A spectrum (or space) X is E-acyclic if the E-homology of X is zero. By definition,
the Bousfield localization LEX of an E-acyclic spectrum X is contractible.

E-equivalence: A map of spectra (of spaces) f : X → Y is an E-equivalence if it induces an
isomorphism in E-homology.

E-local: An E-local spectrum (or space) is a fibrant object of the Bousfield localized model
category. A fibrant spectrum F is E-local iff for any E-acyclic spectrum X, the F -
cohomology of X is zero. The Bousfield localization LEX of a spectrum X is initial (up to
homotopy) amongst all E-local spectra receiving a map from X. Is is also terminal (up to
homotopy) amongst all spectra Y equipped with an E-equivalence X → Y .

E-nilpotent completion: For a ring spectrum E, the E-nilpotent completion of a spectrum
X is the totalization of the cosimplicial spectrum E•X. In general, the E-based Adams
spectral sequence for X converges to the homotopy of the E-nilpotent completion of X.
If X is connective and E = HFp, then the E-nilpotent completion is the same as the
p-completion.

Hasse square: Similar to the arithmetic square. It recovers the p-completion of an E(2)-
local spectrum (e.g. and elliptic spectrum) from its K(1)- and K(2)-localizations, as the
homotopy limit of the diagram LK(2)E → LK(1)LK(2)E ← LK(1)E.

p-localization: The localization of spectra (or spaces) at a prime p is a particular case of
Bousfield localization (in this case, with respect to the Eilenberg-MacLane spectrum HZ(p)).
If X is a spectrum (or a simply connected space), then π∗(X(p)) is isomorphic to π∗X⊗Z(p).

p-completion: The p-completion – also called Z/p-localization – of spectra (or spaces) at a
prime p is a particular case of Bousfield localization (in this case, with respect to the mod
p Moore spectrum M(p)). If X is a spectrum (or a simply connected space) with finitely
presented homotopy groups, then π∗(Xp) is isomorphic to π∗X ⊗ Zp.

3. Orienations

Â-genus: The Â genus is a Q-valued genus of oriented manifolds given by
∫
M
Â(M), where

Â(M) =
∏ √

xi/2
sinh(

√
xi/2)

∈ H∗(M,Q) and the total Pontryagin class of M is factored as∑
pi(M) =

∏
(1 + xi) in some algebraic extension of H∗(M,Q). If M is a spin manifold,

then the Â is an integer. The Â-genus of a spin manifold M is the image (mod torsoin) of
[M ] ∈ πnMSpin under the Atiyah-Bott-Shapiro orientation MSpin→ ko.

Complex oriented cohomology theory: Informally, a multiplicative cohomology theory
E∗ is called complex oriented if it admits a theory of Chern classes. More precisely, a
complex orientation of E∗ is a class z ∈ E2(CP∞) whose restriction to E2(S2) ∼= E0(S0)
along the standard inclusion S2 ∼= CP 1 → CP∞ maps to the unit element. If E is 2-
periodic, the orientation is often taken in degree 0 instead of degree 2. The multiplication
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on the topological group CP∞ gives rise to a map

E∗[[z]] ∼= E∗(CP∞)→ E∗(CP∞)⊗̂E∗E
∗(CP∞) ∼= E∗[[x, y]],

and the image of z under this map becomes a formal group law. Examples of complex
oriented cohomology theories include singular cohomology, complex K-theory, MU , BP ,
E(n), Morava K-theory, and several versions of elliptic cohomology.

Elliptic genus: Historically, the elliptic genus was introduced by Ochanine as a genus for
oriented manifolds, taking values in the ring Z[1/2, δ, ε] (the ring of modular forms for Γ0(2)),
whose associated complex genus has logarithm

∫
dt√

1−2δt2+εt4 . Landweber, Ravenel, and

Stong subsequently showed that, after inverting ∆, the associated complex genus satisfies
the criteria of the Landweber exact functor theorem, yielding a cohomology theory which
they denoted Ell, and named “Elliptic Cohomology’ (also known as TMF 0(2), topological
modular forms for Γ0(2)). Today, a variety of genera associated with elliptic curves are
called elliptic genera, and a variety of cohomology theories similarly associated to elliptic
curves are referred to as elliptic (c.f. “Elliptic spectra”).

Genus: A genus ϕ with values in a graded ring R∗ is a map of graded rings ϕ : MG∗ → R∗,
where MG∗ denotes the bordism ring of manifolds with a G-structure on their stable normal
bundle. In the case of G = U , the genus is called a complex genus.

Landweber exact; Landweber exact functor theorem: A p-typical formal group law over
a ring R is classified by a map BP∗ → R. The formal group law is called Landweber exact
if X 7→ BP∗(X) ⊗BP∗ R is a homology theory (the long exact sequence being the crucial
point). Landweber’s exact functor theorem characterizes Landweber exact formal group
laws as those for which the images (p, v1, v2, . . . , vn) form a regular sequence for all n ∈ N0.

Orientation of a cohomology theory: AG-orientation of a multiplicative cohomology the-
ory E with respect to a given a topological structure group G over the infinite-dimensional
orthogonal group O is a compatible orientation of all G-vector bundles on any space with
respect to E. This gives rise to a theory of characteristic classes for G-bundles in E-
cohomology. Such an orientation can be described as a map of ring spectra MG → E,
where MG denotes the Thom spectrum associated to BG → BO. Important examples
of orientations include the SO-orientation and U -orientations of singular cohomology giv-
ing rise to Pontryagin resp. Chern classes, the Spin-orientation of real K-theory, and the
String-orientation of TMF . Note that a complex oriented cohomology theory is the same
thing as a cohomology theory with a U -orientation.

