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Spheres

Definition

We define the n-sphere Sn to be the set of points in Rn+1 of unit
distance from the origin. ie,

Sn = {x ∈ Rn+1||x | = 1}

Example

S0 = {−1, 1}
S1 = {e iθ ∈ C ∼= R2|θ ∈ [0, π)}
S2 is the standard sphere in R3
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Spheres

Figure: 1-sphere

Figure: 2-sphere
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Groups

Definition

A group is a set G with a multiplication defined such that

1 ∃e ∈ G such that ∀g ∈ G , eg = ge = g

2 ∀g ∈ G , ∃g−1 such that gg−1 = g−1g = e

3 The multiplication is associative, as in
∀g , h, k ∈ G , (gh)k = g(hk)

Example

1 S0 is finite group Z2

2 S1 is U(1), the set of 1-dimensional unitary matrices

It is natural to ask, is Sn always a group? If so why, and if not
which ones are?
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Why are spheres groups

What makes S0 a group is that we can multiply the unit normed
elements of R, and the elements of S0 are closed under real
multiplication.

Similarly what makes S1 a group is that the elements can be
viewed as unit normed elements in C ∼= R2. The set of unit
normed elements are closed under complex multiplication.

Basically R and C are “nice”.



Group structure on spheres and the Hopf fibration

Groups and Spheres

Normed real division algebras

It turns out the common thread between R,C is that they are both
normed real division algebras.

Definition

An n-dimensional normed real division algebra A satisfies the
following

1 A is a normed real vector space

2 A is a division ring, that may or may not be associative.

3 The norm respects multiplication, as in ∀a, b ∈ A we have
|ab| = |a||b|



Group structure on spheres and the Hopf fibration

Groups and Spheres

Construction of group from A

In general, if one has an associative n-dimensional normed real
division algebra A then we have a group structure on
Sn−1 = {x ∈ A||x | = 1} given by the multiplication of A.
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Construction of group from A

Conversely, if one has a group structure on Sn−1, one can
construct an associative n-dimensional normed real division algebra
A, via a, b ∈ Rn then

ab ≡ |a||b|
(

a

|a|
∗ b

|b|

)
.
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Classification of A

So we have translated this problem of finding all the spheres with a
group structure to finding all normed real division algebras.

It turns out there are a very limited class of normed real division
algebras.
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Classification of A

So we have translated this problem of finding all the spheres with a
group structure to finding all normed real division algebras.

It turns out there are a very limited class of normed real division
algebras.

Theorem (Hurwitz, 1898)

There are only 4 normed real division algebras upto isomorphism.
They are denoted by R,C,H,O and are of dimension 1, 2, 4, 8
respectively. Where H are the quaternions and O are the octonions.
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Classification of A

The intuitive reason as to why there are only 4 is that you lose
structure every time dimension increases:

R to C one loses ordering

C to H one loses commutativity

H to O one loses associativity

For dimension greater than 8, you lose too much structure.



Group structure on spheres and the Hopf fibration

Groups and Spheres

Summary

So we have that the only spheres that are groups are

S0 ∼= Z2
∼= O(1),

S1 ∼= U(1),

S3 ∼= Sp(1) ∼= SU(2) ∼= SO(3).

S7 is almost a group, because it lacks associativity.

They will be crucial to the construction of the Hopf fibrations.
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Hopf Fibration

Fibrations

Definition

Let E ,B,F be topological spaces. A fibre bundle is denoted by

F ↪−→ E
p→ B

where p : E → B satisfies,

1 p−1(b) ∼= F

2 ∀b ∈ B there is a neighbourhood U of b such that p−1(U) is
homeomorphic to U × F via some homeomorphism
ψ : U × F → p−1(U).

3 We have p ◦ ψ = π where π : U × F → U is the projection
from U × F to U.

We say that E is the total space, B is the base, F is the fibre
and E is the fibre bundle (or fibration) over B with fibre F .
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Hopf Fibration

Fibrations

In other words. . .
F ↪−→ E

p→ B

Is a fancy way of saying E locally looks like “B × F” (with some
mild technical conditions).
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Hopf Fibration

Fibrations

Given F ↪−→ E
p→ B, you can think of E as a family of F

parametrized by B.

