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Abstract. — We construct a variant of Karoubi’s relative Chern character for

smooth varieties over C and prove a comparison result with Beilinson’s regulator
with values in Deligne-Beilinson cohomology. As a corollary we obtain a new proof

of Burgos’ Theorem that for number fields Borel’s regulator is twice Beilinson’s reg-

ulator.

Résumé (Le caractère de Chern relatif de Karoubi et le régulateur de

Beilinson)

Nous construisons une variante du caractère de Chern relatif de Karoubi pour
les variétés lisses sur C et prouvons un résultat de comparaison avec le régulateur

de Beilinson à valeurs dans la cohomologie de Deligne-Beilinson. En corollaire nous

obtenons une nouvelle preuve du théorème de Burgos, que, pour un corps de nombres,
le régulateur de Beilinson est deux fois le régulateur de Borel.
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Introduction

In a series of papers [25, 26, 27, 29] Karoubi introduced relative K-theory for

Banach algebras A (the homotopy fibre of the map from algebraic to topological

K-theory) and constructed the relative Chern character

Chrel
i : Krel

i (A)→ HCcont
i−1 (A)

mapping relative K-theory to continuous cyclic homology. He also mentioned a geo-

metric version of his relative Chern character and the possible connection with regu-

lators.

The objective of this paper is to make these relations precise in the case of smooth

affine varieties X over C. In this situation the cyclic homology decomposes into a

product of cohomology groups of the truncated de Rham complex and the relative

Chern character becomes a morphism

Chrel
n,i : K

rel
i (X)→ H2n−i−1(X,Ω<nX ).

We may formulate our main result as follows.

Theorem. — Karoubi’s relative Chern character factors naturally through a mor-

phism

Krel
i (X)→ H2n−i−1(X,C)/FilnH2n−i−1(X,C)

which we denote by the same symbol. The diagram

Krel
i (X) //

Chrel
n,i

��

Ki(X)

ChD
n,i

��
H2n−i−1(X,C)/FilnH2n−i−1(X,C) // H2n−i

D (X,Q(n)),

where ChD
n,i is Beilinson’s Chern character with values in Deligne-Beilinson cohomol-

ogy, commutes.

As an application we give a new proof for the comparison of Borel’s and Beilinson’s

regulators – the case X = Spec(C) –:

Corollary (Burgos’ Theorem [6]). — Borel’s regulator

K2n−1(C)→ R(n− 1)

is twice Beilinson’s regulator.

This result plays an important role in the study of special values of L-functions:

Borel [4] established a precise relation between his regulator and special values of

zeta functions of number fields. In [1] Beilinson formulated far reaching conjectures

describing special values of L-functions of motives up to non-zero rational factors in

terms of his regulator. He also proved that for a number field his regulator coincides

with Borel’s up to a non-zero rational factor (see also Rapoport’s report [32]). This
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enabled him to view Borel’s computations as a confirmation of his conjectures in the

case of a number field.

However, in order to exploit Borel’s result further and remove the Q×-ambiguity

it is important to have a precise comparison result for the regulators as provided by

Burgos’ Theorem.

In [10] Dupont, Hain, and Zucker proposed a strategy for the comparison of both

regulators based on the comparison of Cheeger-Simons’ and Beilinson’s Chern char-

acter classes. While there remained some difficulties in carrying this out, they were

led to the conjecture that the precise factor would be 2. This was then proven by

Burgos using Beilinson’s original argument.

So far Karoubi’s relative Chern character has not much been studied in Arithmetics.

One of its possible advantages is that it is defined in complete analogy in the classical,

p-adic, and even non commutative situation and thus gives a unifying frame for the

study of regulators in these different contexts. In the p-adic setting analogues of the

results presented here have been obtained in [37, 38].

Karoubi’s principal idea is to describe relative K-theory in terms of bundles with

discrete structure group on certain simplicial sets together with a trivialization of the

associated topological bundle. The relative Chern character is induced by secondary

classes for these bundles constructed by means of Chern-Weil theory.

The first problem one encounters when trying to compare these classes with Beilin-

son’s is that they live in the cohomology of the truncated de Rham complex which

does not map naturally to Deligne-Beilinson cohomology. It is therefore necessary

to construct refinements of these classes which are then to be compared with the

corresponding classes in Deligne-Beilinson cohomology.

Our approach to this is to generalize Karoubi’s formalism to simplicial manifolds

and systematically use what we call topological morphisms and bundles. The Chern-

Weil theoretic construction of secondary classes in this setup is described in Section

1. In the second Section we make essential use of the notion topological morphisms in

order to construct the abovementioned refinements (Proposition 2.10) and compare

them with Beilinson’s classes (Theorem 2.11).

Our construction of the relative Chern character on K-theory is presented in Sec-

tion 3. It differs slightly from Karoubi’s original one. The comparison with Beilinson’s

regulator then follows formally from the results of the second Section.

The Corollary is finally proven in Section 4. By the Theorem it reduces to a com-

parison of Karoubi’s relative Chern character for X = Spec(C) and Borel’s regulator.

A similar result has been obtained previously by Hamida [22]. She constructs an ex-

plicit map K2n−1(C)→ Krel
2n−1(C) and composes it with the relative Chern character

to obtain a map defined on the K-theory of C rather than the relative K-theory. This

is then compared with Borel’s regulator.
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Related to ours is the work of Soulé [35] who showed that Beilinson’s Chern char-

acter ChD
n,i : Ki(X) → H2n−i

D (X,Q(n)) factors through the multiplicative K-theory

of X which may also be described in terms of bundles and connections on certain

simplicial algebraic varieties. However, the relation with the relative Chern character

or Borel’s regulator is not treated in that paper.

The results presented here are part of my Ph.D. thesis [36] at the Universität

Regensburg. It’s a pleasure to thank my advisor Guido Kings for his guidance. I

would like to thank the California Institute of Technology, where this paper was

completed, and especially Matthias Flach for their hospitality. Finally, I would like to

thank the referee for his or her careful reading of the manuscript and several valuable

suggestions improving the exposition of the paper.

Notation. — For a complex manifold Y the sheaves of holomorphic functions, holo-

morphic n-forms, and smooth n-forms are denoted by OY ,ΩnY , and A n
Y , respectively.

Global sections are denoted by Ωn(Y ), etc.

The ordered set {0, . . . , p} is denoted by [p]. Simplicial objects are usually marked

with a bullet like X•. The ith face and degeneracy of a simplicial object are denoted

by ∂i and si, respectively. The ith coface of a cosimplicial object is denoted by δi. The

geometric realization of a simplicial set S• is denoted by |S•|.
If f : A• → B• is a morphism of cochain complexes, we define Cone(f) to be the

complex given in degree n by An+1⊕Bn with d(a, b) = (−da, db−f(a)). The complex

A[−1] is given in degree n by An−1 with differential −d.

1. Karoubi’s secondary classes

1.1. De Rham cohomology of simplicial complex manifolds. — Here we

recall Dupont’s computation of the de Rham cohomology of simplicial manifolds [11]

in the setting of complex manifolds. This is fundamental for simplicial Chern-Weil

theory in the following Sections.

Let X• be a simplicial complex manifold and denote by Ω≥rX• for r ≥ 0 the naively

truncated de Rham complex of sheaves of holomorphic forms, i.e. the rth step of the

bête filtration. Then we have

H∗(X•,Ω≥rX•) = H∗(Tot FilrA ∗(X•)),

where Tot FilrA ∗(X•) is the total complex associated with the cosimplicial complex

[p] 7→ FilrA ∗(Xp) =
⊕

k+l=∗,k≥r A ∗(Xp) (cf. [9, (5.2.7)]). For the purpose of simpli-

cial Chern-Weil theory we need another version of the simplicial de Rham complex.

Let

∆p :=
{

(x0, . . . , xp) ∈ Rp+1
∣∣ xi ≥ 0,

∑p

i=0
xi = 1

}
⊆ Rp+1



KAROUBI’S RELATIVE CHERN CHARACTER AND BEILINSON’S REGULATOR 5

denote the standard simplex. Then [p] 7→ ∆p is a cosimplicial space in a natural way.

A function or form on ∆p is called smooth, if it extends to a smooth function resp.

form on a neighbourhood of ∆p in {
∑
xi = 1} ⊆ Rp+1. We recall from [11]:

Definition 1.1. — A smooth simplicial n-form on a simplicial complex manifold

X• is a family ω = (ωp)p≥0, where ωp is a smooth n-form on ∆p × Xp, and the

compatibility condition

(δi × 1)∗ωp = (1× ∂i)∗ωp−1 on ∆p−1 ×Xp

i = 0, . . . , p, p ≥ 0, is satisfied. The space of smooth simplicial n-forms on X• is

denoted by An(X•).

The exterior derivative d and the usual wedge product applied component-wise

make A∗(X•) into a commutative differential graded C-algebra.

Moreover, A∗(X•) is naturally the total complex associated with the triple complex

(Ak,l,m(X•), d∆, ∂X , ∂̄X) where Ak,l,m(X•) consists of the forms ω of type (k, l,m),

that is, each ωp is locally of the form
∑
I,J,K fI,J,Kdxi1 ∧ · · · ∧ dxik ∧ dζj1 ∧ · · · ∧

dζjl ∧ dζ̄k1
∧ · · · ∧ dζ̄km , where x0, . . . , xp are the barycentric coordinates on ∆p and

the ζj are holomorphic coordinates on Xp. d∆, ∂X , ∂̄X denote the exterior derivative

in ∆- and the Dolbeault-derivations in X-direction, respectively. Write FilrA∗(X•) =⊕
k+l+m=∗,l≥r A

k,l,m(X•).

On the other hand we have the triple complex (A k,l,m(X•), δ, ∂X , ∂̄X), where

A k,l,m(X•) = A l,m(Xk) and δ =
∑k
i=0(−1)i∂∗i : A k,l,m(X•)→ A k+1,l,m(X•).

Theorem 1.2 (Dupont). — Let X• be a simplicial complex manifold. For each

l,m ≥ 0 the two complexes (A∗,l,m(X•), d∆) and (A ∗,l,m(X•), δ) are naturally chain

homotopy equivalent. The equivalence is given by integration over the standard sim-

plex:

I : Ak,l,m(X•)→ A k,l,m(X•), ω = (ωp)p≥0 7→
∫

∆k

ωk.

In particular, we get natural isomorphisms

H∗(X•,Ω≥rX•) ∼= H∗(Tot FilrA ∗(X•)) ∼= H∗(FilrA∗(X•)).

Proof. — This is essentially [11, Theorem 2.3]. One only has to check that the inte-

gration I, the homotopy inverse, and the homotopies constructed by Dupont in the

proof of [11, Theorem 2.3] respect the (l,m)-type. This is left to the reader (or see

[36, Theorem 1.3]).

1.2. Bundles on simplicial manifolds. — This Section introduces the formalism

of algebraic, holomorphic, and topological bundles on simplicial varieties. We follow

Karoubi’s approach [27, 28] describing bundles in terms of their transition functions.

This is perfectly suited for computations and the construction of Chern character

maps in K-theory as in Section 3.
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Definition 1.3. — The classifying simplicial manifold for GLr(C) is the simplicial

complex manifold B•GLr(C), where

BpGLr(C) = GLr(C)× · · · ×GLr(C) (p factors),

with faces and degeneracies

∂i(g1, . . . , gp) =


(g2, . . . , gp), if i = 0,

(g1, . . . , gigi+1, . . . , gp), if 1 ≤ i ≤ p− 1,

(g1, . . . , gp−1), if i = p,

si(g1, . . . , gp) = (g1, . . . , gi, 1, gi+1, . . . , gp), i = 0, . . . , p.

The universal principal GLr(C)-bundle is the simplicial complex manifold E•GLr(C),

where

EpGLr(C) = GLr(C)× · · · ×GLr(C) (p+ 1 factors),

with faces and degeneracies

∂i(g0, . . . , gp) = (g0, . . . , gi−1, gi+1, . . . , gp), i = 0, . . . , p,(1.1)

si(g0, . . . , gp) = (g0, . . . , gi, gi, . . . , gp), i = 0, . . . , p.(1.2)

The canonical projection p : E•GLr(C)→ B•GLr(C) is given in degree p by

(g0, . . . , gp) 7→ (g0g
−1
1 , . . . , gp−1g

−1
p ).

