D-Branes and Doubled Geometry

Richard Szabo

جامعـة نيويورك ابوظبي NYU ABU DHABI 😤

M-Theory and Mathematics: Classical and Quantum Aspects

14 January 2023

Outline

Introduction

- Para-Hermitian Geometry
- Born Sigma-Models
- Born D-Branes
- Metric Algebroids and Wess-Zumino Terms
- Reduction: D-Branes on the Physical Spacetime
- Example: D-Branes on Doubled Nilmanifolds

with Vincenzo Emilio Marotta [arXiv: 1810.03953, 1910.09997, 2104.07774, 2202.05680]

Introduction

- Manifest T-duality invariance: Correct description involves algebroids and 'doubled geometry'
- ► Generalized geometry: TM → TM = TM ⊕ T*M with structure of (twisted) Courant algebroid (Hitchin '02; Gualtieri '04)
- Double field theory (DFT): $M \longrightarrow \mathcal{M} = M \times \widetilde{M}$

Solving strong constraint (polarisation) reduces DFT structure to standard Courant algebroid (Siegel '93; Hull & Zwiebach '09; Hohm, Hull & Zwiebach '10;...)

- In this talk: Global description of DFT provided by para-Hermitian geometry and metric algebroids
- Phenomena described by T-duality: What is a D-brane in this setting?
- Conformal boundary conditions for Born sigma-model: Covariant version of doubled sigma-models for duality-symmetric string theory (Duff '90; Tseytlin '90; Hull '05; Berman, Copland & Thompson '07; Hull & Reid-Edwards '09; Copland '11; Lee & Park '13 ...)

Generalize previous treatments of D-branes and doubled geometry (Hull '04; Lawrence, Schulz & Wecht '06; Albertsson, Kimura & Reid-Edwards '08; Hull & Sz '19; Sakatani & Uehara '20)

Double Field Theory and Para-Hermitian Geometry

 Para-Hermitian Geometry: A "real version" of complex Hermitian geometry

Addresses global issues of doubled geometry, provides simple elegant framework for generalized flux compactifications and non-geometric backgrounds (Hull '04; Vaisman '12; Freidel, Rudolph & Svoboda '17; Chatzistavrakidis, Jonke, Khoo & Sz '18; Svoboda '18; Marotta & Sz '18; Mori, Sasaki & Shiozawa '19; Hassler, Lüst & Rudolph '19; Kimura, Sasaki & Shiozawa '22; ...)

- Other applications of para-Hermitian geometry:
 - Formulation of $\mathcal{N} = 2$ vector multiplets in Euclidean spacetimes

(Cortés, Mayer, Mohaupt & Saueressig '03; Cortés & Mohaupt '09)

- Lagrangian and non-Lagrangian dynamical systems (Marotta & Sz '18)
- 2D 'twisted' SUSY sigma-models (Abou-Zeid & Hull '99; Stojevic '09; Hu, Moraru & Svoboda '19)
- Modern perspective: Geometry on $\mathbb{T}M = TM \oplus T^*M \longleftrightarrow T\mathcal{M}$
- Examples: Fibre bundles (*T***M*, *TM*, ...), Doubled Lie groups, Drinfel'd doubles, and quotients (*T*^{2d}, doubled twisted torus, ...)

Para-Hermitian Manifolds

- ▶ Para-complex structure $K : TM \longrightarrow TM$ on 2*d*-dim manifold M with $K^2 = +1$, whose ± 1 -eigenbundles L_{\pm} have same rank *d*
- ▶ Splits $TM = L_+ \oplus L_-$, integrability of L_+ and L_- independent
- Para-Hermitian structure (K, η): metric η with signature (d, d) satisfying compatibility K^T η K = −η
- Fundamental 2-form ω = η K , dω = 'generalized fluxes' If symplectic (dω = 0) then (K, η) para-Kähler structure
- L_{\pm} maximally isotropic with respect to η and ω
- ► Example: $\mathcal{M} = \mathcal{T}^* M \xrightarrow{\pi} M$ with canonical symplectic 2-form ω_0 ; para-Hermitian structures correspond to isotropic splittings of

$$0 \longrightarrow \ker(\pi_*) \longrightarrow T(T^*M) \longrightarrow \pi^*(TM) \longrightarrow 0$$

▶ Para-Hermitian vector bundles: $\mathbb{T}M = TM \oplus T^*M$, exact Courant algebroids , ...

