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D-branes and K-theory

D-brane charges in string theory are classified by K-theory of
spacetime X (Minasian & Moore, Witten, Ho¥ava)

Ramond-Ramond fields classified by differential K-theory of X
(Moore & Witten, Hopkins & Freed, Hopkins & Singer, Bunke & Schick)

Explains: stable non-BPS branes with torsion charges,
self-duality/quantization of RR-fields, worldsheet anomalies and
RR-field phase factors in string theory path integral

Predicts: instability of D-branes wrapping non-contractible cycles,
obstruction to simultaneous measurement of electric/magnetic RR

fluxes



Classification of D-branes — Categories

Problem: Given a closed string background X, find possible states
of D-branes in X (consistent boundary conditions in BCFT)

Many have no geometrical description: Regard D-branes as objects
in a suitable category

Topological strings/homological mirror symmetry: B-model
D-branes in derived category of coherent sheaves, A-model D-branes
in Fukawa category (Douglas)

BCFT/K-theory: Open string boundary conditions in category of 2D
open/closed TFT  (Moore & Segal)



Classification of D-branes — Bivariant K-theory

» Combine worldsheet description with target space classification in
terms of Fredholm modules: D-branes are objects in a certain
category of separable C*-algebras

» Category underlying Kasparov's bivariant K-theory (KK-theory),
related to open string algebras in SFT



Why bivariant K-theory?

Unifies K-theory and K-homology descriptions of D-branes

Intersection product provides correct framework for duality between
C*-algebras (e.g. Poincaré duality)

Explains equivalence of K-theory and K-homology descriptions of
D-brane charge

K-orientation/Freed-Witten anomaly cancellation, select consistent
sets of D-branes from category



Why bivariant K-theory?

» Open string T-duality as categorical KK-equivalence
(refines/generalizes Morita equivalence)

» Examples of “non-geometric” backgrounds
e.g. noncommutative spacetimes as globally defined, open string

versions of T-folds

» Noncommutative version of D-brane charge vector



Noncommutative geometry

Develop more tools for dealing with noncommutative spaces in purely

algebraic framework of separable C*-algebras:

» Noncommutative versions of Poincaré duality, orientation

» Topological invariants of noncommutative spaces
e.g. Todd genus

» Noncommutative version of Grothendieck—Riemann—Roch theorem

(D-brane charge)

J. Brodzki, V. Mathai, J. Rosenberg, RS:
arXiv: hep-th/0607020 , 0708.2648 [hep-th] , 0709.2128 [hep-th]

Review (RS): arXiv:0809.3029 [hep-th]



D-branes and K-cycles

» X = compact spin®-manifold (no H-flux)

» D-brane in X = Baum-Douglas K-cycle (W, E, f)
f: W < X closed spin® (worldvolume)

E — W Chan—Paton gauge bundle with connection
(stable element of K°(W))

» Quotient by bordism and Baum—Douglas “gauge equivalence”
=~ K-homology of X, stable homotopy classes of Fredholm modules
over commutative C*-algebra A = C(X)



D-branes and K-cycles

» (W,E, f)— (H,p, JZ)S:—W)), where:
» H=L*(W,S®E) (spinors on W)
> p(®) = myor (x-representation of ¢ € A)
> p(EW) = Dirac operator on W
» D-branes naturally provide K-homology classes on X,

dual to K-theory classes fi(E) € K?(X)
(fi = K-theoretic Gysin map, d = dim(X) — dim(W))



A simple observation

» Natural bilinear pairing in cohomology (Poincaré duality):

(Xay)H = <va’[X]> (: fXOé/\ﬁ)

» Natural bilinear pairing in K-theory:

(E,F)x = index(lZ)E®F)

» Chern character isomorphism:
ch : K(X)®Q = H*(X,Q)

doesn't preserve two pairings.



