
“Parallel” transport - revisited

jim stasheff

January 7, 2011

Abstract

Inspired by recent extensions in the smooth setting of parallel trans-
port to representations of Singsmooth(B) on a smooth fire bundle, I revisit
the development of a notion of ‘parallel’ transport in the topological set-
ting of fibrations with the homotopy lifting property and then extend it
to representations of Sing(B) on such fibrations.

1 Introduction

Inspired by Block-Smith [?] and Igusa (arXiv:0912.0249), Abad and Schaetz [?]
showed that smooth parallel transport (e.g. as in [?, ?]) can be derived from
the A∞ version of de Rham’s theorem due to Gugenheim [?]; this allows them
to extend parallel transport to an A∞ functor. Many years ago in a journal not
readily available [?], I showed that in the topological setting of fibrations (sat-
isfying the homotopy lifting property) there was a notion of ‘parallel’ transport
not dependent on having a connection. For my purposes, it was sufficient to
consider transport along based loops in the base, though the arguments were
sufficient to allow for transport along any path in the base. Instead of the prop-
erty in the smooth case of giving a holonomy homomorphism from based loops
(suitably defined), the parallel transport I constructed gave ‘only’ an A∞-map.

Recent papers have looked at what is known as the ∞-groupoid Π∞(B) of a
space B and its representations up to homotopy on a fibre bundle E → B. The
∞-groupoid Π∞(B) can be represented as a simplicial set: the singular complex
Sing(B). Here we set out to extend known results to the fibrations setting, i.e.
without any smoothness or connection operator or differential form.

The ∞-groupoid terminology is perhaps misleading; what I am really after
is an analog of parallel transport along paths extended to parallel transport over
(maps of) simplices, not just 1-simplices.

2 The ‘classical’ topological case

We first recall what are rightly known as Moore paths [?] on a topological space
X.
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Definition 1 Let R+ = [0,∞) be the nonnegative real line. For a space X, let
Moore(X) be the subspace of Moore paths ⊂ XR+ × R+ of pairs (f, r) such
that f is constant on [r,∞). There are two maps

• ∂−, ∂+ : Moore(X) → X,

• ∂−(f, r) = f(0),

• ∂+(f, r) = f(r).

Now composition ◦ of Moore paths in Moore(X) is given by sending pairs
(f, r), (g, s) ∈ Moore(X) such that f(r) = g(0) to h ∈ Moore(X) which is
constant on [r + s,∞), h|[0, r] = f |[0, r] and h(t) = g(t − r) for t ≥ r. The
composite is denoted fg. An identity function ε : X → Moore(X) is given by
ε(x) = (x̂, 0) where x̂ is the constant map on R+ with value x.

Composition is continuous and gives, as is well known, a category structure on
Moore(X). If we had used the ‘ancient’ Poincaré paths I → X, we would have
had to work with an A∞-structure on XI . Indeed, it was working with that
standard parameterization which led to A∞-structures [?, ?].

For a category C, we denote by C(n) the set of n-tuples of composable
morphisms. In partcular, we will be concerned with Moore(B)(n). We will
write t for (t1, · · · , tn) and t̂i for (t1, · · · , ti−1, ti+1, · · · , tn),

Definition 2 A representation up to homotopy of Moore(B) on a fibration
E → B is an A∞-morphism (or shm-morphism [?]) from Moore(B) to EndB(E);
that is, a collection of maps

θn : In−1 ×Moore(B)(n) ×B E → E

(where Moore(B)(n) ×B E consists of n + 1-tuples (λ1, . . . , λn, e) where the λi

are composable paths, constant on [ri,∞), and p(e) = λ1(0)) such that

p(Θn(t, λ1, . . . , λn, e)) = λn(rn),

θn(t, λ1, . . . , λn,−)

is a fibre homotopy equivalence and satisfying the usual/standard relations:

• if ti = 0, then
θn(t1, · · · , tn−1, λ1, . . . , λn, e))

is given by
θn−1(t̂i, · · · , λiλi+1, · · · , e))

• and if ti = 1, then by

θi(· · · , ti−1, λ1, . . . , λi−1, θn−i(ti+1, · · · , tn−1, λi, · · · , λn, e))
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Remark 3 That the parameterization is by cubes, as for Sugawara’s strongly
homotopy multiplicative maps rather than more general polytopes, reflects the
fact that Moore(X) and EndB(E) are strictly associative. Strictly speaking, re-
ferring to Moore(B) → EndB(E) as an A∞-map raises issues about a topology
on EndB(E); the adjoint formulas above avoid this difficulty.

Since our construction uses in a crucial way the homotopy lifting property, we
first construct maps

Θn : In ×Moore(B)(n) ×B E → E.

