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Abstract — GTEM is an acronym for Galois Theory and Explicit Methods. A se-

lection from the activities within the network is presented. We focus on nonabelian

Galois action, Grothendieck–Teichmüller theory and anabelian geometry. The style is

expository and proofs are omitted.

1 The network

The network is based on nodes from eight European countries. Geographically ordered, the
participating Universities are located in Nottingham, Leiden, Essen, Lille, Bonn, Paris 6,
Heidelberg, Besançon, Bordeaux, Lausanne, Barcelona, Rom, and Tel Aviv. They joined
under the acronym GTEM, read je t’aime, which abbreviates the common interest of these
various different research groups: Galois Theory and Explicit Methods. More precisely,
research within the network centers around many interesting topics of arithmetic related
with GalQ, the absolute Galois group of the rational numbers, as follows:

(1) (Explicit) finite Galois groups over Q.

(2) The Inverse Galois Problem (IGP).

(3) Dessins d’enfants.

(4) Grothendieck–Teichmüller Theory: GalQ and GT.

(5) Arithmetic of elliptic curves over number fields.

(6) Algorithms in number theory, in particular class field theory.

(7) Differential Galois Theory.

(8) Arithmetic of covers, arithmetic fundamental groups.

(9) (Birational) anabelian geometry.

(10) Miscellaneous: Iwasawa Theory, Invariant Theory, explicit implementations, . . .

The research so far was very vivid and produced many results. The following list of
network related achievements mentions a few with no claim on completeness at all. Any
omission, is due to mainly the ignorance of the author for which he offers his apologies. In
the sequel, memebers of the GTEM network are typeset in smallcaps.

(1) Realization of Galois groups by ‘middle convolution’ and ‘parabolic cohomology’ (Dett-
weiler–Reiter [DR00], Völklein [Vö01], Dettweiler–Wewers [DW03]).

(2) Realization of Galois groups via Galois representations (Dieulefait, Vila, Crespo,
see [GTEM]).

(3) A combinatorial description of GalQp
in GalQ using p-adic GT (André [An03]).
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(4) New GT variants (Harbater–Schneps [HS00], Hatcher–Lochak–Schneps [HLS00],
Nakamura–Schneps [NS00]).

(5) Proof of the generalized Kotchevkov conjecture (Zapponi [Za00]).

(6) Advances in the absolute Inverse Galois Problem (IGP) (Haran–Jarden–Pop [HJP04]).

(7) Construction of Hurwitz moduli schemes and applications to IGP (Dèbes, Deschamps,
Emsalem, Flon, Romagny, see [GTEM]).

(8) Explicit 2– and 3–descent (Cremona–Stoll [CS02])

(9) Proof of the differential Abhyankar Conjecture, treatment of the differential IGP
(Bertrand, Matzat–van der Put [MvdP03a] [MvdP03b], Hartmann [Ha02])

(10) Unraveling a connection between the Lamé operator and dessins d’enfant (Litcanu
[Li03], Zapponi [Za04]).

(11) Results in birational (pro-ℓ) anabelian geometry (Pop [Po03], Efrat [Ef00], Efrat–
Fesenko [EF99], Koenigsmann [Ko03]),

(12) Proof of anabelian geometry for nonconstant curves in characteristic p (Stix [Sx02]).

(13) A proof of finiteness of isomorphy classes of smooth proper curves over Falg
p with given

π1 (Raynaud [Ra02], Pop-Säıdi [PS03] [Sa03], Tamagawa [Ta04]).

(14) Description of the stable reduction of X(pn) (Bouw–Wewers [BW04]).

(15) Results about reduction/lifting of curves (Green, Lehr–Matignon, Henrio, Mezard,
Wewers, Bouw–Wewers, see [GTEM]).

(16) Determination of the asymptotics for certain Galois groups over Q, database of Galois
extensions of polynomials over Q up to degree 15 (Malle [Ma02, Ma04], Klüners–
Malle [KM01]).

It is obvious that from the abundance of mathematics contained in this list, in the
sequel, we will have to select a small portion and elaborate on these particular results and
questions. Namely, the rest of this article will be devoted to the GT-geometric aspect of
GTEM research, unfortunately leaving aside such exciting areas as differential Galois theory
in which great strides have been made (see articles above, especially [MvdP03a]). Again, of
course, the choice reflects a personal bias.