Orientation of a vector bundle for a group G: Given a topological
group G with a morphism G→ O(n), a G-orientation on an n-dimensional vector bundle V
on a space X is a homotopy lift of the map X → BO(n) classifying the bundle V to X →
BG. Of particular importance are the groups U(n), SU(n), SU〈6〉(n), SO(n), Spin(n),
String(n). Similarly, a stable G-orientation (where G → O is a group homomorphism to
the infinite orthogonal group) is a lift of the map X → BO classifying the stabilization of
V to X → BG.

Orientation of a vector bundle with respect to a cohomology theory: An orientation
of a vector bundle V on a space X with respect to a multiplicative cohomology theory E is a
class u ∈ En(XV ), the Thom class, whose restriction to any fiber is a unit in En(Rn) = π0E.
Multiplication by u yields the Thom isomorphism E∗+n(XV ) ∼= E∗(X). The latter can be
described as a homotopy equivalence E ∧XV → ΣnE ∧X between the E-homology of the
Thom space XV and the shifted E-homology of X, at the spectrum level.

String group: The string group String(n) is a group model of the 6-connected cover of the
orthogonal group O(n). Unlike Spin(n), it is necessarily infinite-dimensional.

σ-orientation: The σ-orientation is the String-orientation of tmf . It is a map of E∞ ring
spectra MString → tmf that realizes the Witten genus at the level of homotopy groups.

Witten genus: The Witten genus of a string manifold M is the image of [M ] ∈ πnMString
under the σ-orientation MString → tmf . The q-expansion of the corresponding modular
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form can be computed as
∏
i≥0(1−qi)n ·

∫
M
Â(M)ch(

⊗
i≥1 SymqiTC), where ch is the Chern

character, TC is the complexified tangent bundle of M , and, given a vector bundle E, the
expression SymtE stands for

∑
i≥0 t

iSymiE, a vector bundle valued formal power series.

At a physical level of rigor, the Witten genus can be described as the S1-equivariant index
of the Dirac operator on the free loop space of M .

4. Misc. tools in stable homotopy

Adams condition: A technical hypothesis on a homotopy associative ring spectrum E which
guarantees the existence of a universal coefficient spectral sequence. The condition is that
E is a filtered colimit of finite spectra Eα, such that the E-cohomology of the Spanier-
Whitehead dual E∗DEα is projective over E∗, and for every E-module M , the map

M∗DEα → HomE∗(E∗DEα,M∗)

is an isomorphism.
Adams spectral sequence: The Adams spectral sequence is a spectral sequence which com-

putes the homotopy groups of the p-nilpotent completion of a spectrum X from its coho-
mology:

Es,t2 = Exts,tAp
(H∗(X;Fp),Fp) =⇒ πt−s(XHFp

),

where Ap denotes the mod-p Steenrod algebra. The Adams spectral sequences converges
conditionally in the sense of Boardman, implying that it converges strongly whenever the
derived E∞-term vanishes.

Adams-Novikov spectral sequence (generalized): A (generalized) Adams-Novikov spec-
tral sequence is a variation of the classical Adams spectral sequence where mod-p cohomol-
ogy is replaced by another (co-)homology theory. If E is a flat homotopy commutative ring
spectrum which is either A∞, or satisfies the Adams condition, then (E∗, E∗E) is a Hopf
algebroid, and the E-based ANSS takes the form

E2
s,t = Exts,tE∗E

(E∗, E∗(X)) =⇒ πt−s(XE),

where XE denotes the E-completion of X and Ext is the derived functor of homomorphisms
of E∗E-comodules. The Adams-Novikov spectral sequence can be seen as a Bousfield-Kan
spectral sequence of the tower of spectra Tot[E•X] whose totalization is the E-completion.

Descent spectral sequence: The descent spectral sequence associated to a sheaf of spectra
F over some space (or Grothendieck site) X computes the homotopy groups of F(X). Its
E2 page is the sheaf cohomology of X with coefficient in the homotopy sheaves of F . In the
case X =Mell or Mell and F = Otop, the structure sheaf for TMF , this spectral sequence
is also called the elliptic spectral sequence.

Dyer-Lashof algebra: (a.k.a. the big Steenrod algebra). At a prime p, the algebra of Dyer-
Lashof algebra is the algebra that acts on the homotopy groups of any E∞-HFp-ring spec-
trum.

Flat ring spectrum: A homotopy commutative ring spectrum E is said to be flat if E∗E is
flat over E∗.

Goerss-Hopkins obstruction theory: Given a flat homotopy commutative ring spectrum
E which satisfies the Adams condition, a homotopy commutative E-complete ring spectrum
A, and a simplicial resolution O• of the commutative operad, the Goerss-Hopkins obstruc-
tion defines a sequence of obstructions in the Quillen cohomology of simplicial E∗O•-algebras
in E∗E-comodules to refining the homotopy commutative ring structure on E to an E∞-
structure. More generally, it gives a framework to compute the homotopy groups of the
moduli space of E∞-structures in terms of the aforementioned Quillen cohomology.

