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Chapter 1

Introduction

A Calabi- Yau manifold is a K&hler manifold endowed with a constant and nor-
malized complex volume form. Equivalently a Calabi-Yau manifold can be de-
fined as a manifold equipped with an integrable SU(n)-structure. The study of
this class of manifolds begins with the proof of the celebrated Calabi’s conjec-
ture given by Yau in [71, 72]. As a direct consequence of Calabi-Yau theorem
we get that any compact simply connected K&hler manifold with vanishing first
Chern class admits a Calabi-Yau structure.

Moreover Calabi-Yau manifolds have a central role in string theory. In fact

in this physical theory the universe is represented as
X xC

where X denotes the Minkowski space and C' is a compact Calabi-Yau 3-fold.

Furthermore the Hitchin-Strominger-Yau-Zaslow theory of deformation of
Special Lagrangian submanifolds introduced in the study of Mirror Symmetry
imposes to consider generalizations of the Calabi-Yau structure (see e.g. [39]).

In [28] de Bartolomeis and Tomassini introduce a natural generalization
of Calabi-Yau manifolds to the non-holomorphic case. Namely, a generalized
Calabi- Yau manifold is a symplectic manifold endowed with a compatible al-
most complex structure and a normalized complex volume form & covariant
constant with respect to the Chern connection. Special Lagrangian submani-
folds of generalized Calabi-Yau manifolds have the important property to have
vanishing Maslov class.

In dimension six the definition of generalized Calabi-Yau manifold can be
improved by requiring that real part of € to be closed. Such manifolds are called
special generalized Calabi- Yau manifolds. In this case the form Ree is a calibra-
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6 Chapter 1. Introduction

tion and special Lagrangian submanifolds are calibrated submanifolds (see [37]).

The first problem faced in this thesis is to give a description of the infinites-
imal deformations of the almost complex structures on a compact symplectic
manifold admitting a generalized Calabi-Yau structure (such structures will be
called admissible). At the beginning of Chapter 2 we give an example of a
non-admissible almost complex structure calibrated by a symplectic form on a
nilmanifold (see example 3.9). After that we compute the tangent space to the
moduli space of admissible almost complex structures calibrated by the same
symplectic form. As a direct application we get that the standard holomorphic

structure on the complex torus is not rigid.

In the second part of chapter 3 we take into account 6-dimensional spe-
cial generalized Calabi-Yau manifolds. In order to determine some Riemannian
properties of our manifolds we write down (with the aid of MAPLE) an explicit
formula for the scalar curvature and the Ricci tensor of an arbitrary SU(3)-
structure (see theorems 3.32, 3.34). As a direct application of our formulae we
get that the scalar curvature of a 6-dimensional generalized Calabi-Yau manifold
is always non-positive and that the Einstein equation forces a special general-
ized Calabi-Yau structure to be integrable (also in the non-compact case) (see
corollary 3.36). In chapter 4 we take into account special generalized Calabi-Yau
structures. In the first part of this chapter we give some examples of special
generalized Calabi-Yau structures on compact manifolds and we describe some
special Lagrangian submanifolds. After that we prove that the set of the Calabi-
Yau structures can be not open in the set of generalized Calabi-Yau structures
(see remark 4.10) and we give a compact example of a complex manifold admit-
ting generalized Calabi-Yau structures, but no special generalized Calabi-Yau
structures. In section 4.1.3 we study special Lagrangian geometry proving an
extension theorem. More precisely, we prove that, given a family of special gen-
eralized Calabi-Yau manifolds (M, k¢, Ji, €¢) and a compact special Lagrangian
submanifold po: L <— M of (ko, Jo,€0) under some cohomological conditions
there exists a family of special Lagrangian submanifolds p;: L — (M, k¢, Ji, &¢),
that extends po: L — M (see theorem 4.13). This is an extension of a the-
orem of Lu Peng (see [45] and also [56]) to the context of special generalized
Calabi-Yau manifolds. In the last part of this chapter we generalize the Lu Peng
theorem to the 4-dimensional case.

In the last chapter we introduce a generalization of the Calabi-Yau structure
to the contest of contact manifolds introducing the definition of contact Calabi-
You manifold . Roughly speaking, a contact Calabi-Yau manifold is a 2n + 1-



dimensional manifold M endowed with a contact form «, a complex structure
J on & = ker « calibrated by k = %da and a closed complex basic volume form
€. These manifolds are a special class of a-Einstein null-Sasakian manifolds.
As a direct consequence of the definition, in a contact Calabi-Yau manifold
(M, «, J,€) the real part of ¢ is a calibration. Furthermore, it turns out that a
submanifold p: L — M of a contact Calabi-Yau manifold is calibrated by Ree
if and only if
p* () =0, p*"(Sme)=0.

In such a case L is said to be a special Legendrian submanifold. We prove that the
Moduli space of deformations of special Legendrian submanifolds near a fixed
compact one L is a smooth 1-dimensional manifold. Furthermore we study
Lu Peng problem in this class of manifolds. Then we classify 5-dimensional
nilpotent algebras admitting an invariant contact Calabi-Yau structure and in
the last section we generalize our results to the r-contact manifolds.
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The principal results of this paper have been obtained in collaboration with
Adriano Tomassini. I would like to express my gratitude to him. His constant
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forms has been computed in collaboration to Lucio Bedulli. I would like to thank
him. The proof of this formula has been obtained with the aid or MAPLE. 1
am grateful to Robert Bryant for supplying me with the computer programs he
used to perform the symbolic computations in the Ga-case. I am also grateful
to Richard Cleyton for suggesting a considerable strengthening of a previous
version of Corollary 3.36 and useful discussions.

Finally, I am pleased to thank the referees for valuable remarks and suggestions

for a better presentation of the results present in this paper.



8 Chapter 1. Introduction

Notation: In this thesis we use the following notation:

Given a manifold M, we denote by A" M the space of smooth r-forms on M and
we set AM =@ | A"M.

Furthermore when a coframe {a1,...,a,} is given we will denote the r-form

o, A ANag, by a;, ... We use the convention:
aNf=a®pf—-0Ra.

In the indicial expressions the symbol of sum over repeated indices is sometimes
omitted.



Chapter 2

Background

2.1 Symplectic vector spaces

Let V be a 2n-dimensional real vector space. A symplectic structure on V is a
skew-symmetric non-degenerate 2-form r, i.e. a 2-form satisfying k™ # 0. The
pair (V, k) is called a symplectic vector space. A symplectic structure x gives a
duality §,: V — V* defined by

e (V)w = k(v,w),
for v,w e V.

Example 2.1. Let us denote by {ey,...e2,} the standard basis of R?" and by
{e!,...,e*} the respective dual frame. The 2-form

n
kg = Ze%’l Ae?i
i=1
is a symplectic structure on R?" called the standard symplectic structure. The

pair (R?", k) is said to be the standard symplectic vector space.

An endomorphism ¢ between two symplectic vector spaces (Vi, k1), (Va, k) is

said to be a symplectomorphism if
¢*(k2) = k1.

It is well known that any 2n-dimensional symplectic vector space (V,k) is

symplectomorphic to (R?", kq).
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An endomorphism J of V is said to be a complex structure if it satisfies
J? = —1I, where I denotes the identity on V. The pair (V,J) is called a complex

vector space.

Example 2.2. Let Jy € End(R?") be represented by the matrix

0 I,
Jo = ;

where I,, denotes the identity of R”. This endomorphism satisfies J3 = —I and
consequently it is a complex structure on R?". We refer to .Jy as to the standard

complex structure.

A complex structure J on V gives a natural splitting of V¢ :=V @ C in VC =
V% @ V) where V;° is the J-eigenspaces relatively to i and V;*' is the
J-eigenspace relatively to —i. Furthermore if we set

APV = (v AV = (V)

and
) . ALO 1,0 0,1 0,1
ARV = AV AN NN VANV A NNV

p—times g—times

we have that the vector space AGV™ of complex valued r-forms on V splits as
ALV = P ApTV.
ptq=r

Moreover the space End(V) of endomorphisms of V' decomposes in

(2.1) End(V) = End}"(V) ® End%" (V)

where

(2.2) End}’(V)={L €End(V) | JoL=LoJ},
(2.3) End}' (V) = {F €End(V) | JoF = —Fo J}.

A positive-defined scalar product g on a complex vector space (V, J) is said to
be J-Hermitian if g(Jv, Jw) = g(v,w) for any v,w € V. Note that if & is an
arbitrary positive-defined scalar product on V', then the tensor g := %(h + Jh)
defines a J-Hermitian metric on V. It follows that any complex structure admits
a Hermitian metric.

Let (V, k) be a symplectic vector space. A complex structure J on V is said
to be k-tamed if

k(v, Jv) > 0
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for any v € V, v # 0. Let us denote by 7,,(V) the space of x-tamed complex
structures on V. By the definition we immediately get that this space in an open
subset of End(V). Moreover if J € 7,,(V) and Z € End(V), then J = —JZ is
k-tamed if and only if

(2.4) Z>0, Z'=J"127,
where Z > 0 means that
gs(v,Zv) >0forallv eV v #0.

Vice versa if J and J are x-tamed the endomorphism J J satisfies conditions
(2.4). Tt follows that 7. (V') is parameterized by the set

A :={Z € End(V) satisfying (2.4)}.

Let
F: A—{WeEnd(V) | |W| <1},

be the map defined by
F(Z)=(1I-2)I+2)"".

This map interchanges J and —J and a vector W € V belongs to the image of
F if and only if it satisfies

Wl<1, -W=J"'WJ.

It follows that Im(F') is a convex space. Hence we have proved that 7, (V) is
contractible.

A k-tamed complex structure J is said to be k-calibrated (or k-compatible) if
k(Jv, Jw) = k(v,w),

for any v,w € V. Let us denote by C.(V) C 7Z,.(V) the space of k-calibrated
complex structures on V. Any J € 7.(V) induces a positive defined inner
product gy on V by the relation

1
(2.5) gs(v,w) = 5(/@(1}, Jw) — k(Jv,w)).
Note that if J € C,,(V), then g is simply obtained by gs(v,w) = k(v, Jw).

Example 2.3. The standard complex structure Jy is xo-calibrated and it in-
duces the standard inner product on R?".
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The scalar product gy is obviously J-Hermitian. Consequently g; induces the
Hodge star operator =: AV — A779" 7PV defined by

n

a A= gJ(%ﬁ)% :

We recall that *> = (—1)PT4] and that it is C-linear. In a analogue way k
induces an operator %: A"V* — A2"~7"V* called the symplectic star operator,
by means of the relation

}{/n
oA = (0, )
n!
We have the following easy-prove lemma (see e.g. [27])
Lemma 2.4. These identities hold:
1. %¥2=1I;
2. if J€Cu(V), then Jx = xJ = %k.

The following lemma, proved in [27], will be useful in chapter 3.

Lemma 2.5. Let ( € A'V* and v € A"V*; we have

(2.6) *(CAY) = (=1)"CAJK (kA7) = (=1)"F(r A K(CAKY)).

2.1.1 Lagrangian subspaces

Let (V, k) be a symplectic vector space. A subspace i: W < V is said to be
isotropic if i*k = 0. We have the following lemma (see e.g. [48])

Lemma 2.6. Leti: W — V be an isotropic subspace, then dimpW < %dimRV.
We recall the following

Definition 2.7. A subspace i: W — V of a symplectic vector space (V, k) is
said to be Lagrangian if

1. it is isotropic ;
2. dimpW = % dimgV.

Let i: W — V be a Lagrangian subspace; fix J € C(M) and consider the
metric gy induced by (k, J) by (2.5). Since i*k = 0 we have that

(2.7) gs(w, Jw) =0
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for any w € W. Consequently if {wy,...,w,} is a gs-orthonormal basis of W,
then {w1,...,wy, Jwy,...,Jw,} is an orthonormal basis of the ambient space
V. Tt follows that, if we denote by A(V, k) the set of the Lagrangian vector
subspaces of (V, k), then

AV k) ~U(n)/O(n).

In the sequel we will denote by A(n) the homogeneous space U(n)/O(n).

2.2 Symplectic manifolds and calibrated almost
complex structure
Let M be a 2n-dimensional manifold.

Definition 2.8. An almost symplectic structure on M is a non-degenerate 2-
form k. The pair (M, x) is said to be an almost symplectic manifold.
If further k is closed, i.e. dx = 0, then it is called a symplectic structure and

(M, k) a symplectic manifold.

As in the linear case an almost symplectic structure « induces an endomorphism
fe: TM — T*M

given by

(2.8) e (X)(Y) = K(X,Y).

An easy application of Stokes’ theorem gives the following

Lemma 2.9. Let (M,r) be a compact symplectic manifold and let b;j(M) =
dim H7 (M, R) be the j-th Betti number of M. Then

b27,'7é07
for any 1 <i<n.

Let (M, k1), (Ma, ko) be symplectic manifolds; a diffeomorphism ¢: M; —
My satisfying
¢* (K1) = K2

is said to be a symplectomorphism. Let us denote by Sp(M, k) the group of the
symplectomorphisms of (M, k). We have the following well-known
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Lemma 2.10 (Darboux). Any symplectic manifold is locally symplectomorphic
to (R%", ko).

Hence there are no local symplectic invariants.

Now we recall the definitions of complex and almost complex structure:

Definition 2.11. An almost complex structure on M is an endomorphism J
of TM satisfying J?2 = —I. The couple (M,J) is called an almost complex
manifold.

If M admits a holomorphic atlas, then it inherits a canonical almost complex
structure J, locally defined by

J(0z,) = Oy, , fori=1...n,

J(ayj):_ax“ fori=1...n,
where {z; = x; + iy;} is a system of holomorphic coordinates.

Definition 2.12. An almost complex structure is said to be integrable, or a
complex structure, if it is induced by a holomorphic atlas. In this case the
couple (M, J) is called a complex manifold.

For any almost complex manifold (M, J) it is defined the Nijenhuis tensor of J:
N;(X,)Y)=[JX,JY]|-JJX,Y]-J[X,JY] - [X,Y],

for XY € TM. Obviously, if J is integrable, the correspondent Nijenhuis
tensor vanishes. We have the following important

Theorem 2.13 (Newlander-Nirenberg [53]). An almost complex structure J is

integrable if and only the Nijenhuis tensor N vanishes identically.

Let (M,J) be an almost complex manifold; according with the decompo-
sition of AGM in ALM = @ ARIM, the exterior derivative d: ALM —
ALTIM splits as

ptgq=r

d: ADIM — AT @ APTRION @ ARSI M @ ATV

d=A;+0;+0,+4,.
It is well known that J is integrable if and only if 53 = 0 (or equivalently if and
only if Ay =0).
Finally we recall that a complex p-form v on an almost complex manifold

(M, J) is said to be holomorphic if it is of type (p,0) and satisfies

5J’}/:O.
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2.2.1 Hermitian structures

A Riemann metric g on a complex manifold (M, J) is said to be J-Hermitian
if it is preserved by J. In this case the triple (M, g, J) is said to be an almost
Hermitian manifold. If further the almost complex structure J is integrable,
then (M, g, J) is called a Hermitian manifold. If h is an arbitrary metric on M,
then the tensor g := 3 (h+ Jh) defines a Hermitian metric on (M, J). It follows
that any almost complex manifold (M, J) admits Hermitian metrics. An almost
Hermitian structure (g, J) induces an almost symplectic structure £ on M given
by the relation

(2.9) K(X,Y) = g(JX,Y).

