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Introduction

I Manifest T-duality invariance: Correct description involves algebroids and
‘doubled geometry’

I Generalized geometry: TM −→ TM = TM ⊕ T ∗M with structure of
(twisted) Courant algebroid (Hitchin ’02; Gualtieri ’04)

I Double field theory (DFT): M −→M = M × M̃

Solving strong constraint (polarisation) reduces DFT structure to standard
Courant algebroid (Siegel ’93; Hull & Zwiebach ’09; Hohm, Hull & Zwiebach ’10;. . . )

I In this talk: Global description of DFT provided by para-Hermitian
geometry and metric algebroids

I Phenomena described by T-duality: What is a D-brane in this setting?

I Conformal boundary conditions for Born sigma-model: Covariant version
of doubled sigma-models for duality-symmetric string theory (Duff ’90;

Tseytlin ’90; Hull ’05; Berman, Copland & Thompson ’07; Hull & Reid-Edwards ’09;
Copland ’11; Lee & Park ’13 . . . )

I Generalize previous treatments of D-branes and doubled geometry
(Hull ’04; Lawrence, Schulz & Wecht ’06; Albertsson, Kimura & Reid-Edwards ’08;

Hull & Sz ’19; Sakatani & Uehara ’20)



Double Field Theory and Para-Hermitian Geometry

I Para-Hermitian Geometry: A “real version” of complex Hermitian
geometry

I Addresses global issues of doubled geometry, provides simple elegant
framework for generalized flux compactifications and non-geometric
backgrounds (Hull ’04; Vaisman ’12; Freidel, Rudolph & Svoboda ’17;

Chatzistavrakidis, Jonke, Khoo & Sz ’18; Svoboda ’18; Marotta & Sz ’18;
Mori, Sasaki & Shiozawa ’19; Hassler, Lüst & Rudolph ’19;

Kimura, Sasaki & Shiozawa ’22; . . . )

I Other applications of para-Hermitian geometry:

I Formulation of N = 2 vector multiplets in Euclidean spacetimes
(Cortés, Mayer, Mohaupt & Saueressig ’03; Cortés & Mohaupt ’09)

I Lagrangian and non-Lagrangian dynamical systems (Marotta & Sz ’18)

I 2D ‘twisted’ SUSY sigma-models (Abou-Zeid & Hull ’99; Stojevic ’09;
Hu, Moraru & Svoboda ’19)

I Modern perspective: Geometry on TM = TM ⊕ T ∗M ←→ TM

I Examples: Fibre bundles (T ∗M, TM, . . . ), Doubled Lie groups,
Drinfel’d doubles, and quotients (T 2d , doubled twisted torus, . . . )



Para-Hermitian Manifolds

I Para-complex structure K : TM−→ TM on 2d-dim manifold M with
K 2 = +1, whose ± 1-eigenbundles L± have same rank d

I Splits TM = L+ ⊕ L−, integrability of L+ and L− independent

I Para-Hermitian structure (K , η): metric η with signature (d , d) satisfying
compatibility K> ηK = −η

I Fundamental 2-form ω = ηK , dω = ‘generalized fluxes’
If symplectic (dω = 0) then (K , η) para-Kähler structure

I L± maximally isotropic with respect to η and ω

I Example: M = T ∗M
π−−→ M with canonical symplectic 2-form ω0;

para-Hermitian structures correspond to isotropic splittings of

0 −→ ker(π∗) −→ T (T ∗M) −→ π∗(TM) −→ 0

I Para-Hermitian vector bundles: TM = TM ⊕ T ∗M ,
exact Courant algebroids , . . .



Generalized Metrics & Born Geometry

I B-transformation of (K , η) on TM = L+ ⊕ L−:

eB =

(
1 0
B 1

)
∈ Aut(TM) where B : L+ −→ L− with

η
(
B(X ),Y

)
= −η

(
X ,B(Y )

)
=: b(X ,Y )

I K −→ KB = eB K e−B where (KB , η) is another para-Hermitian structure
with fundamental 2-form ωB = ηKB = ω + 2 b

I Generalized metric on a para-Hermitian manifold (M,K , η):
I ∈ Aut(TM) covering idM with I 2 = 1

Defines Riemannian metric H = η I on M

I H defined by metric on L+ and B-transformation (g , b)

I If Hω−1H = −ω then (η, ω,H) is a Born geometry
Specified by metric g on L+

I Generalized T-duality: O(TM) ⊂ Aut(TM) isometries of η, preserve
Born geometry structure: Kϑ = ϑK ϑ−1, Hϑ = ϑ∗(H) for ϑ ∈ O(TM)