Generalized Metrics & Born Geometry

• *B*-transformation of (K, η) on $T\mathcal{M} = L_+ \oplus L_-$:

$$e^B = egin{pmatrix} \mathbbm{1} & 0\ B & \mathbbm{1} \end{pmatrix} \in \operatorname{Aut}(\mathcal{TM}) ext{ where } B: L_+ \longrightarrow L_- ext{ with } \ \etaig(B(X),Yig) = -\etaig(X,B(Y)ig) =: b(X,Y) \end{cases}$$

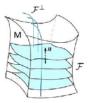
• $K \longrightarrow K_B = e^B K e^{-B}$ where (K_B, η) is another para-Hermitian structure with fundamental 2-form $\omega_B = \eta K_B = \omega + 2 b$

- Generalized metric on a para-Hermitian manifold (M, K, η): I ∈ Aut(TM) covering id_M with I² = 1 Defines Riemannian metric H = η I on M
- \blacktriangleright \mathcal{H} defined by metric on L_+ and B-transformation (g, b)
- If Hω⁻¹H = −ω then (η,ω, H) is a Born geometry Specified by metric g on L₊
- ▶ Generalized T-duality: $O(T\mathcal{M}) \subset \operatorname{Aut}(T\mathcal{M})$ isometries of η , preserve Born geometry structure: $K_{\vartheta} = \vartheta K \vartheta^{-1}$, $\mathcal{H}_{\vartheta} = \vartheta^*(\mathcal{H})$ for $\vartheta \in O(T\mathcal{M})$

Born Sigma-Model

$$\begin{split} S[\mathbb{X}] \;&=\; \frac{1}{4}\,\int_{\Sigma_2}\,\mathcal{H}_{IJ}\,\mathsf{d}\mathbb{X}^I\wedge\star\mathsf{d}\mathbb{X}^J+\frac{1}{4}\,\int_{\Sigma_2}\,\mathbb{X}^*(\omega)\\ \mathbb{X}:\Sigma_2\longrightarrow\mathcal{M} \;\;,\; (\eta,\omega,\mathcal{H}) \;&=\; \text{Born geometry on }\mathcal{M} \end{split}$$

Strong Constraint: Assuming L_− ⊂ TM involutive selects physical spacetime as a quotient M = M/F by action on leaves of foliation of M by F with L_− = TF (Hull & Reid-Edwards '09; Vaisman '12; Park '13; Lee, Strickland-Constable & Waldram '15)



Reduces Born sigma-model if there is a Riemannian submersion $q: (\mathcal{M}, \mathcal{H}) \longrightarrow (\mathcal{M}, \overline{g})$ such that $g = q^* \overline{g}$ is leaf-invariant (Marotta & Sz '19)

Gauging the Born Sigma-Model

- Apply to Killing Lie algebroid ρ: TF → TM: Born sigma-model can be gauged along foliation F ↔ L_Vg = 0 for all V ∈ Γ(TF), where H is determined by metric g on L₊
- ▶ If \mathcal{M}/\mathcal{F} is smooth, then there is a Riemannian submersion $q: (\mathcal{M}, \mathcal{H}) \longrightarrow (\mathcal{M}/\mathcal{F}, \overline{g})$ such that $g = q^* \overline{g}$
- ω descends to 2-form \overline{b} on \mathcal{M}/\mathcal{F} if L_+ is locally spanned by projectable vector fields V_i : $[V_i, W] \in \Gamma(T\mathcal{F})$ for all $W \in \Gamma(T\mathcal{F})$, and $\mathcal{L}_W \eta = 0$
- ▶ $d\mathbb{X}' \longrightarrow D^A \mathbb{X}' = d\mathbb{X}' \rho^{lj} A_j$ for $T\mathcal{F}$ -valued connection 1-form A
- Euler-Lagrange equation for A gives 'self-duality constraint':

