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Introduction

® | here has been a lot of recent effort in obtaining realistic 4d
cosmologies from the 10d/11d supergravities that capture the low-
energy limit of string/M-theory.

® |n the early 21st century accelerating 4d cosmologies from
compactification were thought to be as difficult as 4d Sitter

® | he famous no-go excludes acceleration, provided:

® absence of sources, no (or mild) singularities

® COMpPACtNESs

® two-derivative actions

® the Strong Energy Condition is obeyed by the 10d/11d theory

% Gibbons, 1934
* Maldacena & Nuitez, 2000



Introduction

® Consider a compactification of the form
gaundXMAXY = 0 (y) (g (@)da’da” + gun (y)dy™dy" )
where the 4d factor is of FLLRW form,
Gy (z)datdx” = —d7? + SQ(T)%jda:ida:j . R(7)i; = 2k,

® In particular we have

A\

Ry = Ry = g (V2 I Q + 8(01m2)?)

® The SEC
ROO — /<J2 (TO — %QOO TLL) > ()

then implies

S(T) <0



Introduction

® ‘[ ime-dependent compactifications, however, can evade the no-go!
Q=Q;T);  Gmn = Gmn(y;T)
* Townsend & Woblfarth, 2003

® | ransient acceleration is in fact generic in flux compactifications!

® de Sitter space is still ruled out by the SEC (if the 4d Newton’s
constant is time-independent in the conventional sense)

® | ate-time acceleration is not ruled out by the SEC (although no
known examples from 10d/11d compactifications, if we require
non-vanishing acceleration asymptotically)

* Russo & Townsend, 2018; 2019



Introduction

B Reexamine these statements within the framework of unzversal

10d/11d compactifications

® '|'ype 11 supergravity 1od solutions with a 4d F1.LRW factor

# Compactification on 6d Einstein, Einstein-Kih

er,or CY

® Solutions independent of the compactification d

etails

® All solutions are obtainable from a 1d action (consistent truncation)
of 3 time-dependent scalars (the dilaton and 2 warp factors). All
fluxes appear as constant coefhicients in the potential.

® |n certain cases there is a 4d consistent truncation to 2 scalars



Introduction

® Many analytic solutions
® Always possible if a single excited species of flux.

® [ixamples with up to four excited species of flux.

® Autonomous dynamical system if 2 excited species of flux

® [ntuitive description of the cosmological features of the
cosmologies (trajectories), in particular the condition of
accelerated expansion

® [ixed points and trajectories on phase-space boundary
correspond to analytic cosmological solutions

® Several novel (top down) examples of (semi-)eternal inflation;
cosmologies with parametric control of e-foldings; rollercoaster
cosmologies



'T'ype 1A supergravity

B Action
1 1 1
G _ 410 (—R Z(96)? 4 3¢/2 2
2@0/ TV9( B 500) + o
1 1 1
.2.3!6 H |2.4!6 G+2me )+SCS

® Bianchi identities

dFF =mH ; dH=0; dG=HAF



Metrics & times

® '| he 1od Einstein-frame metric
dsty = €240 [P0 (—dt? 4 dQF) + gpun (y)dy™dy"|
where
dQF = vij(zr)da’da? ; R = 2k

® '| he 4d Einstein-frame metric

dsip = —S°%dr? + S§2dQ:

where
q — 6ZJEA—I—B ) ﬁ _ S2
L dr
® ‘| he cosmological time
dT

o S5 dsip = —dT* + 52dQ);



Flux Ansitze examples

® Calabi-Yau
m=0; F=0:; H:h+dx/\J—I—%boReQ;
G = pvoly %CQJ AJ — %dg A Im$) — %dg’ A Ref)

solution of form equations and Bianchi identities
—¢/2—2A+4B

p=e o3 h=c¢cpvols ;

th _ CX6¢—4A—ZB

s (de€)? + (de!)? = 2cee e 04T

B Kinstein-Kahler with internal 2-form
m=0; H=0; G=qpvoly:;
F:CfJ§ Rmn:)\gmn

solution of form equations and Bianchi identities

~¢/2—2A+4B

Y =€ ©



'I'he 1d consistent truncation

® | he remaining cquations of motion (Einstein & dilaton)

dZA = — 2 (04U — 405U)
2B = % (04U — 305U)
d2¢ = —04U

B Constraint

72(d, A)? 4+ 6(d, B)* + 48d,Ad, B — 1 (d,¢)* =



'I'he 1d consistent truncation

® | hey are derivable from

Sid = /@17{i ( —72(d, A)? — 6(d, B)? — 484, Ad, B + %(quﬁ)Q) ~ NU(A, B, ¢)}

where

( %Cie—¢/2+6A+6B 4 %Ci€—¢+12A 4 3C§<6¢+4A 4 c p—$/246A _ GLo16A+4B vy
72b2 —gb—|—12A—|—6B _|_ €¢/2+10A—I—6B CY
%Cie—¢/2—|—6A—|—6B _|_ %m265¢/2+18A—|—6B L 6]€€16A+4B L 6)\€16A—I-GB E

