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The homotopy category is a homotopy category

By

ArNE STROM

In [4] Quillen defines the concept of a category of models for a homotopy theory
(a model category for short). A model category is a category K together with three
distinguished classes of morphisms in K: F (“fibrations™), C (“cofibrations”), and
W (“weak equivalences’’). These classes are required to satisfy axioms M0—MS5 of [4].
A closed model category is a model category satisfying the extra axiom M6 (see [4]
for the statement of the axioms M0—M6).

To each model category K one can associate a category Ho K called the homotopy
category of K. Essentially, HoK is obtained by turning the morphisms in W into
isomorphisms.

It is shown in [4] that the category of topological spaces is a closed model category
if one puts F = {Serre fibrations} and W = {weak homotopy equivalences}, and
takes € to be the class of all maps baving a certain lifting property.

From an aesthetical point of view, however, it would be nicer to work with ordinary
(Hurewicz) fibrations, cofibrations and homotopy equivalences. The corresponding
homotopy category would then be the ordinary homotopy category of topological
spaces, i.e. the objects would be all topological spaces and the morphisms would be
all homotopy classes of continuous maps.

In the first section of this paper we prove that this is indeed feasible, and in the
last section we consider the case of spaces with base points.

1. The model category structure of Top. Let Top be the category of topological spaces
and continuous maps. By fibrations (cofibrations) we shall mean maps having the
homotopy lifting (extension) property with respect to all spaces.

Let F = {fibrations}, C == {closed cofibrations}, and W = {homotopy equiva-
lences}.

If i: A > X and p: £ > B are morphisms in Top, we shall say that ¢ has the
left lifting property (LLP) with respect to p, and that p has the right lifting property
(RLP) with respect to ¢, if every commutative square of the form

A——F

i b

X—— B

in Top admits a diagonal X — E.
28*
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Proposition 1. The following relations hold between F, C and W.
(a) peF <> p has the RLP with respect to all te CNW.
(b) ieC <1t hasthe LLP with respect to all pec FNW.
(¢) pe FN\ W <>p has the RLP with respect toall ieC.
(d) ieCNW <=1 has the LLP with respect to all pe F.

Proof. (a) follows from [6], Theorem 8, and the definition of fibrations.

= in (b) follows from [6], Theorem 9. To prove < we first note that if 7 has the
LLP with respect to all pe Fn W, then ¢ is a cofibration. It remains to show that
1 is closed. We may assume that ¢ is an inclusion, ¢: 4 ¢ X. Let

E=AxIuXx(0,1]cXx1I,

and define p: £ — X by p(x, f) = z. p is a homotopy equivalence, and it is also a
fibration, for given g: ¥ — E and G: Y X I — X with Gy = pg, we can construct
a suitable lifting G: ¥ x I — E by letting

Gy, 1) =G0, t + 1 —t)prrg(y),

where prr: B — I is the projection map. (This construction works for any inclusion
map.)

Hence 7 bas the LLP with respect to p. Now define j: 4 — F by j(a) = (a, 0).
Then pj = 1x4, and consequently there is a map f: X — E extending j with pf = 1x.
It follows that 4 = f~1 pr7*(0) is closed in X.

{c) and (d) follow from [6], Theorems 8 and 9, and (b).

Proposition 2. Every continuous map f: X —Y can be factored as f = pi = p'?,
where p and p’ are fibrations, 1 and i’ are closed cofibrations, and ¢ and p’ are homotopy
equivalences.

Proof. f = pi: It is well known (see for instance [1], 5.27) that f can be factored
f = mj, where j: X ¢ W imbeds X as a strong deformation retract of W, and 7z: W—Y
is a fibration. As in the proof of Proposition 1 (b) let £ = X x I U W x (0,1] and
define ¢: X - E, #': E— W by i(x) = (z,0), '(w, {) = w. Then ¢(X) is a strong
deformation retract of £ and i(X) = pr7*(0). It follows that ¢ is a closed cofibration
and a homotopy equivalence. =’ is a fibration, and the desired factorization f = p¢
follows, with p = =st'.

f=p'": To get this factorization it is sufficient to factor the fibration p: £ —Y
constructed above as p = p'7, with 7 a closed cofibration and p’ a fibration and
a homotopy equivalence.

Let Z be the disjoint union ¥ U E X (0,1] as a set. Define p":Z Y, ¢: Z — I,
and a:Z—~Y - EX I by

Plet)y=mpE), »Py)=y,
ple t)=t, ply)=0,
wle, t) = (e, t).

Then give Z the weakest topology making p’, ¢ and o continuous. Z — Y is then
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homeomorphic to £ x (0, 1], and the only difference between Z and the mapping
cylinder of p is in the topology near Y. The map 7: E —Z given by i(e) = (e, 1)
is clearly a closed cofibration.

It only remains to show that p’ is a fibration. However, one can easily verify
that p': Z - Y is the “generalized Whitney sum” ([3]) of the fibrations 1y and 7,
and therefore p’ is a fibration.

We can now prove

Theorem 3. The category Top, with the morphism classes F, C and W, is a closed
model category.