We will stick to the ground field of the rational numbers because the knowledgeable
reader will anyway easily transfer what will be said to more general settings or may have a
look at the references.

2 Galois action and P1 − {0, 1,∞}

In his ‘Esquisse d’un programme’ [Gr84], Grothendieck suggests – among other things – that
one should try to give a description of the absolute Galois group GalQ = Aut(Qalg/Q) of the
rational numbers, by studying its action on the geometry (more precisely: algebraic invari-
ants) of Q-varieties. As good candidates he proposes the geometric fundamental group of
(categories of) moduli spaces of curves with marked points. Special attention should be paid
to the moduli space of the Riemann sphere with n ≥ 4 marked points. The Grothendieck–
Teichmüller group ĜT, that will be discussed in Section 3, is the simplest incarnation of
this idea. By enlarging and modifying the category of Q-varieties under discussion, one gets
variants of ĜT (which might be equal to ĜT) reflecting more and more arithmetic of the
rational numbers.
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2.1 abelian actions

Let us first explain what we mean by action on geometry by means of an example. We
clearly don’t have in mind the natural action by definition of GalQ on the algebraic closure
Qalg of Q. This action is tautological and cannot serve to clarify the structure of GalQ.

But GalQ also acts on the multiplicative group Gm, a Q-variety, and moreover respects
the group structure. Consequently, the tower of ‘multiplication by n maps’

Gm

n·
��

〈ζn〉

��

⊃

Gm 1∋

yields a compatible action of GalQ on the kernels, the groups µn = 〈ζn〉 of nth roots of
unity. At first sight, roots of unity might belong to the world of Qalg that we just have
rejected, but we may also canonically identify µn with a group of covering automorphisms,
which is clearly a geometric group. We deduce an abelian representation GalQ → Aut(µn);
altogether we have a geometric description of the cyclotomic character

χcycl : GalQ → Ẑ∗.

We understand the abelian part of GalQ by Class Field Theory, which is the main achieve-
ment of abelian mathematics in number theory. The result concerning the tower of Gm is
the following:

Theorem 1 (Kronecker–Weber). The cyclotomic character identifies the maximal abelian

quotient (GalQ)
ab

of the absolute Galois group of the rationals with Ẑ∗. The corresponding
maximal abelian extension Qab coincides with the maximal cyclotomic extension Q(

⋃
n ζn).

2.2 nonabelian actions

We called the cyclotomic character an abelian representation. Here the nonabelian counter-
parts are not the representations of higher rank, i.e., ℓ-adic representations GalQ → GLn(Zℓ),
which generalize the example with the multiplicative group to other (systems of finite)
abelian group schemes and still exploit the group structure of the geometric object. For us
the nonabelian representations are Galois actions on nonabelian groups.

Due to the absence of real paths in the context of algebraic varieties (over Qalg) Grothen-
dieck generalized the concept of a fundamental group by the algebraic equivalent of the
theory of covers. The (étale) fundamental group πalg

1 of a connected variety is defined as
the pro-finite group of automorphisms of the tower of all finite étale covers, see [SGA 1]
Exp. V.

Thus a variety X/Q defined over the rationals leads to a GalQ-action on the fundamental

group πalg
1 (X ⊗Qalg) of the corresponding geometric variety, the base change X ⊗Qalg, just

because the Galois group acts on the latter and πalg
1 is a functor. Note that although X is

defined with equations using coefficients from Q, the action however will most likely be non
trivial as the definition of covers may require non-rational algebraic numbers.

The tower of Gm’s discussed above can be identified with the tower of unramified covers
of Gm ⊗ Qalg and as πalg

1 (Gm ⊗ Qalg) = Ẑ we recover again the cyclotomic character

χcycl : GalQ → Aut
(
πalg

1 (Gm ⊗ Qalg)
)

= Ẑ∗.