Born Sigma-Model

S [X] =
1

4

∫
Σ2

HIJ dXI ∧ ? dXJ +
1

4

∫
Σ2

X∗(ω)

X : Σ2 −→M , (η, ω,H) = Born geometry on M

I Strong Constraint: Assuming L− ⊂ TM involutive selects physical
spacetime as a quotient M =M/F by action on leaves of foliation of
M by F with L− = TF (Hull & Reid-Edwards ’09; Vaisman ’12; Park ’13;

Lee, Strickland-Constable & Waldram ’15)

Reduces Born sigma-model if there is a
Riemannian submersion
q : (M,H) −→ (M, ḡ) such that g = q∗ḡ
is leaf-invariant (Marotta & Sz ’19)

I Killing Lie algebroid: Lie algebroid A over Riemannian target space
(M,H) such that ∇AH = 0 for flat A-connection
∇A : Γ(A)× Γ(TM) −→ Γ(TM) (Kotov & Strobl ’14; . . . )



Gauging the Born Sigma-Model

I Apply to Killing Lie algebroid ρ : TF ↪→ TM:
Born sigma-model can be gauged along foliation F ⇐⇒ LV g = 0 for
all V ∈ Γ(TF), where H is determined by metric g on L+

I If M/F is smooth, then there is a Riemannian submersion
q : (M,H) −→ (M/F , ḡ) such that g = q∗ḡ

I ω descends to 2-form b̄ on M/F if L+ is locally spanned by projectable
vector fields Vi : [Vi ,W ] ∈ Γ(TF) for all W ∈ Γ(TF), and LW η = 0

I dXI −→ DAXI = dXI − ρIj Aj for TF-valued connection 1-form A

I Euler-Lagrange equation for A gives ‘self-duality constraint’:

DAX = η−1H ? dX

Reduces Born sigma-model to standard string sigma-model into physical
spacetime (M/F , ḡ , b̄)

I Generalized T-duality (M, η,K ,H) −→ (M, η,Kϑ,Hϑ) with
TM = Lϑ+ ⊕ Lϑ−; if Lϑ− = TFϑ then sigma-models for (M/F , ḡ , b̄)
and (M/Fϑ, ḡϑ, b̄ϑ) are T-dual



Boundary Conditions for the Born Sigma-Model

I (σ, τ) local coordinates for Σ, with boundary ∂Σ:(
− 1

2
HIJ ∂σXJ dσ + ωIJ ∂τXJ dτ

)∣∣
∂Σ

= 0

I Solution given by subbundle L ⊂ TM (“tangent vectors”):

0 −→ L −→ TM−→ TM/L −→ 0

and orthogonal splitting TM = L⊕ L⊥ wrt generalized metric H, with
orthogonal projectors Π : TM−→ L and Π⊥ : TM−→ L⊥

I Together with self-duality constraint, conformal boundary conditions are
solved by

η
(
Π(ZI ),Π(ZJ)

)
= 0 = η

(
Π⊥(ZI ),Π

⊥(ZJ)
)

, ω
(
Π(ZI ),Π(ZJ)

)
= 0

for a local frame {ZI} of TM

I Thus L is maximally isotropic wrt both η, ω (but not necessarily
integrable)



Born D-Branes

I Def.: A Born D-brane is a maximally isotropic subbundle LD ⊂ TM
such that K(LD) = LD

I Examples: Eigenbundles L± of para-complex structure K

I If WD = L+ ∩ LD has constant rank, then LD = WD ⊕ η](Ann(WD))
with metric

HD =

(
gD 0
0 η g−1

D

)
, gD = g |WD

I Generalized T-duality ϑ ∈ O(TM) sends D-brane LD for Born
sigma-model S(H, ω) into (M,K , η) to D-brane LϑD = ϑ(LD) for Born
sigma-model S(Hϑ, ωθ) into (M,Kϑ, η)

I Standard picture of D-branes as submanifolds when LD = TFD is
integrable: Each leaf of foliation FD of M is a d-dim submanifold of M
whose tangent vectors satisfy the boundary conditions

I Chan-Paton bundles induced by B-transformations (with suitable
integrality)



Dirac Structures

I Generalised submanifold (W, L) for an exact Courant algebroid E −→M
with anchor ρ: W ⊂M, L ⊂ E maximally isotropic integrable with
ρ(L) = TW (Gualtieri ’04; Zambon ’07)