U = |

2C¢6_¢/2+6A+6B _|_ che —p+12A _|_ §C§<6¢+4A 6]€616A+4B o 6)\616A+6B EK
%Cgecb/Q—l—lOA—FGB ‘I‘ %m265¢/2—|—18A—|—GB L 6k616A—I—4B L 6)\616A+GB EK

\ %Cae_¢/2+6A+6B _|_ %C?€3¢/2+14A—|—6B L 6k616A+4B o 6)\616A+6B EK



'I'he 1d consistent truncation

® ‘| he 10d origin of the constants

zero-form (Romans mass)

internal two-form

external three-form

internal three-form

mixed three-form

external four-form

internal four-form

mixed four-form

external curvature

internal curvature




'I'he 1d consistent truncation

® '| he terms in the potential are of the form

const x e THB+Yo
where (for RR forms)

o =18(1 —ny) — 2(=1)" (ns +ny;) ;
B=06(1—n;) —2(—1)"n, ;
1y D= (n +2n + ;)

with ng, ng, n; the number of legs along the time, 3d space,
internal directions

v = (-



Minimal solution (zero flux)

® Warp factors and dilaton
A=caT+da; B=cpT+dp; ¢=ceT+dy

B Constraint

with constant dilaton if either inequality is saturated

® 4d Einstein metric
ds?, = —dT? + T3di?

® ¢ may collapse, decompactify or stay constant as ' — 0, 00



'1'he 4d consistent (cosmological) truncation

® '| he equations of motion are derivable from

Sy = / d%[q(R — 249" 0, AD, A — Lg" 0,00,¢ — V (A, ¢))

where
[ 72h3e 9124 4 %c%eW 2—-144 CY with internal 3- and 4-form fluxes
%cfpe_¢/2_18‘4 + %m2e5¢/2_6A — 6 e 34 E with external 4-form flux
P %cge¢/2_14A — %m265¢/2_6’4 — 6 e84 EK with internal 4-form flux
\ %cie‘qb/Q_wA + %c?e3¢/2_10‘4 — 6 e % EK with internal 2-form, external 4-form

B In the CY case: a sub-truncation, to the metric and two scalars. of
the consistent truncation to the universal sector

% Robin Terrisse & DT, 2019 ; DT, 2020



Dynamical system analysis

® Consider the case of a two-term potential
U= Z cie” s B = A+ BB+ v

® The eom’s become a dynamical system, with do := eZ1/2dr
dev = (éOQ - 152) u? — (@2 + %51 — 452) uv — ( a1+ 042 — 652) v — —%Uw
( 042 T 2452) w? T 7 Cl (e —ay +4(81 — B2)]
d,u = ; (—ao + by + 352)u — (5 a1 — dag — 1252) uv — (—6asg + 1852)?} — —vluw
— (37002 + §62) w? + Fe1 [ — g + 3 (B2 — B)]
dyw = — 6y9u? — 48vuv — 7290 — %Bluw — %Ozlvw — % (i — Y2) w? +c1 (2 — 1)
where v =e 2124 A, uwu=eP/2d.B; w=e"/2d.¢
® ‘| he constraint takes the form

720° + 6u’ + 48vu — %wz = c1 + 026E2_E1



Dynamical system analysis

® | he phase space can be compactified using

2V W V€1
wtu’ 7T 2B+ u) V6(4v + u)

® ‘| he ecom’s become an autonomous dynamical system

o' = 1 ([0 +2B:(-2 + 2))(-1+ 22 + 92 + 22) + [~a1 — 281(~2 + 2)]?)
((Q\fw + Boy) (=1 +2” + 5% + 2°) — (2V371 + 61y)z2)