In the nonabelian case we need to be more precise. The functor πalg
1 actually depends on

a pair of a space together with a base point. If we want to neglect the base point we pay
the price by knowing everything only up to inner automorphisms. We deduce as nonabelian
actions homomorphisms

GalQ → Out
(
πalg

1 (X ⊗ Qalg)
)
,
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where Out = Aut/Inn is the group of outer automorphisms. We call such a map an exterior
representation. The first example of a curve with nonabelian fundamental group is certainly

P1 − {0, 1,∞}.

Its collection of étale covers was proven to be very rich.

Theorem 2 (Belyi [Be79]). (a) A proper smooth curve X/C, i.e., a compact Riemann
surface, is defined over Qalg if and only if there exists a map β : X → P1

C with ramification

at most above 0, 1,∞. (b) The exterior representation GalQ →֒ Out
(
πalg

1 (P1
Qalg −{0, 1,∞})

)

is faithful (meaning the homomorphism is injective).

A map β as in (a) is called a Belyi map. Let us deduce (b) from (a). By (a) the elliptic
curve Ej with j-invariant j ∈ Qalg is the (canonical) smooth compactification of a finite
étale cover of the three punctured projective line. If σ ∈ GalQ belongs to the kernel of the
map in (b) then Eσ(j) is isomorphic to Ej , whence σ(j) = j for all j and so (b) follows from
(a).

Because the nonabelian Galois action on πalg
1 (P1

Qalg−{0, 1,∞}) is faithful we consequently
want to know the structure of the latter group. The structure is determined in two steps.
First, by a result of Grauert–Remmert/Grothendieck [SGA 1] Exp. XII Thm 5.1, namely
GAGA for finite étale covers, finite analytic étale covers of an algebraic variety over C
are in fact algebraic. Thus the algebraic fundamental group coincides via analytification
(X  Xan) with the pro-finite completion of the traditional topological fundamental group.

Secondly, at least in characteristic 0, the algebraic fundamental group behaves geometri-
cally and does not change under base change of algebraically closed fields, see [SGA 1] Exp.
X Cor 1.8 (the proof for the proper case given there works also in general if the characteristic
is 0). Both isomorphisms taken together imply isomorphisms

̂πtop
1 (Xan)

∼=
−→ πalg

1 (X ⊗ C)
∼=
−→ πalg

1 (X ⊗ Qalg).

Hence, πalg
1 (P1

Qalg −{0, 1,∞}) is a free pro-finite group F̂2 on two generators x, y, or more
symmetrically, three generators x, y, z modulo the relation xyz = 1. The elements x, y, z
are loops/inertia generators at 0, 1,∞ respectively. Therefore Belyi’s Theorem above states

that GalQ acts faithfully on a group as ‘easy’ as F̂2.

2.3 dessin d’enfant — children’s drawings

The part of Belyi’s Theorem that we proved above actually only exploits the action of GalQ
on the set of isomorphy classes of finite étale covers of the three punctured projective line.
A combinatorial description of these isomorphy classes is obtained through the notion of a
dessin d’enfant, see [Gr84].

Definition 3. A dessin d’enfant is a CW-structure on a compact, oriented, topological
surface together with a bipartite structure, such that attaching maps of 2-cells are covering
maps over the interior of 1-cells. A bipartite structure here means that the set of vertices
(the 0-skeleton) is labeled with labels from {0, 1} such that each attaching map of a 1-cell
hits vertices of both labels. Isomorphisms of dessin are defined as cellular homeomorphisms
of the underlying surface.

The name dessin d’enfant, or dessin for short, stems from the
fact that such an object is encoded in the graph on the surface
formed by the 1-skeleton: its shape may happen to resemble the
masterpieces of our childhood. The picture on the right gives an
example of a dessin on the Riemann sphere with black and white
vertices corresponding to those labeled 0 and 1 respectively.

To a Belyi map β : X → P1 we associate the dessin formed by the graph β−1
(
[0, 1]

)
on

the topological surface underlying Xan. The bipartite structure is given by labeling a vertex
v ∈ β−1({0, 1}) by β(v). One easily checks that this construction identifies isomorphism
classes of étale covers of P1 − {0, 1,∞} with isomorphism classes of dessins.
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The combinatorial description of covers by dessins allows for a more combinatorial ana-
lysis of the respective Galois action. The Galois action preserves certain invariants of the
dessin: the genus of the surface, the degree = number of 1-cells, the valency list = ramifica-
tion indices above 0, 1 and ∞ respectively. At least conjecturally this is only the tip of an
iceberg of combinatorial invariants that describe Galois orbits of GalQ acting on isomorphy
classes of dessins.