Further,

• Θ0 : E → E is the identity,

• if ti = 0, then
Θn(t1, · · · , tn, λ1, . . . , λn, e))

is given by
Θn−1(t̂i, · · · , λiλi+1, · · · , e))

• and if ti = ri, then

Θi−1(· · · , ti−1, λ1, . . . , λi−1, θn−i+1(ti+1, · · · , tn, λi, · · · , λn, e))

with the convention that the meaningless t−1, λ0λ1 are omitted. The desired θn

are then recovered at t1 = 1 :

Θn(1, t2, · · · , tn, λ1, . . . , λn, e)) = θn(t2, · · · , tn, λ1, · · · , λn, e))

Henceforth, when we say ‘cube’, we really mean a Moore rectangle. Notice
that if Θj has been defined for all j < i, then the above conditions already
define Θi on all faces of the Moore rectangle except for the face where t1 = 1.
We ‘fill in the box’ by using the homotopy lifting property after filling in the
trivial image box in B (compare horn-filling in the simplicial setting). That
trivial box has image just that of the composite path λ1 · · ·λn.

Theorem 4 (cf. Theorem A in [?]) For any fibration p : E → B, there is an
A∞-action {θn} of Moore(B) on E such that θ1 is a fibre homotopy equivalence.

In Theorem B in [?], I proved further:

Theorem 5 Given an A∞-action {θn} of the Moore loops ΩB on a space F ,
there is a fibre space pθ : Eθ → B such that, up to homotopy, the A∞-action {θn}
can be recovered by the above procedure. If the A∞-action {θn} was roiginally
obtained by this procedure from a fibre space p : E → B, then pθ is fibre homotopy
equivalent to p.

This construction gave rise to the slightly more general (re)construction
below. It can also be generalized to give an ∞-version of the Borel construc-
tion/homotopy quotient: G → X → XG = X//G.

Has this appeared in the literature already?
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3 Upping the ante

Now suppose instead of looking at just composable paths, we look at Sing(B).
For a singular k-simplex σ : ∆k → B, there are several k-tuples of composable
paths from vertex 0 to vertex k by restriction to edges, in fact, k! such. Given
σ, we denote by Fi the fibre over vertex i ∈ σ.

Following e.g. Abad-Schaetz [?], we make the following definition of a repre-
sentation up to homotopy, where we take a singular k-simplex σ to be (the image
of ) < 0, 1, · · · , k > with the p-th face ∂pσ being < 0, · · · , p− 1, p + 1, · · · , k > .
However, we keep much of the notation above rather than switch to theirs. We
also write λµ to mean traversing λ then µ, not worrying about (the analog of)
homomorphism versus anti-homomorphism.

Remark 6 In contrast to the smooth bundle case where a connection provides
unique path lifting, the fibration case is considerably more subtle since path and
homotopy lifting is far from unique.

Definition 7 A representation up to homotopy of Sing(B) on a fibration E →
B is a collection of maps {θk}k≥0 which assign to any k-simplex σ : ∆k → B a
map θk(σ) : Ik−1 × F0 → Fk satisfying the relations for any e ∈ F0:

θ0 is the identity on F0

For any (t1, · · · , tk−1),
θk(σ)(t1, · · · , tk−1,−) : F0 → Fk is a homotopy equivalence.

For any 1 ≤ p ≤ k − 1,
if tp = 0,

θk(σ)(· · · , tp = 0, · · · , e) = θk−1(∂pσ)(· · · , t̂p, · · · , , e)

if tp = 1,
θk(σ)(· · · , tp = 1, · · · , e) =

θp(< 0, · · · , p >)(t1, · · · , tp−1, θq(< p, · · · , k >)(tp+1, · · · , tk, e)).

Remark 8 In definition 4, we worked with Moore paths so that the A∞- map
was between strictly associative spaces. Here instead the compatible 1-simplices
compose just as e.g. a pair of 1-simplices and are related to a single 1-simplex
only by an intervening 2-simplex. Associativity is trivial; the subtlety is in
handling the 2-simplices and higher ones for multiple compositions. The idea of
constructing a representation up to homotopy is very much like that of Theorem
1, the major difference being that instead of comparing two different liftings of
the composed paths which are necessarily homotopic, we are comparing a lifting
e.g. of a path from 0 to 1 to 2 with a lifting of a path from 0 to 2 IF there is a
singular 2-simplex < 012 >. However, note that < 02 > plays the role of λ1λ2

of Moore paths in the above formulas.

Theorem 9 For any fibration p : E → B, there is a representation up to
homotopy of Sing(B) on E.
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Remark 10 The fact that the representation up to homotopy is by fibre ho-
motopy equivalence (as for the action of Moore(B)) is justified by the following:
Since a simplex σ is contractible, the pullback σ∗E is fibre homotopy trivial
over σ. Choose the requisite lifts in σ∗E using a trivialization corresponding to
the homotopy we want to lift and then map back into E.

The essence of the proof is in essence the same as that for Theorem 4. The
desired θn will appear as the missing lid on an open box (defined inductively)
which is filled in by homotopy liftings Θn of a coherent set of maps

γk : Ik−1 → P∆n

where P denotes the set of paths, i.e. P∆n = Map(I,∆n) and γ1 : I → ∆1

is the ‘identity’. Such maps were first produced by Adams [?] in the topolgical
context by induction using the contractability of ∆n. Later specific formulas
were introduced by Chen [?, ?] and, most recently, equivalently but more trans-
parently, by Igusa [?].