Proof. It is sufficient to verify MO, M2, M5 and M6. M0 and M5 are obviously
true and M2 is just Proposition 2 above, while M6 follows from Proposition 1,
M2 and MS5.

2. Some lemmas. The following lemmas will be useful in the next section.

Lemma 4. If i: A c X is a cofibration and Y is a compact space, then the map

gt AY c XY
induced by i is also a cofibration (with respect to the compact-open topology ).
Proof. If H, ¢ are as in [6], Lemma 4, then corresponding functions
H: X¥x I ->XY and ¢@: X¥ 1
are given by

BHf.H@)=H{fw.0, o¢f)= Su}ii;tpf(y)-
ye

Lemma 5. If j: B— A and i: 4 — X are maps such that © and i§ are cofibrations,
then j is also a cofibration.

Proof. We can assume that ¢ and § are inclusion maps. There exists a halo U
around 4 in X together with a retraction r: U — 4. Since U is also a halo around
Bin X, B c U is a cofibration ([2], Satz 2, Korollar).

Now consider a commutative diagram

Bl syI
(1) o e
4—15Y

where 79 (w) = @ (0). The diagram

B _._L Y!
(2) n \Lno
fr
U——>

is also commutative, and since Bc U is a cofibration, (2) admits a diagonal G: U—~Y I,
G| A is then a diagonal in (1). It follows that § is a cofibration.
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Recall that a well-pointed space is a space X together with a base point %€ X
such that the inclusion map {*} c X is a closed cofibration.

Lemma 6. Consider a pullback diagram

P
F—>E

PR
B—>B

where p is @ fibration. Suppose that E, B, B' are well-pointed and that | and p respect
base points. Then E’ (with the obvious base point) is also well-pointed. In particular,
the fiber of p is well-pointed.

Proof. Consider the sequence
wirielor

where * is the base point of E’ and F is the fiber over the base point of B’. By [6],
Theorem 12, ¢ and f'7 are cofibrations. Since E is well-pointed, (f'¢)§ is a cofibration;
hence, by Lemma 5 above, § is a cofibration. It follows that ¢j is a cofibration.

3. The pointed case. Let Top* be the category of pointed spaces and continuous
base point preserving maps. All base points will be denoted by #. Fibrations and co-
fibrations in Top* are defined exactly as in Top, except that all maps and homotopies
are required to respect the base points. From now on homotopies, fibrations, efec. in
Top will be referred to as free homotopies, fibrations, ete.

It is clear that if a map ¢: 4 — X in Top* is a free cofibration (that is, when
considered as a map in Top), then it is a cofibration in Top*. On the other hand,
a fibration in Top* is also a free fibration.

Just as in the free case one can prove that all cofibrations in Top* are imbeddings.
Also, if the base point of X is closed, an inclusion 4 ¢ X in Top* is a cofibration
if and only if (X x0 U A x I)/*x I is a retract (and hence a strong deformation
retract) of X x I/% X I (4 need not be closed). The arguments are similar to those
in [5] and [6].

We shall need the following result, analogous to [6], Lemma 4.

Proposition 7. Let i: A c X be an inclusion map in Top*, and suppose that there
exists a continuous function yp: X — I such that y=2(0) = {x}. Then ¢ is a cofibration
if and only if there exist a continuous function @: X — I with A c ¢~1(0), and a
homotopy H: X X I — X rel A such that Ho = 1x and H (z, t) € A whenever

Min(t, p () > @(x).

If such @ and H exist they can be chosen in such a way that ¢ (x) = y(x) for all
zeX.

Proof. Suppose first that ¢ is a cofibration. Let
K= {xHeXx0udxI|t=y)}
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and define p: X X0V AXI—K by
e (,8) = (z, Min (8, p(2))) -

Since i is a cofibration, ¢ extends to 7: X X I — K. ¢ and H can then be defined by
pz)= SzE? (Min(t, p(z)) —prrr(x,t)), H(xt)=prxriz,t).

It is clear that ¢ and H have the desired properties.
Conversely, if ¢ and H are given, we can define a retraction

re XxIxxXI—>(XXx0UAdxIfexI
by
(H(z,1),0), ty (@) = @(),
(Hz,8), t — @@)p(x)), ty(@)>¢().

Our main interest will be in the full subcategory Top¥ of well-pointed spaces,
rather than the whole category Top*. It is an easy consequence of the product
theorem for cofibrations ([6], Theorem 6) that the mapping cylinder in Top* of a
map between well-pointed spaces is well-pointed. Consequently, a map in Top¥ is
a cofibration in Top® if and only if it is a cofibration in Top*.

Dually, it follows from Lemmas 4 and 6 above that the mapping track of a map
in Top* is well-pointed, and so a map in Top¥ is a fibration in Top? if and only if
it is a fibration in Top*.