Thus B•GLr(C) is the quotient of E•GLr(C) by the diagonal right action of

GLr(C). Obviously E•GLr(C) is a simplicial group and it operates from the left

on B•GLr(C) ∼= E•GLr(C)/GLr(C). Explicitly, this action is given by

(g0, . . . , gp) · (h1, . . . , hp) = (g0h1g
−1
1 , . . . , gp−1hpg

−1
p ).

We define B•G and E•G in the same way if G is a discrete group, a group scheme,

etc.

Definition 1.4. — Let X• be a simplicial complex manifold. A holomorphic

GLr(C)-bundle on X• is a holomorphic morphism of simplicial complex manifolds

g : X• → B•GLr(C).

We also denote such a bundle by E/X• and call g the classifying map of E. The

universal GLr(C)-bundle Euniv is the bundle given by id: B•GLr(C)→ B•GLr(C).

A morphism α : g → h of GLr(C)-bundles on X• is a morphism of simplicial

complex manifolds α : X• → E•GLr(C), such that α · g = h with respect to the

abovementioned action. Every morphism is an isomorphism.

Note that B•GLr(C) may also be viewed as the C-valued points of a simplicial

C-scheme which, by abuse of notation, will be denoted by the same symbol. We

define an algebraic GLr(C)-bundle on a simplicial C-scheme X• to be a morphism

g : X• → B•GLr(C) of simplicial C-schemes.
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Example 1.5. — Let Y be an arbitrary complex manifold and E a holomorphic vec-

tor bundle of rank r. Choose an open covering U = {Uα, α ∈ A} of Y such that E
∣∣
Uα

is trivial for each α ∈ A. A set of transition functions gαβ : Uα∩Uβ → GLr(C) defininig

E yields a holomorphic map N1U =
∐
α,β∈A Uα ∩ Uβ → B1GLr(C) = GLr(C) and

the cocycle condition ensures that this map extends uniquely to a holomorphic map

g : N•U → B•GLr(C), where N•U denotes the Čech nerve of U , i.e. the simplicial

manifold which in degree p is given by NpU =
∐
α0,...,αp∈A Uα0 ∩ · · · ∩ Uαp . Thus we

get a GLr(C)-bundle on N•U in the above sense.

Example 1.6. — Again let Y be a complex manifold and in addition let S be a

simplicial set. Let O(Y ) denote the ring of holomorphic functions on Y and G the

group GLr(O(Y )). Then a G-fibre bundle (“G-fibré repéré”) on S in the sense of

Karoubi [27, 5.1] may be defined as a morphism of simplicial sets S → B•G (cf. the

proof of [27, Théorème 5.4]). But G = GLr(O(Y )) may be identified with the group

of holomorphic maps Y → GLr(C) and thus a morphism of simplicial sets S → B•G

is equivalent to a morphism of simplicial complex manifolds Y ⊗ S → B•GLr(C),

where Y ⊗ S is the simplicial manifold given in degree p by
∐
σ∈Sp Y with structure

maps induced from those of S.

1.2.1. Topological morphisms and bundles. — The definition of a differential form on

a simplicial complex manifold leads to the following notion of what we call topological

morphisms.

Definition 1.7. — A topological morphism of simplicial manifolds f : Y•  X• is a

family of smooth maps

fp : ∆p × Yp → Xp, p ≥ 0,

satisfying the following compatibility condition: For every increasing map φ : [p]→ [q]

the diagram

∆q × Yq
fq // Xq

φX

��

∆p × Yq

φ∆×id
44

id×φY

**
∆p × Yp

fp // Xp

commutes. Here φ∆, φY , φX denote the (co)simplicial structure maps induced by φ.

Every holomorphic or smooth morphism of simplicial complex manifolds f : Y• →
X• induces a topological morphism f : Y•  X• by composition with the natural

projections ∆p × Yp → Yp.
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Let f : Z•  Y• be a topological morphism. For every increasing φ : [p] → [q] we

get a commutative diagram

∆q × Zq
(pr∆q ,fq) // ∆q × Yq

∆p × Zq

φ∆×id
99

id×φZ

%%

(pr∆p ,fq◦(φ∆×id)) // ∆p × Yq

φ∆×id
99

id×φY

&&
∆p × Zp

(pr∆p ,fp) // ∆p × Yp.

(1.3)

Definition 1.8. — Let f : Z•  Y• and g : Y•  X• be topological morphisms. We

define the composition g◦f : Z•  X• to be the topological morphism given in degree

p by gp ◦ (pr∆p , fp) : ∆p × Zp → Xp.

For a simplicial form ω = (ωp)p≥0 ∈ An(Y•) we define the pullback of ω by f to be

the simplicial form f∗ω := ((pr∆p , fp)
∗ωp)p≥0 ∈ A

n(Z•).

From diagram (1.3) one sees that these are well defined.

Definition 1.9. — Let X• be a simplicial manifold. A topological GLr(C)-bundle

on X• is a topological morphism of simplicial manifolds

g : X•  B•GLr(C).

A morphism α : g → h of topological GLr(C)-bundles onX• is a topological morphism

of simplicial manifolds α : X•  E•GLr(C), such that α · g = h.

Example 1.10. — Let S be a simplicial set, A a complex Fréchet algebra and A• the

simplicial algebra C∞(∆•)⊗̂πA, where C∞ denotes smooth complex valued functions

and ⊗̂π the projectively completed tensor product over C. The simplicial classifying

set B•GLr(A•) for the simplicial group GLr(A•) is by definition the diagonal of

the bisimplicial set ([p], [q]) 7→ BpGLr(Aq). Karoubi defines a topological GLr(A)-

bundle (= a “GLr(A•)-fibré repéré”) on the simplicial set S to be a morphism S →
B•GLr(A•) [27, 5.1, proof of 5.4 and 5.26].

In the special case, where A is the ring of smooth complex valued functions C∞(Y )

on a complex manifold Y , this gives a topological bundle on the simplicial manifold

Y ⊗ S (cf. Example 1.6) as follows:

First of all, there is a natural map C∞(∆p)⊗̂πC∞(Y ) → C∞(∆p × Y ). Next,

BpGLr (C∞(∆p × Y )) = C∞(∆p × Y,BpGLr(C)). Thus, a morphism of simplicial

sets f : S → B•GLr(A•) gives rise to a family of smooth morphisms

∆p × Y f(σ)−−−→ BpGLr(C), σ ∈ Sp, p ≥ 0.
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That f is a morphism of simplicial sets is reflected in the fact that for every increasing

φ : [p]→ [q] and σ ∈ Sq the diagram

∆q × Y
f(σ) // BqGLr(C)

φB•G

��
∆p × Y

φ∆×id

OO

f(φ∗Sσ) // BpGLr(C)

commutes. Here φ∗S : Sq → Sp denotes the simplicial structure map induced by φ.

Now the collection of maps f(σ), σ ∈ Sp, defines a smooth morphism

f̃p : ∆p × (Y ⊗ S)p =
∐
σ∈Sp

∆p × Y
∐
f(σ)−−−−→ BpGLr(C)

and the commutativity of the above diagrams is equivalent to the fact that the family

of maps f̃p, p ≥ 0, defines a topological morphism Y ⊗ S  B•GLr(C) in our sense.

1.3. Chern-Weil theory. — Chern-Weil theory on simplicial manifolds was devel-

oped by Dupont [12] and in the case of simplicial sets (but more general structure

groups) by Karoubi [27, 28]. We recall Karoubi’s formalism and adapt it to the setting

of topological bundles.

In order to define the notion of a connection, we have to introduce some more

notation. Any p-simplex x in the classifying space B•GLr(C) may be written as

x = (g01, g12, . . . , gp−1,p). Thus, if (g0, . . . , gp) ∈ EpGLr(C) is a p-simplex lying over

x, then g01 = g0g
−1
1 etc. and we define gji := gjg

−1
i for any 0 ≤ i, j ≤ p. If g : X•  

B•GLr(C) is a topological GLr(C)-bundle, we write gji for the smooth maps ∆p ×
Xp → GLr(C) obtained in the above way. If g is a holomorphic bundle then gji factors

through a holomorphic map Xp → GLr(C) which, by abuse of notation, will also be

denoted by gji.

Definition 1.11. — A connection in a topological GLr(C)-bundle g : X•  
B•GLr(C) is given by the following data: For any p ≥ 0 and any i ∈ [p] = {0, . . . , p}
a matrix valued 1-form Γi = Γ

(p)
i ∈ A 1(∆p ×Xp; Matr(C)) = Matr(A 1(∆p ×Xp))

subject to the conditions

(i) (φ∆ × id)∗Γ
(q)
φ(i) = (id× φX)∗Γ

(p)
i for any increasing map φ : [p]→ [q] and

(ii) Γi = g−1
ji dgji + g−1

ji Γjgji.

Here Matr denotes r × r-matrices. We view gji as a matrix of smooth functions on

∆p ×Xp. Thus dgji is a matrix valued 1-form on ∆p ×Xp.

If g is a holomorphic bundle, we call the connection holomorphic, if Γi ∈
A 0,1,0(∆p × Xp,Matr(C)) ⊆ A 1(∆p × Xp; Matr(C)) (cf. the discussion before

Theorem 1.2).
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Example 1.12. — Every topological GLr(C)-bundle g : X•  B•GLr(C) may be

equipped with the standard connection given by

Γi =
∑
k

xkg
−1
ki dgki,

where x0, . . . , xp denote the barycentric coordinates of ∆p. If g is holomorphic, this

connection is holomorphic.

Definition 1.13. — The curvature of the connection {Γi} is defined as the family

of matrix valued 2-forms

Ri := R
(p)
i := dΓ

(p)
i +

(
Γ

(p)
i

)2

∈ A 2(∆p ×Xp; Matr(C)),

p ≥ 0, i = 0, . . . , p.

Since in general Ri 6= Rj for i 6= j the entries of the R
(p)
i , p ≥ 0, do not define a

simplicial form (but see Definition 1.15 below).

Remarks 1.14. — (i) Let g, h : X•  B•GLr(C) be two bundles, α : g → h a mor-

phism of bundles and Γ = {Γi} a connection on h with curvature {Ri}. Then the

pullback α∗Γ of the connection Γ is defined by the family of forms

(α∗Γ)i = α−1
i dαi + α−1

i Γiαi,

where αi : ∆p×Xp → GLr(C) is the i-th component of the morphism α in simplicial

degree p. The curvature of α∗Γ is given by the family of 2-forms α−1
i Riαi.

(ii) If E/X• is a topological bundle on X• given by g : X•  B•GLr(C), and

f : Y•  X• is a topological morphism, the pullback f∗E is given by g◦f . If Γ = {Γi}
is a connection on E, the induced connection f∗Γ on f∗E is given by

(f∗Γ)
(p)
i = (pr∆p , fp)

∗Γ
(p)
i .

Consequently, its curvature is given by the family of forms (pr∆p , fp)
∗R

(p)
i .

If Γ is the standard connection on E, then f∗Γ is the standard connection on f∗E,

as follows directly from the definitions.

Definition 1.15. — We define the n-th Chern character form Chn(Γ) of the con-

nection Γ = {Γi} to be the family of forms (−1)n

n! Tr
((
R

(p)
i

)n)
on ∆p ×Xp, p ≥ 0.

These forms do not depend on i since Ri = g−1
ji Rjgji by a straight forward com-

putation. We summarize the results of Chern-Weil theory:

Theorem 1.16. — Let g : X•  B•GLr(C) be a topological bundle and Γ a connec-

tion on g.

(i) Chn(Γ) is a closed 2n-form on X•, i.e. belongs to A2n(X•) and dChn(Γ) = 0.

(ii) The cohomology class of Chn(Γ) does not depend on the connection chosen.
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(iii) If the bundle g and the connection are holomorphic, Chn(Γ) ∈ FilnA2n(X•).

Moreover, the class of Chn(Γ) in H2n(FilnA∗(X•)) = H2n(X•,Ω
≥n
X•

) does not

depend on the holomorphic connection chosen.

(iv) If h : X•  B•GLr(C) is a second bundle, and α : h → g is a morphism, then

Chn(α∗Γ) = Chn(Γ).