Let us consider now an almost symplectic manifold (M, k). An almost com-
plex structure J on M is said to be s-tamed if for any x € M, J, is a linear
complex structure on T, M tamed by k.. Since the space of the complex struc-
tures on a vector space tamed by a linear symplectic structure is contractible,
any symplectic manifold (M, k) admits a k-tamed almost complex structure.
Furthermore the space 7,,(M) of k-tamed almost complex structures on M is
a contractible space, too. A k-tamed almost complex structure is said to be
k~calibrated if

Ky (Jpv, Jpw) = kg (v, W),

for any v € M, v,w € T, M. As in the tamed case we have that any symplectic
structure x admits a x-calibrated almost complex structure and that the space
Cx(M) of the k-calibrated almost complex structures is a contractible subspace
of T,,(M).

Any k-calibrated almost complex structure J induces a Hermitian metric
g by relation (2.9). Hence one can define an almost Hermitian structure as a
couple (k, J) instead of a couple (g, J).

Notation: From now on, when an almost Hermitian structure (k,J) is
given, we will denote by ¢; the induced metric and by V the Levi-Civita
connection of g;.

We have following well-known

Lemma 2.14. Let (M, k,J) be an almost Hermitian manifold. The following

formula holds

(2.10) 2¢,((VxJ)Y,Z) = dr(X,Y, Z) — dr(X,JY, JZ) + g, (N, (Y, Z), JX),
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for any vector fields X,Y,Z on M.
In the sequel we will use the following

Lemma 2.15. Let (M, J) be a compact almost complex manifold. Let f: M —

C be a holomorphic map, i.e. a map satisfying 0;f = 0, then it is constant.

2.2.2 Symplectic and complex bundles

Definitions of symplectic and complex structure can be easily generalized to
fibre bundles. Symplectic bundles will be used in chapter 5.

Let m: I — M be a vector bundle on an arbitrary manifold M. A symplectic
structure on F' is by definition a smooth section k of F* ® F* such that x, is
a symplectic structure on the fibre F, for any € M. For example an almost
symplectic structure on M is a symplectic structure on the tangent bundle TM.

If k is a symplectic structure on F', then the pair (F,x) is said to be a
symplectic vector bundle on M. Let J be an endomorphism of F. If J? = —Ip,
then it is said to be a complex structure on F' and the pair (F,J) is called a
complex vector bundle. A complex structure J on F' is said to be calibrated by

a symplectic structure & if
H(J'aJ'):H('a'>a ’%(WJ')>0'

In this case the tensor ¢;(+,) := (-, J+) is a J-Hermitian metric on F. Also in
this case the space C(F') of k-calibrated complex structures on F' is non-empty

and contractible.

2.2.3 The Chern connection

Let (M, k) be an almost symplectic manifold and let J be a k-calibrated almost
complex structure on M. The pair (k,J) induces a connection on M, called
the Chern connection, whose covariant derivative characterized by the following

properties
VJ=0, Vg;=0, TYIX,Y)=TY(X,JY),

If further x is a symplectic structure, then the relative Chern connection is

simply given by the formula

~ 1
(2.11) V=V IV,
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where V is the Levi Civita connection associated to the metric g; induced by

(r,J). In this case the torsion of V reduces to

TV:ZNJ.

In the symplectic case we also have that if we denote by V%! the (0,1)-part of
V, then V%! =9 (see e.g. [28]).

2.2.4 First Chern class of a symplectic manifold

Let (M, k) be an almost symplectic manifold. Since 7,.(M) is a contractible
space, then the first Chern class of (M, J) does not depend from the choice of
J € T.(M). Hence we can define the first Chern class ¢, (M, k) € H*(M,C) of
an almost symplectic manifold (M, k) as the first Chern class of (M, J), where
J is arbitrary element of 7, (M).

If J belongs to C. (M), then the Ricci form p of the respective Chern connection
is a closed form. It can be seen that

1

a(M,r) =[5

].

In particular the cohomology class of p does not depend from the choice of

J € Cr(M).

2.3 Kahler and Calabi-Yau manifolds

In this section we recall the definitions of Kahler and Calabi-Yau manifold and
some results which will be useful in the sequel.

2.3.1 Kahler manifolds

Let M be a 2n-dimensional manifold.

Definition 2.16. A Kdihler structure on M is a pair (k,J), where
e £ is a symplectic structure;
e J is a k-calibrated complex structure.

The triple (M, &, J) is said to be a Kdhler manifold.

We have the following
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Proposition 2.17. Let (M, k,J) be an almost Hermitian manifold. The fol-

lowing facts are equivalent
1. VJ =0;

2. the Chern connection of (k,J) coincides with the Levi Civita connection

induced by the metric gj;
3. (M, k,J) is a Kihler manifold.

Example 2.18. The standard Hermitian space (R*", kg, Jo) is a Kihler mani-
fold.
The complex projective space CP" equipped with the standard complex struc-

ture and the Fubini-Study metric is a Kdhler manifold.

Furthermore we have that any complex submanifold of a K&hler manifold is a

Ké&hler manifold too. It follows that any algebraic manifold is a Kéhler manifold.

Now we recall some basic properties of Kahler manifolds:

e The existence of a Kahler structure on a manifold M forces the odd Betti
numbers of M to be even.

o If V denotes the Levi-Civita connection of a Kihler metric on a manifold
M, then around any o € M there exists a local (1,0)-frame {Z1,...,2Z,}
satisfying

ViZ;lo] = V;Zj[o] = ViZ5[o] = 0,

for any 0 < 4,5 < n.

e A Kihler form & can be always write locally as k = i0;0¢ , for some

C* map ¢ called the potential of k.

e In a Kéihler manifold any exact (1,1)-form v = dn can be write as v =

10707, for some smooth map ¢.
e The curvature tensor of a Kdhler metric satisfies
R(JX,JY)=R(X,)Y),

for any pair of vector fields (X,Y).
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2.3.2 Calabi’s conjecture and Calabi-Yau structures

Let (M, J) be a complex manifold admitting Kahler structures and let g be a
Kahler metric on (M, J) with Kéhler form . If p denotes the Ricci form of
g, then it is a closed and satisfies ¢;(M,J) = 5-[p]. Hence it is natural to
ask which (1,1)-forms representing ¢, (M, J) are the Ricci form of some Kéhler

metric on (M, J). In 1954 Eugenio Calabi proposed the following conjecture

Conjecture: Let (M, J) be a compact complex manifold admitting Kdihler struc-
tures and let g be a Kdhler metric on (M, J) with Kdhler form k. Let p' be a
real closed (1,1)-form on M such that c;(M,J) = 5=[p']. Then there exists a
unique (up to homothety) Kihler metric g’ on (M, J) with Kdhler form ' such
that [k] = [x'] € H?*(M,C) and p’ is the Ricci form of g'.

A complete proof of the Calabi’s conjecture was given by Yau in the celebrated
papers [71] and [72].

As a direct consequence of the Calabi’s conjecture we have the following

Corollary 2.19. Let (M, J) be a compact complex manifold admitting Kdihler
structure and with vanishing first Chern class. Then there exists a Ricci-flat
Kahler metric on (M, J).

Furthermore

Lemma 2.20. Let (M, k,J) be a 2n-dimensional Kahler manifold. The follow-

ing facts are equivalent
1. the metric g; is Ricci-flat;
2. the restricted holonomy group of Hol®(V) is contained in SU(n).
Hence we have the following

Corollary 2.21. Let (M,k,J) be a 2n-dimensional simply connected Kdhler

manifold. The following facts are equivalent
1. the metric g; is Ricci-flat;
2. there exists € € A;’}’O]W satisfying Ve = 0.
Now we can recall the definition of Calabi-Yau manifold

Definition 2.22. Let M be a 2n-dimensional manifold. A Calabi-Yau structure
on M is a triple (k, J, &), where

e (k,J) is a Kahler structure on M;



20 Chapter 2. Background

e cc A?’O]W is a nowhere vanishing form satisfying
Ve=0,

where V is the Levi-Civita connection of the metric g associated to (x, J).
The triple (M, k, J,€) is called a Calabi-Yau manifold.

Summarizing we have
e A Calabi-Yau structure induces a Ricci-flat metric.

o If (M, J) is a compact simply connected complex manifold admitting Kih-
ler metric and with vanishing first Chern, then it is always possible to find

a Calabi-Yau structure on M compatible with J.

2.4 G-structures and intrinsic torsion

Let M be a n-dimensional manifold and let £(M) be the GL(n,R)-principal
bundle of the linear frames on M. Let G be a subgroup of GL(n,R). A G-
structure on M is a reduction Q of L(M) with structure group G. Let H be a
connection on M; H is said be compatible with Q if H|g defines a connection on
Q. A linear connection V on T'M is said to be compatible with a G-structure Q
if it is induced by a Q-admissible connection on £(M). We have the following

Theorem 2.23. A connection V on T M is compatible with Q if and only if it
has Holonomy group Hol(V) contained in G.

Now we can recall the definition of integrable G-structure

Definition 2.24. A G-structure Q on M is said to be torsion-free if there exists

a Q-compatible torsion-free connection V on TM.

In order to study the torsion of a G-structure it is useful to introduce the

map (with notation of [43])
o g ® (Rn)* N (R”)* ®A2<R”)*
given by the relation
cv@a®w)=vaAf

(where we identify the Lie algebra g of G with a subspace of R” @ (R™)*) and
the vector spaces

Wy :=R"®@ A*(R™")*, Wy:=Imo, Ws:=W;/Wy, Wy:=kero.
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Let p;: W; — Aut(W;) be the standard representation and let
pi(Q) = Qx W;/G

be the vector bundle associated to W;. If V,V’ are two connections on T M
compatible with Q, then their projections on p3(Q) coincide. So we can define
the intrinsic torsion T'(Q) of a G-structure Q as the projection on p3(Q) of
the torsion of an arbitrary connection on TM compatible with Q. It easy to
see that if T¢(Q) vanishes, then there exists a torsion-free connection V on
TM compatible with Q. Hence the intrinsic torsion of a G-reduction Q is an
obstruction to find torsion-free connections on T'M compatible with Q.

Example 2.25. If (M,J) is an almost complex manifold, then the almost
complex structure J induce a GL(n,C)-reduction Q of L(M). Let g be an
arbitrary J-Hermitian metric on M and let V be the Chern connection of (M, J).
Since V.J = 0, then V is a connection compatible with Q. We can write

S 1
TV = N+ L
It is easy to see that L; € p3(Q). Consequently the intrinsic torsion of Q is
i 1

Example 2.26. Let (M, g, J) be an almost Hermitian manifold. The pair (g, J)
induces a U(n)-reduction Q of L(M). Since

VJ=0, Vg=0,
then V is compatible with Q. In this case we have
TZ(Q) _ T% ,

so that the U(n) reduction is integrable if and only if (g, J) induces a Kéhler
structure on M.

Note that if dk = 0, then the intrinsic torsion of (k, J,e) reduces to %NJ.






Chapter 3

SU(n)-structures

In this chapter, which is the core of the present work, we take in consider-
ation SU(n)-structures. In the first section we recall the definition of gener-
alized Calabi-Yau manifold, given in [28], which is a natural generalization of
the Calabi-Yau structure to the non-holomorphic case. In §3.1.1 we introduce
the definition of k-admissible almost complex structure, which simply refers to
a k-calibrated almost complex structure admitting a generalized Calabi-Yau
structure. Furthermore, in the spirit of Kodaira-Spencer theory of deformations
of complex structures, we study infinitesimal deformations of admissible almost
complex structures computing the tangent space to the Moduli Space. In §3.1.4
we perform our computations in the explicit case of the complex torus showing
that the standard complex structure is not rigid.

In §3.2 we specialize to the 6-dimensional case. After some algebraic preliminar
computations we characterize some special SU(3)-structures in terms of intrinsic
torsion and we write down an explicit formula for the scalar curvature and the
Ricci tensor of an arbitrary SU(3)-manifold. It turns out that the scalar curva-
ture of the metric induced by a 6-dimensional generalized Calabi-Yau structure
is non positive and that the Einstein condition forces a 6-dimensional special

generalized Calabi-Yau structure to be integrable.

3.1 Generalized Calabi-Yau manifolds

Let M be a 2n-dimensional manifold. Since SU(n) is the Lie group of the
Endomorphisms of R™ preserving the standard symplectic structure kg, the

23
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standard complex structure Jy and the complex volume form
co:=dz1 AN+ Ndzy, ,

where 21, ..., 2, are the standard coordinates on C", then a SU(n)-structure on
M is determined by the following data

e an almost symplectic structure;
e a r-calibrated almost complex structure J;

S 0 e _ n

e a nowhere vanishing ¢ € A7"M satisfying € A& = ¢, &5, where ¢, =
2

n“4n
2n(—1)"=

in

In fact, if (k, J,e) are given, then the SU(n)-structure is defined by
Q={ucL(M)|u (ko) =r,uJu"t =J ux(e)=c}.

On other hand, if Q is a SU(n)-structure on M, then it defines a triple (k, J, ¢)
in an obvious way. In the sequel we will refer to a SU(n)-structure on a n-
dimensional manifold as to a triple (k, J, €) satisfying the properties stated above
and we will call SU(n)-manifold the quadruple (M, k, J, ¢).

Since SU(n) C O(n,R), then a SU(n)-structure (k, J, €) induces a Riemann
metric g7 on M. This metric is simply defined by formula (2.9). Let V be
the Levi-Civita connection of g;. Then, according to section 2.4, the SU(n)-

structure (k, J,¢) is integrable if and only if it satisfies
(3.1) V=0, VJ=0, Ve=0,

i.e. if and only if it is a Calabi-Yau structure (or equivalently if and only if the
Holonomy group of g, is included in SU(n)). Furthermore it can be seen that

equations (3.1) are equivalent to
Ak=0, Ae=0.
Moreover we have the following two lemmas.

Lemma 3.1. Let (M,J) be an almost complex manifold. Assume that there

exists a closed nowhere vanishing € € AS’O]W; then J is integrable.

Proof. Let a € A?,’lM. Since ¢ is closed we have
dehNa)=(—1)"eNda = (—=1)"e A (0ja+ dsa),

which forces A to vanish. Consequently J has to be integrable. O



3.1. Generalized Calabi-Yau manifolds 25

Lemma 3.2. A SU(n)-structure (k,J,e) is integrable if and only if the forms

K, € are closed.

Proof. Let gy be the J-Hermitian metric induced by (k, J). The SU(n)-structure
(K, J,€) is integrable if and only if

Vk=0, VJ=0, Ve=0.
Hence, if (k, J, €) is integrable, we immediately get
drk =0, de=0.

Vice versa assume dk = 0, de = 0; then, by lemma 3.1, it follows N; = 0.

Consequently the pair (k, J) defines a Kéhler structure on M and therefore

Finally we observe that the condition e A€ = ¢, fl—", implies Ve = 0. O

3.1.1 Maslov class of Lagrangian submanifolds

Let (M, k) be a symplectic manifold and let p: L < M be a submanifold; if
for any « € L the vector space p,(T,L) is a Lagrangian subspace of (T, M, k),
then L is said to be a Lagrangian submanifold of (M,k). For any x € M
let us denote by A, (M) the set of Lagrangian subspaces of (T, M, k,); then
A(M) = U,en Az(M) is a fibre bundle over M with standard fibre U(n)/O(n).
Note that p: L — M is a Lagrangian submanifold if and only if the Gauss map
G: x+— T,L is a section of p*(A(M)).