At least we know that GalQ acts continuously on the finite sets of isomorphy classes of
dessins with fixed genus, degree and valency list. Thus there are number fields corresponding
to the stabilizers of this action that are mysteriously attached to the combinatorial data of
each dessin d’enfant. A nontrivial result in the spirit of the above discussion is the following
(see [Za00] for the definition of the dessin called ‘Leila flowers’).

Theorem 4 (Zapponi [Za00]). A generalization of the Kochetkov Conjecture is true, in
particular: The 24 ‘Leila flowers’ of type a < b < c < d < e form at least two Galois orbits
if abcde(a + b + c + d + e) is a square ∈ Q.

The proof uses Strebel differentials (quadratic differentials) and a stratification of the
decorated moduli space following Kontsevich and Penner. Recently, in his Diplomarbeit,
Ronkine obtained the following higher dimensional analogue of Belyi’s Theorem.

Theorem 5 (Ronkine [Ro03]). Let X/C be a smooth, proper surface of general type. Then
the birational class of X is defined over Qalg if and only if there exists an X ′ birational to
X and a map γ : X ′ → P1 of relative dimension 1 with singular locus at most over {0, 1,∞}
and either γ truly varying or all nonsingular fibres of γ are defined over Qalg.

From Ronkine’s Theorem we deduce that GalQ acts continuously on the finite set (Geo-
metric Shafarevich Conjecture) of truly varying, smooth, proper curves of genus g ≥ 2
parametrized by P1

C −{0, 1,∞}. To have a higher dimensional analogue of dessins would be
desirable.

3 Grothendieck–Teichmüller theory

So far we have neglected that the category of covers is governed by a group, the algebraic
fundamental group. Instead of only exploiting the action on isomorphy classes we now study
what the Galois action does with the group structure.

3.1 the group ĜT

In some sense the Galois action is local. It respects inertia groups of boundary components
(cusps) and, moreover, acts cyclotomically on inertia generators up to conjugation. Recall

that we identified πalg
1 (P1 − {0, 1,∞}) with the pro-finite free group F̂2 on generators x, y.

For f ∈ Ẑ and f ∈ F̂2 let ϕλ,f be the following endomorphism of F̂2:

ϕλ,f :=

{
x 7→ xλ

y 7→ f−1yλf.

Deligne’s method of tangential base points (see [De89]) lifts the exterior Galois representa-
tion from Belyi’s theorem to an injective homomorphism

GalQ →֒ Aut
(
F̂2

)

mapping σ to ϕλσ ,fσ
where λ(σ) = χcycl(σ) is the cyclotomic character and fσ is a uniquely

determined element from the commutator subgroup F̂′
2 of F̂2. Following Drinfel’d [Dr90] and

Ihara [Ih90], and in fact using results of Lochak–Schneps [LS97], we define the pro-finite
Grothendieck–Teichmüller group (unhistorically) as

ĜT =

{
(λ, f) ∈ Ẑ∗ × F̂′

2

∣∣∣∣
I, II, III and

ϕλ,f ∈ Aut(F̂2)

}
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I: θ(f)f = 1,

II: ω2(fxm)ω(fxm)fxm = 1, m =
λ − 1

2

III: ρ4(f̃)ρ3(f̃)ρ2(f̃)ρ(f̃ )f̃ = 1 in Γ̂0,5.

Here θ and ω (resp. ρ) are certain automorphisms of F̂2 (resp. Γ̂0,5), see [LS97]. The
original defining equations differ but are equivalent to the above I, II, III. Note that the
group structure on ĜT is not induced from the product Ẑ∗× F̂′

2 but stems from composition

of ϕλ,f within Aut(F̂2). Let us mention that it is by no means obvious but nevertheless true

that ĜT is actually a pro-finite group.
The theme of GT was discovered by different people from different perspectives. For

example Drinfel’d was led to consider a pro-algebraic version of GT over a field k when
studying the universal way to deform associativity and braiding in a quasi-associative, quasi-
braided tensor category, see [Dr90]. To summarize the above we note the following theorem.