(v) If f : Y•  X• is a topological morphism, Chn(f∗Γ) = f∗Chn(Γ).

Proof. — (i) Condition (i) in Definition 1.11 ensures that (φ∆× idXq )
∗Tr((R

(q)
φ(i))

n) =

(id∆p × φX)∗Tr((R
(p)
i )n), hence the forms (−1)n

n! Tr
((
R

(p)
i

)n)
, p ≥ 0, are indeed

compatible and define Chn(Γ) ∈ A2n(X•). For the closedness cf. the proof of [27,

théorème 1.19].

(ii) This follows from a standard homotopy argument (cf. the construction of sec-

ondary forms in Section 1.4).

(iii) With the notations of Section 1.1 write

FiliA ∗(∆p ×Xp) =
⊕

k+l+m=∗,l≥i

A k,l,m(∆p ×Xp)

and similarly for matrix valued forms. These are subcomplexes and the product maps

Fili × Filj to Fili+j . Now, if the connection is holomorphic, Γi ∈ Fil1A 1(∆p ×
Xp,Matr(C)), hence Ri = dΓi + Γ2

i ∈ Fil1A 2(∆p × Xp; Matr(C)) and then also

Chn(Γ) ∈ FilnA2n(X•).

The independence of the associated cohomology class of the holomorphic connec-

tion chosen follows from a homotopy argument as before, where one has to take care

about the filtration [36, Lemma 1.34].

(iv), (v) These follow directly from remarks 1.14 (i) and (ii) respectively.

Definition 1.17. — If E/X• is a topological bundle, we write Chn(E) for the coho-

mology class of Chn(Γ) in H2n(A∗(X•)) = H2n(X•,C), where Γ is any connection on

E. If E is holomorphic, we also denote by Chn(E) the class of Chn(Γ) in H2n(X•,Ω
≥n
X•

),

where Γ is any holomorphic connection.

Characteristic classes of holomorphic vector bundles. — In order to compare these

Chern-Weil theoretic characteristic classes with other constructions we have to extend

them to arbitrary holomorphic vector bundles on simplicial manifolds.

Recall from [17, Ex. 1.1] that a holomorphic vector bundle on the simplicial com-

plex manifold X• is a sheaf E• of OX• -modules such that each Ep is locally free and

for every φ : [p]→ [q] the associated map φ∗XEp → Eq is an isomorphism.
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There exists a canonical holomorphic rank r vector bundle on B•GLr(C) and it is

well known that pulling back along classifying maps induces a bijection
isomorphism classes of

holomorphic

GLr(C)-bundles on X•

 1−1−−→


isomorphism classes of

degreewise trivial

holomorphic rank r vector

bundles on X•


(for a proof see e.g. [36, Lemma 1.13]).

Now let E• be an arbitrary holomorphic vector bundle of rank r on X•. Let

(Vα)α∈A be an open covering of X0 that trivializes E0 and put U0 :=
∐
α∈A Vα.

Then U• := coskX•0 U0 (cf. [9, (5.1.1)]) is an open covering of X• such that E•|U• is de-

greewise trivial. Denote by NX•(U•) its Čech nerve (cf. [14, p. 20]) and by ∆NX•(U•)

its diagonal simplicial manifold. It follows from the Theorem of Eilenberg-Zilber [9,

(6.4.2.2)] and [9, (5.3.7), (6.4.3)] that the natural maps

H∗(X•,Ω≥nX• )
∼=−→ H∗(NX•(U•),Ω

≥n
NX• (U•)

)
∼=−→ H∗(∆NX•(U•),Ω

≥n
∆NX• (U•)

)

are isomorphisms.

Now E•|∆NX• (U•) is degreewise trivial, hence corresponds to a GLr(C)-bundle E

on ∆NX•(U•), and we define

Chn(E•) ∈ H2n(X•,Ω
≥n
X•

)

to be the preimage of Chn(E) under the above isomorphisms. Using the fact that two

open covers of X0 admit a common refinement one checks that this is well defined.

In order to apply the splitting principle later on, we need the

Proposition 1.18 (Whitney sum formula). — Let 0 → E ′• → E• → E ′′• → 0

be a short exact sequence of holomorphic vector bundles on X•. Then Chn(E•) =

Chn(E ′•) + Chn(E ′′• ).

Proof. — Choosing suitable coverings we may assume without loss of generality that

0 → E ′0 → E0 → E ′′0 → 0 is a split short exact sequence of free OX0-modules. If we

denote the components of the classifying maps of E ′•,E•, and E ′′• by g′ij , gij , and g′′ij ,

respectively, it follows that gij is of the form(
g′ij ∗
0 g′′ij

)
.

Using the standard connections for the computation of the Chern character classes

the result follows easily from this.

1.4. Secondary classes. — Here we give the construction of the secondary classes

associated with a holomorphic bundle together with a trivialization of its underlying

topological bundle. These are the classes we are primarily interested in since they are

used in the construction of Karoubi’s relative Chern character on relative K-theory.
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Let X• be a simplicial complex manifold and E a holomorphic GLr(C)-bundle

given by the map g : X• → B•GLr(C). Assume that α : T → E is a morphism from

the trivial bundle T , given by the constant map X• → {1} ⊆ B•GLr(C), to E

viewed as topological bundles. According to the definitions this means that we have

a commutative diagram

E•GLr(C)

p

��
X• g

//

α

99

B•GLr(C).

Fix a holomorphic connection ΓE on E. By Chern-Weil theory (Theorem 1.16)

the form Chn(ΓE) ∈ A2n(X•) is exact. In fact, we can make a particular choice of a

form Chrel
n (ΓE , α) ∈ A2n−1(X•) which bounds Chn(ΓE). It is constructed as follows:

The standard homotopy operator from de Rham cohomology K : A2n(X• × C) →
A2n−1(X•), ω 7→

∫ 1

0
(i∂/∂tω)dt, where t is the coordinate on C and i∂/∂t is inner

multiplication with respect to the vector field ∂/∂t, satisfies

dK +Kd = i∗1 − i∗0
with the obvious inclusions i0, i1 : X• ↪→ X•×C. Let π denote the projectionX•×C→
X•. On the trivial bundle T on X• ×C we have the trivial connection given by the

zero matrix and the connection π∗α∗ΓE , and we may also consider the connection

(1.4) Γt = tπ∗α∗ΓE

which is an affine combination of both.

Definition 1.19. — Chrel
n (ΓE , α) := K(Chn(Γt)) ∈ A2n−1(X•).

We collect some properties.

Proposition 1.20. — (i) dChrel
n (ΓE , α) = Chn(ΓE)

(ii) The class of Chrel
n (ΓE , α) in H2n−1(A∗(X•)/FilnA∗(X•)) = H2n−1(X•,Ω

<n
X•

)

does not depend on the holomorphic connection chosen. We will denote it by

Chrel
n (E,α).

Proof. — (i) follows directly from the constructions and the properties of the homo-

topy operator. (ii) Let Γ̃E be a second holomorphic connection on E. Denote by π

the projection X• ×C×C→ X• and by s, t the variables on C×C. On the trivial

bundle on X• ×C ×C consider the connection Γs,t = (1 − s)tπ∗α∗ΓE + stπ∗α∗Γ̃E .

Denote by Ks and Kt the homotopy operators with respect to s and t, respectively.

Then

d(KsKt(Chn(Γs,t))) +Ks(d(Kt(Chn(Γs,t)))) =

= Kt(Chn(Γs,t))|s=1 −Kt(Chn(Γs,t))|s=0

= Chrel
n (Γ̃E)− Chrel

n (ΓE).
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But dKt(Chn(Γs,t)) = Chn(Γs,1) − Chn(Γs,0) = Chn((1 − s)π∗α∗ΓE + sπ∗α∗Γ̃E) =

Chn((1 − s)π∗ΓE + sπ∗Γ̃E) as one easily checks using Remark 1.14 where we still

denoted by π the projection X•×C→ X•. But (1−s)π∗ΓE+sπ∗Γ̃E is a holomorphic

connection on π∗E and it is not hard to see that Ks(Chn((1 − s)π∗ΓE + sπ∗Γ̃E)) ∈
FilnA2n−1(X•) completing the proof.

Remarks 1.21. — (i) The definition of the relative Chern character form involves

the choice of a connection Γt on the trivial bundle on X• × C satisfying i∗0Γt =

0, i∗1Γt = α∗Γ. We stick to the choice (1.4) to have well defined forms which moreover

satisfy a certain functoriality (see below). However, an argument similar to the proof

of Proposition 1.20 (ii) shows that a different choice of Γt only alters Chrel
n (ΓE , α) by

an exact form, hence leads to the same class in cohomology.

(ii) The definition of the relative Chern character form makes sense for arbitrary

topological bundles E/X• together with a trivialization α : X•  E•GLr(C) and a

connection ΓE . If f : Y•  X• is a topological morphism the pullback f∗E admits the

trivialization α◦f and one can check that Chrel
n (f∗ΓE , α◦f) = f∗Chrel

n (ΓE , α) (cf. [36,

Lemma 1.35]). If the bundle E, the connection ΓE , and the map f are holomorphic

we have a pullback f∗ on cohomology and Chrel
n (f∗E,α ◦ f) = f∗Chrel

n (E,α).

(iii) One may ask whether the relative Chern character class for holomorphic bun-

dles with a topological trivialization is determined by functoriality and the fact that

it transgresses the Chern character class. This is not clear since there seems to be no

good classifying space for holomorphic bundles E together with a topological trivi-

alization α in the sense that E and α are obtained by pullback of a universal pair

Euniv
top. triv., α

univ
top. triv. along a holomorphic map. This is in fact one of the main difficul-

ties in the comparison of relative Chern character classes and Deligne-Beilinson Chern

character classes.

However, it turns out that we can work around this problem using the functorial-

ity of the relative Chern character form: The projection p : E•GLr(C)→ B•GLr(C)

classifies the holomorphic bundle p∗Euniv which admits the tautological trivializa-

tion αuniv : T → p∗Euniv given by αuniv = id: E•GLr(C) → E•GLr(C). We equip

p∗Euniv with the standard connection and denote the corresponding relative form by

Chrel,univ
n := Chrel

n (Γp
∗Euniv

, αuniv).

Proposition 1.22. — If E/X• is a holomorphic GLr(C)-bundle together with a

topological trivialization α : T → E, then

Chrel
n (ΓE , α) = α∗Chrel,univ

n ,

ΓE denoting the standard connection on E.

Proof. — This follows from Remark 1.21 (ii) and the fact that E = α∗p∗Euniv and

that the pullback of the standard connection is the standard connection.
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Remark 1.23. — This description will be needed in Proposition 2.10 to compare the

class Chrel
n (E,α) for an algebraic bundle E with a topological trivialization α with

the class C̃h
rel

n (E,α) constructed by a completely different strategy. It will be this

latter class, that can be compared with the Deligne-Beilinson Chern character class

ChD
n (E). Note that this kind of “universal” description of relative Chern character

forms would not be possible in Karoubi’s setting of bundles on simplicial sets.

2. Secondary classes for algebraic bundles

The heart of this section is the comparison of relative and Deligne-Beilinson

Chern character classes in the last subsection. To do this, we first construct a

refinement of the secondary classes of Section 1.4 for an algebraic bundle on a

simplicial variety X• together with a topological trivialization. These classes live

in H2n(X•,C)/FilnH2n(X•,C). Using the so called refined Chern character classes

constructed in 2.3 the comparison will be reduced to the comparison of primary Chern

character classes, which is done in 2.2. The first subsection recalls the definition of

the Hodge filtration on the cohomology of a simplicial variety.

2.1. Preliminaries. — Recall that a simplicial object in a category C is a functor

∆op → C where ∆ denotes the category of finite ordered sets and increasing maps.

Denote by ∆str the subcategory of ∆ with the same objects but only strictly increasing

maps as morphisms. A strict simplicial object in C is a functor (∆str)op → C.
In the following, a variety will be a smooth, separated scheme of finite type over C

equipped with the classical topology and OX ,Ω∗X will denote the sheaves of holomor-

phic functions and differential forms, respectively. By abuse of notation we will denote

the complex manifold associated with a variety X by the same letter. A simplicial or

strict simplicial variety X• is called proper if each Xp is proper over C.