Let consider now a symplectic manifold (M, k) with vanishing first Chern
class and fix an almost complex structure J € Ci(M). Then the couple (k,J)
defines a U(n)-structure U(M) on M and, since ¢;(M, k) = 0, there exists a

complex volume form ¢ € AT]L’OM . Such as € induces a smooth map
det: U(M) — S*

defined by the relation
u*(gg) = det(u) .

Consequently we can define the map
¢: A(M) — S',

given by ¢ = det®. We have
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Definition 3.3. Let
1

= omi 2
be the standard volume form of S! and let

ur = (o G)*Y.
Then py, is called the Maslov form of L with respect to (k,J,€) and its class in
H\(L,Z) [y (H'(M, 7))
is said to be the Maslov index of L.

Note that the Maslov index of L does not depend form the choice of (J,¢).
In [28] the authors prove the following

Lemma 3.4. Let V be the Chern connection of (k,J) and assume that there

exists a complex volume form € € A?OZW satisfying
Ve=0.
Then

(32) 60 = — trwy

where wy denotes the connection 1-form of V.
Some computations imply the following (see [28] again)

Proposition 3.5. Assume that Ve =0 and let

n

H == (JV.,Je;)V,

=1
be the complex mean curvature vector of L, where {ei,...,en} is a gy-

orthonormal frame of L and (-)N denotes the normal component with respect

to L. Then the Maslov index of L is represented by L7k, i.e.
pr = [ezr] € H' (L, Z)[/p* (H' (M, Z)).
Finally we have
Theorem 3.6. If Ve =0 and there exists 0 € S* such that
pi(e?e) =0,

then
pr =0.

Proof. See [28]. O
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3.1.2 Generalized Calabi-Yau structures

The previous results on the Maslov class of Lagrangian submanifolds suggests
to consider the following definition

Definition 3.7. [28] A SU(n)-structure (k, J, &) on M is said to be a generalized

Calabi-Yau structure if
e x is a symplectic form;
e J is a k-calibrated almost complex structure;

. . . . 0 . .
e ¢ is a nowhere vanishing form in A" M satisfying

Ve=0.

The quadruple (M, &, J, €) is said to a generalized Calabi-Yau manifold (GCY).

Note that in this case the Chern connection V is a connection compatible with
the SU(n)-reduction Q induced by (k, J, €). Furthermore the torsion of V coin-
cides with the intrinsic torsion of Q and it is determined by the Nijenhuis tensor

of J. Moreover, since Vol = dyand e NE=c, %, we have that
Ve=0 < 9;e=0.
Therefore condition Ve = 0 can be replaced by
0je=0.

Finally we remark that the existence of such a ¢ implies that the Ricci tensor
of V vanishes (see [28], again).

Example 3.8. On C? with coordinates z1, 2o, 23 let us consider the following
product * defined by

—wy

(21,22, 23) * (w1, wa,w3) = (21 + wi, e 29 + wa, € 25 + w3) .

Then (C3, %) is a solvable non-nilpotent Lie group admitting a cocompact lattice
I' (see e.g. [52]).
Let

$1=dz, ¢2=e"dza, ¢3=ce “dz.

Then {¢1, P2, 3} define a complex coframe on M that is holomorphic with

respect to the complex structure induced by C3. Set

¢r:a7'+iar+33 r=1,2,3.
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Then a direct computation gives

dOledOL4:O
dagzal/\ag—a4/\a5
das = —aqg ANag +ag A\ ag

das = a1 N as — ag A ay

dOéﬁifoél/\Oéﬁﬁ’Oég/\Oq.

Let

K=aoa1 Nag+ a3z \as+ ag N\ as

and let J be the almost complex structure defined by relations

J(E1) =8, J(&) =&, J(&)=E&
J(&) ==&, J(&)=-&, J(&)=-&.
Then dk = 0 and J is a k-calibrated non-integrable almost complex structure
on M. Set
e = (aq +icyg) A (ag +ias) A (ag + ias) .

We easily get

5]520

eENE = —irS.

Hence (M, &, J,¢) is a GCY manifold.
In [29] the authors prove that M does not admit any Ké&hler structure and that
k satisfies the HLC condition.

If (M, k, J, €) is a generalized Calabi-Yau manifold, then ¢; (M, k) = 0. A central
problem in the study of this class of manifolds is to establish if the vice versa is

true:

Problem: Does any symplectic manifold (M, r) with ¢;(M,k) = 0 admit a

structure of generalized Calabi-Yau manifold 7
This problem is strictly related with the following

Problem: Given a symplectic manifold (M, k), describe the moduli space of the

k-calibrated complex structures admitting o generalized Calabi- Yau structure.

The last problem will be study in the next section where we will compute the

tangent space to the moduli space of such structures.
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3.1.3 Admissible complex structures

Let (M,k) be a 2n-dimensional symplectic manifold. An almost complex
structure J € C.(M) is said to be k-admissible if there exists € € AT}’OM such
that (M, &, J,€) is a generalized Calabi-Yau manifold.

Now we describe an example of an almost complex structure calibrated
by a symplectic form on a compact nilmanifold which is not admissible.

Example 3.9. Let G be the Lie group

G:

o O =
[=a

Y
t cx,y,teR
1

and let I' C G be the cocompact lattice of the matrices with integral entries.
Then KT= G/T is called the Kodaira- Thurston manifold.
Let M = T3®xKT, where T? is the 3-dimensional standard torus. We can identify
M with a quotient of RS, where the class of an arbitrary point (z1,...,xs) is
given by

[(z1, 22, X3, T4, X5, 26)] =

[(z1 + my, x2 + ma, 3 + M3, 24 + My, x5 + M5, Te + Mmaxs +mg)],
and (my, ma, m3, my, ms, mg) € Z%. The 1-forms
oy =dry, o =dzry, az=dzs,
Qg = dl‘4, a5 = da:5, Qg — dl‘ﬁ — $4d$5,
define a global coframe on M. We have
do; =0, fori=1,...,5,
dog = —ag N as .

The 2-form
K = 012 + 034 + Q56
is a symplectic structure on M. Let J be the complex structure defined on the
dual frame of {aq,...,ag} by the relations
J(X1) = X, J(X3) := Xy, J(X5) := X,
J(X2) = =X1,  J(Xa)=—Xs,  J(Xe) =X,
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Then J is a x-calibrated complex structure on M. Moreover
g:= (a1 +iaa) A (ag +iayg) A (a5 + iag)
is a nowhere vanishing section of A?’,’OM . We easily get
dje = —(a3 —iay) Ne.

In order to prove that there are not nowhere vanishing (3,0)-forms n on M such
that 0;n = 0 we set

1
Zj=5(X;—iJX;), j=1.23

and
(G =aj+iJay, j=1,2,3.

Let n € Ai’OM, then there exists a function f = u + iv € C*° (M, C) such that
e = fn. We have

Om=0,(fe)=0sf Ne+ fOse=(>_Z;(f){;— () Ae.
j=1

Therefore 91 = 0 if and only if the following systems of PDE’s are satisfied:

Oy, — O, =0

a.
Oyt + Opyv =10,

b Ozt — Og,v —u =0
Ozt + Opyv —v =10,
Ozg¥ — Oz U — 405,u = 0

c.

Ozt + Oy + £405,v = 0.

Equations a. imply that f = f(x3, 24, Z5,26). Since f is a function on M, then
it is Z—periodic in the variables x3, x5, xg. Set
627ri(77.313+n5x5+n6x6)

w(ws, T4, 5,26) = Y un(24)

_ 2mi(ngxrsz+nsrs+negx
v(xs3, T4, X5, T6) = E un(z4)e (n3zstnsestnere)

We have

(3.3) Opsu = z ominsupy (x4) €2 (n3TstnsTs+N6Ts)
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The same relations hold for 0z u, 0z, v, Ozsv. Hence, by plugging (3.3) and the

other expressions into equations c., we get

(m5 + x4m6) UN($4) — Mg ’UN(JL‘4) =0

meun (T4) + (ms + zameg) vy (x4) =0,

for any N = (n3,ns,ng) € Z3. If (ms + x4me)? + m2 # 0, then uy(z4) =
vn(z4) = 0. Therefore if f satisfies equations a. and c. then f = f(z3,24). In
particular f must be Z2-periodic. By equations b. we immediately get f = 0.
Hence the almost complex structure J is not admissible.

Moduli space of admissible almost complex structures

Let (M, k) be a symplectic manifold with vanishing first Chern class. Let us
denote by AC,(M) the space of k-admissible complex structures on M. The
Lie group Sp,, (M) of the diffecomorphisms of M preserving x acts on AC, (M)
by
(6,7) = ¢u ;.
Let
M(AC, (M) = AC,(M)/Sp,. (M),

be the relative moduli space.

Definition 3.10. Let J be a x-calibrated almost complex structure on M,
another almost complex structure J € C(M) is said to be close to J if det(I —
JJ) #0.

It is known that the space of k-calibrated almost complex structures close
to a fixed J is parameterized by the symmetric tangent bundle endomorphisms
anticommuting with J and having norm less than 1: namely J is close to J if
and only if there exists a unique L € End(TM) such that

J=RJR', LJi=-JL, ‘L=L, ||L||<1,

where R = I + L and the transpose and the norm of L are taken with respect
to the metric g;.
In order to describe the behavior of the 0 operator for J close to a fixed J

we give the following proposition which is interesting in its own.

Proposition 3.11. Let R =1+ L be an arbitrary isomorphism of TM. Then
(3-4) RAR™'y = dy + [, d)y + o1y

for any differential form o on M of positive degree; where:
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e 71, is the zero order derivation defined on the r-forms by

TL’Y(XI,XQ o aXT‘) ZV(LX17X2a <o 7X71) + W(Xla LX27 s 7Xn)+
—|—’7(X1,X2,7LXH),
o [11,d] =7rd—drp;
e oy is the operator defined on the 1-form as
ora(X,Y) = a(R(NL(X,Y)))

(being Np,(X,Y) := [LX,LY] — L[LX,Y] — L[X,LY] + L2[X,Y]), and it

is extended on the forms of arbitrary degree by the Leibniz rule.
Proof. Let a € A*(M) and X,Y € TM. We have

RIR'a(X,Y) =dR™'a(RX, RY)
=RXa(Y) — RYa(X) + a(R™'[RX, RY])
=Xa(Y) - Ya(X) + o([X,Y]) + LXa(Y) - LY a(X)
+a(R7YRX,RY] - [X,Y])
=do(X,Y)+ LXa(Y) - LY a(X) + a(R7'[RX,RY] — [X,Y]).
Moreover
Tda(X,Y) =da(LX,Y) + da(X,LY)
=LXa(Y)-Ya(LX)+ a([LX,Y]) + Xa(LY) — LY a(X)+
a([X, LY])
and
drpa(X,Y) = Xa(LY) — Yo(LX) + o(L[X,Y]).
Therefore we obtain
(RAR™! — [rp,d))a(X,Y) =da(X,Y)+
o(R7YRX,RY] - [LX,Y] - [X,LY] + L[X,Y] - [X,Y]).
Furthermore
R(R™YRX,RY] - [LX,Y] - [X,LY]+ LIX,Y] - [X,Y]) =
= [RX,RY] - R[LX,Y] — R[X,LY]+ RL[X,Y] — R[X,Y] =
=[LX,LY]+[LX,Y]+ [X,LY]+ [X,Y] - [LX,Y] — L[LX,Y]
—[X,LY] - L[X,LY] + LIX,Y] + L*[X,Y] - [X,Y] =
= NL(X,Y),
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R_l[RX, RY]-[LX,)Y] - [X,LY]+ L[X,Y] - [X,Y]) = R‘l(NL(X,Y))
Hence we have
(RAR™! — [, d))a(X,Y) = da(X,Y) + a(R™H(NL(X,Y)))

which proves the proposition when « is a 1-form. Since the operators on the
two sides of formula (3.4) satisfy Leibnitz rule, the proof is complete. O

Now we are ready to give the following

Proposition 3.12. Let J, J be closed almost complez structures in C,(M) and

let 0, 5(7 be the O-operators with respect to J, J respectively. Then

1. jof =0;f+Losf,

2. ROR™'y =0 7+ [, dJP Ty + Ui’q'ﬂ'y,

where f € C*(M,C), v € A2Y(M), J = RJR™', R = I + L and
[T, d|P9TY (op)P9FL denote the projection of the bracket [1,,d] = Tr.d — drp,

and of the operator o, on the space A@’qH(JV[), respectively.

Proof. 1. Let f € C*°(M,C). We have
RO f = R(df)"" = (Rdf)>' = (df + Ldf)*' =, f + Ldf>' =D, f + Lo, f,
where the subscript 0,1 denotes the projection onto A%’l(ﬂf ).
2. Let v € A%9(M). Then we have

joRfl’y = R(dR*l,Y)p,q/\:l = (RAR™1y)Pat!
= (dfy)p,q—s-l + [TL,d]p’qH’y + sz:,q-s-l,y
=07 + [, APy + oDy

where the subscript pj(;\—fl denotes the projection onto Az}’qH(M). O

Now we compute the (virtual) tangent space to AC,(M) at an arbitrary
point [J].
Let J € C(M) be a k-admissible almost complex structure on M; then there
exists a nowhere vanishing € € AZ’OM such that d;e = 0.
Let J be a r-calibrated almost complex structure close to J, then J=RJR!
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where R=I1+L, LJ+JL =0, L= "L, |L|| <1. The form R '¢ is a nowhere
vanishing form in A?OM . Any other section ¢ which trivializes A?OM is a
multiple of €, namely &’ = fe, with f € C>*(M,C), f(p) # 0 for any p € M.
Let J be k-admissible, then there exists f € C*°(M,C) such that

d;fR e =0,

where f # 0.

By formulae of proposition 3.12 we have
RO;(fR™'e) =R(05f NR ‘e + fO7R'¢)
=R(05f) Ne+ fRO;R e
ZBsf Net LOsT Aot J@ae+ [rud™e + (01)")
=05f Ne+LAsf Ae+ f([rr,d)™ e+ (op)™ e),
ie.
(35)  RIF(fR™'e)=0,f Ae+Ldsf Ae+ flrp, d™'e+ f(or)™'e.

Let us consider a smooth curve of x-admissible almost complex structures J;
close to J, such that Jy = J. For any ¢ there exists L; € End(TM) such that if
Ry =1+ Ly, then J; = Ry JR; Y, for LyJ + JL; =0, Ly = 'Ly, ||Ls]| < 1.

Let € € AT}’OM be a nowhere vanishing 0 ;-closed form. In correspondence of
any t there exists f;: M — C, f; # 0, such that

0, fiR;'e=0.
Hence by formula (3.5) it has to be
(36) gjft NeE+ Ltajft Ne+ ft[TLu d]n"lE + ft(O'Lt)n’lg =0.

We may assume without loss of generality that

fO = 17
Ly=0.

The derivative of (3.6) at t =0 is

(3.7) gtlf.() Ne+ [TL, d]n’lﬁ,

where we set L = L.
Let us compute [7r,d]™c. We have

(TLdE)n’l = (7'LZL]E)7L’1 s

(dTLE)n’l = aJTL€ .
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We may write

(38) (TLZJE)"’l = ML(E) NE
and
(3.9) 0ymre =vL(e) ANe,

for pur,(¢),vr(€) € A5 M. Therefore (3.7) reduces to
(3.10) drfoNe+pr(e) Ne+yn(e) Ae=0,
and it is equivalent to

(3.11) dsfo+pr(e) +(e) = 0.