Homotopy limit, homotopy colimit: The right (resp. left) derived functors of limit (resp.
colimit) on the category of diagrams in a model category, with respect to objectwise weak
equivalence.
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Hopkins-Miller theorem, Goerss-Hopkins-Miller theorem: The original Hopkins-Miller
theorem states that Morava E-theory En admits an A∞ structure, and a point-set level
action by the Morava stabilizer group. Subsequently the A∞ obstruction theory utilized
by Hopkins and Miller was refined by Goerss and Hopkins to an E∞ obstruction theory,
resulting in an E∞ version of the Hopkins-Miller theorem commonly referred to as the
Goess-Hopkins-Miller theorem.

Hypercover: A hypercover is a generalization of the Čech nerve∐
Uα ←←

∐
Uα ×X Uβ ←←

← ∐
Uα ×X Uβ ×X Uγ · · ·

of a covering family {Uα → X}. It can be defined as a simpicial sheaf all of whose stalks
are contractible Kan complexes.

Hyperdescent: A presheaf F satisfies hyperdescent if for any hypercover U• of X, the value
of F on X can be recovered as the homotopy limit of the cosimplicial object F(U•).

Injective model structure: For a model category C and a small category I, a model struc-
ture of the diagram category CI can often (e.g. for combinatorial model categories C) be
defined by defining weak equivalences and cofibrations levelwise. This model structure is
referred to as the injective model structure.

Jardine model structure: For a model category C and a Grothendiek site S, the Jardine
model structure is a model structure on the category of C-valued presheaves on S. It is
the Bousfield localization of the injective model structure, where the weak equivalences are
those morphisms that induce isomorphisms on homotopy sheaves. In this model structure,
the fibrant objects satisfy hyperdescent.

Morava stabilizer group: The Morava stabilizer group Gn is the automorphism group of
the unique formal group law of height n over Fp. It is a pro-finite group, and it is isomorphic
to the maximal order in the central division algebra over Qp with Hasse-invariant 1/n.

Projective model structure: For a model category C and a small category I, a model struc-
ture of the diagram category CI can often (e.g. for cofibrantly generated C) be defined by
defining weak equivalences and fibrations levelwise. This model structure is referred to as
the projective model structure.

Quillen cohomology: Quillen cohomology is a generalization André-Quillen cohomology to
model categories. If R is an object of a model category C, and M is an abelian group in
the overcategory C/R, then the Quillen cohomology of R with coefficients in M is given by
the derived maps RHomC/R(R,M). If C is the category of simplicial commutative rings,
Quillen cohomology reduces to André-Quillen cohomology. If C is the category of spaces,
Quillen cohomology is equivalent to usual singular cohomology (potentially with twisted
coefficients).

θ-algebra: A θ-algebra is a Zp-algebra equipped with operators ψk for all k ∈ Z×p , ψp, and θ.

The operators ψk and ψp are ring homomorphisms, and the operations ψk give a continuous
action of the profinite group Z×p . The operator ψp is a lift of Frobenius, and the operator θ
satisfies ψp(x) = xp + pθ(x). The p-adic K-theory of an E∞ algebra has the structure of a
θ-algebra.

Type-n spectrum: A (usually finite) spectrum X is said to be of type n (at some given prime
p) if its nth Morava K-theory, K(n)∗(X), is nonzero while all smaller Morava K-theories
are trivial. Every finite spectrum is of type n for some 0 ≤ n <∞.

5. Important examples of spectra

bo, bso, bspin, bstring — connective covers of real K-theory: The spectrum bo (also writ-
ten ko) denotes connective real K-theory, i.e. the (−1)-connected cover of BO. The spectra
bso, bspin, and bstring denote the covers of bo that are obtained by consecutively killing
the next non-zero homotopy groups: π1, π2, and π4.
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BP — Brown–Peterson spectrum: When localized at a prime p, the complex cobordism
spectrum MU splits as a wedge of spectra by the so-called Quillen idempotents. The
summand containing the unit is called BP . It is a commutative ring spectrum itself (up to
homotopy). The coefficient ring of BP is BP∗ = Z(p)[v1, v2, . . . ] with |vi| = 2pi − 2. The
ring BP∗ classifies p-typical formal group laws; over a torsion-free ring, a formal group law

is p-typical if its logarithm series is of the form x +
∑∞
i=1mix

pi . By a theorem of Cartier,
any formal group law over a p-local ring is isomorphic to a p-typical one.

BP 〈n〉 — n-truncated Brown-Peterson spectrum: The notation BP 〈n〉 stands for any
BP -module spectrum with π∗BP 〈n〉 ∼= BP∗/(vn+1, vn+2, . . . ). They are complex oriented
and classify p-typical formal group laws of height bounded by n or infinity. The spectrum
BP 〈1〉 is the Adams summand of connective K-theory.

E(n) — Johnson-Wilson spectrum: For a (fixed, not notated) prime p, the ring spectrum
E(n) is a Landweber exact spectrum with coefficients E(n)∗ = Z(p)[v1, . . . , vn−1, vn, v

−1
n ]

with |vi| = 2pi−2. Explicitly, E(n)-homology can be defined by E(n)∗(X) = BP∗(X)⊗BP∗

E(n)∗ for the map BP∗ → E(n)∗ that sends vi to the class of the same name for i ≤ n and
to 0 for i > n. The Lubin-Tate spectrum En can be obtained from E(n) by completing and
performing a ring extension; those two spectra belong to the same Bousfield class.