Theorem 6 (Drinfel’d [Dr90], Ihara [Ih90]; Deligne [De89]). We have injective

group homomorphisms GalQ →֒ ĜT ⊂ Aut
(
F̂2

)
that map σ to (λσ , fσ) and thus yield a

parametrization of the set of elements of GalQ by an invertible element of Ẑ and a pro-word

in the letters x, y from the commutator subgroup F̂′
2.

3.2 moduli of curves

Let Mg,n be the moduli space of smooth proper curves of genus g with n ordered marked
points. The double ratio defines an isomorphism M0,4 = P1 −{0, 1,∞} that ultimately will

lead us to a change in perspective. First of all note that πalg
1 (Mg,n ⊗ Qalg) = Γ̂g,n is the

pro-finite completion of the mapping class group. Here πalg
1 (Mg,n) is the fundamental group

in the sense of algebraic stacks (orbifold-π1). The group Γ̂g,n inherits a nonabelian action
by GalQ in the usual way by functoriality.

It was observed by Lochak and Schneps that symmetries of the moduli spaces for
small values of (g, n) explain the nature of the equations that define ĜT . More precisely, I
and II is the shadow of the natural S3 action permuting the cusps of M0,4, and the cyclic
permutation action of cusps of M0,5 is responsible for equation III according to the following
theorem.

Theorem 7 (Lochak–Schneps [LS97]). The equations I, II, III are nonabelian cocycle
equations. The corresponding nonabelian cohomology classes have natural representatives
that lead to parameterizations of pairs (λ, f) that belong to ĜT.

Underlying these efforts is the hope to arrive at a combinatorial description of GalQ, resp.

its image in ĜT, from geometric Galois theory. By imposing correct additional constraints
one desires to get hold of a variant of ĜT that actually coincides with GalQ.

3.3 actions on towers

Let V be a category of smooth varieties over Q. We define a generalized Grothendieck–
Teichmüller group to be the pro-finite group of local automorphisms of the functor πalg

1

restricted to VQalg that is the category of base changes X ⊗ Qalg of varieties from V and
maps defined over Q.

ĜTV := Aut

(
πalg

1 : VQalg → (groups)
‘preserving inertia’

)

Here automorphisms of the functor are invertible natural transformations up to inner au-
tomorphisms. Locality refers to cyclotomic action up to conjugation on inertia subgroups
coming from boundary components of natural compactifications. The natural nonabelian
action of GalQ is compatible with Q-rational maps of Q-varieties and thus induces a natural

homomorphism GalQ → ĜTV .
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A particular choice of V is the ‘genus 0 Teichmüller tower’ (together with the compact-
ifications by stable curves)

T0 :=

{
M0,n

∣∣∣∣
n ≥ 4, Sn-action on M0,n,
forgetful maps M0,n+1 → M0,n

}
.

By the following theorem we recover the classical pro-finite Grothendieck–Teichmüller group
in this generalized setting.

Theorem 8 (Drinfel’d, Ihara, Harbater–Schneps [HS00]). There exists a natural
isomorphism

ĜTT0
= ĜT .

The full Teichmüller tower consists of

T :=

{
Mg,n

∣∣∣∣
2 − 2g − n < 0, Aut(Mg,n),
forgetful maps Mg,n+1 → Mg,n

}

(again with compactifications by stable curves). On the corresponding generalized ĜT we
have the following theorem.

Theorem 9 (Hatcher–Lochak–Schneps [HLS00], Nakamura–Schneps [NS00]).

There is an equation IV from M1,2 that leads to the group ĜTnew of elements in ĜT that
satisfy equation IV.

The new group acts on the algebraic fundamental groups of the full Teichmüller tower
T in a natural way such that its image contains the Galois action:

GalQ ⊆ ĜT new ⊆ ĜTT .

It has been announced that ĜTnew equals ĜTT , but it is not known whether the other
inclusion in Theorem 9 is in fact an isomorphism or a strict inclusion. The proof uses the
curve complex of Hatcher–Thurston. This complex being simply connected allows us to de-
tect sets of equations that generate all equations that an action on the algebraic fundamental
groups of the full Teichmüller tower have to verify.