The following lemma gives the behavior of p, and v, when the complex volume

form e changes.
Lemma 3.13. Let e, & € AV'M be dy-closed. Let {Zy,...,Z,} be a local
(1,0)-frame and {C1,...,Cy} be the dual frame. Then

Lopr(e') = pr(e),

2. v(e") = vwle) +n(f),
where ¢’ = fe and n(f) is the (0,1)-form defined locally as

W ==5 Y ZlNin.
kyr=1
Proof. By definition we get
pr(e) Ne =(rpAze )t = (L Ay fe)™! = f(rpAze)™!
=fur(e) Ae=pur(e)Ne'.

Therefore 1. is proved.

We have
yo(e) Ne' = 0y7re’ = Oy fe

= 6;f NTrEe + fa‘]TLE
=05f N1re+ fyr(e)e
=05f ANtpe+vL(e) A€

Now we express Jyf A Tre in terms of ¢’. With respect to the local (1,0)-frame
{Z1,...,Z,} we have
eE=hG A NG
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and

Orf = Zk( )G
k=1

Now we have

76 = RL(CI) A= NGy -+ R A+ A L(Cn)

=h > ALnG A NGt + (1" LinG A= A}

k,r=1
Therefore N
Orf Nte ==Y Zi(f)LerGr Ne
k,r=1
_ 1 z": Z LGN e
—_? k(f) rk(r/\5~
k,r=1
Hence
vo(e") = v(e) +n(f),

i.e. 2 is proved. O

From now on we assume that M is compact. In this case, since any holomor-
phic map h: M — C is constant (see lemma 2.15), for any J € AC.(M) there
exists a unique € € AT}’OJW (modulo constants) such that dye = 0. Therefore, in
view of the last lemma, the (0, 1)-forms uy, and 77, do not depend on the choice
of the volume form e. Therefore by formula (3.11) a tangent vector to AC,, (M)
at a point J is an endomorphism JL, where L € End(T M) anticommutes with
J and it is such that the (0, 1)-form pr — vz is 0 -exact. Hence

TyAC.(M) = {JL|L € End} (TM) 'L = L, uy, — 7z is 85 — exact} .
We have proved the following

Proposition 3.14. Let J € AC,.(M); then the tangent space to AC,.(M) at J

is given by
TyAC.(M) = {JL|L € End} (TM) 'L = L,y — vz, is 3 — exact} .

In the last part of this section we are going to compute the tangent space to
the Moduli space of the x-admissible almost complex structures.
Recall that by definition

M(AC,(M)) = AC,.(M)/Sp,. (M)
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Let J € AC(M) and let O;(M) be the orbit of J under the action of Sp,(M);
then
TyM(AC,(M)) =Ty AC(M)/T;0,(M) .

Therefore we have to compute 7,0 ;(M). We have
Lemma 3.15. The tangent space to O;(M) at J is given by
T;0;(M)={LxJ | X €TM and Lxr =0},
where L denotes the Lie derivative.
Proof. Let a(t) be a curve in O (M) such that a(0) = I and let A = L a(t);,—o.
Then there exists a smooth curve ¢, €Sp, (M) such that
do=1, oft)=¢.' Jou.

Fix a system of local charts in M {z1,...,22,} and let X be the vector field
associated to the 1-parameter group ¢;. Then we have

IO o = 3 o (@D @) i) (65 o5 e =

=1

= 3 L (O )+ X o () (@) — Ty (X))}

)
iz, O x; Oz Oxy,

i.e.

Api = Z(th oz (X7) - in%(Xh)) + X (Jni) -
2 J

j=1
Therefore
AY) =[X,JY] - J[X,Y] = Lx(Y)

for any Y € T M. Now we observe that, since by hypothesis ¢; €Spx (M), then

d *
0= %(Zst (K/)H:O = ,CXK .

We can summarize the previous facts in the following

Theorem 3.16. Let (M,k) be a compact symplectic manifold of dimension
2n. Let AC..(M) = AC,.(M)/Sp, (M) be the moduli space of k-admissible al-
most complex structures on M. Let J € AC.(M); then the tangent space to
M(AC(M)) at [J] is given by

 {JL|L € EndY"(TM) 'L = L, up, — 1, is 0y — exact)

T 9M(AC.(M)) {LxJ | X €TM and Lxr =0} ’
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where pr, vr are the (0,1)-forms defined by

(rLAze)™' = pp Ne, Oyrre =11 A€,

€ is a nowhere vanishing 0 y-closed form in AZ"OM and L denotes the Lie deriva-

tive.

Remark 3.17. If J is an admissible complex structure, then the form pr van-

ishes, since Ay = 0.

3.1.4 Admissible complex structures on the Torus

In this section we apply our construction to the torus, computing explicitly the
tangent space to M(AC, (T?")).

Let T?" = C"/Z" be the standard 2n-dimensional complex torus and let
{#1,...,2n} be coordinates on C", z, = &4 + iTatn for n=1,..., n.
Then

. n
)
/17,,:§Zdza/\d7a,

a=1

en=dz1 A+ Ndzp

define a Calabi-Yau structure on T?". Let g, := g;, be the Hermitian metric
induced by (Jn, k). The standard complex structure J, is a xp-admissible
complex structure on T2".

Now we want to deform J,, computing the tangent space T, M(AC,, (M)) to
the moduli space M(AC,, (M)). According to the previous section, given a g,-
symmetric L € EndF,O’l)(TM) we have to write down the (0,1)-form 7, defined
by

8](7’Lé‘n) =L /\En .
Let

- [0 R— 9]
L = Z {L;sdzs ® a? + L?SdES ® 87},

s,r=1

where {Ls} are Z?"-periodic functions. Then we get

TreEn = L(dz1) Ao  Adzp + - +dzy A+ - AN L(dzy)

= Z{Lwd?r/\-‘-Adzn}+~-~+Z{(—1)”*1Ln;d?r/\~~-/\dznf1}

r=1 r=1
n

=Y (1) Lgdz Ada A Ndzg A Adzy

r,s=1
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where ~ means that the corresponding term is omitted. Therefore we obtain

aJ(TLE Z a(z Lgdz- Ne,

r,s=1

ie.

-3

r,s=1

Then the tangent space to AC, (T?") at J, is given by
Ty, AC..(T?") = {J,L € End(TT*")| L ='L, J,L = —LJ,, and v, is 0, —exact} .

In order to compute Ty IM(AC.(T?")) we have to compute Lxdy, , for
X €End(TM) such that Lxk, = 0. Let X = ZT 1 Qr 35— 313 be a real vector
field on T?", then

2 da, da, B
8zs) Z ajs oz, %J’L<%>
2n
_Z g(zl; (axr + lJ" )

n

Oa, 8 rn 0 .0
Z : (89@ 8$T+n) az—: (amrm 72873%)

"0 0 .0
Z 0z (iay + a”")(aT;T + Z@xr_m)

S
r=

1
"9 0
-2 Z 92 ’lar + ar+n)£r y

r=1 s

£x(n)(

i.e.

0 g, . _ 0
—2 Z { Za’ + a7+n)d25 875»,‘ + 8735(_1@7' + a7'+7z)dzs ® aizr} .

r,s=1
Therefore L = Lx J, if and only if

0 .
(312) Lrs - 2825 ( ZaT+7L) )

for some periodic functions a, on R?",
Let consider now L € End(7'T?") such that it anticommutes with J,, and let
L#¢ be constant functions.
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By equation (3.12) there exists X € TM such that L = Lx(J,) if and only if

0 0 0
Lrs =2—/(a, —ta = —(a, —ia —1 a, —1ia
s 625( r T+n) 3333( T r+n) axs—i—n( r r+n)
B (8@,, 8a7.+n) _ (aa,ﬂ da, )
= - —1 + .
0xs OTsinp O, O%sin
Therefore
% aa'r'+'rL _ t t
il = constan
Lgit + 783?;" = constant ,
that imply
8%a, O*a, 0
ox2 %,
for any r,s =1,...,n.

It follows that the {a,} are harmonic functions on the standard torus T?"
and then they are constant. Therefore any constant g,-symmetric L €
Endg?zl)(TTQ”) defines a non-trivial element of 7j; 9MM(AC.(M)). Moreover
any constant endomorphisms Lj, Lo of such type give rise to different elements
of Tt5,)9M(AC.(M)). Hence J, is not a rigid structure.

3.2 Six-dimensional generalized Calabi-Yau

structures

Since the integrability of a SU(n)-structure forces the induced metric to be
Ricci-flat, the Ricci tensor of a SU(n)-manifold (M, &, J, ) depends only on the
intrinsic torsion of (k,J, ).

In this section we write down the Ricci tensor and the scalar curvature of a
SU(3)-manifold in terms of torsion forms. Our approach is similar to that one
used by Bryant in [15] to compute the Ricci tensor of a Gg-structure. This
result has been proved with the aid of MAPLE.

As a direct application of our formulae we have that the scalar curvature of
the metric associted to 6-dimensional GCY structure is non-positive and that
the Einstein equation forces a special class of 6-dimensional GCY structures to
be integrable.

3.2.1 Linear symplectic algebra in dimension 6

In this section we recall same basic facts of Linear algebra in diemension 6.
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Let us denote by {ei,...,es} the standard basis of R® and by {e!,...,e5}
the dual one. Let

Ko = e'2 4 €34 4 %

be the standard symplectic structure of RS. The space of 3-forms on RS splits

into the following two Sp(3, R)-irreducible vector spaces

ASR%* = {y € AR5 |y A kg = 0},
AR = {a Akg|a € RO},

The 3-forms lying in AJR®* are called effective 3-forms. Let
g0 = (e! +ie®) A (2 +iet) A (b +ieb),
be the standard complex volume form on C3; then the real part of gg

(= €135 — 146 _ ;245 _ ;236

is an effective 3-form. Let consider the action of the Lie group G =Sp(3,R) xRy
on A3 (R5)* given by
W )a=t@w ") ()

and let O be the orbit of Qo under this action. It is known (see e.g [8, 58]) that
the stabilizer of g is locally isomorphic to SU(3). Consequently O is an open
subspace of AJR®*. If (V,k) is an arbitrary 6-dimensional symplectic vector
space we can fix an isomorphism ¢: V' — RS satisfying ¢* (ko) = & and consider

the spaces
AG(V™) = ¢"(AGR™),  O(V) := ¢"(0).

These spaces do not depend form the choice of the symplectomorphism ¢. The
elements of A}(V*) are called k-effective 3-forms, while the forms lying in O(V)
are called k-positive.

Let (V, k) be a 6-dimensional symplectic vector space. Given an effective
3-form Q let us consider the map F: A'V* — A*V* defined by

Fola) =QAa.
Proposition 3.18. The following facts are equivalent
1. Q is a positive 3-form on V;

2. Fq is an injective map and K is negative definite on the image of Fq.

Proof. See [28]. O
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Let fix now an arbitrary k-positive 3-form © on V. Since the stabilizer of
Q is isomorphic to SU(3), then it determines a r-calibrated almost complex

structure Jg on V. In order to write down an explicit formula for Jgo
Pq: Alv* — Alv*

defined by
1
Pqooa = —5*(9 A (QA)).

We have

Proposition 3.19. The endomorphism Pq satisfies
1. P2 = det(Pq)~5 I,
2. k(Paa, B8) = —k(a, Paf).

Proof. 1. First we observe that Pg is a SU(3)-invariant endomorphism of V*,
since it is built using only 2 and Y. Since SU(3) acts irreducibly on V*, the
real version of Schur’s lemma assures that Po = al + Jb, where J is a complex
structure on V* and a, b are real numbers.

Now we claim that P2 has a negative eigenvalue. From this claim the conclusion
follows. Suppose indeed that there exists v # 0 such that P3v = Av, with A < 0.
Then

2ab Jv = (A2 —a? + b)) v.

If ab # 0, then J would have a real eigenvalue and this is impossible. On the
other hand if b = 0 then P32 = a*I, which is a contradiction with the claim.
Hence Po = bJ. To prove the claim we must use an explicit frame {e!,..., e}
of V* in which x and ) takes the standard form and perform the computation
e.g. of P3el.

2. We have

K3 kK31
k(Paa, B)F =—k(8, Pga)g = §ﬂ/\ﬂ Ak (QANa) =

1 K3 1 K3
- 0, an)s = 2 0, 8005 =
2H(BA ,a A )6 2H(oz/\ , BA )6

K3 K3
=k(Pap, a)g = —k(a, Pgﬁ)g.
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Therefore if  is a k-positive 3-form, then the endomorphism
Jo: V-V
dual to det(Po)~ s Py is a complex structure in C, (V).

Example 3.20. The form Qg in R® induces the standard complex structure

and the standard complex volume form on RS,

An k-positive 3-form Q will be said to be normalized if detPo = 1. Now we

have

Proposition 3.21. Let Q be a normalized k-positive 3-form on (V,k) and let
Jqo be the endomorphism dual to Po. Then the form

e:=Q+1iJafd

is of type (3,0) with respect to Jo and satisfies

4 3
ENE=—1= .
igh
Vice versa let J € C.(V) and let € € Ai’OV such that
4 3
NE=—1= ,
ENE gk,
then Q := Ree is a normalized k-positive 3-form on V such that Pq is the

complex structure dual to J.

It follows that a SU(3)-structure on a 6-dimensional vector space is deter-

mined by the following data
e a symplectic structure x;
e a normalized k-positive 3-form €.

From now on when a SU(3)-structure is given we will denote by (k,€2) the
structure forms, by J the induced complex structure, by g; the induced metric,
by * the Hodge star operator associated to g; and by % be the symplectic star

operator of K. We have the following easy proof

Lemma 3.22. Let (k,Q) be structures forms of a SU(3)-structure on V. Then

2

1. %K =x*K K

N[ =

2. Q/\*Q:%HS;

3. «Q = JQ (and consequently k A JQ = 0).
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Decomposition of the exterior algebra

A SU(3)-structure on a vector space V induces a canonical action on the exterior
algebra AV*. Obviously this action is irreducibly on V* and A°V*, while A2V*
and A3V* decompose as follows:

AV = N3V @ ALV @ ARV*,
ANV = ARV @ ALV @ AV @ ALV,
where we set
e AM3V* =Rk,
o AV = {k(anQ)ac AV} = {6 € AV |J6 = 0},

o A2V ={¢ € A2V* | A Q=0 and k¢ = —¢ Ak}
={pc NV*|Jp=0¢,pAK>=0},

and
o AL V*=RQ,
e A3 VF=RJIQ={ye NV |[7yAc=0,7yAQ=ck? c€R},
o AV ={aAk|ac NV} ={ye AV ky=1},
o ALV ={ye NV |yAk=0,yAQ=0,7yAJQ=0}.
Remark 3.23. Now we emphasize some relations which will be useful:
1. If ¢ € AZV* & A2V, then k¢ = —d A k.
2. fy e A, V* & A3 V* @A}, V* | then %y = —y and y Ak = 0.