I Generalized para-complex D-brane supported on W ⊆M for an exact
Courant algebroid E −→M with anchor ρ and generalized para-complex
structure K: Generalized submanifold (W, L) such that K(L) = L

I Born sigma-model corresponds (up to B-transformations) to the
‘large Courant algebroid’ TM = TM⊕ T ∗M with generalized metric
determined by H (Alekseev & Strobl ’04; Ševera ’15)

I (η,K) gives generalized para-complex structure KK =

(
K 0
0 −K>

)
preserving splitting on TM (Hu, Moraru & Svoboda ’19)

I Born D-brane LD defines Dirac structure D = LD ⊕ Ann(LD) on TM

I For each leaf WD of LD , (WD ,D|WD ) is a generalized para-complex
brane: KK (D|WD ) = D|WD (since K(LD) = LD)



Metric Algebroids

I Metric algebroid: Anchored pseudo-Euclidean vector bundle
(E , 〈−,−〉E , ρ) with bracket [−,−]E : Γ(E)× Γ(E) −→ Γ(E):

I ρ(e) · 〈e1, e2〉E = 〈[e, e2]E , e2〉E + 〈e2, [e, e2]E 〉E
I 〈[e, e]E , e1〉E = 1

2
ρ(e1) · 〈e, e〉E

I Any anchored pseudo-Euclidean vector bundle admits infinitely many
metric algebroid stuctures (Vaisman ’12)

I Metric algebroids ←→ symplectic 2-algebroids
(del Carpio-Marek ’15; Marotta & Sz ’21)

(aka ‘symplectic nearly Lie 2-algebroids’ (Bruce & Grabowski ’16)

‘symplectic pre-NQ-manifolds of degree 2’ (Deser & Sämann ’16)

‘pre-QP-manifolds’ (Heller, Ikeda & Watamura ’16))

I Any para-Hermitian manifold (M,K , η) admits a unique ‘canonical’
metric algebroid bracket [−,−]TM preserving K , with anchor 1TM:

L± are involutive wrt [−,−]TM, and [−,−]TM is compatible with Lie
algebra of vector fields on TM (Freidel, Rudolph & Svoboda ’17))



Related Algebroids

I Pre-Courant algebroids: ρ : E −→ TM bracket morphism
(symplectic almost Lie 2-algebroids (Bruce & Grabowski ’16)))

I Courant algebroids: Jacobi identity for [−,−]E
(symplectic Lie 2-algebroids (Ševera ’98; Roytenberg ’99))

I DFT algebroid on a para-Hermitian manifold (M,K , η):

ρ : (E , 〈−,−〉E ) −→ (TM, η) isomorphism of pseudo-Euclidean vector
bundles with ρ ρ∗ = η−1

(Chatzistavrakidis, Jonke, Khoo & Sz ’18; Svoboda ’18;
Hu, Moraru & Svoboda ’19; Grewcoe & Jonke ’20; Marotta & Sz ’21)

I Example: Splitting and projection of large Courant algebroid TM is a
DFT algebroid isomorphic to canonical metric algebroid, reduces to
standard Courant algebroid on physical spacetime M/F when
L− = TF — DFT algebroids lie “in between” two Courant algebroids

I Note: Generalised para-complex branes make sense for exact pre-Courant
algebroids — extension to metric algebroids?



Adding a Wess-Zumino Term

I Difference between any two metric algebroid brackets on (M,K , η) is a
3-form HD on M

I Canonical 3-form Hcan: Choose canonical metric algebroid and reference
bracket induced by Levi-Civita connection of η (Hcan = 0 iff dω = 0)

I (M,K , η) is admissible if H2(M) = 0 and 1
4π

[Hcan] ∈ H3(M;Z)

I Defines Wess-Zumino term
1

2

∫
V

X∗(Hcan) , ∂V = Σ for Born

sigma-model, Hcan represents Ševera class of associated Courant algebroid

I For open strings, consider relative maps X : (Σ, ∂Σ) −→ (M,W)
and relative admissibility: H2(M,W) = 0 ,

1
4π

[(Hcan,Bcan)] ∈ H3(M,W;Z) for some 2-form Bcan on W

I LW := im(TW −→ TM) is a Born D-brane iff W ⊂M Lagrangian
submanifold, Bcan = 0 and Hcan

∣∣
W = 0 (orientation condition)