A necessary and sufficient condition for a pointed space X to be well-pointed is
that there exist a w: X — I with 9~1(0) = {*} and a homotopy P: X x I > X
with Py = 1x and P(x,{) = % when ¢ > y(z) ([6], Lemma 4). Let us call (P, y)
a well-pointing couple for X. .

r(@,f) = {

Lemma 8. If 4 c X is a cofibration tn Top® there exists a well-pointing couple
(P, v) for X such that P(A x I) c A.

Proof. Let (Px, wx) and (Pa, p4) be well-pointing couples for X and 4, respec-
tively. Choose ¢: X — I and H: X X I — X satisfying the conditions of Proposi-
tion 7 with respect to ypx, and define a: X — {x} > I by a(x) =1 — ¢(z /sz(x
Since 4 c X is a cofibration, P4 extends to a homotopy P: X x I — X with Py =
Also, 4 can be extended to a continuous p: X — I by putting

T(@) = { a(@)paH(z, 1) + o), @) <yx(@),
yx (@), @ (@) = yx ().

(Recall that H(z, 1) € 4 when ¢(z) < ypx(z).)
We then have p~1(0) = {#}. For, if 2+ % and p(x) = 0, we should have

paH(z,1) = p()=0.
But this would imply H (z, 1) = % and x € A. However, it is clear that
px(@') =yxH(@', 1) forall 2’ed,

and therefore yx(x) = 0, contradicting the assumption that x + *.
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The required couple (P, v) is now given by

Px, tly (), t<plx),
Px(P(x,1),t—9(), t=p@),

p(x) = Min(1, y (2) + yx P(2,1)).

We shall use this lemma to prove

P(x,t):{

Proposition 9. 4 map i: 4 — X in Top¥ is a cofibration if and only if it is a free
cofibration.

Proof. Only “only if” needs proof. Suppose, then, that ¢: 4 c X is a cofibration
in Top®. (For simplicity we assume that ¢ is an inclusion.) Let (P, ) be a well-
pointing couple as described in Lemma 8, and then let H and ¢ be as in Proposi-
tion 7.

Define H': X X I —X and ¢': X -1 by

H(z,1) :{ P(H (x, ), Min[t, (@) /p(@)]), = + *,

3 x=*,

@'x) = @) — p*) + sup yH(x,1).
te
H’ and ¢’ then satisfy the conditions of [6], Lemma 4, and it follows that 4 is a free
cofibration.
The dual statement is also true:

Proposition 10. 4 map p: E — B in Top® is a fibration if and only if it is a free
fibration.

Proof. It follows from [5], Theorem 4 that if p is free fibration, then it has the
pointed homotopy lifting property with respect to all well-pointed spaces.

It is also true that a map in Top¥ is a homotopy equivalence if and only if it is
a free homotopy equivalence ([1], 2.18).

Theorem 11. The category Topw, with the classes of (pointed) fibrations, closed co-
fibrations, and homotopy equivalences, satisfies the axioms M1 —M6.

Proof. This follows from Theorem 3 and Propositions 9 and 10. It is not hard to
show that the constructions in the proof of Proposition 2, when performed on well-
pointed spaces, yield well-pointed spaces.

One could hardly expect MO to hold in Top®, but Top® does have sums, finite
products, pullbacks of fibrations, pushouts of cofibrations, smash products, suspen-
sions, loop spaces, ete., and this goes a long way.

A simple consequence of the product theorem for cofibrations and Proposition 9
is the following ‘“‘smash product theorem”.

Proposition 12. If A c X and B cY are cofibrations in Top¥ and at least one of
them 1s closed, then

XaBuAdaYcXAaAY
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is also a cofibration in Top¥. (X A B and 4 AY should here be given the subspace
topology induced by X ~ Y.)

Remark. Results analogous to 10, 11 and 12 above hold in the larger category
Top? consisting of all pointed spaces X for which there exist functions y: X — I
with ¢~1(0) = {*}, but the proofs become a bit more complicated.

One could also try to generalize the results of this section in a different direction.
Instead of well-pointed spaces consider the category CofX of closed cofibrations
under a fixed space K, that is, the objects of Cof¥ are closed free cofibrations K — X
and the morphisms are commutative triangles (thus, Top® = Cof*). The analogues
of Lemmas 6 and 8 and Propositions 9 and 10 are easily proved, but when we try
to prove the corresponding version of Theorem 11, we encounter a little difficulty in
showing that the constructions in the proof of Proposition 2 do not take us outside
CofX. The problem is that it is not clear that CofX has path spaces, which are ne-
cessary for the construction of the mapping track W. The natural candidate for the
path space of ¢: K — X is iys: K — K7 — X!, where s: K — K sends each point
of K to the constant path at that point. K — X7 is then an object of CofX if and
only if s is a closed free cofibration. This is equivalent to the existence of a con-
tinuous ¢: K1 — I with ¢~1(0) = s(K). (See [7] for an example of a path-connected
compact Hansdorff space which admits no such ¢.) If such a function exists, then
Theorem 11 holds for the category CofX.

A sufficient condition for the existence of such a ¢: KZ — I is that there exist a
continuous §: K x K — I with 6-1(0) = {(%, k)| k € K}. This condition is satisfied,
for instance, for all metric spaces and all CW-complexes.
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