3. If v is an arbitrary 1-form, then J(a A Q) = —a A Q, consequently from
the definition of J it follows

JOANK(QNa) =—-2%a.
4, If 3 € A2V* then
BABA*E=2BANBAK

3
= —28A%8= 287,

*(BAB) A K

so that

(3.13) (K> Ax(B A B)) = —2|8.
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We can obtain the decomposition of A*V* using the duality given by the sym-
plectic star operator.
Moreover we define the projections
By NPV — AZV*,
Ey: A3V* — A‘;’QV*
by

(3.14) Ei(a) = %(a—i— Ja) — % £ (@ + Ja) + (a+ Ja) A k) AR) K,

(3.15) Eg(ﬁ):ﬁ—%*(Jﬁ/\m)/\H—i*(ﬁ/\JQ)Q—%*(Q/\ﬁ)JQ.

Note that F> commutes with * since the latter is an automorphism of A3,V*.
The same is true for J (hence also for ).

The e-identities

As done by Bryant in the Ga-case we introduce the following e-notation, which
will be useful in the following. Let (ko, Qo) be the standard SU(3)-structure on

RS: we write
1 . 1 . 1 .
ijk — ijk 7,
QO = éeijke J s *Q) = éeijke J s Ko = 5/@']‘6 J,

We have the following identities, whose proof is straightforward:

€ipghipg = 0,

Kipkpj = —0ij ,

Eijplpr = Eijr y
(316) fijp“]n’ = —€ijr,

€ipg€ipg = —4kij

€ipq€ipq = 40ij = €ipg€jpq »

€iip€rip = —Rik0j1 + Kk0i + Kidjx — Kj0ik

€ijpEkip = —Kikhjl + Kitkjk + 0ik0j1 — 0k0il = €ijk€ipg -
As first application of formulae (3.16) we have the decomposition
(3.17) 50(6) = su(3) @ [R]; @ [R%]2,

of s0(3) in SU(3)-invariant subspaces, where we use the notation

([a1)i; = akij ([v]2)ij = €ijpvp -
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Decomposition of symmetric 2-tensors

The 21-dimensional space of symmetric 2-tensor on a vector space V equipped
by a SU(3)-structure splits into irreducible su(3)-modules as follows:

S2V* =Rgy;® 57 @S2,
where
53 ={h€S?V* : Jh=h, trgh =0},
S?2 ={he€S?V* : Jh=—h}.
The spaces SJQr and S? are isomorphic respectively to A2V* and A$,V*. In the
standard case (RS, kg, Qo) the maps
v S% — AV,
y: 8% — AL V*
given by
t(hije'e?) = hipkpje
'y(hijeiej) = hipgpjke”k

defines su(3)-isomorphisms.

3.2.2 SU(3)-manifolds
First of all we introduce the following

Definition 3.24. Let (M, ) be a 6-dimensional almost symplectic manifold.
A 3-form Q on M is called effective if Q Ak = 0. If further 2, is normalized

and Kk -positive for any x € M, then Q) will be called normalized k-positive.

By proposition 3.21 a SU(3)-structure on a 6-dimensional manifold M is

determined by the choice of:
e an almost symplectic structure x,
e a normalized k-positive 3-form €.

In fact if Q is a normalized k-positive it determines a k-calibrated almost com-
plex structure J on M such that e = Q +14JQ is of type (3,0).
Furthermore the spaces of r-forms on M split in su(3)-modules as follows:
AN’M =AM & AZM & AZM
AN3M = A3 M @ A3, M S AIM & AM
A*M = ATM & AGM & AZM
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where the meaning of symbols is obvious. Consequently the derivatives of the

structure forms decompose as

de =19 Q4+ ag JJQ+ 11 ANk + 13,
(318) dQ:W0H2+7T1AQ—7T2A/€,
dJQ:O'0/£2+O'1/\Q—O'2/\Ii7

where g, ag, To,00 € C®(M,R), v1,m1,01 € A'M, 73,00 € AZM and v3 €
A3, M.

3.2.3 A formula for SU(3)-manifolds

The goal of this section is to prove the following

Lemma 3.25. The formulae

(3.19) #(dr) A Q — %Ff A*dJQ =0,
(3.20) JOUNA (xdJQ) — (xdQ) AQ =0

hold for any SU(3)-structure (k, ).

In order to prove this theorem we need recall some basic facts on Ga-structures.
We consider on R” the 3-form

UoiQo+l€0/\€7

where R” =< ey,...,er > and the standard forms kg, Qo are computed with
respect to {e1,...,es}. The Lie group Gs is by definition the stabilizer of og
under the standard action of GL(7,R) on the vector space ASR™ of 3-forms on
R”. This group preserves the standard metric and the standard orientation of
R7. Since the dimension of G5 is 14, the orbit of oy under the action of GL(7,R)
is an open subspace of A’R"™. Let us denote by A3 R™* this space and we call
its elements definite 3-forms.

Let V be an arbitrary 7-dimensional vector space and ¢: V — R” be an
isomorphism. Let A3 V* = ¢*(A3ZR"™). Since A3ZR"™ consists of a single orbit,
A3 V* does not depend from the choice of ¢ €End(V,R). The forms o € A3 V*
will be called definite 3-forms. If o is an effective 3-form on V, then it induces
a canonical metric g in the following way: one fixes an isomorphism ¢: V' — R7
satisfying ¢*(0¢) = o and takes g = ¢*(go)-

Let consider now a 7-dimensional manifold N. A Go-structure on N is
determined by the choice of a 3-form ¢ on M such that

o, ENSTIM
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for any x € M. A Go-structure induces a Riemannian metric g, on M. Let
us denote by * the Hodge star operator of g,. In [14] R. Bryant proves the
following

Theorem 3.26. A form o defining a Go-structure satisfies the following for-
mula

(3.21) %50 N 45 (d*,0) + (%odo) Ao =0.
Now we can prove lemma 3.25.
Proof. Let (M, k,) be a SU(3)-manifold, N = M x R and

plINHMa
pa: N =R

be the standard projections. Identifying x and 2 with their pull-backs by p;
and dt with its pull-back by p2, we get that the 3-form

c=Q+kAdt,

defines a Gg-structure on N. A computation gives

(3.22) do =dQ+dr N dt,

(3.23) ko0 = (xQ) Ndt + x5 = (JQ A dt + %/@2) )
(3.24) dxgo = (dJQ) AN dt + (dr) A K,

(3.25) *odo = *dQU A dt — xdk .

Furthermore we have
%60 N %o (do) + (xodo) Ao =JQA (xdJQ) A dt + %;«P A x(di A k) A dt
+ %,{2 A *dJQ — (xdQ) A QA dt
—#(dr) NQ —*(dr) ANk A dL.
Therefore equation (3.21) implies
o x(dr) A Q= K% A *dJQ,
o JOUA (%dJQ) + k2 Ax(dr A k) — (xdQ) AQ — #(dr) Ak =0.

Equation (3.19) is proved. In order to show that equation (3.20) holds we need
to prove the following identity

(3.26) %K,Q Ax(dk AK) = *(dR) N K.
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The decomposition of 3-forms on M implies

1 1
(3.27) 552 A *(dk A K) = §/~@2 Ax(v1 AK?) = (k) A*(v1 A K?)
and
(3.28) *(dr) ANk =*(11 AK) A K,

where 1 Ak € AJM = {y € A3M | %~y = v}. Now we apply equation (2.6)
taking ¢ = *(v; Ak?) and v =1 € A°M. We have

(3.29) (k) Ax(v AK?) = K (x(vy AK?)) = «J(x(vy AK?)) = —Juvy AR,
Moreover, since v; € AZM, we have
(3.30) *( AR)A K =—Juvg AK?.

Equation (3.29) together with equation (3.30) imply (3.26), so that equation
(3.20) is proved. O

3.2.4 Torsion forms

Let (M, k,9Q) be a SU(3)-manifold. Then, with notation of section 3.2.2, we

have the following

Proposition 3.27. These relations hold:

—_ 2
1. ’/To—gao,

2
2. gp = _§V07

3. o1 = J7T1 .
Proof. 1. The relation Q A k = 0 implies

0=dQARK)=dANK—QANdK
:7T0;‘£3—7T2/\H—a09/\JQ—Q/\V3
2 3

= (mp — gao)n

and the claim follows.
2. Analogous to 1 starting from x A JQ = 0.
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3. This formula is a consequence of the formula (3.20) together with the defini-

tion of J; in fact we have

0= (*dQ) AQ+ JQA +dJQ
=#(m AQAQ+ TQA (01 AQ)
=—Jk(m ATJUDAQ) — TJ(QAK(o1 A))
= J(=2J%m) — J(2J%01)
= —2J%m + 2%o07.

O

Definition 3.28. The forms {mg, 0g, 71,1, , 02,3} are called the torsion forms
of the SU(3)-structure.

We immediately get that a SU(3)-structure is integrable if and only if all of the
torsion forms vanish identically.

Now we characterizes two special SU(3)-structures in terms of torsion forms

o Half-flat structures: We recall that a SU(3)-structure (x,2) is said to
be half-flat if the pair (k, Q) satisfies

de Nk =0, dQ=0.

This definition has been introduced by Chiossi-Salamon in [18]. A hyper-
surface of a Ge-manifold inherits a Half-flat structure in a natural way.
Furthermore has been proved that any analytic half-flat manifold can be
realized has a hypersurface of a Go-manifold (but Bryant showed that this
fact is not always true if the Half-flat manifold is not analytic!).

Let (k,) be a half-flat structure. By the hypothesis dQ2 = 0 we get
m=0, i=0,1,2,

so that
3
d/@z—iaoﬁ/\ﬁ—&—yl/\n—&—ug.

On other hand the hypothesis dk A k = 0 implies
0=drk Ak =11 A K>

which forces v1 to vanish.
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e Six-dimensional GCY structures: Let (M, &, J, ¢) be a 6-dimensional

GCY manifold. The equation dx = 0 implies
7'1'0:0'0:07 1/1:0, VgZO.
Therefore dS2 and dJS) reduce to

dQY=m ANQ—7m3 A K,
dIQ=Jm ANQ —09 A K.

Since the complex volume form ¢ associated to (x,) is of type (3,0), 0.je
is the (3, 1)-part (hence the J anti-invariant part) of de. Thus we have

— 1
dje = §(d<€ — Jde)
and
— 1
dje :§(d5 — Jdg)
1
zi(dQ +idJQ — JdQ —iJdJQ)
1
:§{dQ — JdQ +i(dJQ — JdJIN)}
1
25{71'1 AQ — J(7T1 N Q) +i(J7T1 AQ— J(Jﬂ'l N Q))}
=T /\Q+ZJ771/\Q

Hence, by proposition 3.18, equation d;¢ = 0 is equivalent to 7 = 0.
It follows that 6-dimensional GCY structures can be defined as SU(3)-
structures satisfying

’/TOZO'():O, 1/1:7'('1:0, 1/3:0.

3.2.5 The Ricci tensor of a SU(3)-manifold in terms of
torsion forms

Fix a SU(3)-reduction Q of the linear frame bundle £(M), given by the pair
(k,). Then Q is a subbundle of the principal SO(6)-bundle p: F — M of the
normal frames of the metric g associated to the pair (k,). Consider on the
bundle F the tautological R-valued 1-form w defined by wlu](v) = u(p.[u]v)
for every u € F and v € T,F. On F we have also the Levi-Civita connection
1-form 1) taking values in s0(6). Using the canonical basis {e1,...,es} of RS we

will regard w as a vector of R-valued 1-forms on F

w=wie] + -+ weeg
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and v as a skew-symmetric matrix of 1-forms, ie. ¥ = (1;;). With these

notations the first structure equation relating w and
(3.31) dw=—-1Y ANw,

becomes dw; = —;; A w;. Note that equation (3.31) simply means that ¢ is
torsion-free.

The curvature of ¢ is by definition the so(6)-valued 2-form ¥ = dy + ¢ A ). In
index notation

1
U5 = dipij + i N by = §Rim Wi A wp .

We consider the pull-backs of ¢ and w to Q and denote them by the same
symbols for the sake of brevity. The intrinsic torsion of the SU(3)-structure
measures the failing of ¢ to take values in su(3). More precisely, according to
the splitting s0(6) = su(3) @ [R]; ® [R%]2, we decompose v as follows

Y =0+ [u +[7]2.

Thus 0 is a connection 1-form on Q which in general is not torsion-free.
As before we shall regard 7 as a vector of 1-forms 7 = 7;e;. Furthermore we can

write
(3.32) 71 =Tjjw; and p=Muw;,
where T;; and M; are smooth functions. The fact that v is torsion-free implies
(3.33) dw, = —0;j Nwj — €p T Awj — Kij LA W; .
We have the following
Lemma 3.29. These identities hold:
LON[u+[uhAO=0;
2. [rla Aply = [ph A7z =0 ;
. ON[tla+[rlaANO=[0AT]s ;

4. [l Aph + i ATl =0

Proof. The proof is a straightforward application of e-identities. To see how

things work, we prove the first one. Since 6 takes values in su(3) we have

€pkl Okt = €xip O = 0.
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So
€ijpErip Oxt = 0
for every i,7 = 1,...,6. Then applying the e-identities we get
0 =€ijp€rip O

=(—Kir0j1 + Kjr0i + Kbk — Kjibik) Ol

=2Kjk Oki — 2Kik Okj
ie.

Kk Ok = Kik Oij -
Consequently
Ot N Ky b+ R p Ay =0,
ie.
ON[p + [ AO=0.
O

Now we can introduce the following quantities

2
(334) D9:d9+ 9/\0+ [7]2/\[’7’]2—5[51']'7}/\7"7‘]1,
(3.35) Dr=dr+ O0ANT—-2[p)1 AT,
2
(336) Duzdﬂ+§l€ijTi/\Tj.

With this definition D@ takes values in su(3). Moreover by lemma 3.29 we get

U =d(6 + [r]2 + [u]1) + (0 + [7]2 + [ul1) A (0 + [7]2 + [1]1)

=D6 + [D1]s + [Dyl; .

Using the w-frame we shall write

1
(3.37) Db;; = §Sijkl Wk AW,
1
(3.38) Dr; = §Tijk wj A\ w
1
(3.39) Dup = §Nkl wip ANwp .

By the definition of the curvature form we have
Rijri = Sijri + €ipTprt + Kij Nk -
In this notation the first Bianchi identity

UAw=0,
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has the indicial expression
Siitt + Siik + Sikii+
(3.40) Y ” o
+ €ijpTprt + €ipTpjn + €ikpTpt; + KijNiw + KaNjx + ki Niy = 0

Let Ric;; = Rikr; and s = Ricgy, be respectively the Ricci tensor and the scalar

curvature of (M, g). Starting from equation (3.40) we can derive the following
Theorem 3.30. In the previous notation we have

Rici; = 2€ipgTpqj — 3KipNp;

5 = 2€rpqTpgk — 3K1pNpk -
Denote by m the projection 7: @ — M. In terms of the w-frame the pull-backs

of the structure forms take their standard expression, i.e.

N 1
() = éeijkwi ANwj A wy,

1
W*(JQ) = ggijkwi ANwj N\ wg,

(k) = 2 Fij Wi Awj.

Taking into account formula (3.33) and e-identities, we immediately get

Proposition 3.31. The derivatives of the structure forms are

1
dr*(Q) = 5(—/£ja/<:kb + KjpKka) To AW Awj Awg —3p AT (JQ),

dn*(JQ) = (15 Awj) AT"(K) = 3p AT (),
dr* (k) = € 1 Awy Awj .

A direct computation gives the following formulae
2

7 (mo) = ng

7 (m1) = €155 wi + 3K M, wi

T (m2) = %Esraeaistr wi Aw; — 2kiaTaj wi Awj + %Tii (k)
" (00) = 3 T,

7 (02) = §emaeijrs wi Awj — 2T 5w; A wj + ;"ijTij (k).

