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Quantum Teleportation

Scenario: Alice has one copy of an unknown qubit |ψ〉. She wants to send the state to Bob at but
can only transmit cbits. They share twomaximally entangled qubits i.e. 1 ebit.

On the face of it, Alice is in a predicament. With infinitely many copies of |ψ〉 (no-cloning aside!), she
could make infinitely many measurements and send the resulting bits to Bob. He could then recon-
struct |ψ〉. In stark contrast, the teleportationprotocol allowsAlice to complete her task by exploiting
the shared ebit and sending Bob just 2 cbits. Very loosely, teleportation can be thought of as using
work done in the past (by the preshared ebit) as a tunnel for transmitting quantum information. This
is somewhat captured by the homotopy equivalence of a ziz-zag and straight line (a notion made
precise in [1]) as processes in spacetime. Below, this is seen as deforming the spike to the dashed
line. We take time to run downwards in all diagrams.

These characteristic zig-zags will become hardcore in our anyonic approach to teleportation.

Anyons and String Diagrams

Anyons are localised emergent particles in two spatial dimensions. Any theory of anyons has an un-
derlying finite set of labels L = {0, a, b, · · · } that represent their distinct possible types or charges.
The trivial label 0 represents the vacuum. Anyons can

(1) Braid i.e. a sequence of particle exchanges represented as worldlines in (2+1)D.
(2) Twist i.e. a 2π self-rotation of specified orientation.
(3) Fuse. Two anyons of charges a and b can generally have total charge a×b =

∑
c Nab

c cwhere fusion
coefficients Nab

c ∈ Z≥0 for all a, b, c ∈ L. Fusion is commutative and associative. The summation
indicates that the total chargemay be a superposition of charges. Note thatNa0

b = N0a
b = δab. Also,

each a ∈ L has a unique dual charge ā such thatNaā
0 = Nāa

0 = 1.

The (fusion) state space of a and b is Vab ∼=
⊕

c Vab
c where dim(Vab

c ) = Nab
c . Measuring the charge of

such a pair results in their state collapsing to a subspace Vab
c . The dual space of Vab

c is denoted Vc
ab.

Its orthogonal basis elements can be thought of as the distinguishable ways in which a pair a and b
may be initialised from c. With an appropriate normalisation, we use trivalent vertices to represent
orthonormal basis (ONB) elements of these spaces.

We can diagrammatically express (i) orthogonal pairings and (ii) the completeness relation on Vab.

A collection of n anyons can be fused in Cn−1 different ways (i.e. fixing a sequence of pairwise fu-
sions), where Cn is the nth Catalan number. Each distinct sequence defines a fusion basis. Such a
basis determines a decomposition of the n-anyon space.

By associativity of fusion, all such decompositions are isomorphic e.g.

Vabc
d

∼=
⊕

e
Vab

e ⊗ Vec
d

∼=
⊕

f
Vaf

d ⊗ Vbc
f (1)

Fixing a fusion basis is akin to a choice of measurement ONB. Change of ONB is realised by (some
sequence of) unitary F-matrices. Diagrammatically, these F-moves recouple trivalent vertices. E.g.
we illustrate the F-move for F-matrix Fabc

d :
⊕

e Vab
e ⊗ Vec

d →
⊕

f Vaf
d ⊗ Vbc

f .

A clockwise exchange of two anyons a and b is described by the unitary R-matrix Rab : Vab → Vba

whereRab =
⊕

c Rab
c . Diagrammatically,Rab

c : Vab
c → Vba

c is given by theR-move below.

(i) Clockwise twisting an anyon a induces an evolution ϑa ∈ U(1); the topological spins {ϑa}a can be
expressed in terms of the F andR-symbols of a theory.
(ii) The value da ≥ 1 given by an unnormalised loop with label a is called its quantum dimension.
When da = 1, a is called an abelian anyon; else, da ≥

√
2 and a is called a non-abelian anyon.

(iii) Zig-zags labelled by a self-dual charge amay be straightened at the cost of a gauge-invariant sign
κa = da[Faaa

a ]00 ∈ {±1} called its Frobenius-Schur indicator.

Altogether, a theory of anyons is specified by its label set, fusion rules, F-symbols and R-symbols
i.e. a skeleton of a unitary braided fusion category (UBFC). All F and R-matrices satisfy consistency
equations known as pentagon and hexagon equations. There is some gauge-freedom for the sym-
bols (arising from choice of orthonormal basis for each Vab

c ); physically meaningful quantities are
necessarily gauge-invariant.

Topological Qudits and Braidless Teleportation

The careful control of quantum states is made difficult by the interaction between a system and its
environment. One idea is to sidestep this noise by encoding information in anyonic fusion states
(whereby the quantum information is nonlocal, and thus hidden from the environment). Quantum
gates are typically thought of as being realised via braiding in this approach. In recent work [2, 3] the
qubit teleportation protocol was investigated in the context of braiding Ising anyons. An Ising theory
has L = {0, ψ, σ}, where σ is the Ising anyon and ψ is an abelian anyon (often called a ‘fermion’).
The nontrivial fusion rules of the theory are

σ × σ = 0 + ψ , σ × ψ = σ , ψ × ψ = 0 (2)

The controlled transport of anyons presents a formidable exercise in engineering. Moreover, in some
candidate systems for Ising anyons, it is not clear how braiding should be carried out. With this in
mind, we introduce a braid-free version of the protocol for a family of theories. We will call an anyon
q Tambara-Yamagami (TY) when it is realised by a UBFC with fusion rule

q × q =
∑

g
g , g × g′ = gg′ (3)

for g, g′ ∈ G a finite abelian group or order ≥ 2. We note that q × g = g × q = q and that g ∈ G are
abelian anyons.

ForGof order 2, note that q is an Isinganyon. ForOrd(G) = d, we can initialise amaximally entangled
qudit d−1/2∑

g |gḡ〉 by pair-creating as in (a), and then recoupling as in (b).

Suppose Alice wishes to teleport a state ofN ≥ 2 TY-anyons (i.e. the state of at most bN
2 c topological

qudits). This can be achieved (without braiding) as follows.

where gj ∈ G. We useM ancillae whereM is the first j < 0 such that gj = 0. The probability that Alice
measures gj = g ∈ G is 1

d. The distributor of the k ≥ N + M pairs of TY-anyons is labelled Charlie
(this could also just be either Alice or Bob). The proof that the above process realises the desired
teleportation follows from these key facts.

(i) Up to a global phase, we have the equivalence

(ii) It holds for any g ∈ G and in any gauge that
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