I Can only couple to flat Chan-Paton bundles — analogous to A-branes



Generalized Para-Complex Branes

I Generalized submanifolds (W, L) on an exact Courant algebroid
correspond to subbundles

L = LF :=
{
X + α ∈ TW ⊕ T ∗M|W

∣∣ α|W = ιXF
}
⊂ TM

for some 2-form F on W with dF + Hcan

∣∣
W = 0

I Example: For a Born D-brane LD and its Dirac structure
D = LD ⊕ Ann(LD), (WD ,D|WD ) is a generalized para-complex D-brane
iff Hcan

∣∣
WD

= 0 (since F = 0)

I Example: For a Born D-brane LD and given F ∈ Ω2(W),
(WD , L

F ) is a generalized para-complex D-brane iff

K>(ιXF ) + ιK(X )F ∈ Ann(TWD) ∀X ∈ Γ(TWD)

If Hcan

∣∣
WD

= 0 (integrability), F ∈ Ω2
Z(WD) and K integrable, then

F is the curvature of a para-holomorphic Chan-Paton bundle (C ,∇C )
on WD — analogous to B-branes (Lawn & Schäfer ’05)



D-Branes on the Physical Spacetime

I D-branes are defined by “tangent vectors” – distributions on tangent
bundle of target space, need to be integral to interpret leaves as D-brane
worldvolumes

I When L− = TF and q : (M,H) −→ (M = M/F , ḡ) is a
Riemmannian submersion, dq|L+ : L+ −→ TM fibrewise isomorphism

I Born D-brane LD = TFD ⊂ TM induces dq(LD) = TFq
D ⊆ TM,

leaves of foliation Fq
D supported by physical D-branes in (M, ḡ , b̄)

I Example: L− = TF =⇒ 0-branes on M (fully Dirichlet)

L+ integrable =⇒ spacetime-filling D-branes (fully Neumann)

I D-branes are associated with Dirac structures on Courant algebroid for
corresponding sigma-model (Zabzine ’04; Asakawa, Sasa & Watamura ’12)

I Consider reduction of Born D-branes as reduction of Dirac structures,
using techniques of Courant algebroid reduction

(Bursztyn, Cavalcanti & Gualtieri ’05; Zambon ’07)



Dirac Reduction of Born D-Branes

I For A = TF ⊕ {0} ⊂ TM, A⊥ spanned by Y + d(q∗f ) for projectable
Y ∈ Γ(TM) and f ∈ C∞(M), which are ‘basic’

I Hence large Courant algebroid TM reduces to standard Courant algebroid
TM through pullback diagram

(TF⊕{0})⊥

TF⊕{0}
//

��

TM

��
M

q // M

I For a Born D-brane LD = TFD ⊂ TM, D = LD ⊕ Ann(LD) is a
Dirac structure for large Courant algebroid TM such that D ∩ A⊥ still
spanned by Y + d(q∗f )

I Hence if LD admits a sub-bundle spanned by projectable vector fields,
then D descends to a Dirac structure Dred on M = M/F



Example: D-Branes on Doubled Nilmanifolds

I H = 3d Heisenberg group with Drinfel’d double T ∗H = H n R3,
basis {Zi , Z̃

i}i=x,y,z of left-invariant vector fields on T (T ∗H)

I (M,K , η): M = Γm \ T ∗H for discrete cocompact subgroup Γm with
m ∈ Z, K(Zi ) = +Zi K(Z̃ i ) = −Z̃ i , and η induced from duality
pairing between Lie(H) and R3

I Nilmanifold: Principal T 3-bundle M−→ Nm = nilmanifold of degree m

I L+ = D3-brane filling Nm, Dirac structure TNm ⊂ TNm

I LD = Span(Zx ,Zy , Z̃
z) reduces to Dirac structure associated with

foliation of Nm with T 2 leaves wrapped by D2-branes

I T 3 with H-flux: T 3-fibration M−→ T 3, m = DD class of gerbe on T 3

B-transformation sends {Zi , Z̃
i} −→ {Z ′i , Z̃ ′i}, K −→ K ′

I LD = Span(Z ′x , Z̃
′y , Z̃ ′z) yields Dirac structure associated with

foliation of T 3 with S1 leaves wrapped by D1-branes, T-dual to
D0-branes on Nm from reducing Born D-brane L−

I Hcan = − 3
2
m dx ∧ dy ∧ dz , Hcan(Z ′x ,Z

′
y ,Z

′
z) 6= 0 forbids D3-branes

wrapping T 3 for m 6= 0