() = €T wi

_ 1
T (v3) = €ijTar wi Awj A wy + éf‘ﬁabTabQ]‘k wi Awj A w

_ 1
— éTaaGi]‘k wi Nwj ANwy, — §Tabeabi/@jk wi Nwj Awy, .
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Warning: From now on we identify the torsion forms with their pull-backs to
the principal SU(3)-bundle Q.

Combining the previous formulae and (3.33) we are able to prove the
following

Theorem 3.32. In terms of torsion forms the scalar curvature of the metric
induced by the SU(3)-structure is expressed as

15 15 1
s :37% + 308 +2d* 7y + 2d* vy — |1y |2 — §|02|2
(3.41)

1 1
= 5lmal® = Slwsl* +4(m1, ).

Proof. First of all we introduce the 1-forms S;;, wi, Vik wy, defined by the rela-
tions

dTij = Tik Oy + Thj Ori + Sijr wi
dM; = My, Oxi + Vi wy -

Using equations (3.35) and (3.36) and the definition of T;;, M; given in (3.32)

we have
D’Ti :dTw /\Wj +E] de — 2I€Z'j/J/\’Tj
:(Siba - Equaejbq - T%j/{ija - 2/€ijMaij) Wq N\ Wp ,
and

2
D,u :dMT N wy + Mrdw,« + g/ﬂ'j T N\ Tj

2
:(%a - Mrerquqa — Mk Mg + gﬁijT’iaT‘jb) Wa N\ Wp .
Therefore, taking into account (3.38), (3.39), we obtain

Tiab = 2(Siva — TijTqa€jvg — TijrjsMa — 2645 My Thy)

2
Ngp = 2(‘/1711 - Mrfrquqa — M,k Mg + gﬁij,Tiaij) .

It follows that

€ipgTpaj = 2(€ipgSpjq — €ipg€rjs TprTsq — €ipgTprtiri My + 2810 Trj My)

2
KipNpj = 2(KipVip — Kip€rjqLypMy — Kiphirj My My + g’iip“ququrj)



56 Chapter 3. SU(n)-structures

and using the e-identities
€ipgTpgi =2(—€ipgSipq — €ipg€ris TprTsq — EprqTpr My + 2€47iTri My)

=2(—€ipgSipq — €ipq€ris TprTsq + EprgTprMy)
2
Iiipri :2(’%;0‘/2';0 — HiperiqquMr — /‘Jz’p/‘/v'riMrMp + g’{ip’iququri)

2
=2(kipVip + ErgpTyp M, + g“ip“ququri + X ME) .
Then by theorem 3.30 we get

8 =4(—€ipqSipg — €ipg€risTprTsq + EprqTprMy)

2
— 6(kipVip + ErgpLop My + g“ipﬁqTquTTi + % Mi2)
= — 4eipqSipq — 467;pq6»,sisTprTSq - 2Epqupqu
— 6KipVip — dkipkigrTypTri — 65; M7 .

Furthermore a straightforward computation gives the following formulae

4
7T(2) = 51_;11}] )
Ug = §"fijﬁfs7'Tistra
2 4 2
‘772‘ = _7TiiTjj + 4117,] - 2esra€aistrTij + 4Hir’€jsTistr7

3

4
‘0—2‘2 — *2€sra€aijTST’ﬂj - g’iij/fabTijTab — 41—‘”7_3Z —+ 4E,LJT12] ,

1% = €inerarTijTap »

lvs|? = 2T12J + 275515 — 2650 Kis Tij Trs — 2640655 T Trs

d*m = —€sra€aijTsrTij + 4€ij5 i My, — €sraSsra — 3k Vij — 35; M7,
d*Vl = _esraeaistrT%j + EijkT’ij]\4k: - 6sraSsra ’

(m1,v1) = €avkerijTavTij — 3€ijkTij My .

Therefore we get

15 15 . . 1 1 1
?ﬂ'g + ?O'g +2d 1 +2d vy — ‘1/1|2 - §|02|2 — §|7T2|2 - §|V3|2 +4<7T1,U1> =

=AT;;Tj; + 4AKijksr TijTsr — 5Xi5Tij + €sra€aigLsr Tij + Tij Ty — 2€i5xTi5 My,
— 6k Vij — 65 M7 + (—Kiatkijo + Kivtija) TijToa — 4€ijkSijn =
=4€ipqSipq — A€ipgrisTprTsq — 2prqTpr My — 6kipVip — AkiphiqrTypTri — 653 M7,
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ie.

15 15 1 1 1
S = ?Trg —+ ?O'g +2d*7'l'1 —|—2d*1/1 — |I/1|2 — §|O'2|2 — 5‘7‘(2|2 — §‘Z/3|2 —|—4<7T17V1>
and the theorem is proved. O

Here we collect some consequences of formula (3.41) when the SU(3)-structure
has special features.

1. Half-flat structures. The condition dx A k = 0 reads in terms of torsion
forms as v1 = 0. Thus in the half-flat case the scalar curvature takes the
form

15, 1, 5, 1
s =505 = 5lo2l” = lwsl”
2. GCY structures. The condition 9 e = 0 reads as m; = 0, so that, taking

into account dx = 0,

1 1
5= *5\02\2 - §|7T2|2-

Corollary 3.33. The scalar curvature of a 6-dimensional generalized Calabi-
You manifold is everywhere non-positive and it vanishes identically if and only

if the SU(3)-structure has no torsion.

Now we write the Ricci curvature Ric;; = 2€;p4Tpq; — 3KipNp; in terms of the

torsion forms using the operators ¢ and « defined in section 3.2.1.

Theorem 3.34. If M is endowed with the SU(3)-structure (k, Q) with torsion
forms given by (3.18) , then the traceless part of the Ricci tensor of the induced
metric 18

(3.42) Rico = ¢ H(E1(¢1)) + 77 (Ea2(2))
where
1 1
QZ51 :—*(Vl/\JVg)+Z *(7‘(2 /\7'1'2)'1‘1 *(02/\02)+
1 1 1 1
+dJ7Tl + *d*l/;; + *d*(l/l AN H) — —d=x* (71'() Q) + *d*(O'()Q)7
2 2 4 4
¢2 = — 20’01/3 —40’2 /\V1 — 2Jd71'2 — 2*d0’2 —4dx* (1/1 /\*Q)+

—2dx (Jmy AQ) +2mg Jvg —2Jdx (my AQ) — 4w A JJm+

1
+4vy Ax(Jmp AQ) =2 Ty Ax(p AQ) — §Q(V3,l/3),
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Ey and Ey are the maps defined by equations (3.14) and (3.15) and Q is the
bilinear form Q: A3, M x A3, M — A3M defined by

Q(a7ﬁ) = Gijlbejbei (6% /\ [/elﬁ7
where {e1,...,eq} is a unitary frame and v denotes the contraction of forms.

Remark 3.35. The formulae for the scalar curvature and for the traceless part
of the Ricci tensor are justified by representation theory. Both s and Ricy must
be the linear combination of linear terms in V5(su(3)) and quadratic terms in
Vi1(su(3)). For the scalar curvature the terms must take values in the Vj ¢ copies
of V4 and Va, while for the Ricci curvature the terms must take values in A2
and A3, copies of V; and Va. (For S3 = A2 & A3,). So we have to consider:

S2(V1(5u(3))) =11Vo0®13V1,00 17 V11 ©12V5 0D
O3V30®@4Vo2®9Vo 1 ®2V3 .

The 11 copies of Vp ¢ are generated by
[ ] ’/Tg, 03, 7000,
o |mi|?, [11]?, < m1,v1 > and another bilinear expression in 71, v; which
does not appear in formula (3.41);
o |02|%, |m2|?, and a bilinear expression in 7o, 02 which does not appear;
[} |l/3|2.
The 17 copies of Vi1 are generated by the projections of
® T72, 02, 0002, 0072;
e 4 bilinear expressions in m; and v; which does not appear in formula (3.42);
e xm A Jvs and 3 more bilinear expressions in 7 and vs;
o x(my ATa), #(03 A 02) and 2 more bilinear expressions in 7o and os;
e 3 bilinear form in vs3.
The 12 copies of Vs ¢ are generated by the projections of
® Tol3, OoV3;

o vy Ax(Jm AQ), Juy Ax(v1 AQ) and other 2 bilinear expressions in 7y, vy;
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® 09 ANV, o Ny, 09 A1, g N T1;
e two bilinear expressions in g2, v3 and ms, vs;

o Q(v3,v3).

An analogous discussion can be done for the second order expressions after
considering the splitting:

Va(su(3)) =3 Vo0 @4 Vi @5Vi1 ©3Va 1 ©4Vao@ V3o ® Voo

3.2.6 Ricci tensor of generalized Calabi-Yau manifolds

Suppose now that the pair (k,{2) gives a generalized Calabi-Yau structure on
M. In this case all the torsion is encoded by 7y and os; in fact d2 and dJQ2
reduce to

dQ=—-m ANk, dJQ=—09NkK.

Therefore we get

OZdQQZ—dﬂ'QAK,
0=d%?JQ = —dos ANk,

i.e. dmy and doy are effective 3-forms. Since my € AgM

0=d(ma AQ) =dra AQ+ma AdQ
=dmy ANQ —ma ATa A K
=dmg N Q + mo N\ *Ty
=d7T2/\Q—|—|7T2|2*1,

ie.
dme ANQ = —|772|2 *1.

Analogously we get
dog NJQ = —|og)? % 1.

Now we can express the Ricci tensor of a generalized Calabi-Yau manifold in

terms of my and o9. In this case equation (3.42) reduces to
1
Ricy = 1 THEL (x(mo ATy + 02 A 09))) — 2 H(Eo(Jdmy + Kdos)) .
Since doy is effective, %dos = —dos. Thus

1
Ricy = 1 LHEL (x(mo ATy + 02 A 09))) — 2 H(Eo(Jdmy — do)) .
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By the definitions of E; and Es, using the J-invariance of 7 and formula (3.13),

we have
1
El(*(’]'('z A\ 71'2)) = *(7’1’2 A\ 7T2) — § * ((7’(’2 N\ T + *(71'2 A\ 7T2) AN /i) AN Ii)li
1 1
= x(my A ma) + §\7T2|2/<; —g* (x(my A ma) A KK
L 9 2
= *(mz Am2) + glmal*k + G|k
1
= *(71'2 A\ 7T‘2) + §‘7T2|2l€
and
1 1 1
Eg(d/ﬂ'g):dﬂg—i *(Jdﬂ'g/\ﬁ)/\ﬁ—Z*(dﬂ'g/\JQ)Q-FZ*(dﬂ'g/\Q)JQ
1 1
=dmy — 5 (dmy A JQ) Q — Z|7r2|2JQ
1 1
:dﬂ'g—l—i *(772/\02/\/@)(2—1|7r2|2JQ,
where in the last step we have used
0=d(m AJQ) =dmo ANJQ+ T ANdJQ =dma AN JQ — 13 ANoa A K.
In the same way we get
Lo
Ei(x(oa AN og)) = x(02 A og) + 5\02\ K

and
1 1
Eg(dO’Q) = dO’Q + 1 * (71'2 /\0'2 AI{) JQ+ Z|0’2|QQ.

Therefore, taking into account that Fo; commutes with J, the traceless Ricci

tensor of a special generalized Calabi-Yau manifold is given by

1 1
Ricy =— fl(*(og A oo+ o A o) + 7(\02\2 + |7r2|2) K)
4 3
(3.43) 1
- 2771(Jd7r2 —dog + Z(|7r2|2 - \02\2) Q).

Formula (3.43) implies that the metric induced by a GCY structure (x,€) is
Einstein (i.e. Ricg = 0) if and only if the torsion forms 7o, oo satisfies

09 N\ 0y + Ta A o + %(|ﬂ'2\2 +loo| )k AK=0
(3.44)
Jdﬂ'g — dO’Q + i(|71'2|2 — |O'2‘2)Q =0.

We have the following
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Corollary 3.36. Let (M,k,8) be a GCY manifold and assume 3 = 0 (or
oo = 0), then (M, k,Q) is Einstein if and only if it is a genuine Calabi-Yau

manifold.

The GCY manifolds having mo = 0 are called Special generalized Calabi-Yau
manifold and will be to taken into account in the next chapter.
The proof of Corollary 3.36 relies on the following lemma which is interesting

in its own.

Lemma 3.37. Let (V, k,Q) be a 6-dimensional symplectic vector space endowed
with a normalized k-positive 3-form. Let o € A2V* be a non-zero form, then

a A« does no belong to the 1-dimensional SU(3)-module generated by k A k.

Proof. The key observation here is that A2V* is isomorphic as a SU(3)-
representation to the adjoint representation Vi 1. Since every element in su(3)
is Ad(SU(3))-conjugated to an element of a fixed Cartan subalgebra of su(3),
there exists a SU(3)-basis {e!,...,e%} of V* such that

o = /\1 612 +/\2 612 — ()\1 +)\2) 6567

for some A1, A2 € R. Now suppose that a A a = ¢k A k for some g € R. Setting

to zero the three components of & A @ — gk A k gives the equations

>\%+)\1)\2+q:07
M+ A +qg=0,
AMA2—q=0,

which readily imply ¢ = 0. O

Proof of corollary 3.36. By lemma 3.37, since mo = 0, the first equation of (3.44)
can be satisfied if and only if |02|? = 0. Therefore the Einstein condition forces
(k, ) to be a Calabi-Yau structure on M.

The same argument can be used starting with oo = 0 instead of 73 =0 O

Remark 3.38. In [31] it has been proven (see theorem 1) that a compact
Einstein almost K&hler manifold with vanishing first Chern class is actually a
Kahler-Einstein manifold. Note that our result holds with no the compactness

assumption.






Chapter 4

Special generalized
Calabi-Yau manifolds and
deformations of Special

Lagrangian submanifolds

Let (M,g) be a Riemannian manifold. An oriented p-plane & on M is a p-
dimensional vector subspace £ of some tangent space T, M, equipped with an
orientation. If £ is an oriented p-plane on M, then the orientation of £ and the
restriction of the metric g to it induce a natural volume form Vol(§) on £. Let
¢ be a p-form on M, then

(15‘5 =a Vol(f)

for some a € R. If @ < 1, then we say that ¢ <Vol(§). The following definition

was introduced by Harvey and Lawson in [37]

Definition 4.1. A p-form ¢ on M is said to be a calibration if
1. do =0,
2. ¢ <Vol(§) for any oriented p-plane £ on M.

The triple (M, g,¢) is sometimes called a calibrated manifold. Let i: L —
(M, g,¢) be an oriented submanifold, then the pull-back of the metric g to L
induces a volume form Vol(L) on L.

63
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Definition 4.2. If
i*(¢) = Vol(L)

then i: L — M is said to be a calibrated submanifold of (M, g, ¢).
We have the following

Theorem 4.3 (Harvey-Lawson). Let (M, g, ®) be a calibrated manifold and let
i: N — M be a compact calibrated submanifold. Then

V(L) < V(L)),

for any compact submanifold i': L' — M homologous to L, where V(L) demotes
the volume of L.