A simple observation

» By Atiyah-Singer index theorem:
index(Dpor) = <Todd(X) — ch(E® F), [X]>
we get an isometry with the modified Chern character:

ch — +/Todd(X) — ch

» Ramond-Ramond charge of D-brane (W, E,f) (Minasian-Moore):

Q(W,E,f) = ch(f(E)) — /Todd(X) € H*(X,Q)

Zero mode part of boundary state in RR-sector



Worldsheet description of D-branes

Open strings = relative maps: (X,0%X) — (X, W)
Y = oriented Riemann surface

In BCFT on ¥ = R x [0, 1], Euler-Lagrange equations require
suitable boundary conditions — label by a, b, . ..

Compatibility with superconformal invariance constrains W
e.g. in absence of H-flux, W must be spin® (cancellation of global
worldsheet anomalies)

Problem: What is a quantum D-brane?

Define consistent boundary conditions after quantization of BCFT
— look at open string field theory



Algebraic characterization of D-branes

Concatenation of open string vertex operators defines algebras and
bimodules:

> a-a open strings: Noncommutative algebra D, of open string fields
(opposite algebra DS by reversing orientation)

» a-b open strings: D,-Dj bimodule &, (dual bimodule £, = Ep, by
reversing orientation)
E,2 = D, trivial D,-bimodule

» “Category of D-branes”: Objects = boundary conditions,
Morphisms a — b = &5, with associative C-bilinear composition
law:

Eab X Epe — Eac



KK-theory

In certain instances (e.g. X = T" with constant B-field in
Seiberg—Witten scaling limit) composition law extends by
associativity to:

Eab @D, Ebc — Eac

Natural identifications D, = E,p ®p, Epa » Db = Eps @p, Esp Mean
that &, is a Morita equivalence bimodule: T-duality

Ea» — Kasparov bimodule (E,p, Fap), generalize Fredholm modules.
“Trivial” bimodule (£,p,0) when &, is Morita equivalence bimodule

Stable homotopy classes define Zj-graded KK-theory group
KKe(D,, Dp) = “generalized” morphisms D, — Dy,



KK-theory

» ¢ : A — B homomorphism of separable C*-algebras, then
[#] € KKq(A, B) represented by “Morita-type” bimodule (B, ¢,0)

> KKo(C,B) = Ko(B) K-theory of B

» KKe(A,C) = K*(A) K-homology of A
(Kasparov bimodules = Fredholm modules over A)
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Intersection product

@8 : KKi(A,B) x KK;(B,C) — KK;4;(A,C)
Bilinear, associative

¢: A— B,y :B— C then [¢] @5 [V] [ o @]

Makes KKg(A, A) into unital ring with 14 = [id 4]

Defines bilinear, associative exterior product:

®@ : KKi(A1, Br) x KKj(Az, By) — KKipj(A1 @ Az, B1 ® Ba)



D-brane categories

(Higson, Meyer, Nest)

>

Additive category: Objects = separable C*-algebras ,
Morphisms A — B = KK,(A, B)

Universal category: KK = unique bifunctor on category of separable
C*-algebras , x-homomorphisms with homotopy invariance, stability
and split exactness

Composition law = intersection product

Not abelian, but triangulated

“Weak” monoidal category: multiplication = spatial tensor product

on objects, external Kasparov product on morphisms,
identity = one-dimensional C*-algebra C



KK-equivalence

» o € KKy4(A, B) determines homomorphisms:
@aa : Ki(A) — Kjpg(B) and a®p : K(B) — KTI(A)
> « invertible, i.e., there exists 8 € KK_4(B, A) with a®p 8 = 14
and B®4a = 1g, then 3 =:a~! and

Ki(A) = Kig(B) and  KI(B) = KI*9(A)

> Algebras A, B are KK-equivalent



KK-equivalence

» Example: Morita equivalence => KK-equivalence (v = [(€ap,0)]);
but KK-equivalence generally refines usual T-duality

» Note: Universal coefficient theorem  (Rosenberg & Schochet):

0 — Extz(Ketri(A), Ke(B)) — KK, (A, B) —
—  Homgz(Ke(A), Ke(B)) — 0

Holds for class of C*-algebras KK-equivalent to comm. algs.