Let X• be a simplicial variety. Using Nagata’s compactification theorem and

Hironaka’s resolution of singularities one inductively constructs an open immersion

j : X• ↪→ X• into a proper strict simplicial variety X• such that the complement

Dp := Xp − Xp is a divisor with normal crossings for each p [35, 1.2]. We call j

a good compactification. The nth step of the Hodge filtration is given as the image

of the injective map H∗(X•,Ω≥nX•(logD•)) ↪→ H∗(X•,Ω∗X•(logD•)) = H∗(X•,C).

It may be computed as follows [8, (3.2.3)], [35, 1.3]: For each p let A k,l

Xp
(logDp)

be the subsheaf Ωk
Xp

(logDp) ⊗OXp
A 0,l

Xp
of jp∗A

k,l
OXp

and denote its global sections

by A k,l(Xp, logDp). Denote by FilnA ∗(X•, logD•) the complex which is given

in degree ∗ by
⊕

k+l+p=∗,k≥n A k,l(Xp, logDp). There are natural isomorphisms

H∗(FilnA ∗(X•, logD•)) ∼= FilnH∗(X•,C).
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We have natural maps Ω≥n
X•

(logD•)→ j∗Ω
≥n
X•

which on cohomology induce

(2.1) H∗(X•,Ω≥nX•(logD•)) = FilnH∗(X•,C)→ H∗(X•, j∗Ω≥nX• ) ∼= H∗(X•,Ω≥nX• ).

If we compose this further with the map induced by Ω≥nX• ↪→ Ω∗X• we obtain the natural

inclusion FilnH∗(X•,C) ↪→ H∗(X•,C) = H∗(X•,Ω∗X•). Hence (2.1) is injective, too,

and we will view it as an inclusion.

Remark 2.1. — In the study of Chern character maps on higherK-theory, simplicial

schemes of the form X• = X ⊗ S, where X is a variety and S a simplicial set, occur

naturally. These are in general not of finite type. Nevertheless, they admit a good

compactification X• defined as X⊗S, where X ↪→ X is a good compactification, and

we can still consider the map H∗(X•,Ω≥nX•(logD•)) → H∗(X•,Ω∗X•) = H∗(X•,C).

It is not hard to see that this map is still injective. We will denote its image by

FilnH∗(X•,C) also in this case.

In the following, all the results and constructions that are formulated for simplicial

varieties are also valid for simplicial schemes of the form X ⊗S and we will use them

without mentioning them explicitly.

2.2. Chern classes of algebraic bundles. — Let E be an algebraic GLr(C)-

bundle on the simplicial variety X•, i.e. a morphism of simplicial varieties g : X• →
B•GLr(C). Since E may be viewed as a holomorphic bundle, we have the classes

Chn(E) ∈ H2n(X•,Ω
≥n
X•

) constructed using Chern-Weil theory. On the other hand,

one may also construct Chern character classes in FilnH2n(X•,C) in the style of

Grothendieck and Hirzebruch. We recall the construction, and show that these are

mapped to the Chern-Weil theoretic classes under the natural map FilnH2n(X•,C)→
H2n(X•,Ω

≥n
X•

).

2.2.1. The first Chern class of a line bundle. — Let X be a complex manifold, or

more generally a simplicial complex manifold. The group of isomorphism classes of

holomorphic line bundles on X is H1(X,O∗X) (cf. [17, Ex. 1.1]).

Definition 2.2. — The first Chern class c1 : H1(X,O∗X) → H2(X,Ω≥1
X ) is the map

on cohomology induced by the morphism of complexes d log : O∗X [−1]→ Ω≥1
X .

Lemma 2.3. — If L is an algebraic line bundle on the variety X, then c1(L ) ∈
Fil1H2(X,C) ⊆ H2(X,Ω≥1

X ).

Proof. — We may assume that X = X• is a simplicial variety and that L is classified

by a morphism of simplicial varieties g(•) : X• → B•Gm(C). Then g(1) ∈ Γ(X1,O∗X1
)

represents a class in H1(Γ∗(X•,O∗X•)) whose image in H1(X•,O∗X•) is the class of L

[17, Ex. 1.1]. Thus c1(L ) ∈ H2(X•,Ω
≥1
X•

) = H2(TotFil1A ∗(X•)) is the class repre-

sented by (d log(g(1)))⊕ 0 ∈ Γ(X1,Ω
1
X1

)⊕ Γ(X0,Ω
2
X0

) ⊆ Fil1A 1(X1)⊕ Fil1A 2(X0).
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Let X1 be any good compactification of X1. Then g(1), being algebraic, is meromor-

phic along X1 −X1, hence d log(g(1)) ∈ Fil1A 1(X1, log(X1 −X1)).

Lemma 2.4. — Let X• be a simplicial complex manifold and L a holomorphic line

bundle on X•. Then

Ch1(L•) = c1(L•)

in H2(X•,Ω
≥1
X•

).

Proof. — Again, we may assume that L• is classified by a holomorphic morphism

of simplicial manifolds g(•) : X• → B•Gm(C). Then Ch1(L•) can be computed ex-

plicitly: We equip the Gm(C)-bundle L classified by g(•) with the standard connec-

tion, given by the family of matrices Γ
(p)
i =

∑p
k=0 xk(g

(p)
ki )−1dg

(p)
ki =

∑
k xkd log(g

(p)
ki )

where the notations are as in Section 1.3. The curvature is then given by R
(p)
i =∑

k dxkd log(g
(p)
ki ) +

∑
k,l xkxld log(g

(p)
ki )d log(g

(p)
li ). This form does not depend on i,

and the first Chern character form Ch1(L) of L in Fil1A2(X•) is given by the family

(Ch1(L)p)p≥0 = (−R(p)
i )p≥0.

The isomorphism H2(Fil1A∗(X•))→ H2(Fil1A ∗(X•)) = H2(X•,Ω
≥1
X•

) is given by

ω = (ωp)p≥0 7→ (
∫

∆1 ω1,
∫

∆0 ω0) ∈ Fil1A 1(X1)⊕ Fil1A 2(X0).

Since g
(p)
ii is the constant map 1, d log(g

(p)
ii ) = 0 for all p ≥ 0, i = 0, . . . , p and

in particular Ch1(L)0 = 0. Next, Ch1(L)1 = −R(1)
1 = −dx0d log(g

(1)
01 ), and hence∫

∆1 Ch1(L)1 = d log(g
(1)
01 ) = d log(g(1)). Comparing with the computation in the

proof of the last Lemma, this concludes the proof.

2.2.2. Higher Chern classes. — These are constructed in the style of Grothendieck

using the splitting principle.

LetX• be a simplicial variety and E• an algebraic vector bundle onX• of rank r. De-

note by π : P(E•)→ X• the associated projective bundle and by O(1) the tautological

line bundle on P(E•). Write ξ := c1(O(1)) ∈ Fil1H2(P(E•),C) ⊆ H2(P(E•),Ω
≥1
P (E•)).

Lemma 2.5. — The maps

r−1∑
i=0

π∗( ) ∪ ξi :
r−1⊕
i=0

Hm−2i(X•,Ω
≥n−i
X•

)→ Hm(P(E•),Ω
≥n
P(E•)

) and(2.2)

r−1∑
i=0

π∗( ) ∪ ξi :
r−1⊕
i=0

Filn−iHm−2i(X•,C)→ FilnHm(P(E•),C)(2.3)

are isomorphisms.

Proof. — By a spectral sequence argument as in [16, Lemma 2.4] the simplicial case

follows from the classical case. There the second isomorphism follows by Hodge theory

from the classical Leray-Hirsch Theorem, the first one is established in the proof of

[18, Proposition 5.2].
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The higher Chern classes cn(E•) ∈ FilnH2n(X•,C) are now defined by the equation

r∑
i=0

π∗(cr−i(E•)) ∪ c1(OP(E•)(1))i = 0

and the conditions cn(E•) = 0 if n > r, c0(E•) = 1. Let Nn ∈ Z[X1, . . . , Xn] be the

nth Newton polynomial. The nth Chern character class is defined as

C̃hn(E•) :=
1

n!
Nn(c1(E•), . . . , cn(E•)) ∈ FilnH2n(X•,C).

The theory of Chern character classes obtained in this way has the usual properties.

In particular they are functorial and the Whitney sum formula holds [21].

Proposition 2.6. — Let E• be an algebraic vector bundle on the simplicial vari-

ety X•. The natural morphism FilnH2n(X•,C) → H2n(X•,Ω
≥n
X•

) maps C̃hn(E•) to

Chn(E•). In particular, Chn(E•) ∈ FilnH2n(X•,C) ⊆ H2n(X•,Ω
≥n
X•

).

Proof. — Repeated use of the projective bundle construction gives a morphism of

simplicial varieties π : Q• → X• such that π∗E• has a filtration whose subquotients

are line bundles, and such that both maps π∗ : FilnH2n(X•,C) → FilnH2n(Q•,C)

and π∗ : H2n(X•,Ω
≥n
X•

)→ H2n(Q•,Ω
≥n
Q•

) are injective (Lemma 2.5).

By the Whitney sum formula it is thus enough to show, that for a line bundle L•,

C̃hn(L•) maps to Chn(L•). But C̃hn(L•) is just 1
n!c1(L•)n and similarly Chn(L•) =

1
n! (Ch1(L•))

n
. Indeed, for the Chern character classes C̃hn this follows from the

explicit form of the Newton polynomials and the fact that ci(L•) = 0 if i > 1, while

for the classes Chn(L•) it follows directly from the construction. Hence the claim

follows from Lemma 2.4.

2.3. Relative Chern character classes. — In this Section we construct refine-

ments of the secondary classes of Definition 1.19 for algebraic bundles together with

a trivialization of the associated topological bundle, which take the Hodge filtration

into account.

First recall the following notion: If A
f−→ C

g←− B is a diagram of complexes in

an abelian category, its quasi-pullback is the complex Cone(A⊕B f−g−−−→ C)[−1]. The

natural projections give maps from the quasi-pullback to A and B and the diagram

Cone(A⊕B f−g−−−→ C)[−1]
f ′ //

g′

��

B

g

��
A

f // C

commutes up to a canonical homotopy. Moreover, if g is a quasi-isomorphism so is g′.

(For more details see e.g. [36, Lemma A.1].)
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Now let E be an algebraic GLr(C)-bundle on the simplicial variety X• classified

by g : X• → B•GLr(C). Define the principal bundle E•
p−→ X• associated with E by

the pullback diagram

E• //

p

��
y

E•GLr(C)

p

��
X•

g // B•GLr(C).

Choose a good compactification j : X• ↪→ X• and write Dp = Xp − Xp. We define

the complex FilnA∗(X•, logD•) as the quasi-pullback of the diagram

A∗(X•)

Iqis

��
FilnA ∗(X•, logD•)

ιA // A ∗(X•).

Then the natural projection FilnA∗(X•, logD•)→ FilnA ∗(X•, logD•) is a quasi-iso-

morphism and the diagram

FilnA∗(X•, logD•)

qis

��

ιA // A∗(X•)

Iqis

��
FilnA ∗(X•, logD•)

ιA // A ∗(X•),

is commutative up to canonical homotopy.

Definition 2.7. — For a given good compactification X•
j
↪→ X• write

HE,∗
rel (X•, n)X• := H∗

(
Cone(FilnA∗(X•, logD•)

p∗◦ιA−−−−→ A∗(E•))
)
,

H∗rel(X•, n)X• := H∗
(

Cone(FilnA∗(X•, logD•)
ιA−→ A∗(X•))

)
,

and define HE,∗
rel (X,n) := lim−→X•

HE,∗
rel (X•, n)X• , H

∗
rel(X,n) := lim−→X•

H∗rel(X•, n)X•
where the limit runs over the direct system of good compactifications of X•.

All the transition maps in the above direct systems are isomorphisms. In particular,

for any good compactification X• the groups HE,∗
rel (X•, n)X• and H∗rel(X•, n)X• are

isomorphic to HE,∗
rel (X•, n) and H∗rel(X•, n), respectively. Moreover, H∗rel(X•, n) ∼=

H∗(X•,C)/FilnH∗(X•,C).
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Obviously there is a morphism p∗ : H∗rel(X•, n)→ HE,∗
rel (X•, n) which yields a mor-

phism of long exact sequences

. . . // HE,i−1
rel (X•, n) // FilnHi(X•,C) // Hi(E•,C) // HE,i

rel (X•, n) // . . .