Let (M, k, J,€) be a Calabi-Yau manifold, then the form fee defines a calibra-
tion on (M, gs). An oriented submanifold p: L < M calibrated by Ree¢ is said
to be special Lagrangian. We have the following easy proof

Lemma 4.4. Let (M, k,J,e) be a Calabi-Yau manifold and let p: L — M be a
submanifold. The following facts are equivalent

1. there exists an orientation on L making it calibrated by Ree;
2. p*(k) =0 and p*(Sme) = 0.

In [49] McLean proves that the moduli space (L) of special Lagrangian
submanifolds near a fixed compact one L is a smooth manifold of dimension
equal to the first Betti number of L. Furthermore Hitchin in [41] proves that
(L) has a natural embeddings in (H'(L,R) x H" 1(L,R), k1) as Lagrangian
submanifold, where r;, denotes the canonic (linear) symplectic structure on
HY(L,R) x H* (L, R).

In [45] Peng Lu studies the following problem:

Let (M, k¢, Ji,e), t € (—6,0), be a smooth family of Calabi-Yau manifolds and
let p: L — M be a compact special Lagrangion submanifold of (M, ko, Jo,€0)-
Is possible to find a family p,: L — M of special Lagrangian submanifolds of
(M, kt, Ji,et) such that po =p ?

Note that in general this problem can not be solved. Indeed, if p,: L —
(M, Ky, Jp, Smey) is a smooth family of special Lagrangian submanifolds, then

the cohomology classes

po(ke)] € H*(L,R),  [p5(Smey)] € H*(L,R)
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vanishes, since p§(k:) is homotopic to p;(k:) and p§(Sme;) is homotopic
Pi(Smey).
We have the following

Theorem 4.5 ([45, 56]). The Lu Peng problem can be solved if and only if the
special Lagrangian submanifold p: L — M satisfies, for t sufficiently small, the
equations

p*(ke) =0, p*(Sme)=0.

In next the section we study the Lu Peng problem in a special class of SU(3)-
manifolds.

4.1 Special Generalized Calabi-Yau manifolds

Lemma 4.4 allows to generalize the definition of special Lagrangian submanifold

to a non-integrable SU(n)-manifold.

Definition 4.6. Let (M, k, J, ) be a SU(n)-manifold and let p: L — M be a
submanifold. If
p*(k) =0, p*"(Sme)=0,

then L is said to be a special Lagrangian submanifold.

First of all we note that theorem 3.6 implies that if (M, k, J, €) is a GCY manifold
and p: L — M is a special Lagrangian submanifold, then the Maslov class of L
vanishes. Unfortunately in the GCY case the real part of the complex volume
form ¢ is not necessary closed. Consequently Ree does not define a calibration
on M and special Lagrangian submanifolds are not calibrated submanifolds.
This fact suggest to consider a new class of SU(n)-structures constituted by the
GCY structures (k, J, €) satisfying

(4.1) dRee =0.

It turns out that, if n > 3 and (M, &, J,¢) is a 2n-dimensional GCY manifold
with complex volume form satisfying equation (4.1), then it is a genuine Calabi-
Yau manifold (see [28]). However in dimension 6 this is not still true and there
are a lot of examples of GCY structures satisfying equation (4.1) and defined on
manifolds which do not admit Kéhler structures (see [28], [29] and the examples
described in the next section). Moreover it easy to check that if (M, &, J,¢) is a
6-dimensional symplectic SU(3)-manifold endowed with a complex volume form
satisfying equation (4.1), then it is in particular a GCY manifold. This justifies
the following
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Definition 4.7. A special generalized Calabi-Yau manifold, or shortly a SGCY
manifold, is a quadruple (M, s, J,e) where

e (M, k) is a 6-dimensional symplectic manifold;
e J is a k-calibrated almost complex structure on M;

e c€ A?’,’OM satisfies

ENE = —i%k3

dRee =0.

Qi

We immediately get that a submanifold L of a SGCY manifold is special La-
grangian if and only if admits an orientation making it calibrated by Ree.

4.1.1 Examples

In this section we give some examples of SGCY manifolds and special Lagrangian
submanifolds.

Example 4.8. Let G be the Lie group of matrices of the form

Q
~
o
8
Q
~
s}

0 wn
0 et 0 zet 0 o
Ao 0 0 € 0 0 w
0 0 0 et 0 ws
0 0 0 0 1 ¢
0 0 0 0 0 1
Let
(4.2) o =dt, ag=dz, ag=e ‘dy; —ze ‘dw;
‘ ay = etdyg — zeldwy, a5 = e tdwi, ag = e'dws.
Then {a1,...,as} is a basis of left-invariant 1-forms. By (4.2) we easily get
dOél = da2 =0
dOég = —(11/\0&3 —052/\045
(43) doy = a1 Nayg — as N ag
da5 = —a] Nas
daﬁ =aq A Qg .
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Let {&1,...&} be the dual frame of {1, ...,ag}; we have

0 0 0 0
==, L=—, G=c'"—, &=e"—
ot Oz oy Y2
(4.4)
3 =€ti+l‘€ti £ :e—ti_t'_xe—ti
> Oown 8y1 » 56 Owa ay2 ’

From (4.4) we obtain

[€1,&3] = &3, [€1,84] = =&y 5 [61,85] = &5

(4.5)
[€1,86] = =86, [£2.65] = &3, [€2,86] = &

and the other brackets are zero. Therefore G is a non-nilpotent solvable Lie
group. By [33] G has a cocompact lattice I'. Hence

M =G/T

is a compact solvmanifold of dimension six. Let us denote with 7: R® — M the

natural projection. Define
R = Q1 /\OL2+OL3AO{6+OA4/\O[5

and

J(&1)=8&, J(&)=8&, J() =&
J(&2) = =&, J(6) = —&, J(&5) = —E6-

Then « is a symplectic form on M and J is a k-calibrated almost complex
structure on M. Set

e =1i(o1 +iag) A (a3 +iag) A (e +ias) ;

a direct computation shows that (k,J ) is a special generalized Calabi-Yau
structure on M. Let consider now the lattice ¥ C R* given by

— 1 0 0
1
A= SpanZ ) K ) 0 ) 0 )
0 0 — 1
0 0 1 W

where ;1 = ¥5=1_ Let T* be the torus

T = R*/A.
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For any p, q € Zlet p(p, q) be the transformation of T* represented by the matrix

eP? 0 qeP? 0
0 e 0 ge P

where A = log 3+T\/5 Then

A(pa Q)([y1;y2721522]? (t,l’)) = (p(pa Q)[y17y2721’22]7 (t +p,T+ q))

is a transformation of T4 x R? for any p,q € Z. Let © be the group of such
transformations. The manifold M can be identified with

T4 x R2

(4.6) 5

(see [33]).

Let consider now the involutive distribution D generated by {&2,&s,&4} and let
p: L — M be the leaf through 7(0).

By (4.4) and the identification (4.6) we get

L) ={x = (21,...,26) €R® | 1 = a5 = 76 = 0};
hence L is a compact submanifold of M. By a direct computation one can check
that
p'(k) =0,
p*(Sme) =0.
Hence L is a special Lagrangian submanifold.
Example 4.9. Let (z1,...,2¢) be coordinates on RS and let
k3 = dxy ANdry + daxs Adrs + dxs A drg .
Let a = a(z1), b = b(x2), ¢ = ¢(x3) be three smooth functions such that
A1 i=b(xg) —e(xs), Ag:=—a(zy) +c(x3), A3 =a(z1)— b(xs)

are ZS-periodic. Let us consider the xs-calibrated complex structure on RS
defined by

lé) _ —X.__ 0
']( ox ) = ¢ Ox34r
Jé) _ A0
(8.'£3+T ) = —€ ox,
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r =1,2,3. Define a (3,0)-form on R® by
e =i(dxy + ie’\ldm) A (dzo + ie’\2dx5) A (dzg + e’ dxg) .

Then we get

Since A1, A2, A3 are Z%-periodic, (k3,J,¢) defines a special generalized Calabi-
Yau structure on the torus T® = RS/ZS. Now consider the three-torus L =

7(X), where 7: RS — T® is the natural projection and
XZ{(J}l,...,.Z‘G)ERG |$1=I2:$3:0}.
It is immediate to check that L is a special Lagrangian submanifold of TS.

Remark 4.10. The previous example shows that, if (M, ky, Ji,e¢) is a fam-
ily of special generalized Calabi-Yau manifolds with holomorphic initial datum
(M, ko, Jo, €0), then (M, k¢, Jy, €¢) is not necessary holomorphic Calabi-Yau, for
small ¢. Indeed, with the notation used above, define

J(ai‘) — e—t&%ﬂ
(8x§+7~) = —e aiT )
for r=1,2,3,
Ky = dxy ANdry + dxo N drs 4+ dxs A dxg
and

ey = i(dxy + iet)‘ldm) A (dzs + ieth? dxs) A (dxs + ieths dzg) .

Then (TS, ky, Jy, €¢) is a special generalized Calabi-Yau manifold for any ¢ € R,
such that (T6, Ko, Jo, €0) is the standard holomorphic Calabi-Yau torus and J;

is non integrable for ¢ # 0 (here we assume that A1, A2, A3 are not constant).

Example 4.11. Let consider now the Lie group G of matrices of the form

1 0 2z wg 0 O
0 1 29 uwug 0 O
Ao 00 1 y 00O
00 0 1 0O
00 0 0 1 ¢
00 0 0 01
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where 21,2, u1,us2,y,t are real numbers. Let I' be the subgroup G formed by
the matrices having integral entries. Since I' is a cocompact lattice of G, then
M := G/T is a six-dimensional nilmanifold.

Let consider

R B}
YT oy Lou, 20uy’ % Oxo

0 0 0 0
537673:1’ 5475, 55*67“7 567871@'

Then {&1,...,&} is a G-invariant global frame on M.
The respective coframe {aq, ..., ag} satisfies
dOél = dOég = dOég = dOé4 =0
(4.7) das = a1 AN ag
dag = a1 Nas.
The special generalized Calabi-Yau structure on M is given by the symplectic

form

K=aoa1 Nag+ ag N\ as+ as A\ ag,
by the k-calibrated almost complex structure
J(E) =8, J(&)=8&,  J(E) =%,
J(&4) = =&, J(&) =&, J(&) =&
and by the complex volume form
€ = (g +iog) A (ag +ias) A (ag + iag) .
By a direct computation we get
Fee = a3 — 345 + 246 — Q156
Qme = ag3s — 135 + Q126 — Qa6 -

Let
X={AeG | y=a9=uy =0}
and
L=n(X),
m: G — M being the canonical projection. Then L is a special Lagrangian torus

embedded in (M, k, J, €).

Now we give an example of a compact 6-dimensional complex manifold ad-
mitting generalized Calabi-Yau structures, but which can not admit any special

generalized Calabi-Yau structure.
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Example 4.12. Let

1 zZ1 72
G = 0 1 z3 : Zl,ZQ,de(C
0 0 1

be the complex Heisenberg group and let I' C G be the subgroup with integral
entries. Then M = G/I' is the Iwasawa manifold. It is known that M is
symplectic, but it has no Kéahler structures (see [34]).
Let 2z, =z, + tx,p43, 7 =1,2,3, and set

ay =dxy, as =drs — ri1drs + T4dTs, O3 = dTs

Qyq = d.?(]47 aF = dl’g7 Qg = d.I'@ — .”L’4dl’2 — .Z'ld.”llg, 5
then {aq,...,as} are G-invariant, so that {a1,...,as} is a global coframe on
M. We immediately get

d()él Zdagzda4=d055:0
dCMQ:*Oél/\O%*Oég/\Oq

dag = —ag Nas — a1 Aag.
Let {&1,...&} be the dual frame of {a1,...,as}, then

{J(€7) 257'-&-3 r= 1a233a
J(53+’r) = _fr r= 1a2735

defines a complex structure on M calibrated by the symplectic form
K= Qg + Qo5 + Q36 -
Let € = (a1 +iaq) A (g +ias) A (a3 + iag), then a direct computation gives

eNE=—%iK3

3
5]5 = 0,

ie. (k,J,e) is a generalized Calabi-Yau structure on M.
Now we prove that there are no nowhere vanishing (3,0)-forms n on M such
that

dften =0.

In particular (M, J) does not admit any special generalized Calabi-Yau struc-
ture. In order to show this let n € A?’,’OJVI; then there exists f € C*°(M, C) such
that

n=fe.
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Let f = u + iv and set

n n
du = E u;c;,  dv = E V00
i=1 i

A direct computation shows that

dRen =(ue + v3)azase + (v2 + us)aase + (—u1 + va)aizas+
+ (—ue — v3) 1236 (—uz + v6) 2346 + (—us — v2)1235+
+ (u1 — va)ar246 + (U3 — v6)1356 + v 1245+
—vaizae + (U + ug +v1)onase + (U — ug — v1)ia3at+

+ (—ug + vs)agsas + (U2 — Vs)a1256 -

Hence dRen = 0 if and only if u = v = 0.

4.1.2 The Lu Peng problem in SGCY manifolds

In this section we study the Lu Peng problem in SGCY manifolds.
We have the following

Theorem 4.13. Let (M, Ky, Ji,e) be a family of SGCY manifolds and let
po: L — M be a compact special Lagrangian submanifold of (M, kg, Jo,0).
Assume that :

e the cohomology classes
[po(ke)] € H*(L,R),  [(expy)*Smey)] € H*(L,R)

vanishes for any t and any vector field V normal to L, where expy : L —
M is the smooth map

expy (z) := exp, (V(z));
o for any vector field V normal to L, € satisfies
ps(Lvd\(\Smé‘o) = O;

then there exists § > 0 and a family p: L — M of special Lagrangian subman-
ifolds of (M, Ji, ke, et), fort € (=6,0), that extends po: L — M.

Before the proof we need the following preliminar

Lemma 4.14. Let (V, k) be a symplectic vector space and let p: W — V be a
Lagrangian subspace. Then
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1. 7: V/W — W* defined as 7([v]) = p*(ty,K) is an isomorphism;

2. let J be a k-calibrated complex structure on'V and let e € AZ’OV* satisfying

n

p'(Sme) =0, eNE=cn—.
n:

Then 0: V/W — A"~Y(W*) defined as 0([v]) := p*(1,Sme) is an isomor-

phism. Moreover for any v € V, we have
O([v]) = —*7([v]),

where x is computed with respect to p*(gs(-,-)) := p*(k(:,J*)) and the volume
form Vol(W) := p*(Ree).

Proof. See [49], page 722. O
Now are ready to prove theorem 4.13.
Proof of theorem 4.13. Let
F: (-0,0) x C")(N(L)) — CO(A*L) @ C O (A°L)

be defined by
F(t,V) = ((expy ) ke, (expy)*Smey) .

Observe that for any fixed ¢ the form (expy )*k; is homotopic to p§(k;). There-
fore our hypothesis imply that

F((=0,0) x CH(N(L)) € d(CH (ML) P d(CH(AL) .