 $\mathsf{D}^{A}\mathbb{X} \;=\; \eta^{-1}\,\mathcal{H}\,\star\,\mathsf{d}\mathbb{X}$

Reduces Born sigma-model to standard string sigma-model into physical spacetime $(\mathcal{M}/\mathcal{F},\bar{g},\bar{b})$

• Generalized T-duality $(\mathcal{M}, \eta, K, \mathcal{H}) \longrightarrow (\mathcal{M}, \eta, K_{\vartheta}, \mathcal{H}_{\vartheta})$ with $T\mathcal{M} = L^{\vartheta}_{+} \oplus L^{\vartheta}_{-}$; if $L^{\vartheta}_{-} = T\mathcal{F}^{\vartheta}$ then sigma-models for $(\mathcal{M}/\mathcal{F}, \bar{g}, \bar{b})$ and $(\mathcal{M}/\mathcal{F}^{\vartheta}, \bar{g}^{\vartheta}, \bar{b}^{\vartheta})$ are T-dual

Boundary Conditions for the Born Sigma-Model

• (σ, τ) local coordinates for Σ , with boundary $\partial \Sigma$:

$$\left(- \tfrac{1}{2} \, \mathcal{H}_{IJ} \, \partial_\sigma \mathbb{X}^J \, d\sigma + \omega_{IJ} \, \partial_\tau \mathbb{X}^J \, d\tau \right) \big|_{\partial \Sigma} \; = \; \mathbf{0}$$

Solution given by subbundle $L \subset TM$ ("tangent vectors"):

$$0 \longrightarrow L \longrightarrow T\mathcal{M} \longrightarrow T\mathcal{M}/L \longrightarrow 0$$

and orthogonal splitting $TM = L \oplus L^{\perp}$ wrt generalized metric \mathcal{H} , with orthogonal projectors $\Pi : T\mathcal{M} \longrightarrow L$ and $\Pi^{\perp} : T\mathcal{M} \longrightarrow L^{\perp}$

Together with self-duality constraint, conformal boundary conditions are solved by

$$\eta\big(\Pi(Z_I),\Pi(Z_J)\big) = 0 = \eta\big(\Pi^{\perp}(Z_I),\Pi^{\perp}(Z_J)\big) \quad , \quad \omega\big(\Pi(Z_I),\Pi(Z_J)\big) = 0$$

for a local frame $\{Z_I\}$ of $T\mathcal{M}$

• Thus *L* is maximally isotropic wrt both η , ω (but not necessarily integrable)

Born D-Branes

- ▶ Def.: A Born D-brane is a maximally isotropic subbundle L_D ⊂ TM such that K(L_D) = L_D
- **Examples:** Eigenbundles L_{\pm} of para-complex structure K
- ▶ If $W_D = L_+ \cap L_D$ has constant rank, then $L_D = W_D \oplus \eta^{\sharp}(Ann(W_D))$ with metric

- Generalized T-duality $\vartheta \in O(T\mathcal{M})$ sends D-brane L_D for Born sigma-model $S(\mathcal{H}, \omega)$ into $(\mathcal{M}, \mathcal{K}, \eta)$ to D-brane $L_D^{\vartheta} = \vartheta(L_D)$ for Born sigma-model $S(\mathcal{H}_{\vartheta}, \omega_{\theta})$ into $(\mathcal{M}, \mathcal{K}_{\vartheta}, \eta)$
- Standard picture of D-branes as submanifolds when L_D = TF_D is integrable: Each leaf of foliation F_D of M is a d-dim submanifold of M whose tangent vectors satisfy the boundary conditions
- Chan-Paton bundles induced by B-transformations (with suitable integrality)