En or E(k,Γ) — Morava E-theory, aka Lubin-Tate spectrum: For k a field of charac-
teristic p and Γ a 1-dimensional formal group of height n over k, the Morava E-theory
spectrum E(k,Γ) is an E∞-ring spectrum such that π0E(k,Γ) is isomorphic to the univer-
sal deformation ring A(k,Γ) ∼= W (k)[[u1, . . . , un−1]] constructed by Lubin-Tate. Morava
E-theory is complex-orientable, even-periodic, and Landweber exact; its associated formal
group is the universal deformation of Γ. In the case where k is the algebraic closure of the
field with p elements, the Morava E-theory spectrum E(Fp,Γ) is often abbreviated En. (cf
entry on Universal deformation, and on Witt vectors.) Morava E-theory is closely related
to LK(2)TMF , and to the restriction of the sheaf Otop to the locus Mss

ell of supersingular
elliptic curves.

EOn — higher real K-theory: The higher real K-theory spectra are the homotopy fixed
points of the action on the nth Morava E-theory En of a maximal finite subgroup of the
Morava stabilizer group. This construction is a consequence of the Hopkins-Miller theorem.
At the primes 2 and 3, there is an equivalence LK(2)TMF ' EO2.

eo2 — p-local topological modular forms: This is an older name for the p-localization of
connective topological modular forms, tmf (p = 2, 3). Its notation is in analogy with BO
and bo (BO being the periodization of the connective real K-theory spectrum bo).

ko, ku, KO, KU , K — K-theory spectra: The spectra ko and ku are the connective (i.e.
(−1)-connected) covers of KO and KU = K. The spectrum KU of complex K-theory
is 2-periodic with (KU)2n = Z × BU and (KU)2n+1

∼= U , with one structure map U →
Ω(Z×BU) being the standard equivalence and the other Z×BU → ΩU given by the Bott
periodicity theorem. If X is compact, the group KU0(X) can be geometrically interpreted
as the Grothendieck group of complex vector bundles on X. The spectrum KO is the real
equivalent of KU . It is 8-periodic with coefficients KO∗ = Z[η, µ, σ, σ−1] with |η| = 1,
|µ| = 4, |σ| = 8, and 2η = η3 = µη = 0 and µ2 = 4σ.

K(n) — Morava K-theory: The nth Morava K-theory at a prime p (p is not included in the
notation). K(n) is a complex orientable cohomology theory whose associated formal group
is the height n Honda formal group. The coefficient ring K(n)∗ ∼= Fp[v±1n ] is a Laurent
polynomial algebra on a single invertible generator in degree 2(pn − 1). The generator
vn ∈ π2(pn−1)K(n) is the image of an element with same name in π2(pn−1)MU .

MU — complex bordism: MU is the spectrum representing complex cobordism, the cobor-
dism theory defined by manifolds with almost complex structures and bordisms between
them, with compatible almost complex structures. MU is a Thom spectrum. MU ∗ is the
Lazard ring, which carries the universal formal group law.
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MP — periodic complex bordism: MP =
∨
n∈Z Σ2nMU is the periodic version of MU , in

which we add an invertible element of degree 2. This represents periodic complex cobordism.
MU 〈6〉: The ring spectrum MU 〈6〉 represent cobordism of manifolds with trivializations of the

first and second Chern classes. As a spectrum, it can be constructed as the Thom spectrum
over BU〈6〉, the 6-connected cover of BU . The spectrum tmf of topological modular forms is
oriented with respect to MU 〈6〉; this orientation corresponds to the unique cubical structure
on every elliptic curve.

MO〈8〉 — string cobordism: The ring spectrum MO〈8〉 represents cobordism of string man-
ifolds, which are spin manifolds equipped with a trivialization of 1

2p1 ∈ H
4(M,Z), the latter

being the pullback of the generator 1
2p1 ∈ H4(BSpin) = Z. As a spectrum, it can be

constructed as the Thom spectrum over BO〈8〉, the 8-connected cover of BO. The spec-
trum tmf of topological modular forms is oriented with respect to MO〈8〉 (this refines the
MU 〈6〉-orientation of tmf ), and that orientation is a topological incarnation of the Witten
genus.

X(n) — Ravenel spectrum: The spectra X(n) are defined as Thom spectra of ΩSU(n)→
ΩSU → BU , where the second map is the Bott isomorphism. They play a role in the proof
of the nilpotence theorem and in constructing a complex oriented theory A = TMF ∧X(4)
classifying elliptic curves with a parameter modulo degree 5, or equivalently, Weierstrass
parameterized elliptic curves.

6. Commutative algebra

Adic rings: An adic Noetherian ring A is a topological Noetherian ring with a given ideal
I ⊂ A, the ideal of definition, such that the map A→ lim←−A/I

n is an isomorphism, and the
topology on A is the I-adic topology. Adic rings are the local buildings blocks for formal
schemes just as rings are the local buildings blocks for schemes. The functor that assings
to an adic ring A, with ideal of definition I, the pro-ring {A/In} embeds the category of
adic rings, with continuous rings maps as morphisms, as a full subcategory of pro-rings:
HomAdic(A,B) ∼= lim←−m lim−→n

Hom(A/In, B/Jm).

André-Quillen cohomology: The André-Quillen cohomology of a commutative ring R with
coefficients in an R-module M , is defined as a derived functor of derivations of R into M ,
RDer(R,M). This can also be expressed in terms of the cotangent complex of R, LR, in
that there is a natural equivalence RHomR(LR,M) ' RDer(R,M).