What is more, the above theorem is in accordance with Grothendieck’s ‘first two level
philosophy’. The ‘first two level philosophy’ predicts that generators for ĜTT come from
cases of modular dimension 3g−3+n equal to 1, namely M0,4 and M1,1, whereas equations
are generated by equations of origin in modular dimension 2, namely M0,5 and M1,2.

3.4 arithmetic in ĜT

Still the guiding question is the following. How close is actually GalQ to ĜT? One way to
decide whether both groups don’t coincide consists of disproving group-theoretic properties
of GalQ for ĜT.

What is more, GalQ is not just a group, it is the group of arithmetic of integers. As
arithmetic content of GalQ itself we can consider the family of (conjugacy classes of) decom-
position subgroups GalQp

(resp. GalR) of GalQ that are parametrized by the finite (resp.
infinite) places of Q. These decomposition subgroups are canonically isomorphic to the ab-
solute Galois groups of the completion of Q at the respective places. It is an important result
of F.K. Schmidt and Neukirch, that these decomposition subgroups are group-theoretically
characteristic among the set of all closed subgroups. Now, if ĜT coincides or at least is close
to GalQ, then we should be able to describe arithmetic in ĜT by geometric Galois theory.

Here arithmetic in ĜT means conjugacy classes of subgroups related to a place of Q.
Let us reconsider how we received our knowledge of the group theoretic structure of

πalg
1 (P1

Qalg − {0, 1,∞}). We used C-analytic methods and knowledge about the topological
fundamental group, which could as well be considered as the C-analytic π1. This kind of
geometry is certainly related to the infinite place of Q. So we are led to think that the various
places of Q should lead to arithmetic within ĜT through the different ways to complete Q

and then do analysis.
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Let us check for the infinite place whether we can detect arithmetic in ĜT. We have
inclusions

Γtop
0,4 := πtop

1 (M an
0,4) ⊂ πalg

1 (M0,4) = Γ̂0,4,

and a compatible nonabelian action

GalR → Out(Γtop
0,4 )

of the subgroup GalR ⊂ GalQ. Let Out(Γtop
0,4 ) be the closure of the image under the canonical

map Out(Γtop
0,4 ) → Out(Γ̂0,4) induced by pro-finite completion. Then we have the following

theorem.

Theorem 10 (André [An03] Thm 3.3.1).

The intersection Out(Γtop
0,4 ) ∩ GalQ inside Out

(
Γ̂0,4

)
coincides with GalR.

The theorem suggests that under the canonical map ĜT → Out(Γ̂0,4) the preimage of

Out(Γtop
0,4 ) reflects the arithmetic at the infinite place.

For analysis at p we chose to do Cp-analytic geometry in the sense of Berkovich. But
what is the right fundamental group here to replace the question mark in the following table:

infinite place: completion R ↔ C-analytic: πtop
1

finite place p: completion Qp ↔ Cp-analytic (Berkovich): ?

3.5 the tempered fundamental group

Let X be a variety over Q. For a fixed isomorphism of fields C ∼= Cp, André defines the
tempered π1 of the Berkovich-Cp-analytic space X⊗Cp, a topological group together with
a homomorphism

πtemp
1 (X ⊗ Cp) → πalg

1 (X ⊗ Qalg),

that identifies πalg
1 with the pro-finite completion of πtemp

1 . The tempered fundamental
group classifies ‘topological by étale’ Cp-analytic covers. In a sense, it catches reduction
behaviour of covers mod p. Namely for an elliptic curve E/Q we can compute the tempered
fundamental group of the underlying Cp-analytic space as follows.

πtemp
1 (E ⊗ Cp) =

{
Ẑ × Ẑ E good at p

Z × Ẑ E bad at p

The definition of the tempered fundamental group arose from the study of p-adic differential

equations. But it also serves for the following analogue of Theorem 10. Let Out(Γtemp
0,4 ) be

the closure of the image under the canonical map Out(Γtemp
0,4 ) → Out(Γ̂0,4) induced by

pro-finite completion.