(alx +4V3y1y — 281 (=1 + 22 + 2%) + 265 (—1 4+ 2% + ¢ + z2))

where f' =d, f and dw := ﬁda

® Relation to the other time parameters

dw = YL 24r qp = YO goavan-rizg,
V62 Vel

N

Yy =

/
&<

p-lklf—‘




Dynamical system analysis

® | he constraint takes the form

2 2 Eo—FE;

ci(l —z? —y® — 2°%) = cp 2%

restricting to cither the interior or the exterior of the unit sphere

® | he unit sphere is an invariant surface
L2492+ 28 =1 (1422 + %+ 22)
X (agaz — 4\/§ng — 2617;2 + 205 [(—2 +x)r + y2 + ZQD

® '| he equatorial disc (at z = 0) is an invariant surface

8 The equator (at z° 4+ y* = 1 and z = 0) is a circle of fixed points

® ‘| 'he plane ax + by + ¢ = 0 is an invariant surface, where
(2 — 4B2)a + 4V/3y2b — 232¢ = 0

o — oy — 4(Ba — B1)] a+4V3(y2 — 11)b — 2(B2 — B1)c =0



Dynamical system analysis

m]

he condition for expansion, S(T') > 0, is equivalent to z > 0

]

SO traj

e f

ow is invariant under (2, w) — —(z, w)

cctories in the northern and southern hemispheres are paired

® The condition for acceleration, S(T') > 0, is equivalent to
(81 — B2)2? — Ba (22 +4®) + B2 — 4 > 0

531

B2

0

4

0

1%}

%]

Do
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Dynamical system analysis

® '| he flow parameter is related to the scale factor via
— In =
w = In oh

so the number of e-foldings is given by

N:/dw

® | he cosmological time reads

T(w) = \E / " 4w 2 (o) exp :(12 - %) A(W') + (3 = %) ~ %qﬁ(w’):

® "|'his can be inverted to obtain the scale factor S(7T) via
w(T)=1InS

and similarly for all other cosmological parameters




Recap

® Many analytic solutions

® Always possible if a single excited species of flux.

® Autonomous dynamical system if 2 excited species of flux

® 3 first-order equations and a constraint

® Solutions correspond to trajectories in phase-space

» Compactification of phase-space to (the interior of) a 3d ball

% Sonner & Townsend, hep-th/0608068

® | 'he equatorial disc and

 the 2d sphere boundary are invariant

surfaces of the dynamical flow

® '| here is always an additional invariant plane

® [ixed points and trajectories on the sphere boundary or on the
disc correspond to analytic solutions



Recap

B Rephrasing the question of accelerated expansion

® [Kxpanding cosmologies correspond to trajectories in the northern
hemisphere (interpolating between two fixed points)

m Acceleration is possible whenever there is a non-empty acceleration
region (determined by the type of excited fluxes)

® " 'his explains why transient
accelerated expansion is generic: it
corresponds to trajectories in the
northern hemisphere, passing
through the accelerated region.




Results

® Fixed points correspond to scaling cosmologies: S(T") ~ T

® | 'he equator is a circle of fixed points with a = %

® [ixed points on the boundary of the acceleration region have a = 1
‘T'hey correspond to a regular (singular) Milne universe if the fixed
pointis (not) the origin of the sphere.

<

® ‘| 'here are no eternally
accelerating scaling cosmologies,
ze. a <1

® ‘| 'here are fixed points

: _ 3 19 9
Wltha—4, 55> 11




Results

® Many examples of (semi-)eternal inflation, and cosmologies with a
parametric control of the number of e-foldings

s ]

ey

m ]

ey

have k = —1 and non-vanishing A, m, c¢, co or ¢,

have a fixed point on the boundary of the accelerated region




Results

B [Kxamples of semi-cternal inflation, and cosmologies with a
parametric control of the number of e-foldings

® An example of eternal inflation without Big-Bang singularity

® Accelerated contraction
(expansion) for T" < 0 (T" > 0)

® de Sitter in the
ncighborhood of T' =0




Results

B Scveral examples of solutions with infinite cycles of accelerated
and decelerated expansion (rollercoaster cosmology)

B [Kxample without Big-Bang singularity

=




Conclusions

® We confirm that transient acceleration is generic in flux
compactifications (universal, top-down models)

B Cosmologies featuring (semi-)cternal acceleration, or a parametric
control on the number of e-foldings also seem generic !
® ‘| hey have £ = —1 and asymptotically vanishing acceleration

® [xamples of spiraling cosmologies with an infinite number of cycles
alternating between accelerated and decelerated expansion
(rollercoaster cosmology)

® Comparison with the effective 4d approach, swampland
® [xtend the dynamical system analysis to more than 2 fluxes
® [nclusion of sources (orientifolds), higher derivatives

B Realistic cosmologies ?