Cotangent complex: (Also called André-Quillen homology.) The cotangent complex LR of
a commutative ring R is the left derived functor of Kähler differentials, Ω1. If the ring R is
smooth, then there is an equivalence LR ' Ω1

R.

Étale morphism: A map of commutative rings S → R is étale if it is flat and unramified.
Equivalently, the map is étale if and only if the relative cotangent complex LR|S is trivial
and R is a finitely presented S-algebra. The conditions “flat and unramified” essentially
mean that the map is a local isomorphism (perhaps after base-change), and we should think
of étale maps as finite covering maps.

Flat morphism; faithfully flat morphism: A map of commutative rings S → R is flat if
R is a flat S-module, i.e., the functor R ⊗S (−) is exact. Localizations at ideals are flat.
The map is faithfully flat if, additionally, the functor is conservative, meaning that R⊗SM
is zero if and only if M is zero. Adjoining roots of monic polynomials is a faithfully flat
operation.

Kähler differentials: For R a commutative k-algebra, the R-module Ω1
R|k of Kähler differen-

tials (a.k.a. 1-forms) can be presented as the free R-module on symbols da, a ∈ R, subject
to the relations that d(ab) = adb + bda and da = 0 for a ∈ k. There is a natural isomor-
phism Ω1

R|k ' I/I
2, where I is the kernel of the multiplication map R⊗k R→ R. Ω1

R|k has

the important property that it corepresents the functor of derivations; there is a universal
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derivation R → Ω1
R|k that induces an isomorphism Derk(R,M) ∼= HomR(Ω1

R|k,M) for any

R-module M .
Witt vectors: The Witt vector functor associates to a ring R a new ring W (R) which has
R as a quotient and acts as a universal deformation in many cases. In particular, the Witt
vectors of a finite field k of characteristic p are a complete local ring with residue field k;
for instance, W (Fp) ∼= Zp.

7. Algebraic geometry, sheaves and stacks

Additive formal group Ga: The additive formal group is the affine 1-dimensional formal
group scheme Ga = Spf(Z[[t]]) with comultiplication given by t 7→ t ⊗ 1 + 1 ⊗ t. It is the
completion at 0 of the additive group scheme denoted by the same symbol. Topologically,
the additive formal group (over a field) arises as the formal group associated with singular
cohomology with coefficients in that field.

Deligne-Mumford compactification: The Deligne-Mumford compactification of the stack
Mg of smooth curves of genus g is the stack Mg obtained by allowing certain singularities
in those curves: those with at most nodal singularities, and finite automorphism group. The
latter are known as stable curves.

Étale topology: This is the Grothendieck topology on the category of schemes in which a
family {fα : Xα → X} is covering if the maps fα are étale and if

∐
αXα(k) → X(k) is

surjective for every algebraically closed field k.
étale site (small): Given a scheme (or stack) X, the small étale site of X is the full subcat-

egory of schemes (or stacks) over X whose reference map to X is étale, equipped with the
étale Grothendieck topology.

Finite morphism: A morphism of stacks (or schemes) X → Y is finite if there is a étale cover
SpecS → Y such that SpecS ×Y X = SpecR is an affine scheme with R finitely generated
as an S-module. A morphism is finite iff it is representable, affine, and proper.

Finite type: A morphism of stacks (or schemes) X → Y is of finite type if there is a cover
SpecS → Y and a cover SpecR → SpecS ×Y X such that R is finitely generated as an
S-algebra.

Formal spectrum Spf: The formal spectrum Spf A of an I-adic Noetherian ring A consists
of a topological space with a sheaf of topological rings (Spf A,O). The topological space
has points given by prime ideals that contain I, with generating opens Ux ⊂ Spf A the set
of prime ideals not containing an element x of A. The value of the sheaf O on these opens
is O(Ux) = A[x−1]∧I , the completion of the ring of fractions A[x−1] at the ideal I[x−1].

Formal scheme: A formal scheme is topological space with a sheaf of topological rings, that
is locally equivalent to Spf A for some adic Noetherian ring A. The category of affine formal
schemes is equivalent to the opposite category of adic Noetherian rings. Formal schemes
often arise as the completions, or formal neighborhoods, of a subscheme Y ⊂ X inside an
ambient scheme, just as the completion of a Noetherian ring with respect to an ideal has
the structure of an adic ring. Formal schemes embed as a full subcategory of ind-schemes
by globalizing the functor that assigns to an adic ring the associated pro-ring.

Formal group: A formal group is a group object in the category of formal schemes. An
affine formal group being the same as a cogroup in the category of adic rings, it is thus a
certain type of topological Hopf algebra. A 1-dimensional (commutative) formal group over
a ring R is a (commutative) formal group whose underlying formal schemes is equivalent to
Spf R[[t]] – sometimes this last condition only étale locally in R.

Formal group law: A 1-dimensional formal group law over a commutative ring R is a co-
commutative cogroup structure on R[[t]] in the category of adic R-algebras. I.e., it has a
commutative comultiplication R[[t]] → R[[t]]⊗̂RR[[t]] ∼= R[[x, y]]. This comultiplication is
determined by the formal power series that is the image of the element t, so formal group
laws are often specified by this single formal power series. A 1-dimensional formal group
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law is equivalent to the data of a formal group G together with a specified isomorphism
G ∼= Spf R[[t]], i.e., a choice of coordinate t on G.