Theorem 11 (André [An03] Thm 7.2.1).

The intersection Out(Γtemp
0,4 ) ∩ GalQ inside Out

(
Γ̂0,4

)
coincides with GalQp

.

If we moreover define tempered analogues of the generalized Grothendieck–Teichmüller
groups associated to a category V of Q-varieties by

GTtemp
V

:= Aut

(
πalg

1 : VCp
→ (groups)

‘preserving inertia’

)

and let ĜTp be the closure of image of GTtemp
T0

→ ĜTT0
, then we obtain more precisely the

following result.

Theorem 12 (André [An03] Thm 8.7.1). GalQp
= ĜTp ∩ GalQ ⊂ ĜT.

Hence, we are also able to detect arithmetic at a finite prime within the Grothendieck–
Teichmüller group.
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4 Anabelian geometry

Anabelian geometry deals with the geometry encoded in the algebraic fundamental group of
a variety, as well as the arithmetic encoded in the corresponding outer Galois representations.
To my knowledge, the following conjecture of anabelian nature was first raised as a question
by Ihara and later given the status of a conjecture by Oda–Matsumoto. It is now a theorem
by Pop which relies on birational anabelian results, but remains unpublished to date.

Theorem 13 (Pop). The Ihara/Oda–Matsumoto Conjecture holds. Namely, let V be the

category of all smooth varieties over Q. Then GalQ → ĜTV is an isomorphism.

A direct consequence of André’s studies of the tempered fundamental group leads to
the following local version of the conjecture.

Theorem 14 (André [An03] thm 9.2.2). Let V be the category of all smooth varieties
over Q as above. Then GalQp

→ GTtemp
V

is an isomorphism.

One may think of these two theorems as astonishing facts because they claim to give
an alternative, non tautological description of the absolute Galois group of the rationals
together with its arithmetic. However, first of all the category V above is too large to
lead to anything manageable. And secondly, to give the list of varieties in V one still
needs to write down equations with rational numbers. Nevertheless, the results guides us to
look for interesting V that allow for a concrete combinatorial/geometric/group theoretical

description of ĜTV and thus GalQ. According to Pop, in his approach it is even possible to
work with complements of rational hyperplane arrangements on P2. He then uses Ronkine’s
theorem (Theorem 5) combined with a clever covering trick to give, in principle, a complex

analytic description of the corresponding ĜTV . The use of rational numbers to describe
GalQ has disappeared!

The anabelian methods of Pop yield even stronger results: it is sufficient to work with
pro-ℓ completions for a fixed prime ℓ.

4.1 birational pro-ℓ anabelian geometry

In birational anabelian geometry one deals with absolute Galois groups of function fields. A
major breakthrough in anabelian geometry towards Grothendieck’s conjectures in the field
was achieved by Pop in the ’90s. Let K ins denote the pure inseparable closures of a field
(in particular K ins = K if the characteristic is 0), and let Isomi denote isomorphisms of
perfect fields up to powers of the Frobenius automorphism (again, if the characteristic is 0
disregard the i).

Theorem 15 (Pop [Po94]). Let K, L be infinite, finitely generated fields. Then the natural
map

Isomi(Lins, K ins) → Isomout(GalK , GalL)

is a bijection.

The birational pro-ℓ anabelian conjecture asks for a stronger and more geometric result
about pro-ℓ completed absolute Galois groups Gal∧ℓ

K . Let k be an algebraically closed field
and ℓ a prime different from the characteristic. Then the conjecture claims the following.

Conjecture 16. Let K/k, L/k be function fields of transcendence degree exceeding 1. Then
the natural map

Isomi(Lins, K ins) → Isomout(Gal∧ℓ
K , Gal∧ℓ

L )

is a bijection.

This conjecture goes back to Bogomolov and there are already some articles devoted to
it. The claim of the conjecture includes in particular the case of k = C, hence a question of
complex analysis rather than arithmetic geometry!
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4.2 anabelian phenomena over Falg
p

So far there has been progress on the conjecture above only in the case of k being the
algebraic closure of a finite field . In this case, recently there have been given proofs by
Bogomolov–Tschinkel for the case of transcendence degree 2 and some further assumptions,
and by Pop in the general case (again k = Falg

p ).