. . . // Hi−1
rel (X•, n) //

p∗

OO

FilnHi(X•,C) // Hi(X•,C)

p∗

OO

// Hi
rel(X•, n)

p∗

OO

// . . . .

(2.4)

Let f : Y• → X• be a morphism of simplicial varieties and E/X• as before. Given good

compactifications X• ↪→ X• and Y• ↪→ Y •, we may construct inductively (similarly as

in [35, 1.2]) a good compactification Ỹ• together with a morphism of compactifications

Ỹ• → Y •, such that f extends to a morphism Ỹ• → X•. Hence we can define pullback

maps f∗ : H∗rel(X•, n)→ H∗rel(Y•, n) and f∗ : HE,∗
rel (X•, n)→ Hf∗E,∗

rel (Y•, n).

Proposition 2.8. — There is a unique way to assign to every algebraic GLr(C)-

bundle E on a simplicial variety X• a class C̃h
rel

n (E) ∈ H2n−1,E
rel (X•, n) which maps

to the n-th Chern character class Chn(E) in FilnH2n(X•,C) and which is functorial

in X• in the sense that for every morphism of simplicial varieties f : Y• → X• and

every algebraic GLr(C)-bundle E on X• we have f∗(C̃h
rel

n (E)) = C̃h
rel

n (f∗E).

Proof. — Consider the universal situation: Since the geometric realization of

E•GLr(C) is contractible Hi(E•GLr(C),C) vanishes for all i > 0. Hence the natural

map HEuniv,2n−1
rel (B•GLr(C), n)→ FilnH2n(B•GLr(C),C) is an isomorphism by the

exactness of the top line in (2.4), and the proposition follows.

Now assume that the algebraic bundle E/X•, classified by g : X• → B•GLr(C),

admits a topological trivialization α : T → E, i.e. a topological morphism α : X•  
E•GLr(C) such that p ◦ α = g. Since E• is the pullback of E•GLr(C) along g, α

induces a topological morphism α : X•  E• such that p ◦ α = idX• . Hence we can

define a map α∗ : HE,∗
rel (X•, n)→ H∗rel(X•, n) left inverse to p∗.

Definition 2.9. — C̃h
rel

n (E,α) := α∗C̃h
rel

n (E) ∈ H2n−1
rel (X•, n) ∼= H2n−1(X•,C)/Filn.

Proposition 2.10. — The class C̃h
rel

n (E,α) maps to the class Chrel
n (E,α) by the

natural map H2n−1(X•,C)/FilnH2n−1(X•,C)→ H2n−1(X•,Ω
<n
X•

).

Proof. — Abbreviate GLr(C) to G. Let g : X• → B•G be the classifying map of E

and choose compatible good compactifications B•G ↪→ B•G and X• ↪→ X•.

Choose any representative c of Chn(Euniv) in FilnA 2n(B•G, logD•). Then ιA (c) ∈
A 2n(B•G) lies in FilnA 2n(B•G) and represents Chn(Euniv) considered as a class in

H2n(B•G,Ω
≥n
B•G

). But this class is also represented by the form I(Chn(Γuniv)), where

Γuniv denotes the standard connection on the universal bundle. Hence there exists η ∈
FilnA 2n−1(B•G) such that dη = ιA (c)− I(Chn(Γuniv)) and chn := (c,Chn(Γuniv), η)

is a representative for Chn(Euniv) in FilnA2n(B•G, logD•). With this choice we have
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p∗(ιA(chn)) = p∗Chn(Γuniv) = dChrel,univ
n , where the form Chrel,univ

n was defined

before Proposition 1.22. Hence the universal class C̃h
rel

n (Euniv) is represented by the

cycle (chn,Chrel,univ
n ).

Let g′ : E• → E•G be the map induced by g on the principal bundles. Then

C̃h
rel

n (E) is represented by (g∗chn, g
′∗Chrel,univ

n ) and C̃h
rel

n (E,α) is represented by

(g∗chn, α
∗g′∗Chrel,univ

n ) = (g∗chn, α
∗Chrel,univ

n ) = (g∗chn,Chrel
n (ΓE , α)), where on the

left we view α as a morphism X•  E•, in the middle as a morphism X•  E•G, ΓE

denotes the standard connection, and we used Proposition 1.22.

Now the natural map

H∗rel(X•, n)X•
∼= H∗

(
Cone(FilnA∗(X•, logD•)

ιA−→ A∗(X•))
)

→ H∗(X•,Ω<nX• ) = H∗(A∗(X•)/FilnA∗(X•))

is induced by the morphism of complexes Cone(FilnA∗(X•, logD•)
ιA−→ A∗(X•)) →

A∗(X•)/FilnA∗(X•), (ω, η) 7→ η. In particular C̃h
rel

n (E,α) maps to the class repre-

sented by Chrel
n (ΓE , α), that is to Chrel

n (E,α).

2.4. Comparison with Deligne-Beilinson Chern character classes. — Let

us first recall the definition and relevant facts about Deligne-Beilinson cohomology

[1, 13].

Let A be a subring of R and write A(n) := (2πi)nA ⊆ C. Let X• be a simplicial

algebraic variety and choose a good compactification j : X• ↪→ X•.

The Deligne-Beilinson cohomology H∗D(X•, A(n)) of X• is by definition

H∗
(
X•,Cone

(
Rj∗A(n)⊕ FilnΩ∗

X•
(logD•)

ε−ι−−→ Rj∗Ω∗X•
)

[−1]
)
.

By construction we have long exact sequences

· · · → Hk
D(X•, A(n))→ Hk(X•, A(n))⊕ FilnHk(X•,C)

ε−ι−−→ Hk(X•,C)(2.5)

→ Hk+1
D (X•, A(n))→ . . . and

· · · → Hk−1(X•,C)/Filn → Hk
D(X•, A(n))→ Hk(X•, A(n))→ . . .(2.6)

An algebraic vector bundle E on X• has Chern character classes ChD
n (E ) ∈

H2n
D (X•,Q(n)). These are functorial and mapped to the usual Chern character

classes in singular cohomology (to be recalled in 2.4.2 below) by the natural map

H2n
D (X•,Q(n)) → H2n(X•,Q(n)). In fact, these two properties determine them

uniquely [1, 1.7], [13, Prop. 8.2]. Since any algebraic GLr(C)-bundle E may also be

viewed as an algebraic vector bundle, we may also consider the classes ChD
n (E).

Theorem 2.11. — Let E be an algebraic GLr(C)-bundle on the simplicial va-

riety X• and α a trivialization of the associated topological bundle. The rela-

tive Chern character class C̃h
rel

n (E,α) maps to ChD
n (E) under the natural map

H2n−1(X•,C)/FilnH2n−1(X•,C)→ H2n
D (X•,Q(n)) from sequence (2.6).
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Before we enter the proof we provide concrete complexes computing Deligne-

Beilinson cohomology that are adapted to the setting of topological morphisms (Sec-

tion 2.4.1) and fix the normalization of Chern classes in singular and hence Deligne-

Beilinson cohomology (Section 2.4.2).

2.4.1. Complexes. — First some notation. For an arbitrary manifold Y we denote by

C ∗(Y,A) the complex of smooth singular cochains with coefficients in A. We define

the complex of modified differential forms Ã ∗(Y,A(n)) to be the quasi-pullback of

the diagram

A ∗(Y )

Iqis

��
C ∗(Y,A(n)) �

� incl // C ∗(Y,C),

where I denotes the de Rham quasi-isomorphism given by integration over simplices.

Now let X• be a simplicial manifold. Let C ∗(X•, A) be the total complex associated

with the cosimplicial complex [p] 7→ C ∗(Xp, A). Then we have a natural isomorphism

H∗(X•, A) = H∗(C ∗(X•, A)).

As in the case of de Rham cohomology, H∗(X•, A) may also be computed using

compatible singular cochains: We define the complex of compatible singular cochains

C∗(X•, A) in analogy with that of simplicial differential forms:

Cn(X•, A) :=
{

(σp)p≥0 | σp ∈ C n(∆p ×Xp, A),

(δi × id)∗σp = (id× ∂i)∗σp−1, i = 0, . . . , p, p ≥ 1
}

There is a natural quasi-isomorphism Φ: C∗(X•, A)→ C ∗(X•, A) given as follows (cf.

[35, 2.1.3]): For a compatible n-cochain σ = (σp)p≥0, define Φ(σ)p,n−p ∈ C n−p(Xp, A)

to be the cochain that sends a singular (n− p)-simplex f : ∆n−p → Xp to σp(id∆p ×
f) ∈ A. Here × denotes the cross product of singular chains and id∆p : ∆p → ∆p is the

canonical singular p-chain. More precisely, to every (p, n − p)-shuffle µ corresponds

an n-simplex µ∗ : ∆n → ∆p × ∆n−p, and the singular chain id∆p × f is given by∑
µ sgn(µ)(id∆p × f) ◦ µ∗ where the sum runs over all (p, n − p)-shuffles µ and the

last × is the usual product of maps (see [23, Section 3.B, p. 278–279]).

Integration over simplices induces an integration map I : A∗(X•) → C∗(X•,C)

and one checks that the diagram

A∗(X•)

I

��

I // C∗(X•,C)

Φ

��
A ∗(X•)

I // C ∗(X•,C)

commutes (cf. [36, Lemma 2.15]).

As before we define the modified complex Ã∗(X•, A(n)) as the quasi-pullback of

the diagram C∗(X•, A(n))→ C∗(X•,C)
I←− A∗(X•).
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The following follows quite directly from the definitions.

Lemma 2.12. — Let X• be a simplicial variety and X•
j
↪→ X• a good compactifica-

tion. The Deligne-Beilinson cohomology H∗D(X•, A(n)) is naturally isomorphic to the

cohomology of the complex

Cone
(
Ã∗(X•, A(n))⊕ FilnA∗(X•, logD•)

ε−ι−−→ A∗(X•)
)

[−1].

The advantage of this description of the Deligne-Beilinson cohomology of simplicial

varieties is that we may define a pullback map α∗ : Ã∗(X•, A(n)) → Ã∗(Y•, A(n)),

whenever α : Y•  X• is a topological morphism:

Lemma 2.13. — Let α : Y•  X• be a topological morphism of simplicial manifolds.

Then there is a well defined pullback map α∗ : Ã∗(X•, A(n)) → Ã∗(Y•, A(n)). It is

compatible with the natural maps Ã∗ → A∗.

Proof. — By definition Ã∗(X•, A(n)) is the quasi-pullback of the diagram C∗(X•, A(n))→
C∗(X•,C)

I←− A∗(X•). Obviously, α∗ is well defined on each of the three complexes

(cf. (1.3) and Definition 1.8) and we only have to check, that it is compatible with

the maps between them. This is is clear for the left hand map. For I this follows

from the commutativity of the diagram

A n(∆p ×Xp)
(id∆p ,αp)∗ //

I

��

A n(∆p × Yp)

I

��
C n(∆p ×Xp,C)

(id∆p ,αp)∗ // C n(∆p × Yp,C)

which is established as follows: Let ω ∈ A n(∆p × Xp) and τ : ∆n → ∆p × Yp
be a smooth simplex. Then (id∆p , αp)

∗I (ω)(τ) =
∫

∆n((id∆p , αp) ◦ τ)∗ω =∫
∆n τ

∗((id∆p , αp)
∗ω) = I ((id∆p , αp)

∗ω)(τ).

2.4.2. Chern character classes. — We recall the defintion of Chern classes in singular

cohomology.

Definition 2.14. — Let X be a simplicial complex manifold. The first Chern class

ctop
1 in singular cohomology for holomorphic line bundles is the connecting homomor-

phism

ctop
1 : H1(X,O∗X)→ H2(X,Z(1))

associated with the short exact sequence of sheaves on X

0→ Z(1)→ OX
exp−−→ O∗X → 0.