Grothendieck site: A category with a Grothendieck topology.
Grothendieck topology: A Grothendieck topology on a category C – sometimes also called

a Grothendieck pretopology – consists of a distinguished class of families of morphisms
{Xα → X}, called a covering families, subject to the following conditions: 1. base changing
a covering family along any map Y → X should remain a covering family, 2. if {Xα → X}
is a covering family and for every α, {Xβα → Xα} is a covering family, then the family of
composites {Xβα → X} should also be a covering family. A primary example is the étale
topology on the category of schemes.

Group scheme: A group scheme is group object in the category of schemes. Algebraic groups,
such as GLn or SLn, form a particular class of group schemes. Elliptic curves and, more
generally, abelian varieties are also group schemes.

Height: For a homomorphism of formal groups defined over a field of characteristic p > 0, say

f : G→ G′, f may be factorized G
(−)p

n

−−−−→ G→ G′ through a pn power map, i.e. the n-fold
iteration of the Frobenius endomorphism of G. The height of the map f is the maximum n
for which such a factorization exists, and is ∞ exactly when f = 0. The height of a formal
group G is defined as the height of the multiplication by p-map [p] : G→ G.

Hopf algebroid: A (commutative) Hopf algebroid A is a cogroupoid object in the category of
commutative rings, just as a commutative Hopf algebra is a cogroup object in the category
of commutative rings. In other words, if A0 is a commutative ring, the additional structure
of a Hopf algebroid on A0 is a choice of lift of the functor Hom(A0,−) : Rings→ Sets to the
category of groupoids: A0 corepresents the objects of the groupoid, and the extra structure
provided by the lift amounts to having another ring A1 that corepresents the morphisms,
together with the data of various maps between A0 and A1. For a ring spectrum E, the
pair (E∗, E∗E) frequently defines a Hopf algebroid. Every Hopf algebroid A = (A0, A1)
has an associated stack, MA, defined by forcing the groupoid-valued functor to satisfy
descent. In the example of A = (MP0,MP0MP ), where MP is periodic complex bordism,
the associated stack MA is the moduli stack of formal groups, MFG.

Hopf algebroid comodule: For a Hopf algebroid A, there is a notion of an A-comodule
M , which is roughly a left A1-comodule in the category of A0-modules. The category of
A-comodules is equivalent to the category of quasicoherent sheaves on the associated stack
MA.

Hopf algebroid cohomology: The nth cohomology of a Hopf algebroid A = (A0, A1) with
coefficients in an A-comodule M is the nth derived functor of the functor that sends M to
Hom(A0,A1)(A0,M).

Moduli stack of formal groups, MFG : The R-valued points of the stack MFG are the
groupoid of formal groups over R and their isomorphisms. The stack MFG is the stack
associated to the Lazard Hopf algebroid (L,Γ) = (MP0,MP0MP). The invariant differential
on a formal group defines a line bundle ω onMFG , and the E2-term of the Adams-Novikov
spectral sequence can be understood as the stack cohomology group Es,2t2 = Hs(MFG , ω

t).
Moduli space of formal group laws, MFGL: A formal group law is a formal group along

with a choice of coordinate. The moduli space of formal group laws is the scheme Spec(L),
where L = MP0 is the Lazard ring.

Multiplicative formal group Gm: The multiplicative formal group is the affine 1-dimensional
formal group scheme Gm = Spf(Z[[t]]) with comultiplication given by t 7→ t⊗1+1⊗t+t⊗t.
It is the completion at 1 of the multiplicative group scheme Spec(Z[u, u−1]). Topologically,
the multiplicative formal group arises as the formal group associated with complex K-theory.

p-divisible group: (Also called Barsotti-Tate groups.) An algebraic group G is a p-divisible
group of height n if: the multiplication map pi : G → G is surjective; the group G[pi] :

Ker(G
pi−→ G) is commutative, finite, and flat of rank pni; the natural map lim−→G[pi] → G
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is an isomorphism. Every elliptic curve C defines an associated p-divisible group C[p∞] :=
lim−→C[pi], where C[pi] is the kernel of pi : C → C. The Serre-Tate theorem relates the
deformation theory of the elliptic curve to that of its p-divisible group.

Proper morphism: A morphism of stacks X → Y is proper if the following two conditions
hold. 1. (separated): For any complete discrete valuation ring V and fraction field K and
any morphism f : SpecV → Y with lifts g1, g2 : SpecV → X which are isomorphic when
restricted to SpecK, then the isomorphism can be extended to an isomorphism between g1
and g2. 2. (proper): for any map SpecV → Y which lifts over SpecK to a map to X, there
is a finite separable extension K ′ of K such that the lift extends to all of SpecV ′ where V ′

is the integral closure of V in K ′.
Relative-dimension-zero morphism: A representable morphism X → Y of stacks (or

schemes) has relative dimension zero if all of its fibers have Krull dimension 0.
Relative Frobenius: If S is a scheme over Fp and X → S a map of schemes, there are

compatible absolute Frobenius maps F : S → S and F : X → X obtained locally by the
pth power map. The relative Frobenius FS/X : X → X(1) = X ×S S is the corresponding
map into the fiber product, which is taken using the projection X → S and the absolute
Frobenius S → S.

Representable morphism: A morphism of stacks f : X → Y is representable if for any
map SpecR→ Y , the fiber product SpecR×Y X is representable, i.e., it is equivalent to a
scheme. It is called representable and affine, if in addition all the schemes SpecR×Y X are
affine.