In general for all topologogical spaces A,B, the trivial fibration is

B ↪−→ A× B
p→ A

where p((a, b)) = a

NOTE: A fibration is NOT a cartesian product!
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Hopf Fibration

Examples: Cylinder

Let I be a closed interval and p : I × S1, p(t, e iθ) = e iθ

I ↪−→ I × S1 p→ S1

Figure: I × S1 or a cylinder, Source: Wikipedia
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Hopf Fibration

Examples: Möbius strip

Let I be a closed interval, M the Möbius strip, and p projects to
the central circle S1.

I ↪−→ M
p→ S1

Figure: The Möbius strip, Source: virtualmathmuseum.org



Group structure on spheres and the Hopf fibration

Hopf Fibration

Examples

Both I × S1 and M are fibrations over S1 with fibres I , but
I × S1 � M.
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Hopf Fibration

Real projective space

Definition

The real projective space RPn is the of set 1 dimensional real
subspaces in Rn+1. It is a compact, n-dimensional smooth
manifold.

Figure: RP1, Source: Wikipedia
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Real projective space

Points in RPn are the set of equivalence classes in Rn+1 such that

x , y ∈ Rn+1, [x ] = [y ]⇐⇒ x = λy for some 0 6= λ ∈ R.

We can restrict our relation to lines intersecting Sn (by picking the
representatives of the equivalents classes of unit norm). So we
have the set of points in RPn are the set of equivalence classes in
Sn such that

x , y ∈ Sn, [x ] = [y ]⇐⇒ x = λy for some 1 = |λ|, λ ∈ R.
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Hopf Fibration

Real projective space

Note that RPn can be though of as the set of orbits of the group
action of S0 on Sn by left multiplication. The action is free
because λx = x ⇒ λ = 1. So each orbit (ie. fibre) is isomorphic to
S0.

Let π : Sn → RPn, π(x) = [x ] be the quotient map. Then we have
Sn is a fibration over RPn with fibre

π−1(x) = {λx ||λ| = 1, λ ∈ R} = {x ,−x} ∼= S0.

So we have constructed:

S0 ↪−→ Sn π→ RPn



Group structure on spheres and the Hopf fibration

Hopf Fibration

Complex projective spaces

Definition

The complex projective space CPn is the set of 1 dimensional
complex subspaces in Cn+1. It is a compact, 2n-dimensional
smooth manifold.

Points in CPn are the set of equivalence classes in Cn+1 such that

x , y ∈ Cn+1, [x ] = [y ]⇐⇒ x = λy for some 0 6= λ ∈ C.

Since Cn+1 ∼= R2n+2 we pick restrict our relation to lines
intersecting S2n+1, as before. So we have the set of points in CPn
are the set of equivalence classes in S2n+1 such that

x , y ∈ S2n+1, [x ] = [y ]⇐⇒ x = λy for some 1 = |λ|, λ ∈ C.
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Hopf Fibration

Complex projective space

Note that CPn can be though of as the set of orbits of the group
action of S1 on S2n+1 by left multiplication. The action is free
because λx = x ⇒ λ = 1. So each orbit (ie. fibre) is isomorphic to
S1.

Let π : S2n+1 → CPn, π(x) = [x ] be the quotient map. Then we
have S2n+1 is a fibration over CPn with fibre

π−1(x) = {λx ||λ| = 1, λ ∈ C} ∼= S1.

So we have constructed:

S1 ↪−→ S2n+1 π→ CPn
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Hopf Fibration

Definition

The quaternionic projective space HPn is the set of 1 dimensional
quaternionic subspaces in Hn+1. It is a compact, 4n-dimensional
smooth manifold. One has to be a bit careful with multiplication
since H is not commutative.

After repeating the identical process for RPn, and CPn, we have
S4n+3 is a fibration over HPn with fibre

π−1(x) = {λx ||λ| = 1, λ ∈ H)} ∼= S3.

So we have constructed:

S3 ↪−→ S4n+3 π→ HPn
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Hopf Fibration

Octionic projective spaces

It seems natural to repeat the process with O, however the
non-associativity of the octonions makes this difficult. It turns out
that you cannot define OPn for n > 2 and can only form a
fibration for OP1, but not over OP2.

Repeating the previous process we get the following fibtations.

S7 ↪−→ S8n+7 π→ OP1
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Hopf Fibration

The Hopf Fibrations

To summarize we have constructed the following fibrations. These
are known as the Hopf fibrations.