Dirac Structures

- ► Generalised submanifold (W, L) for an exact Courant algebroid $E \longrightarrow M$ with anchor ρ : $W \subset M$, $L \subset E$ maximally isotropic integrable with $\rho(L) = TW$ (Gualtieri '04; Zambon '07)
- Generalized para-complex D-brane supported on $W \subseteq M$ for an exact Courant algebroid $E \longrightarrow M$ with anchor ρ and generalized para-complex structure \mathcal{K} : Generalized submanifold (W, L) such that $\mathcal{K}(L) = L$
- ► Born sigma-model corresponds (up to *B*-transformations) to the 'large Courant algebroid' $\mathbb{TM} = TM \oplus T^*M$ with generalized metric determined by \mathcal{H} (Alekseev & Strobl '04; Ševera '15)
- ► (η, K) gives generalized para-complex structure $\mathcal{K}_{K} = \begin{pmatrix} K & 0 \\ 0 & -K^{\top} \end{pmatrix}$ preserving splitting on $\mathbb{T}\mathcal{M}$ (Hu, Moraru & Svoboda '19)
- ▶ Born D-brane L_D defines Dirac structure $D = L_D \oplus Ann(L_D)$ on $\mathbb{T}M$
- For each leaf W_D of L_D, (W_D, D|_{W_D}) is a generalized para-complex brane: K_K(D|_{W_D}) = D|_{W_D} (since K(L_D) = L_D)

Metric Algebroids

• Metric algebroid: Anchored pseudo-Euclidean vector bundle $(E, \langle -, - \rangle_E, \rho)$ with bracket $[-, -]_E : \Gamma(E) \times \Gamma(E) \longrightarrow \Gamma(E)$:

$$\rho(e) \cdot \langle e_1, e_2 \rangle_E = \langle [e, e_2]_E, e_2 \rangle_E + \langle e_2, [e, e_2]_E \rangle_E$$

$$\langle [e, e]_E, e_1 \rangle_E = \frac{1}{2} \rho(e_1) \cdot \langle e, e \rangle_E$$

 Any anchored pseudo-Euclidean vector bundle admits infinitely many metric algebroid stuctures (Vaisman '12)

'pre-QP-manifolds'

```
(del Carpio-Marek '15; Marotta & Sz '21)
(aka 'symplectic nearly Lie 2-algebroids' (Bruce & Grabowski '16)
'symplectic pre-NQ-manifolds of degree 2' (Deser & Sämann '16)
```

```
(Heller, Ikeda & Watamura '16)
```

Any para-Hermitian manifold (M, K, η) admits a unique 'canonical' metric algebroid bracket [-, -]_{TM} preserving K, with anchor 1_{TM}: L_± are involutive wrt [-, -]_{TM}, and [-, -]_{TM} is compatible with Lie algebra of vector fields on TM (Freidel, Rudolph & Svoboda '17))

Related Algebroids

- ▶ Pre-Courant algebroids: $\rho : E \longrightarrow TM$ bracket morphism (symplectic almost Lie 2-algebroids (Bruce & Grabowski '16)))
- Courant algebroids: Jacobi identity for [-, -]_E (symplectic Lie 2-algebroids (Ševera '98; Roytenberg '99))
- DFT algebroid on a para-Hermitian manifold (M, K, η): ρ: (E, ⟨−,−⟩_E) → (TM, η) isomorphism of pseudo-Euclidean vector bundles with ρρ^{*} = η⁻¹ (Chatzistavrakidis, Jonke, Khoo & Sz '18; Svoboda '18; Hu, Moraru & Svoboda '19; Grewcoe & Jonke '20; Marotta & Sz '21)
- **Example:** Splitting and projection of large Courant algebroid $\mathbb{T}M$ is a DFT algebroid isomorphic to canonical metric algebroid, reduces to standard Courant algebroid on physical spacetime \mathcal{M}/\mathcal{F} when $L_{-} = \mathcal{T}\mathcal{F}$ DFT algebroids lie "in between" two Courant algebroids
- Note: Generalised para-complex branes make sense for exact pre-Courant algebroids — extension to metric algebroids?