Stack: A stack is a groupoid-valued functor F on the category of commutative rings that
satisfies descent. The descent property is a generalization of the sheaf property. It says that
whenever Spec(R)→ Spec(S) is an étale cover, the diagram

F(R⊗S R⊗S R) ←←
← F(R⊗S R) ←← F(R)← F(S)

exhibits F(S) as a 2-categorical limit. A standard example is the stack BG, that assigns R
the groupoid of principal G-bundles over Spec(R). Another standard example is the stack
Mell , than assigns R the groupoid of elliptic curves over R.

Stack, Deligne-Mumford: A Deligne-Mumford stack is a stack that is locally affine in the
étale topology. That is, it is a stack X for which there exists an étale cover SpecR→ X by
an affine scheme. One often also imposes a quasicompactness condition. Deligne-Mumford
stacks are the most gentle kinds of stacks and almost all notions that make sense for schemes
also make sense for Deligne-Mumford stacks.

Universal deformation (of a formal group): Fix a perfect field k of positive characteris-
tic p, e.g. k could be any finite or algebraically closed field, and a formal group Γ over k
of finite height 1 ≤ n < ∞. For every Artin local Ring R with residue field k, a deforma-

tion of Γ to R is a formal group Γ̃ over R together with an isomorphism (̃Γ) ⊗R k ' Γ.
Lubin and Tate determine the deformation theory of Γ by showing that there is a com-
plete local ring Runiv such that for every R as above, the set of isomorphism calsses of
defomations of Γ to R naturally biject with continous ring homomorphisms from Runiv to
R. Even more, they prove that Runiv is noncanonically isomorphis to a power series ring
Runiv 'W (k)[[u1, . . . , un−1]] over the ring of Witt vectors of k.

8. Elliptic curves and their moduli

Discriminant: The discriminant of the elliptic curve y2 + a1xy+ a3y = x3 + a2x
2 + a4x+ a6

is given by ∆ = −b22b8 − 8b34 − 27b26 + 9b2b4b6, where b2 = a21 + 4a2, b4 = 2a4 + a1a3,
b6 = a23 + 4a6, b8 = a21a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a24. Over a field, the discriminant

vanishes if and only if the elliptic curve is singular.
Elliptic curve: An elliptic curve C over a ring R is a smooth, projective curve of genus one

together with a marked point, i.e., a map SpecR → C. An elliptic curve has a natural
group structure, which can be completed to give a formal group over R.
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Elliptic curve, generalized: An algebraic geometer would mean a curve locally given by a
Weierstrass equation with one of ∆ and c4 not vanishing at any given point of the base; this is
the notion origianlly coined by Deligne and Rapoport and these curves assemble into a proper
and smooth Deligne-Mumford stackMell of relative dimension one over Z. In topology, we
consider even more generalized curves: all those given locally by Weierstrass-equation. The
resulting stack over Z is not a Deligne-Mumford stack anymore but an Artin-stack, because
the additional curve y2 = x3 admits non-trivial infinitesimal automorphisms. This point is
the only one carrying an additive formal group law which makes it of outstanding topological
interest since it is the only point which “knows” about singular (mod p) cohomology.

Elliptic curve, ordinary: An ordinary curve is an elliptic curve over a field of characteristic
p > 0 whose associated formal group law has height 1.

Elliptic curve, supersingular: A supersingular curve is an elliptic curve over a field of char-
acteristic p > 0 whose associated formal group law has height 2.

Hasse invariant: For a fixed prime p, the Hasse invariant is a global section H ∈ H0(Mell⊗Z
Fp, ωp−1), i.e. a mod p modular form of weight p − 1. It admits a lift to characteristic 0
(as an Eisenstein series) exactly if p 6= 2, 3. The vanishing locus of H are the super-singular
points (all with multiplicity 1).

Invariant differentials/canonical bundle: The canonical bundle ω overMell (orMell, or

M+

ell) is the sheaf of (translation invariant) relative differentials for the universal elliptic
curve over Mell . The stalk of ω at an elliptic curve C ∈ Mell is the 1-dimensional vector
space of Kähler differentials on C. The sections of ω⊗2k over Mell are modular forms of
weight k (for odd n, the line bundle ω⊗n has no sections).

j-invariant: The j-invariant of the elliptic curve y2+a1xy+a3y = x3+a2x
2+a4x+a6 is given

by (b22− 24b4)3/∆, where b2, b4, and ∆ are as above. Over an algebraically closed field, the
j-invariant is a complete isomorphism invariant of the elliptic curve. More geometrically,
the j-invariant is a map Mell → P1

Z which exhibits the projective line as the coarse moduli
space of the Deligne-Mumford compactification of Mell .

Level structure: A level structure on an elliptic curve C can refer to either: 1. (a Γ(N)-
structure) an isomorphism between (Z/N)2 and the group C[N ] of N -torsion points of C.
2. (a Γ1(N)-structure) an injective homomorphism Z/N → C[N ]. 3. (a Γ0(N)-structure) a
choice of subgroup of C[N ] that is isomoprhic to Z/N . Moduli spaces of elliptic curves with
level structures provide examples of stacks over Mell (or Mell) on which one can evaluate
Otop, the structure sheaf for TMF .

Modular form; weight: A modular form of weight k is a section of ω⊗2k over Mell . When
restricted to a formal neighborhood of the multiplicative curve Gm ∈ Mell , the canonical
bundle ω trivializes, and one can identify a modular form with an element of Z[[q]].