Poincaré duality — Definition
(Connes, Kaminker & Putnam, Emerson, Tu)

» A = separable C*-algebra, A° = opposite algebra
(A-bimodules = (A ® A°)-modules)

» Ais a Poincaré duality (PD) algebra if there is a fundamental class
A € KKy(A® A°,C) = K (A ® A°) with inverse
AY € KK_4(C,A® A°) = K_g4(A ® A°) such that:

AV®A0A

14 € KKo(.A, A)

AV o A = (1) 14 € KKo(A°, A°)



Poincaré duality — Definition

» Determines inverse isomorphisms:
K,(A) % Ki+d(Ao) _ Ki+d(A)

Ki(A) = KI(4°) 22940 K. (A)

» More generally: A° — B = PD pairs (A, B)



Poincaré duality — Example

» A = G(X) = A°, X = complete oriented manifold
B = G(T*X)or B = G(X, Cliff(T*X))

» (A,B) = PD pair: A = Dirac operator on Cliff( T*X)

» X = spin® = A = PD algebra:
A = D on diagonal of X x X (image of Dirac class under
m* : K*(A) — K*(A® A) induced by product m: A® A — A)
AY = Bott element



K-orientation and Gysin homomorphisms
(Connes & Skandalis)

» f: A — B x-homomorphism of separable C*-algebras in suitable
category

» K-orientation for f = functorial way of associating ! € KK4(B, .A)

» Determines Gysin “wrong way” homomorphism:

fi=@p(f1) : Ko(B) — Keia(A)



K-orientation and Gysin homomorphisms

» A, B PD algebras, any f : A — B K-oriented with K-orientation:
fl = (—1)% AY @40 [f°] @5 Ag

d = d4—ds

» Functoriality g! ®5 f! = (g o f)! for g : B — C by associativity of
Kasparov intersection product



K-orientation — Example

Any D-brane (W, E,f) in X determines canonical KK-theory class
fl e KKq (C(W), C(X)):

» Normal bundle v = f*(TX)/TW spin©

» iWii=[(&,F)] € KKy (C(W), Go(v)) invertible element
associated to ABS rep. of Thom class of zero section iV : W — v

> jl € KKo (Go(v), C(X)) extension by zero

» K-orientation for f:
fl = i"1®cgu !

» K-orientation = Freed-Witten anomaly cancellation condition



Local cyclic cohomology — Definition

» A unital; noncommutative differential forms on T A:

Qn(.A) _ A®(n+1)@¢4®", d = <(1) 8)

~ Spanc{ap day---da, | a0, a1,...,a, € A}

» Completion of Q°*(A) = Zp-graded X-complex:

od 1
b QI(TA)h: Q(TA)

. Qo0 —
X(TA) : QU(TA)=TA . [o1(T4), 2(T.4)]

b :wp dwy — [wo,w1], B2 = 0



Local cyclic cohomology — Definition

» Puschnigg's completion of X(T.A):

X(TA) : [] @*a) [T @A)

n>0 n>0

> Zy-graded bivariant local cyclic cohomology:

HL.(A,B) = H. (Home(X(TA),X(TB)), 9)



Local cyclic cohomology — Properties

Cyclic theory “closest” to KK-theory; encompasses other cyclic theories
(analytic, periodic, ...):

» Defined on large classes of topological /bornological algebras, and for
separable C*-algebras

» Bifunctor homotopy invariant, split exact and satisfies excision

» Bilinear, associative composition product:

KB : HL,‘(.A, B) X HLJ'(B,C) — HL;+j(A7C)

» Bilinear, associative exterior product:

R HL,‘(Al,Bl) X HLJ'(AQ,BQ) — HL,'+J'(A1 R Ar, B ® 82)
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Local cyclic cohomology — Example