S0 −→Sn π−→ RPn

S1 −→S2n+1 π−→ CPn

S3 −→S4n+3 π−→ HPn

S7 −→S8+7 π−→ OP1

They are usually stated in the case where n = 1 to get

S0 −→S1 π−→ RP1 ∼= S1

S1 −→S3 π−→ CP1 ∼= S2

S3 −→S7 π−→ HP1 ∼= S4

S7 −→S15 π−→ OP1 ∼= S8
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Hopf Fibration

Classical Hopf Fibration

Lets now look at S1 ↪−→ S3 π→ S2. This allows us to visualize S3.

If we apply stereographic projection from S3 to R3 ∪ {∞}, have
R3 is completely filled by disjoint circles and a line (circle through
∞). Not only that, but all these circles are pairwise “linked”.



Group structure on spheres and the Hopf fibration

Hopf Fibration

Visualization of the 3− sphere

Figure: Stereographic projection of S3. Each circle is a fibre of S3.
Source: sciencenews.org
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Quantum mechanics and the qubit system

Qubit system

In quantum mechanics, we study systems corresponding to
separable Hilbert spaces, which are complete inner product spaces,
with a countable dense set.

The simplest non-trivial system is H = C2 corresponds is the qubit
system (or spin 1

2 -system).

Besides being an easy system to introduce to an undergrad
quantum class, the qubit system is of great importance in quantum
cryptography and quantum computing.
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Quantum mechanics and the qubit system

Setup

Definition

We define {|0〉 , |1〉}to be an orthonormal basis of C2 to be ,
and {〈0| , 〈1|} to be an orthonormal basis for the dual of C2.

So for a general |ψ〉 ∈ C2 there are some a, b ∈ C such that
|ψ〉 = a |0〉+ b |1〉. We also have that 〈ψ| = a 〈0|+ b 〈1| is
the dual vector of |ψ〉.
Given |ψ〉 = a |0〉+ b |1〉 and |ϕ〉 = c |0〉+ d |1〉, we define the
inner product on C2 by

〈ψ |ϕ〉 := ac + bd

We define the norm on C2 to be ‖ |ψ〉 ‖ :=
√
〈ψ |ψ〉
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Quantum mechanics and the qubit system

States

A quantum state is defined to be a vector |ψ〉 = a |0〉+ b |1〉 such
that ‖ |ψ〉 ‖ = |a|2 + |b|2 = 1.

The set of quantum states can be identified with (u + iv , x + iy) in
C2 such that

u2 + v2 + x2 + y2 = 1.

Therefore set of quantum states is precisely S3, viewed as a subset
of C2.
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States

In quantum mechanics we don’t particularly care about states, but
rather what can be observed by them.

If 2 states, always output the same outcomes when ”observed”,
then we want to say these states are equivalent. So we need a way
to determine how to measure states, and distinguish them.
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Observables

Definition

If H = C2 is a separable Hilbert space, then an observable is an
Hermitian operator A : H → H, such that A∗ = A.

Since A is Hermitian, it has a real eigenvalues, and a can be
decomposed as

A =
∑

λ∈Spec(A)

λPλ

Where Pλ is the projection onto the eigenspace for λ.
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Outcomes

Definition

Given an observable A =
∑

λ∈Spec(A) λPλ, the outcomes of A
are defined to be the eigenvalues of A.

Given a state |ψ〉 the probability of observing an outcome λ
with |ψ〉 is

Prλ(|ψ〉) = 〈ψ|Pλ |ψ〉

i.e. the “percentage” of |ψ〉 that lies in the λ eigenspace.
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Bloch Sphere

It is natural to define two states to be equal if they they always
produce the same probabilities.

It is clear from the definition that for all |ψ〉

Prλ(|ψ〉) = Prλ(e iθ |ψ〉).

Therefore we define states to be equal if they differ by some e iθ,
which is precisely how we defined CP1.
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Bloch Sphere

Thus in the qubit system quantum states can be viewed as
elements of CP1.

This allows us to use the Hopf fibration to view the set of states in
S3 as fibres of S1 parametrized by S2.

In quantum mechanics this is parametrization is called the Bloch
sphere. It allows us visualize this non trivial space. Fairly
complicated actions can be shown to be rotations on S2.
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