Adding a Wess-Zumino Term

- Difference between any two metric algebroid brackets on (M, K, η) is a 3-form H_D on M
- Canonical 3-form H_{can} : Choose canonical metric algebroid and reference bracket induced by Levi-Civita connection of η ($H_{can} = 0$ iff $d\omega = 0$)
- $(\mathcal{M}, \mathcal{K}, \eta)$ is admissible if $H_2(\mathcal{M}) = 0$ and $\frac{1}{4\pi} [H_{can}] \in H^3(\mathcal{M}; \mathbb{Z})$
- ► Defines Wess-Zumino term $\frac{1}{2} \int_{V} X^{*}(H_{can})$, $\partial V = \Sigma$ for Born sigma-model, H_{can} represents Ševera class of associated Courant algebroid
- ► For open strings, consider relative maps $\mathbb{X} : (\Sigma, \partial \Sigma) \longrightarrow (\mathcal{M}, \mathcal{W})$ and relative admissibility: $H_2(\mathcal{M}, \mathcal{W}) = 0$, $\frac{1}{4\pi} [(H_{can}, B_{can})] \in H^3(\mathcal{M}, \mathcal{W}; \mathbb{Z})$ for some 2-form B_{can} on \mathcal{W}
- ► $L_{\mathcal{W}} := \operatorname{im}(T\mathcal{W} \longrightarrow T\mathcal{M})$ is a Born D-brane iff $\mathcal{W} \subset \mathcal{M}$ Lagrangian submanifold, $B_{\operatorname{can}} = 0$ and $H_{\operatorname{can}}|_{\mathcal{W}} = 0$ (orientation condition)
- Can only couple to *flat* Chan-Paton bundles analogous to A-branes

Generalized Para-Complex Branes

 Generalized submanifolds (W, L) on an exact Courant algebroid correspond to subbundles

$$L = L^{\mathsf{F}} := \left\{ X + \alpha \in T\mathcal{W} \oplus T^*\mathcal{M}|_{\mathcal{W}} \mid \alpha|_{\mathcal{W}} = \iota_X \mathsf{F} \right\} \subset \mathbb{T}\mathcal{M}$$

for some 2-form F on W with $dF + H_{can}|_{W} = 0$

- Example: For a Born D-brane L_D and its Dirac structure $D = L_D \oplus \operatorname{Ann}(L_D)$, $(\mathcal{W}_D, D|_{\mathcal{W}_D})$ is a generalized para-complex D-brane iff $H_{\operatorname{can}}|_{\mathcal{W}_D} = 0$ (since F = 0)
- Example: For a Born D-brane L_D and given $F \in \Omega^2(W)$, (W_D, L^F) is a generalized para-complex D-brane iff

$$K^{\top}(\iota_X F) + \iota_{K(X)}F \in \operatorname{Ann}(T\mathcal{W}_D) \quad \forall X \in \Gamma(T\mathcal{W}_D)$$

If $H_{can}|_{W_D} = 0$ (integrability), $F \in \Omega^2_{\mathbb{Z}}(W_D)$ and K integrable, then F is the curvature of a para-holomorphic Chan-Paton bundle (C, ∇^C) on W_D — analogous to B-branes (Lawn & Schäfer '05)