X compact oriented manifold, dim(X)=d
C>(X) = C(X) = HL(C(X)) 2 HL(C>®(X)) 2 HP (C=(X))
Puschnigg complex = de Rham complex (Q'(X), d)

Connes—Hochschild-Kostant—Rosenberg theorem:

FOdft- - df" — L AP A AdFT, e CF(X)

Putting everything together:

HL.(C(X)) = HIr(X)  (Zr-graded)



Local cyclic cohomology — Example

Cyclic d-cocycle induces orientation fundamental class
= = m*[p] € HLY(C(X) ® C(X)):

1
o(FO, 1, ..., F9) = E/ FOdrt Ao ndfd
FJX



Chern character

There is a natural bivariant Z,-graded Chern character homomorphism:

ch : KK¢(A,B) — HL,.(A, B)

v

Multiplicative: ch(a ®5 ) = ch(a) ®g ch(3)

v

Compatible with exterior product

v

ch([¢lkk) = [@lur for any ¢ : A — B

v

If A, B obey UCT for KK-theory and K4(.A) finitely generated:

HL.(A,B) = KK, (A, B) ®7C

v

Every PD pair for KK is also a PD pair for HL (but = # ch(A)).
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Todd classes

A PD algebra with fund. K-homology class A € K?(A ® A°),
fund. cyclic cohomology class = € HL?(A ® A°)

Todd class of A:

Todd(A) = =Y ®0 ch(A) € HLg(A, A)

Invertible: Todd(A)™! = (—1)¢ ch(AY) @40 =

A = C(X), X = compact complex manifold, is a PD alg.:
A = Dolbeault op. 9 on X x X, = = orientation cycle [X]
By UCT, HLo(A, A) = End (H*(X,Q))

Then Todd(A) = — Todd(X) Wlth Todd(X) € H*(X, Q)



Grothendieck—Riemann—Roch theorem
» f: A— B K-oriented — compare ch(f!) with HL orientation class
fxin HL4(B, A). If A, B PD algs., thend = d4 — dg and:

ch(f) = (~1)% Todd(B) @z (f*) ®.4 Todd(A)™*

» Commutative diagram:

fi
Ke (B) — Ko+d(¢4)
ch®5T0dd(B)i ich@_ATodd(.A)

HL.(B) e HLe1q(A)



Isometric pairing formula

» A PD alg. with symmetric fund. classes A, =, i.e.,, 0(A)° = Ain
Kd(A®A°), where 0 : A® A° — A° Q@ A, x® y° — y° @ x

» Symmetric bilinear pairing on K-theory of A:
(O/,ﬁ)K = (Oz (9 ﬁo) R A0A° A € KKo((C,(C) =7
Index pairing when A = C(X), X spin® (A = D ® P):

(.0 = D, @cx)f = index(D )

» Symmetric bilinear pairing on local cyclic homology:

(. ¥)uL = (x®@y°) ®agar = € HLy(C,C)=C



Isometric pairing formula

> If A satisfies UCT then HL,(A, A) 2 End (HL,(A))
If n:=dimc (HL4(A)) < 00, then Todd(A) € GL(n,C) and
v/ Todd(.A) defined using Jordan normal form

» Then modified Chern character:

ch ®4 y/Todd(A) : Ke(A) — HL.(A)

isometry of inner products



Noncommutative Minasian—Moore formula
» A, D noncommutative D-branes with A as before, f : A — D
K-oriented, and Chan—Paton bundle £ € Kq(D):
Q(D,&,f) = ch(f(€)) @4 /Todd(A) € HL.(A)

» D-brane in noncommutative spacetime A described by Fredholm
module representing class u € K*(A), has “dual” charge:

V/Todd(A) ~* @4 ch(p) € HL*(A)

Satisfies isometry rule:
=V Qapae (Qu) @ QW)°) = AY ®agae (1©V°)

Minasian—Moore formula when © = A(§) @4 A