By coherent I mean precisely
γ1(0) is the trivial path, constant at 0.

For any 1 ≤ p ≤ k − 1,

γk(· · · , tp = 0, · · · ) = γk−1(· · · , t̂p, · · · )

and
γk(σ)(· · · , tp = 0, · · · ) =

γp(t1, · · · , tp−1)γq(tp+1, · · · , tk−1).

Correspondingly, the liftings Θn : In × E → E form a collection of maps
which assign to any k-simplex σ : ∆k → B a map Θk(σ) : Ik × F0 → Fk

satisfying the relations for any e ∈ F0:
Θ0(0) is the identity on F0

For any (t1, · · · , tk),
Θk(σ)(t1, · · · , tk,−) : F0 → Fk is a homotopy equivalence.

For any 1 ≤ p ≤ k − 1,
if tp = 0,

Θk(σ)(· · · , tp = 0, · · · , e) = Θk−1(∂pσ)(· · · , t̂p, · · · , e)

if tp = 1,
Θk(σ)(· · · , tp = 1, · · · , e) =

Θp(< 0, · · · , p >)(t1, · · · , tp−1, θq(< p, · · · , k >)(tp+1, · · · , tk, e)).

The desired θn is again recovered at t1 = 1.

For example, γ1 : 0 → P∆1 is a path which can be lifted as in Theorem 1 to
give Θ1 : I×F0 → E. Then γ2 : I → P∆2 such that 0 maps to the ‘identity’ path
I →< 02 > while 1 maps to the concatenated path < 01 >< 12 > . (Henceforth,
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we will assume paths have been normalized to length 1 where appropriate.) Now
lift the homotopy γ2 to a homotopy Θ2(< 012 >) : I × I × E → E between
Θ1(< 02 >) and Θ1(< 01 >< 12 >). In particular, Θ2(< 012 >) : 1×I×E → E
gives the desired homotopy θ2 : I × F0 → Fk.

The situation becomes slightly more complicated as we increase the dimen-
sion of σ. The case ∆3 is illustrative. The faces < 023 > and < 013 > lift just
as < 012 > had via Θ2, but that lift must then be ‘whiskered’ by a rectangle
over < 23 > which glues onto Θ3(< 012 >. In a less complicated way < 123 >
is lifted so that vertex 1 agrees with the end of the ‘whisker’ which is the lift of
< 01 >. Thus the total lift of < 0123 ends with the desired θ3 : I2 × F0 → F3.
The needed whiskering (of various dimensions) is prescribed by the tp = 1 rela-
tions of Definition 2 to be satisfied.

INSERT GRAPHIC

4 (Re)-construction of fibrations

In [?], I showed how to construct a fibration from the data of an strong homotopy
action of ΩB on a ‘fibre’ F . If the action came from a given fibration F → E →
B, the constructed fibration was fibre homotopy equivalent to the given one.
For representations up to homotopy, a similar result applies using analogous
techniques, with some additional subtlety.

First we try to construct a fibration naively. Over each 1-simplex σ of
Sing(B), we take σ × F0 and attempt to glue these pieces appropriately. For
the one simplices < 01 > and < 12 >, we have θ1 : F0 → F1 which tells us
how to glue < 01 > ×F0 to < 12 > ×F1 at vertex 1, but, since θ1 : F0 → F2

is not the composite of θ1 : F0 → F1 and θ? : F1 → F2, we can not simply
plug in < 012 > ×F0 over < 012 >. However, we can plug in I2 × F0 since
θ2 : I × F0 → F2 will supply the glue over vertex 2.

To describe the plugging, we use special maps pn : In → ∆n where ∆n is
the set

{(t1, · · · , tn)|1 ≥ t1 ≥ t2... ≥ 0}.

The maps pn are iterated convex linear. The basic example is

c : (x, y) 7→ (x · 1 + (1− x)y, y).

Write t1 = t, t2 = s, t3 = r. For n = 2, define p2 = c : (t, s) 7→ (t ·1+(1− t)s, s)
and then

p3 : (t, s, r) 7→ (c(c(t, s), r), c(s, r), r) = (c(t · 1 + (1− t)s), r), c(s, r), r).

INSERT GRAPHIC

Hopefully, the pattern is clear. Now return to the description of the fibration
p̄2 : E2 → ∆2 above. In greater precision,

E2 =< 01 > ×F0 ∪1 < 12 > ×F1 ∪0 < 02 > ×F0 ∪ I2 × F0.
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The attaching maps over the vertices 0 and 1 are obvious as are the projections
to the edges of ∆2. On I2 × F0, the attaching maps are obvious except for the
face t2 = s = 1 where it is given by θ2 : I × F0 → F2, so as to be compatible
with the projection p̄2 : I2 × F0 → ∆2.
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