Theorem 17 (Bogomolov–Tschinkel [BT03]; Pop [Po03]). Let k be the algebraic
closure of a finite field of characteristic different from ℓ. Let K/k, L/k be function fields of
transcendence degree exceeding 1. Then the natural map

Isomi(Lins, K ins) → Isomout(Gal∧ℓ
K , Gal∧ℓ

L )

is a bijection.

For a detailed and carefully written survey see the Bourbaki talk by Szamuely [Sz03]. An
important step in the proof consists in the treatment of the local theory. By that we mean
to characterize decomposition groups or better to identify valuations of the field purely from
the data of Galois groups. Here one has also results by Ware, Efrat, Efrat-Fesenko,
and Koenigsmann.

Let us now turn to more geometric anabelian phenomena. If we replace the absolute
Galois group of the function field of a variety by the algebraic fundamental group of the
variety itself, then we get a relatively small quotient that nevertheless still contains room
for anabelian geometry.

Let us consider smooth proper curves over an algebraically closed field. In characteristic
0 the respective fundamental group is isomorphic to the pro-finite completion of the topo-
logical fundamental group of the corresponding Riemann surface. Hence it does not vary in
geometric fibres of a connected family. However, when the characteristic is positive, some
covers cease to exist and it turns out that the fundamental group is a very subtle invariant.

Theorem 18 (Raynaud [Ra02], Pop/Säıdi [PS03], Tamagawa [Ta04]). Let π be a

pro-finite group not isomorphic to Ẑp ×
∏

ℓ 6=p Ẑ×2
ℓ for any prime p. Then there are only

finitely many isomorphy classes of smooth projective curves of genus g over the algebraic
closure of a finite field whose algebraic fundamental group is isomorphic to the given π.

The exceptions correspond to the infinity of ordinary elliptic curves over the algebraic
closure of Fp.

All three articles cited above for this theorem contain an abundant wealth of beautiful
mathematics. They first of all exploit Raynaud’s Θ-divisor in the Jacobian of the curve
and how this divisor behaves in families. The central idea is to compare the number of
elementary abelian p covers of cyclic prime to p covers of the curve. This number is encoded
in the group theory of the fundamental group. When this number is maximal we call the
cyclic cover new-ordinary and this property is obstructed by torsion points on Θ. This
leads to general questions of torsion points on divisors of abelian varieties and thus to other
ingredients: a generalized Anderson-Indik theorem and Hrushovski’s theorem on relative
Mordell-Lang. To get this setup up and running in the general case, delicate studies of
families of abelian varieties are necessary. Among the interesting things proven along the
way there is a ‘new-Torelli theorem’ (Tamagawa [Ta04]) stating that a family of curves is
trivial if and only if a certain family of generalized Prym-varieties is trivial.

4.3 anabelian curves: with Galois action

Of course, we conjecture not only finiteness in Theorem 18 but that the sets of Falg
p points

of Mg with fixed prescribed fundamental group coincide with the orbits under Frobenius.
This is obviously the strongest form possible. So far, to get uniqueness up to Frobenius we
have to exploit arithmetic of Galois action and, unfortunately, also restrict to non-constant
curves.

Following earlier results due to Tamagawa for affine, hyperbolic curves over finite fields,
and fields finitely generated over Q, see [Ta97], and then soon afterwards by Mochizuki for
hyperbolic curves over sub-p-adic fields, see [Mz99a], we have also the following theorem.
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Theorem 19 (Stix [Sx02]). Let k be an infinite but finitely generated field of positive
characteristic p. Let X and X ′ be smooth, hyperbolic (i.e. with negative Euler characteristic)
curves over k, such that and X ⊗ kalg is not defined over Falg

p . Then the following holds.

(1) X and X ′ have isomorphic exterior Galois representations on πalg
1 if and only if

there is a purely inseparable map X ′ → X (or vice versa).

(2) The canonical map Autk(X) → OutGalk

(
πalg

1 (X ⊗ kalg)
)

is an isomorphism of finite
groups.
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[Ro03] Ronkine, I., Eine höherdimensionale Variante des Satzes von Belyi, Bonn 2003,
Diplomarbeit.
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