Remark 2.15. — If cMilnor-Stasheff
1 denotes the classical integer valued first Chern

class as constructed in [30] then ctop
1 = −2πicMilnor-Stasheff

1 . This follows e.g. from [30,

Appendix C, Theorem (p. 306)] together with [20, Ch. I §1, Proposition (p. 141)].
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For later reference we note that Burgos [6] uses Milnor-Stasheff’s normalization for

his integer valued Chern classes bi and defines the “twisted Chern classes” cBurgos
i :=

(2πi)ibi. In fact, the construction in [6, Section 4.2] is exactly the same as that in

[30, §14] (alternatively, one may look at the Chern-Weil theoretic approach in [6,

Proposition 5.27]). In particular, ctop
1 = −cBurgos

1 and we have corresponding signs for

the higher Chern and Chern character classes.

The splitting principle also holds for singular cohomology and one constructs

higher Chern and Chern character classes ctop
n (E ) ∈ H2n(X•,Z(n)), Chtop

n (E ) ∈
H2n(X•,Q(n)) for holomorphic vector bundles E as in Section 2.2.2.

Remark 2.16. — It is easy to see that for a holomorphic line bundle L the classes

c1(L ) and ctop
1 (L ) have the same image in H2(X,C). In particular, if E is a holomor-

phic vector bundle, the higher Chern and Chern character classes ctop
n (E ), Chtop

n (E )

map to cn(E ), C̃hn(E ) ∈ FilnH2n(X,C) under the natural map H2n(X,Z(n)) →
H2n(X,C).

Proof of Theorem 2.11. — Let X•, E, and α be as in the statement of the Theorem

and X• some good compactification of X•. The natural morphism

H∗−1
rel (X•, n) = H∗−1(X•,C)/FilnH∗−1(X•,C)→ H∗D(X•,Q(n))

is induced on the defining cones by the maps in the commutative diagram

FilnA∗(X•, logD•)
ι //

incl.
��

A∗(X•)

−id

��
Ã∗(X•,Q(n))⊕ FilnA∗(X•, logD•)

ε−ι // A∗(X•).

Denote by E•
p−→ X• the principal bundle associated with E and define

HE,∗
D (X•,Q(n)) :=

lim−→X•
H∗
(

Cone
(
Ã∗(E•,Q(n))⊕ FilnA∗(X•, logD•)

ε−p∗◦ι−−−−→ A∗(E•)
)

[−1]
)
,

the limit running over the good compactifications of X•. As in the case of relative

cohomology groups, we have a natural map p∗ : H∗D(X•,Q(n)) → HE,∗
D (X•,Q(n))

and a left inverse α∗ of p∗ for a topological trivialization α of E. Moreover, there is a

natural map HE,∗−1
rel (X•, n)→ HE,∗

D (X•,Q(n)) fitting in a commutative diagram (in

the obvious sense)

HE,∗−1
rel (X•, n) //

α∗

��

HE,∗
D (X•,Q(n))

α∗

��
H∗−1

rel (X•, n)

p∗

OO

// H∗D(X•,Q(n)).

p∗

OO
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We claim that the refined class C̃h
rel

n (E) maps to p∗ChD
n (E) by the upper horizontal

map. Since both classes are functorial it suffices to treat the case of the universal

bundle Euniv/B•GLr(C). Write G := GLr(C). Since the cohomology of E•G vanishes

in positive degrees and the cohomology of B•G vanishes in odd degrees we have the

following commutative diagram with exact rows:

0 // HEuniv,2n
D (B•G,Q(n)) // FilnH2n(B•G,C) // 0

0 // H2n
D (B•G,Q(n)) //

p∗

OO

H2n(B•G,Q(n))⊕FilnH2n(B•G,C)
ε−ι//

pr2

OO

H2n(B•G,C).

By definition, ChD
n (Euniv) maps to Chtop

n (Euniv) in H2n(B•G,Q(n)). Since

ε(Chtop
n (Euniv)) = ι(Chn(Euniv)) (cf. Proposition 2.6 and Remark 2.16), it follows

from the above diagram that p∗ChD
n (Euniv) maps to Chn(Euniv) in FilnH2n(B•G,C).

The defining property of C̃h
rel

n (Euniv) and the commutativity of the diagram

HEuniv,2n−1
rel (B•G,n)

��

∼=

))
HEuniv,2n

D (B•G,Q(n))
∼= // FilnH2n(B•G,C)

imply that C̃h
rel

n (Euniv) maps to p∗ChD
n (Euniv), whence our claim.

But then C̃h
rel

n (E,α) = α∗C̃h
rel

n (E) maps to α∗p∗ChD
n (E) = ChD

n (E).

3. Relative K-theory and regulators

Let X = Spec(A) be a smooth affine scheme of finite type over C. Then the

algebraic and topological K-theory of X resp. its underlying complex manifold are

given (for i > 0) by

Ki(X) = πi(BGL(A)+) resp. K−itop(X) = πi(BU
X)

and there is a natural morphism BGL(A)+ → BUX in the homotopy category of

spaces. We define the relative K-group Krel
i (X) as the i-th homotopy group of the

homotopy fibre of this map. The goal of this Section is to construct relative Chern

character maps Chrel
n,i : K

rel
i (X) → H2n−i−1(X,C)/FilnH2n−i−1(X,C) and to com-

pare these with the Chern character in Deligne-Beilinson cohomology.

3.1. Topological K-theory. — Our first task is to give an adequate simplicial

model for the topological K-groups of a manifold X in terms of smooth maps ∆p ×
X → GLr(C) in order to be able to apply our theory of topological bundles.

Let X be a smooth manifold having the structure of a finite dimensional CW

complex. We call a singular p-simplex in the mapping space GLr(C)X smooth if the
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associated map ∆p×X → GLr(C) is smooth. Denote by S∞• (GLr(C)X) the simplicial

set of smooth singular simplices in GLr(C)X . This is a simplicial group in a natural

way. Write G• = lim−→rS
∞
• (GLr(C)X) and let B•G• be its classifying simplicial set, i.e.

the diagonal of the bisimplicial set [p], [q] 7→ BpGq.

Proposition 3.1. — There are natural isomorphisms K−itop(X) = πi(B•G•).

Proof. — It is well known that for a manifold Y the inclusion S∞• (Y ) ↪→ S•(Y ) of

smooth singular simplices in the full simplicial set of singular simplices is a homotopy

equivalence. Similarly one shows that the inclusion S∞• (GLr(C)X) ↪→ S•(GLr(C)X) is

a homotopy equivalence (see [36, Prop. 3.2] for details). Hence we have isomorphisms

πi(B•G•) ∼= πi−1(G•) ∼= lim−→rπi−1(S∞• (GLr(C)X)) ∼= lim−→rπi−1(S•(GLr(C)X))

∼= lim−→rπi−1(GLr(C)X) ∼= lim−→rπi−1(U(r)X) ∼= lim−→rπi(BU(r)X),

where we used the fact, that BU(r)X is a classifying space for U(r)X (cf. the argument

in the proof of [19, Lemma in Section 6.1]). Since X is a finite dimensional CW

complex it follows by cellular approximation that lim−→rπi(BU(r)X) = πi(BU
X) =

K−itop(X) finishing the proof of the proposition.

3.2. Relative K-theory. — Now let X = Spec(A) be a smooth affine scheme of

finite type over C. By abuse of notation we denote the associated complex manifold

by the same letter. Note that X has the structure of a finite dimensional CW complex,

so our above description of the topological K-theory of X applies.

The natural map from A to the ring of smooth complex valued functions C∞(X)

on X induces a map from the constant simplicial group GLr(A) to S∞• (GLr(C)X)

and hence, taking the limit over r and classifying simplicial sets, B•GL(A)→ B•G•.

The algebraic K-groups of X are by definition

Ki(X) = πi(|B•GL(A)|+), i > 0,

where |B•GL(A)|+ denotes Quillen’s plus-construction with respect to the commuta-

tor subgroup GL(A)′. A functorial version is given by the integral completion functor

Z∞ of Bousfield and Kan [5] (see [15, Theorem 2.16]): Ki(X) = πi(Z∞B•GL(A)).

Since B•G• has the homotopy type of an H-space the natural map B•G• → Z∞B•G•
is a weak homotopy equivalence [15, 2.15]. The desired map from algebraic to topo-

logical K-theory Ki(X)→ K−itop(X) is the map induced by Z∞B•GL(A)→ Z∞B•G•
on homotopy groups.

Define F and F̃ by the pull-back diagrams

F

y

��

// F̃

y

//

��

Z∞E•G•

Z∞p

��
B•GL(A) // Z∞B•GL(A) // Z∞B•G•.

(3.1)
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According to [5, I 4.2] Z∞p is a fibration and so are the other two vertical arrows.

Then, since B•GL(A)→ Z∞B•GL(A) is acyclic, so is F → F̃ [2, (4.1)]. Since E•G•
is contractible, so is Z∞E•G• and hence F̃ is weakly homotopy equivalent to the

homotopy fibre of the map Z∞B•GL(A) → Z∞B•G• and we define the relative K-

groups

Krel
i (X) := πi(F̃ ), i > 0.

By construction we have a long exact sequence

(3.2) · · · → K−i−1
top (X)→ Krel

i (X)→ Ki(X)→ K−itop(X)→ . . . .

Example 3.2. — Consider the case of a point: X = Spec(C). The topological K-

groups of X equal Z in even degrees and vanish in odd degrees. Hence we get exact

sequences

0→ Krel
2n (X)→ K2n(X)→ Z→ Krel

2n−1(X)→ K2n−1(X)→ 0, n > 0.

We can say even more: One knows that for any smooth, projective C-scheme Y and

i > 0 the image of Ki(Y ) in K−itop(Y ) is torsion [19, 6.3] . For X = Spec(C) this and

the above sequence imply that we have isomorphisms

Krel
2n (X) ∼= K2n(X), n > 0,

in even degrees and short exact sequences

0→ Z→ Krel
2n−1(X)→ K2n−1(X)→ 0, n > 0,

in odd degrees.

We resume the discussion before Example 3.2. We need the following description

of the homology of F̃ . Define F by the pull-back diagram of simplicial sets:

F

y

��

// E•G•

p

��
B•GL(A) // B•G•

Then the natural map F → F is a weak homotopy equivalence, too, and since F → F̃

is acyclic, we have isomorphisms in homology

H∗(F ,Z)
∼=−→ H∗(F,Z)

∼=−→ H∗(F̃ ,Z).

3.3. The relative Chern character. — Let X = Spec(A) be as before. We define

relative Chern character maps

Chrel
n,i : K

rel
i (X)→ H2n−i−1(X,C)/FilnH2n−i−1(X,C)

as follows: By definition, Krel
i (X) = πi(F̃ ), and we have the Hurewicz map Krel

i (X)→
Hi(F̃ ,Z) ∼= Hi(F ,Z). It is thus enough to construct a homomorphism Hi(F ,Z) →
H2n−i−1

rel (X,n) = H2n−i−1(X,C)/FilnH2n−i−1(X,C). We will use the following



28 GEORG TAMME

Lemma 3.3. — Let S be a simplicial set and X an algebraic variety. Form the sim-

plicial variety X• := X ⊗ S as in Example 1.6. Then we have natural isomorphisms

Hk
rel(X•, n) ∼=

⊕
p+q=k

Hom(Hp(S,Z), Hq(X,C)/FilnHq(X,C)),

Hk
D(X•,Q(n)) ∼=

⊕
p+q=k

Hom(Hp(S,Z), Hq
D(X,Q(n))).

Proof. — This is standard and follows easily from the explicit form of the complexes

in question.

Remark 3.4. — A similar statement also holds for the group Hk(X•,Ω
<n
X•

), which

is computed by the complex A∗(X•)/FilnA∗(X•). We have a commutative diagram

Hk(X•,C)/FilnHk(X•,C)

��

// Hk(X•,Ω
<n
X•

)

��
Hom(Hp(S,Z), Hk−p(X,C)/Filn) // Hom(Hp(S,Z),Hk−p(X,Ω<nX ))

and the right vertical arrow is given explicitly as follows: A class in Hk(X•,Ω
<n
X•

) may

be represented by a form ω ∈ Ak(X•), closed modulo FilnAk+1(X•). The simplicial

form ω is given by a family of k-forms on ∆q × (X ⊗ S)q, q ≥ 0, and in particular we

can consider the restriction σ∗ω of ωp to the copy of ∆p×X corresponding to σ ∈ Sp.
Integration along ∆p gives the (k− p)-form

∫
σ
ω =

∫
∆p σ

∗ω ∈ A k−p(X). By linearity

this extends to a map ZSp → A k−p(X), σ 7→
∫

∆p σ
∗ω, which induces a well defined

homomorphism Hp(S,Z)→ Hk−p(A ∗(X)/FilnA ∗(X)) = Hk−p(X,Ω<nX ).