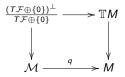
D-Branes on the Physical Spacetime

- D-branes are defined by "tangent vectors" distributions on tangent bundle of target space, need to be integral to interpret leaves as D-brane worldvolumes
- When L_− = TF and q : (M, H) → (M = M/F, ḡ) is a Riemmannian submersion, dq|_{L₊} : L₊ → TM fibrewise isomorphism
- ▶ Born D-brane $L_D = T\mathcal{F}_D \subset T\mathcal{M}$ induces $dq(L_D) = T\mathcal{F}_D^q \subseteq TM$, leaves of foliation \mathcal{F}_D^q supported by physical D-branes in (M, \bar{g}, \bar{b})
- Example: $L_{-} = T\mathcal{F} \implies$ 0-branes on *M* (fully Dirichlet)
 - L_+ integrable \implies spacetime-filling D-branes (fully Neumann)
- D-branes are associated with Dirac structures on Courant algebroid for corresponding sigma-model (Zabzine '04; Asakawa, Sasa & Watamura '12)
- Consider reduction of Born D-branes as reduction of Dirac structures, using techniques of Courant algebroid reduction

(Bursztyn, Cavalcanti & Gualtieri '05; Zambon '07)

Dirac Reduction of Born D-Branes

- For $A = T\mathcal{F} \oplus \{0\} \subset \mathbb{T}\mathcal{M}$, A^{\perp} spanned by $Y + d(q^*f)$ for projectable $Y \in \Gamma(T\mathcal{M})$ and $f \in C^{\infty}(\mathcal{M})$, which are 'basic'
- Hence large Courant algebroid TM reduces to standard Courant algebroid TM through pullback diagram



- For a Born D-brane L_D = TF_D ⊂ TM, D = L_D ⊕ Ann(L_D) is a Dirac structure for large Courant algebroid TM such that D ∩ A[⊥] still spanned by Y + d(q*f)
- ▶ Hence if L_D admits a sub-bundle spanned by projectable vector fields, then D descends to a Dirac structure D_{red} on M = M/F

Example: D-Branes on Doubled Nilmanifolds

- ► H = 3d Heisenberg group with Drinfel'd double $T^*H = H \ltimes \mathbb{R}^3$, basis $\{Z_i, \tilde{Z}^i\}_{i=x,y,z}$ of left-invariant vector fields on $T(T^*H)$
- $(\mathcal{M}, \mathcal{K}, \eta)$: $\mathcal{M} = \Gamma_m \setminus T^*H$ for discrete cocompact subgroup Γ_m with $m \in \mathbb{Z}$, $\mathcal{K}(Z_i) = +Z_i$ $\mathcal{K}(\tilde{Z}^i) = -\tilde{Z}^i$, and η induced from duality pairing between Lie(H) and \mathbb{R}^3
- ▶ Nilmanifold: Principal T^3 -bundle $\mathcal{M} \longrightarrow N_m$ = nilmanifold of degree m
 - ▶ L_+ = D3-brane filling N_m , Dirac structure $TN_m \subset \mathbb{T}N_m$
 - ► L_D = Span(Z_x, Z_y, \tilde{Z}^z) reduces to Dirac structure associated with foliation of N_m with T^2 leaves wrapped by D2-branes
- ▶ T^3 with *H*-flux: T^3 -fibration $\mathcal{M} \longrightarrow T^3$, m = DD class of gerbe on T^3 *B*-transformation sends $\{Z_i, \tilde{Z}^i\} \longrightarrow \{Z'_i, \tilde{Z}'^i\}, K \longrightarrow K'$
 - ► $L_D = \text{Span}(Z'_x, \tilde{Z}'^y, \tilde{Z}'^z)$ yields Dirac structure associated with foliation of T^3 with S^1 leaves wrapped by D1-branes, T-dual to D0-branes on N_m from reducing Born D-brane L_-
 - ► $H_{can} = -\frac{3}{2} m dx \wedge dy \wedge dz$, $H_{can}(Z'_x, Z'_y, Z'_z) \neq 0$ forbids D3-branes wrapping T^3 for $m \neq 0$