Moduli stacks of elliptic curves:
Mell: Also denoted M1,1 in the algebraic geometry literature. The moduli stack of

smooth elliptic curves.
Mord

ell : The substack of the moduli stack of elliptic curves Mell over Fp consisting of
ordinary elliptic curves, whose associated formal group has height one. The coarse
moduli spaceMord

ell at a prime p is a disk with punctures corresponding to the number
of supersingular elliptic curves at p.

Mss
ell: The substack of the moduli stack Mell over Fp consisting of supersingular elliptic
curves, whose associated formal group has height two. At a prime p,Mss

ell is a disjoint
union of stacks of the form BG = ∗/G, where G is the group of automorphisms of
a supersingular elliptic curve. Thus, the associated coarse moduli space is a disjoint
union of points.

Mell: The moduli stack of elliptic curves, possibly with nodal singularities. This is the
Deligne-Mumford compactification of the moduli stack of smooth elliptic curves Mell.
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MWeier : (also denoted M+

ell) The moduli stack of Weierstrass elliptic curves, associated
to the Weierstrass Hopf algebroid. Includes curves with both nodal and cuspidal sin-
gularities.

Serre-Tate theorem: The Serre-Tate theorem relates the deformation theory of an elliptic
curve to that of its associated p-divisible group. As a consequence, if C is a supersingular
elliptic curve, then the map Mell → MFG induces an isomorphism of the formal neigh-

borhood of C in Mell with the formal neighborhood of the associated formal group Ĉ in
MFG. More generally, there is a map from Mell to the moduli stack of p-divisible groups,
and this induces an isomorphism of a formal neighborhood of any elliptic curve C with the
formal neighborhood of the point given by the associated p-divisible group C[p∞]. Remark
that the p-divisible group C[p∞] (which governs the deformation theory of C) is formal if
and only if C is supersingular.

Weierstrass curve, Weierstrass form: A Weierstrass curve (or a curve in Weierstrass form)
is an affine curve with a parametrization of the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

or its projective equivalent. A Weierstrass curve defines an elliptic curve if and only if its
discriminant, a polynomial of the ai, is invertible. Over a field, any elliptic curve can be
expressed in Weierstrass form by the Riemann-Roch theorem. More generally, this is true
Zariski-locally over any ring, i.e. if R is a ring and C/R is an elliptic curve, there exist
elements r1, . . . , rn ∈ R such that r1 + . . . + rn = 1 and for every i, the elliptic curve
C ⊗R R[ 1

ri
] admits a Weiserstrass equation.

9. Spectra of topological modular forms

Elliptic spectrum: A triple (E,C, α) where E is a weakly even periodic ring spectrum, C is

an elliptic curve over π0E, and α : GE
∼=−→ Ĉ is an isomorphism between the formal group

of E and the formal group of C.
Elliptic spectral sequence: This can refer to any one of the following spectral sequences:

Hq(Mell , ω
p)⇒ π2p−q(TMF ), Hq(Mell , ω

p)⇒ π2p−q(Tmf ), andHq(M+

ell , ω
p)⇒ π2p−q(tmf ).

The first two are examples of descent spectral sequences. The last one is the Adams-Novikov
spectral sequence for tmf , and it is not a descent spectral sequence.

Otop, the structure sheaf for TMF : is a sheaf of E∞-ring spectra on the small étale site of
Mell, i.e., the site whose objects are stacks equipped with an étale map Mell, and whose
covering families are étale covers (strictly speaking, this is a 2-category, by it is actually

equivalent to a 1-category). The corresponding sheaf over the stack M+

ell does not seem to

exist, but if it existed its value on M+

ell would be tmf .
TMF , periodic topological modular forms: The spectrum TMF is the global sections of

the sheaf Otop of E∞-ring spectra over Mell. In other words, it is the value of Otop on
Mell. SinceMell is the open substack ofMell where the discriminant is invertible, there is
a natural equivalence TMF ' Tmf [∆−1] (TMF is also equivalent to tmf [∆−1]). Note that
this is a slight abuse of notation: it is better to write Tmf [(∆24)−1] (and tmf [(∆24)−1]), as
only ∆24 ∈ π576(Tmf ) survives the descent spectral sequence.

Tmf : This is the global section spectrum of the sheaf Otop on Mell. In positive degrees,
its homotopy groups are rationally equivalent to the ring Z[c4, c6,∆]/(c34 − c26 − 1728∆) of
classical modular forms. The negative homotopy groups of Tmf are related to those in
positive degree by π−nTmf ∼= Free(πn−21Tmf )⊕ Tors(πn−22Tmf ).

tmf , connective topological modular forms: This is the connective cover of the spectrum
Tmf of global sections of Otop on Mell. Its homotopy groups are rationally equivalent to
the ring Z[c4, c6,∆]/(c34 − c26 − 1728∆) of classical modular forms. Apart from its Z-free
part, π∗(tmf ) also contains intricate patters of 2- and 3-torsion, that approximate rather
well the K(2)-localizations of the sphere spectrum at those primes.
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TMF , localizations of: The K(1)-localization LK(1)TMF is the spectrum of sections of Otop
over the ordinary locus Mord

ell , while the K(2)-localization LK(2)TMF is the spectrum of
sections of Otop over the supersingular locus Mss

ell. The latter is a product of various
quotients of the Lubin-Tate spectra E2, indexed by the finite set of isomorphism classes of
supersingular elliptic curves. At the primes 2 and 3, there is only one supersingular elliptic
curve, and LK(2)TMF ' EO2.
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