To construct the relative Chern character map on K-theory we thus have to con-

struct classes in H2n−1(X⊗F ,C)/FilnH2n−1(X⊗F ,C). This is achieved as follows.

First write Gr,• := S∞• (GLr(C)X), so that G• = lim−→rGr,•, and define Fr by the carte-

sian diagram of simplicial sets

Fr

y

��

// E•Gr,•

p

��
B•GLr(A) // B•Gr,•.

(3.3)

Then F = lim−→rFr, H∗(F ,Z) = lim−→rH∗(Fr,Z) and by the Lemma

H∗(X ⊗F ,C)/Filn = lim←−rH
∗(X ⊗Fr,C)/Filn.

By construction, a p-simplex in the simplicial group Gr,• is a smooth map ∆p ×
X → GLr(C), and a p-simplex in E•Gr,• may be viewed as a smooth map ∆p ×
X → EpGLr(C). On the other hand, every p-simplex in B•GLr(A) may be seen as a
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morphism of varieties X → BpGLr(C). As in Example 1.10 diagram (3.3) then gives

rise to a commutative diagram

E•GLr(C)

p

��
X ⊗Fr

αr

88

gr // B•GLr(C),

where gr is a morphism of simplicial varieties.

Phrased differently, if we denote by Er the algebraic bundle classified by gr : X ⊗
Fr → B•GLr(C) and by Tr the trivial GLr(C)-bundle, we have the trivializa-

tion αr : Tr → Er of the underlying topological bundles and corresponding rel-

ative Chern character classes C̃h
rel

n (Er, αr) ∈ H2n−1
rel (X ⊗ Fr, n) = H2n−1(X ⊗

Fr,C)/FilnH2n−1(X ⊗ Fr,C). It is easy to see that these classes are compatible

for different r [36, Lemma 3.7]. Hence the family (C̃h
rel

n (Er, αr))r≥0 defines a class in

H2n−1(X ⊗F ,C)/FilnH2n−1(X ⊗F ,C). By Lemma 3.3 this class gives morphisms

Hi(F ,Z)→ H2n−i−1(X,C)/FilnH2n−i−1(X,C), i = 0, . . . , 2n− 1.

Definition 3.5. — Let X be a smooth, affine C-scheme of finite type as before. We

define the relative Chern character Chrel
n,i on Krel

i (X) to be the composition

Chrel
n,i : K

rel
i (X) = πi(F̃ )

Hur.−−−→ Hi(F̃ ,Z) ∼= Hi(F ,Z)→

→ H2n−i−1(X,C)/FilnH2n−i−1(X,C).

Remarks 3.6. — (i) If in the above construction one replaces C̃h
rel

n (Er, αr) with

the Chern-Weil theoretic classes Chrel
n (Er, αr) one gets relative Chern charac-

ter maps Krel
i (X) → H2n−i−1(X,Ω<nX ), which are essentially Karoubi’s original

ones. Obviously, these are just the composition of Chrel
n,i with the natural map

H2n−i−1(X,C)/Filn → H2n−i−1(X,Ω<nX ).

(ii) Let X = Spec(A) be an affine variety as above. Karoubi [27, 26] developed

a theory of bundles, connections, and characteristic classes for GLr(A)-fibre bundles

on simplicial sets S which enabled him to construct the relative Chern character on

relative K-theory. In our setting, these bundles correspond to GLr(C)-bundles on the

simplicial variety X ⊗ S (cf. Example 1.6). To compare the relative Chern character

with the Chern character in Deligne-Beilinson cohomology however, it is necessary to

extend the theory to general simplicial varieties.

3.4. Comparison with the Chern character in Deligne-Beilinson cohomol-

ogy. — The Chern character in Deligne-Beilinson cohomology is constructed in ex-

actly the same way as the relative Chern character above (cf. e.g. [34, 2.3]):

Let X = Spec(A) be a smooth affine C-scheme of finite type as in the previous

Section. Again we have the natural morphisms of simplicial varieties X⊗B•GLr(A)→
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B•GLr(C). Call the corresponding algebraic bundle Gr. As in the relative case the

Chern character classes ChD
n (Gr) ∈ H2n

D (X ⊗ B•GLr(A),Q(n)) are compatible for

different r and thus yield a well defined class in H2n
D (X⊗B•GL(A),Q(n)). This class

in turn yields maps Hi(B•GL(A),Z)→ H2n−i
D (X,Q(n)) and, for i > 0, we define the

Chern character maps ChD
n,i on K-theory to be the composition

ChD
n,i : Ki(X) = πi(Z∞B•GL(A))

Hur.−−−→ Hi(Z∞B•GL(A),Z) ∼=
∼= Hi(B•GL(A),Z)→ H2n−i

D (X,Q(n)).

Theorem 3.7. — Let X be a smooth affine C-scheme of finite type. The diagram

Krel
i (X) //

Chrel
n,i

��

Ki(X)

ChD
n,i

��
H2n−i−1(X,C)/FilnH2n−i−1(X,C) // H2n−i

D (X,Q(n))

commutes.

Proof. — This is now an easy consequence of Theorem 2.11 and the constructions.

We use the notations of the last two Sections. Then Er/X⊗Fr is just the pullback

of Gr/X ⊗ B•GLr(A) by the morphism X ⊗Fr → X ⊗ B•GLr(A). It follows from

Theorem 2.11 and functoriality that C̃h
rel

n (Er, αr) ∈ H2n−1(X ⊗ Fr,C)/Filn and

ChD
n (Gr) ∈ H2n

D (X ⊗B•GL(A),Q(n)) map to the same class in H2n
D (X ⊗Fr,Q(n)),

namely to ChD
n (Er). Hence we have commutative diagrams

Hi(Fr,Z)
C̃h

rel

n (Er,αr) //

��

ChD
n (Er)

,,

H2n−i−1(X,C)/FilnH2n−i−1(X,C)

��
Hi(B•GLr(A)),Z)

ChD
n (Gr)

// H2n−i
D (X,Q(n)),

where the arrows are induced by the specified classes. Going to the limit r →∞ and

using the commutativity of diagram (3.1) the claim follows.

3.5. Extension to non-affine schemes. — Using Jouanolou’s trick we extend the

construction of the relative Chern character to all smooth, separated schemes of finite

type over C (cf. [40, §4], [19, §6]).

By a Jouanolou torsor over a scheme X we mean an affine scheme W together with

an affine map W → X which is a torsor for some vector bundle on X. According to

Jouanolou and Thomason every smooth, separated scheme of finite type over a field

admits a Jouanolou torsor [40, Proposition 4.4].

Let X be a smooth variety over C and fix a Jouanolou torsor π : W → X. By the

homotopy invariance of Quillen’s K-theory for regular schemes [31, §7 Proposition

4.1] and the homotopy invariance of topological K-theory π induces isomorphisms
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π∗ : K∗(X)
∼=−→ K∗(W ) and π∗ : K∗top(X)

'−→ K∗top(W ). It follows, that if we define

Krel
∗ (X)W := Krel

∗ (W ), we get exact sequences

· · · → K−i−1
top (X)→ Krel

i (X)W → Ki(X)→ K−itop(X)→ . . .

as in (3.2). To get a definition of relative K-theory which does not depend on the

particular choice of W we proceed as follows: If W ′ → X is a second Jouanolou

torsor, so is W ′′ := W ×X W ′ and both maps W ← W ′′ → W ′ induce isomorphisms

on algebraic, topological and hence also relative K-groups. To avoid set theoretic

problems we replace the category of Jouanolou torsors over X by a small skeletal

subcategory. Then we can consider the set J of all finite sets of Jouanolou torsors

over X. This is partially ordered by inclusion. For any A ∈ J write Krel
i (X)A :=

Krel
i (
∏
W∈AW ) where

∏
denotes the fibered product over X. Any inclusion A ⊆ B

induces an isomorphism Krel
i (X)A

∼=−→ Krel
i (X)B .

Definition 3.8. — We define the relative K-groups of X as

Krel
i (X) := lim−→

A∈J
Krel
i (X)A.

For every A ∈ J the projection πA :
∏
W∈AW → X induces an isomorphism

π∗A : Ki(X)
∼=−→ Ki(

∏
W∈AW ) and for varying A the compositions

Krel
i (X)A → Ki(

∏
W∈A

W )
(π∗A)−1

−−−−−→ Ki(X)

assemble to give a map Krel
i (X)→ Ki(X).

The relative Chern character is now constructed as follows: Let π : W → X be

any Jouanolou torsor. By the homotopy invariance of singular cohomology π in-

duces an isomorphism π∗ : H∗(X,C)
∼=−→ H∗(W,C). Since π∗ is in fact a morphism

of mixed Hodge structures, the induced maps FilnH∗(X,C) → FilnH∗(W,C) and

H∗D(X,Q(n))→ H∗D(W,Q(n)) are isomorphisms, too.

Hence, for A ∈ J as above, we can consider the composition

Krel
i (X)A = Krel

i (
∏
W∈A

W )
Chrel

n,i−−−→ H2n−i−1(
∏
W∈A

W,C)/FilnH2n−i−1(
∏
W∈A

W,C)

(π∗A)−1

−−−−−→ H2n−i−1(X,C)/FilnH2n−i−1(X,C).

For varying A ∈ J these maps induce the relative Chern character

Chrel
n,i : K

rel
i (X)→ H2n−i−1(X,C)/FilnH2n−i−1(X,C).

Similarly, the Chern character in Deligne-Beilinson cohomology is the composition

ChD
n,i : Ki(X)

π∗−→ Ki(W )
ChD

n,i−−−→ H2n−i
D (W,Q(n))

(π∗)−1

−−−−→ H2n−i
D (X,Q(n))

where π : W → X is any Jouanolou torsor for X.
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Theorem 3.9. — Let X be a smooth, separated scheme of finite type over C. The

diagram

Krel
i (X) //

Chrel
n,i

��

Ki(X)

ChD
n,i

��
H2n−i−1(X,C)/FilnH2n−i−1(X,C) // H2n−i

D (X,Q(n))

commutes.

Proof. — This follows directly from Theorem 3.7 and the constructions.

Example 3.10. — Let X be a smooth, projective C-scheme. Then the image of

Ki(X) in K−itop(X) is torsion [19, 6.3]. Hence, upon tensoring with Q, the long exact

sequence (3.2) breaks up into short exact sequences

0→ K−i−1
top (X)Q → Krel

i (X)Q → Ki(X)Q → 0, i > 0.

On the other hand, the sequence of cohomology groups (2.6) breaks up into short

exact sequences for weight reasons [33, Lemma p. 8] so that for i > 0 we have the

following picture:

0 // K−i−1
top (X)Q

��

// Krel
i (X)Q

Chrel
n,i

��

// Ki(X)Q

ChD
n,i

��

// 0

0 // H2n−i−1(X,Q(n)) // H2n−i−1(X,C)/Filn // H2n−i
D (X,Q(n)) // 0.

The unlabeled vertical arrow turns out to be the usual Chern character from topologi-

cal K-theory to singular cohomology. This follows similarly as the analogous assertion

in [27, Théorème 6.23]. We skip the details.

4. Application: the regulators of Beilinson and Borel

The goal of this Section is to use the above results to give a new proof of Burgos’

Theorem that Borel’s regulator is twice Beilinson’s regulator.

4.1. Definition of the regulators. —

Definition 4.1. — The Beilinson regulator is by definition the Chern character with

values in real Deligne-Beilinson cohomology:

rBe : K2n−1(C)
ChD

n,2n−1−−−−−−→ H1
D(Spec(C),Q(n))→ H1

D(Spec(C),R(n)).

Here H1
D(Spec(C),R(n)) is the cohomology in degree 1 of the complex R(n) → C,

hence canonically isomorphic to C/R(n) which in turn is isomorphic to R(n− 1) via

the projection πn−1 : C → R(n − 1), z 7→ 1
2 (z + (−1)n−1z̄), and we will view rBe as

a map with values in R(n− 1).
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The definition of Borel’s regulator ([3], see also [6, Ch. 9], [32]) needs some prepa-

ration. Consider GLr(C) as a real Lie group with maximal compact subgroup U(r).

Denote the corresponding Lie algebras by glr and ur, respectively. We have the van

Est isomorphism

(4.1) H∗cts(GLr(C),R) ∼= H∗(glr, ur; R)

between continuous group cohomology and relative Lie algebra cohomology. The right

hand side of (4.1) is computed as follows (cf. e.g. [32]): The compact real form of

glr⊗C is ur⊕ur, so we have isomorphismsH2n−1(glr, ur; C) ∼= H2n−1(ur⊕ur, ur; C) ∼=
H2n−1(ur,C) ∼= H2n−1(U(r),C) ∼= H2n−1(GLr(C),C) carrying the R-cohomology

to i2n−1H2n−1(GLr(C),R). Combining this with the van Est isomorphism and the

natural map from continuous to discrete group cohomology yields natural maps

H2n(B•GLr(C),R(n))
suspension−−−−−−−→ H2n−1(GLr(C),R(n)) ∼=

∼= H2n−1(glr, ur; R(n− 1)) ∼= H2n−1
cts (GLr(C),R(n− 1))→

→ H2n−1
grp (GLr(C),R(n− 1)) = H2n−1(B•GLr(C)δ,R(n− 1)).

Here and in the following GLr(C)δ denotes the group GLr(C)δ equipped with the

discrete topology. Denote by Bon the image of the n-th universal Chern character

class Chtop
n (Euniv) ∈ H2n(B•GLr(C),R(n)) under the above composition.

Definition 4.2. — The Borel regulator is the composition

rBo : K2n−1(C)
Hur.−−−→ H2n−1(B•GL(C)δ,Z) ∼= H2n−1(B•GLr(C)δ,Z)

Bon−−→ R(n− 1)

(r large enough).

Theorem 4.3 (Burgos). —

rBo = 2rBe.

Remark 4.4. — Beilinson [1] proved that both regulators coincide up to a non zero

rational factor. Many details of Beilinson’s proof were provided by Rapoport [32].

Dupont, Hain, and Zucker [10] conjectured that the factor should be 2. This was

finally proven by Burgos [6] using Beilinson’s original argument.

Using the comparison of Karoubi’s relative Chern character and Beilinson’s regu-

lator (Theorem 3.7) in the case X = Spec(C) our proof of Burgos’ Theorem will be

reduced to a comparison of Borel’s regulator and the relative Chern character. This

in turn will be done comparing explicit cocycles.

4.2. An explicit cocycle for Karoubi’s relative Chern character. — In the

notations of Section 3 we fix A = C, X = Spec(C). In particular, we have the

simplicial groups Gr,• = S∞• (GLr(C)), whose realization is equivalent to GLr(C)

with the usual topology, and the simplicial set Fr, defined by diagram (3.3) and

homotopy equivalent to the homotopy fibre of B•GLr(C) → B•Gr,•. Recall that



34 GEORG TAMME

by construction the relative Chern character factors through the homology of the

simplicial set F = lim−→rFr.

In the present situation the model for Fr used by Karoubi in [27] is more conve-

nient: We have a commutative diagram of simplicial sets

Fr

y
��

αr
// E•Gr,•

p

��
GLr(C)\Gr,•

ηr

77

βr

))

ρr // B•GLr(C)δ // B•Gr,•,

βr(σ) = (σ(e0)−1σ, . . . , σ(ep)
−1σ), ρr(σ) = (σ(e0)−1σ(e1), . . . , σ(ep−1)−1σ(ep)) for

σ ∈ Gr,p, and the map ηr, induced by βr and ρr, is a weak homotopy equivalence

(cf. [27, Proposition 6.16], [36, Lemma A.6]). Here ei denotes the i-th standard basis

vector (0, . . . , 1, . . . , 0). This translates into a commutative diagram of topological

morphisms of simplicial manifolds

E•GLr(C)

p

��
X ⊗GLr(C)\Gr,•

ηr //

βr

33

X ⊗Fr
gr //

αr

88

B•GLr(C).

Proposition 4.5. — The composition

H2n−1(GLr(C)\Gr,•,Z)
∼=−→ H2n−1(Fr,Z)

C̃h
rel

n (Er,αr)−−−−−−−−→ H0(X,C)/Filn = C

is given by the cocycle

σ 7→ − (n− 1)!

(2n− 1)!
Tr

∫
∆2n−1

(σ−1dσ)2n−1.

Remark 4.6. — Hamida obtained a similar result [22].

Proof. — Since r is fixed, we drop the subscript r in the following. Since X is proper,

it makes no difference if we work with C̃h
rel

n (E,α) or with Chrel
n (E,α). It is clear from

the commutativity of the above diagram that the composition in the statement of

the proposition is induced by Chrel
n (η∗E, β). This class can be computed explicitly:

Since X is a point, the standard connection on the bundle η∗E is given by the zero

matrix (cf. the formula in Example 1.12). Then the pullback to the trivial bundle

via β is given by β−1
i dβi (see Remark 1.14 (i)). On the p-simplex σ ∈ GLr(C)\Gr,p

the function βi is given by the matrix σ(ei)
−1σ ∈ Gr,p = C∞(∆p,GLr(C)), hence

β−1
i dβi = σ−1dσ on the simplex σ. We denote the corresponding simplicial form

simply by σ−1dσ.
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By construction Chrel
n (Γη

∗E , β) is given by
∫ 1

0
(i∂/∂tChn(Γ))dt, where Γ is the con-

nection given by Γi = tβ−1
i dβi = tσ−1dσ on the trivial GLr(C)-bundle on (X ⊗

(GLr(C)\Gr,•))×C, t denoting the coordinate on C.

The curvature of Γ is given by

Ri = dΓi + Γ2
i = dt(σ−1dσ)− t(σ−1dσ)2 + t2(σ−1dσ)2

= dt(σ−1dσ) + (t2 − t)(σ−1dσ)2.

Hence Rni = (t2 − t)n(σ−1dσ)2n + ndt(t2 − t)n−1(σ−1dσ)2n−1 and

Chrel
n (Γρ

∗E , β) =
(−1)n

n!

∫ 1

0

i∂/∂tTr(Rni )dt

= (−1)n
n

n!
Tr

∫ 1

0

(t2 − t)n−1(σ−1dσ)2n−1dt

=
(−1)n

(n− 1)!
(

∫ 1

0

(t2 − t)n−1dt)Tr
(
(σ−1dσ)2n−1

)
= − (n− 1)!

(2n− 1)!
Tr
(
(σ−1dσ)2n−1

)
.

Here we used that
∫ 1

0
(t2−t)n−1dt = (−1)n−1

∫ 1

0
tn−1(1−t)n−1dt = (−1)n−1B(n, n) =

(−1)n−1 Γ(n)·Γ(n)
Γ(n+n) = (−1)n−1 ((n−1)!)2

(2n−1)! , where B is Euler’s Beta function [7, Section 4.2].

Now the claim follows from Remark 3.4.

4.3. The van Est isomorphism. — Recall that the relative Lie algebra cohomol-

ogy H∗(glr, ur; R) is the cohomology of the complex A ∗(GLr(C)/U(r); R)GLr(C) of

invariant real valued differential forms on the homogeneous space GLr(C)/U(r).

To compare Borel’s regulator with the relative Chern character we need the fol-

lowing description of the composition of the van Est isomorphism with the natural

map H∗cts(GLr(C),R) → H∗grp(GLr(C),R) = H∗(B•GLr(C)δ,R) from continuous

to discrete group cohomology.

Proposition 4.7. — We have a commutative diagram

H∗cts(GLr(C),R) // H∗(B•GLr(C)δ,R)
ρ∗r // H∗(GLr(C)\Gr,•,R),

H∗(glr, ur; R)

van Est ∼=

OO

// H∗(glr; R)

φ

44

where φ is induced by the chain map φ sending a left invariant form ω to the simplicial

cocycle

(4.2) GLr(C)\S∞p (GLr(C)) 3 σ 7→
∫

∆p

σ∗ω.
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Proof. — This is a modification of Tillmann’s argument in [39, Theorem 4.3].

Write G = GLr(C), U = U(r), and π for the projection G → G/U . We have a

commutative diagram of complexes of continuous G-modules

R
' //

'

%%

C (E•G,R) // C (E•G,A ∗(G,R))

A ∗(G/U,R)
π∗ // A ∗(G,R),

'

OO

all modules apart from R being injective and ' denoting quasi-isomorphisms (cf.

[24, p. 370, p. 385] and [39, proof of Theorem 4.3]). The right vertical arrow is the

inclusion as constant “functions” and C (E•G, ) denotes continuous functions. Taking

continuous group cohomology the quasi-isomorphisms on the left induce the van Est

isomorphism and we get the commutativity of the lower left square of the diagram

H∗(C (B•G,R)) // H∗(C (B•G
δ,R)) H∗(B•G

δ,R)

��
ρ∗r

vv

H∗cts(G,R) // H∗(C (B•G,A ∗(G,R))) // H∗(C (B•G
δ,C (G•,R))

H∗(glr, ur; R)

van Est ∼=

OO

// H∗(glr; R)

∼=

OO

φ // H∗(G\G•,R).

∼=

OO

Here C (G•,R) denotes the complex of simplicial cochains on G• (= the complex of

singular cochains on G) and the unlabeled arrows are induced by the natural map

Gδ → G and the de Rham map (integration of differential forms) respectively.

The commutativity of the remaining parts is established in [39, Theorem 4.3, (4.4)]

(ρ∗r and φ are called eval and deR there) finishing the proof of the proposition.

4.4. Proof of Theorem 4.3. — Since the odd topological K-theory of Spec(C)

vanishes, the map Krel
2n−1(C)→ K2n−1(C) is surjective. By construction of the regu-

lators resp. the relative Chern character and the comparison result of Theorem 3.7 it

then suffices to show that the diagram

H2n−1(GLr(C)\Gr,•,Z)
ρ∗r //

Chrel
n,2n−1 ��

H2n−1(B•GLr(C)δ,Z)

1
2 Bon

��

H0(Spec(C),C)/Filn // H1
D(Spec(C),R(n))

C // C/R(n)
πn−1

∼=
// R(n− 1)

commutes.
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Recall the definition of Bon in Section 4.1. By abuse of notation we also de-

note by Bon the image of Chtop
n (Euniv) in the relative Lie algebra cohomology

H2n−1(glr, ur; R(n − 1)). We need Burgos’ description of its image in absolute Lie

algebra cohomology:

Lemma 4.8. — The image of Bon in H2n−1(glr,R(n−1)) is represented by the left

invariant differential form

−2
(n− 1)!

(2n− 1)!
πn−1 ◦ Tr((g−1dg)2n−1),

g−1dg denoting the Maurer-Cartan form on GLr(C) and πn−1 the projection C →
R(n− 1).

Using Proposition 4.7 we conclude that the composition 1
2Bon ◦ ρ∗r is induced by

the cocycle

GLr(C)\Gr,• 3 σ 7→ −
(n− 1)!

(2n− 1)!
πn−1Tr

∫
∆2n−1

(σ−1dσ)2n−1

and finish the proof of the Theorem using Proposition 4.5.

Proof of the Lemma. — Obviously, the form in the statement is left invariant. At the

unit element the Maurer-Cartan form is just the identity glr → glr. Hence the above

form corresponds to the alternating form on glr that is given by

x1 ∧ · · · ∧ x2n−1 7→ −2
(n− 1)!

(2n− 1)!
πn−1

 ∑
τ∈S2n−1

sgn(τ)Tr(xτ(1) · · ·xτ(2n−1))

 ,

where S2n−1 denotes the symmetric group on 2n− 1 elements.

It follows from [6, Proposition 9.26] that this represents the image of Bon in

H2n−1(glr,R(n−1)). Note that Burgos’ cocycle differs from ours by the factor (−1)n.

This is explained by the fact that Burgos uses another normalization of the Chern

classes. His “twisted Chern character class” chn is (−1)nChtop
n , cf. Remark 2.15.
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