A direct computation gives that the differential DF of the map F' at the point

[(0,0)] is
DF[(0,0)](0,V) = (po(d(ev ko)), po(d(eySmeg) + tyd(Smeo))) -
Then, by our assumptions, we get
(4.8) DF[(0,0)](0,V) = (po(d(tv ko)), po(d(ry Smep))) -
In view of lemma 4.14, we get
—po (v Smeg) = #pg (v ko) ,

where * is computed with respect to the metric p§(gs) and the volume form

p§(Ree). Consequently we obtain

F[(0,0)](0,V) = (d(pg(ev o)), —d  (pp (tv o)) -
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By the Hodge decomposition of AL it follows that

F[(0,0)): R x CH)(N(L)) — d(C)(A'L) @5 d(CH) (AL)).
is surjective and
(4.9) ker DF[(0,0)][ 0 x oo (v(z)) = H (L),

where H'(L) denotes the space of C(»*) harmonic 1-forms on L.
Let A be the space of normal vector fields V in C-®) (N(L)), identified by the
isomorphism f,,,: C(4*) (N (L)) — C*)(A'L) to one-forms on L belonging to

(2 oz) @d* (2 ) A2 )
and let
F= F|(—U,U)><A .
Then, (4.9) and the Hodge decomposition theorem imply that

DF|(gyxa: A — d(C* L) @ d*(C**)(A’L))

is an isomorphism.
Therefore we can apply the implicit function theorem to F and find, for small

t, a solution V' of the equation

V(0)=0
F(t,V(t) =

Taking the derivative of EF(t,V(t)) = 0 with respect to ¢, we get that V(¢) is
solution of an elliptic equation. Consequently V (¢) is a smooth vector field for
any t. Then

pi(x) :=exp, V(t, x)

is a family of special Lagrangian submanifolds of M that extends L. O

4.2 Four-dimensional generalized Calabi-Yau

manifolds

In this section we study a generalization of the Calabi-Yau structure to dimen-
sion 4.

First of all we consider the following proposition, essentially due to Conti and
Salamon (see [22]), which gives a characterization of SU(2)-structures on 4-

manifolds in terms of torsion forms
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Proposition 4.15 (|22]). SU(2)-structures on a 4-manifold M are in one-to-
one correspondence with the triple of 2-forms (w1, ws,ws) satisfying
wi Aw;j =050 fori=1,2,3
for some 4-form v # 0, and
txwy = tyws = w3(X,Y) > 0.

In particular any w; is a symplectic structure on M. The triple (w1, wso,ws)
induces a triple of almost complex structures an M which we describe in the

following
Lemma 4.16. Let

P A'M — A'M | forr=1,2,3,
be the C°°(M)-linear endomorphisms defined by

Pi(¢) = %1(ws A dki(wz2 A @),
Pa(¢) = Jea(wi A da(ws A @),
P3(¢) = J3(w2 A ks(wi Ag)),

where Y, is the symplectic star operator induced by w,.. Denote by J,. the
endomorphism dual to P, with respect to the duality induced by w,. Then J,. s
a wy-calibrated almost complex structure on M. Moreover these almost complex

structures satisfy the following “quaternionic-like” identities
JrJs :_<]s']7‘7 fO?” r,s = 13273
and
Jidy = J3.
Moreover the triple (w1, w2, ws) induces a Riemannian metric g on M by the
following formulae

g(X, Y) = wl(X, J1Y) = (UQ(X, JQY) = wg(X, J3Y)

for every X, Y € TM and a triple of complex volume forms {e1,e2,e3} by the

realtions
€1 = wy +1Jiws,

Eo9 = W1 — iJgL«Jg s
€3 = w1 + 1J3ws .
In this way one has ¢, € A%’TOM.

Equivalently an SU(2)-structure on a 4-manifold M is completely determined
by a triple (k, J,¢), where
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e k is a symplectic form,
e J is a k-calibrated almost complex structure on M,
e ¢ is a non-vanishing (2, 0)-form satisfying
eNE =2kK? ,
in fact in this case one takes
w1 =K, wy==RNee, wz=Sme.

Now we consider the symplectic case:
Let (M, k) be a four-dimensional symplectic manifold and let J be a k-calibrated
almost complex structure on M. Let & be a nowhere vanishing (2,0)-form on

M satisfying

eNE=2kK>.
Then conditions
Ve=0
dRee =0
imply
dSme =0.

Indeed, if Ve = 0, then dye = 0 and
dRec =0= 0+ 98+ Aje+ Aje=Aje+ A;=0.

Since Aje € A1J’2M and AjE € AL2,’1M , we get de = 0 which implies that J is

integrable. In dimension four we adopt the following definition

Definition 4.17. Let M be a (compact) four-manifold. A generalized Calabi-
You structure on M is a triple (x, J, €), where

e k is a symplectic form,
e J is a k-calibrated almost complex structure on M,

e ¢ is a non-vanishing (2, 0)-form satisfying

ENE =282

dRtee =0.
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In an obvious way we have the definition of special Lagrangian submanifold also
in the four dimensional case.

Example 4.18. We recall the construction of the Kodaira-Thurston manifold.
Let G be the Lie subgroup of GL(5,R) whose matrices have the following form

s

I
o 0o o =
o o o = 8
O O R ® w
o= o o o
_ + O O O

where x,y, z,t € R. Let I be the subgroup of G of matrices with integers entries.

Since I' is a cocompact lattice in G, we get that
M=G/T
is a compact manifold. M is called the Kodaira- Thurston manifold.
Let {&1,...,&4} be the global frame of M given by
0 0 0 0 0
El_%7£2_87y+x$7 - a_ -
We easily get
[517 62} = 53

and the other brackets are zero. The dual frame of {&1,...,&4} is given by
ap=dr, as=dy, as=dz—xdy, as=dt.
We have
doy =das =day =0, dag=—a1 Aas.

The generalized Calabi-Yau structure on M is given by the forms

K=a1 Nag+as Aoy

g = i(O&l + iOég) A (OZQ + ia4)
and by the almost complex structure

J(&1) = &3, J(&2) = &u,
J(&3) ==&,  J(&) =&

We immediately get
Sme=a1 ANag —az Aoy,

Ree=as Nz —a1 ANay.
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Hence
dk =0,

dRee =0.

Let X C G be the set
X={AeG | z=t=0}

and
L =n(X),

where m : G — M is the natural projection. Hence L is a compact manifold
embedded in M. Moreover the tangent bundle to L is generated by {£2,&3}; so
we get

p'(k) =0,

p*(Sme) =0.

Hence L is a special Lagrangian torus.

The following lemma gives a topological obstruction for the existence of
generalized Calabi-Yau structures on compact 4-manifolds.

Lemma 4.19. Let M be a 4-dimensional compact manifold admitting a special

generalized Calabi-Yau structure, then
dim(H?(M,R)) > 2.

Proof. Let (k,J,e) be a generalized Calabi-Yau structure on M and let wy =
Ree, wg = Sme. First of all we observe that wsy is a symplectic form on M
and consequently it cannot be exact. Furthermore if a[x] 4+ b[w2] = 0 for some
a,b € R, then

ak + ws = da,

for some o € A'M and this last equation together with wy A K = 0 readily
implies bx? = d(a A k), which forces b to vanish. Hence x and wy induce R-
linear independent classes in H%(M,R) and dim(H?(M,R)) > 2. O
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SU(n)-structures on contact

manifolds

In this chapter we give a generalization of Calabi-Yau structure to the context
of contact manifolds. A contact Calabi-Yau manifold is a 2n + 1-dimensional
manifold M endowed with a contact form «, a da-calibrated complex structure
J on the contact distribution & = ker o and a closed basic complex volume form
g. As in the Calabi-Yau case, if a contact Calabi-Yau structure (M, a, J,¢) is
given, the real part of € is a calibration on M. An oriented submanifold is said
to be special Legendrian if it is calibrated by Ree. In section 5.2.1 we prove that
the moduli space of special Legendrian submanifolds near a fixed compact one
is always a smooth 1-dimensional manifold. Hence this case is quite different
from the Calabi-Yau one where the dimension of the moduli space of special La-
grangian submanifolds near a compact one depends form the first Betti number
of the base point.

In section 5.2.2 we study the Lu Peng problem for special Legendrian subman-
ifolds and in section 5.4 we classify invariant contact Calabi-Yau structures on
5-dimensional nilmanifolds. In the last section we generalize to the codimension
.

5.1 SU(n)-structures on 2n + l-manifolds

Let M be a 2n+1-dimensional manifold and let « € A M be a nowhere vanishing
1-form. Assume that there exists a 2-form x on M satisfying

aAK"£0

79
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and let £ = ker a. Then the couple (, k) defines a symplectic vector bundle on
M. Let us denote by C.(€) the space of the complex structures on the vector
bundle ¢ calibrated by k. Let J € C,(€) and let R, be the Reeb vector field of
the couple (a, k), i.e. the unique vector field on T M satisfying

a(Ry)=1, g, k=0.
We recall the following

Definition 5.1. A complex p-form 7 on M is said to be transverse if

tr,y=0.
If further

tr,dy =20
v is said to be basic.

Let us denote by A{M the set of the tansverse p-form on M and by A, M the
space of basic p-form. Note that d takes basic forms in basic forms. Furthermore
one can define the basic cohomology groups Hjz (M) of (M, «) as the cohomology
groups of the complex (ApM,d). Extending the complex structure J on TM
as zero on R, we have

J(AEM) c ABM .

Consequently AJM ® C splits as
MMeC= @ A}
r4s=p

Proposition 5.2. Let M be a 2n+ 1-dimensional manifold. A SU(n)-structure
on M 1is determined by the following data

o o nowhere vanishing 1-form o on M;
e a 2-form k satisfying a A K™ % 0;
o a complex structure J € C,;(§) (where & = ker a);

K"
n!

o a nowhere vanishing € € Arj’of satisfying e N\€ = ¢,

Since SU(n) C O(2n + 1,R), a SU(n)-structure on M induces a Riemannian
metric g. This metric can be described in terms of (o, k, J, &) by

g=gsta®a,
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where
(5.1) gs(-) = k(- J")

is the metric on & induced by the pair (k,J). Note that a SU(n)-structure is
integrable if and only if

Va=0, V=0, VJ=0, Ve=0.
Moreover we have that « € A}]’lf and consequently
eNk=0.

Any contact SU(n)-structure on M induces a SU(n + 1)-structure (%, J,&) on
the cone
V=MxR"

by taking

~ J on
F=tdtha+t?k, J=1<{ _ ¢ , E=t"eA(ta+idt).
J(d) = LR,

From the definitions of k and £ we immediately get
Rl = \EAE,
where A is a complex constant. A direct computation gives
~ 1
de =0 < k= §doz.
We recall that o € A'M is a contact form if
A (da)™ #0.

In this case the distribution & = ker« is said to be a contact structure. A
SU(n)-structure (a, K, J, €) is said to be contact if

1
/i=§doz.

Note that if (M,a,J,€) is a contact SU(n)-manifold, then ¥ is a symplectic
structure on V. We can introduce the following

Definition 5.3. A contact SU(n)-structure («, J, ¢) is said to be contact Calabi-
You if the complex volume form ¢ is closed. In this case the quadruple
(M, «, J,e) is said to be a contact Calabi- Yau manifold.
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Note that if («, J, ) is a contact Calabi-Yau structure, then ¢ is a basic form.

Example 5.4. Consider R?"*! endowed with Euclidean standard coordinates
{T1,. - s Zn, Y1, -, Yn,t}. Let

n

ap = 2dz — QZyidasi.

i=1
be the standard contact form on R?"*! and let &y = ker ap. Then & is spanned
by

{y18t+ax17 sy ynat +aa:n> aylv ] ayn}

For simplicity, set V; = y; 0y + 0,,, W; = 0y,,4,j =1,...,n and
JO(M) = Wr
JO(WT) - _Vr

Then Jy defines a complex structure in C,,(&p), where ko = %dao. Since the
space of transverse 1-forms is spanned by {dz1, ..., dx,, dy1,..., dy,}, then
the complex valued form

g0 = (dry +idyr) A -+ A (dxy, + idyy,)
is of type (n,0) with respect to Jy and it satisfies
€0 NEp = Cp Ky
deg = 0.
Therefore (R?"+1, g, Jy, €0) is a contact Calabi-Yau manifold.
The following will describe a compact contact Calabi-Yau manifold.

Example 5.5. Let

H(3):=< A

I
o O =
o = R

Yy
z | 2,9,z € R
1

be the 3-dimensional Heisenberg group and let M = H(3)/T', where T denotes
the subgroup of H(3) given by the matrices with integral entries. The 1-forms
a1 =dx, ay = dy, ag = xdy —dz are H(3)-invariant and therefore they define a
global coframe on M. Then a = 2a3 is a contact form whose contact distribution
¢ is spanned by V = 0,, W = 0y + 2 0,. Again
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defines a k-calibrated complex structure on € and € = a3 + iy is a (1, 0)-form
on & such that (M, as, J,¢) is a contact Calabi-Yau manifold.

The last example gives an invariant contact Calabi-Yau structure on a nil-
manifold. Tt can be generalized to the dimension 2n + 1 in this way: let g be
the Lie algebra spanned by {X,..., Xo,1} with

[(Xok—1, Xok] = —Xont1

for k =1,...,n and the other brackets are zero. Then g is a 2n + 1-dimensional
nilpotent Lie algebra with rational constant structures and, by Malcev theo-
rem, it follows that if G is the simply connected Lie group with Lie algebra
g, then G has a compact quotient. Let {c1,..., 2,11} be the dual basis of
{X1,...,X2n41}. Then we immediately get

n

qu:O,...,dOégnZO, d()égn_H:ZOéQk_l/\OéQk.
k=1
Hence the contact form L
a=—-as,
5 3

the complex structure on £ determined by the realtions
J(Xor—1) = Xop
J(Xar) = —Xok—1
for k=1,...,n and the complex form
e= (a1 +ia) A A(aap—1+iaa,)
define a contact Calabi-Yau structure on any compact nilmanifold associated

with g.

The following proposition gives simple topological obstructions in order
that a compact 2n 4+ 1-dimensional manifold M carries a contact Calabi-Yau
structure.

Proposition 5.6. Let M be a 2n + 1-dimensional compact manifold. Assume

that M admits a contact Calabi-Yau structure; then
1. if n is even, then b,1(M) #0;
2. if n is odd, then
b (M) > 2
bpy1(M) > 2,
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where b;(M) denotes the j*" Betti number of M.

Proof. Let (o, J,€) be a contact Calabi-Yau structure on M and let £ = ker .
Set Q2 = Ree; then, since ¢ € A3’0§ , we have ¢ = Q + i JQ. In view of the
assumption de = 0, we obtain dQ2 = dJ2 = 0 and since da € A},’lf it follows
that

QNda=JQNda=0.

Hence
dQNa)=d(JQNa)=0.

Furthermore we have
ENE=QAQ+JIJQANIQ if n is even;
eENE=—-2iQNJQ if n is odd.

1. If n is even, then a A (QAQ + JQ A JQ) is a volume form on M. Assume
that the cohomology classes [Q A o], [JQ A a] vanish; then there exist
8,7 € A™M such that

aNQ=dB, anJQ=dy.
By Stokes theorem we have

0# a/\Q/\Q—i—a/\JQ/\JQ:/dﬁ/\Q—Fd’y/\JQ
M M

:/ A(BAQ) +d(y A JQ) =0,
M

which is absurd. Therefore one of [Q A ], [JQ A o] does not vanish.
Consequently by, 1(M) # 0.

2. Let n be odd. We prove that the cohomology classes [] and [JQ] are R-
independent. Assume that there exist a,b € R such that a[Q] +b[JQ] = 0,
(a,b) # (0,0). Then there exists 8 € A"~ 1M such that

a24+bJQ=dj.
We may assume that a = 1, so that 0 = dG—bJ2. Stokes theorem implies

0# | anQAJQ= aAdﬁ/\JQ:—/d(a/\ﬂAJQ):O
M M M

which is a contradiction. Hence b, (M) > 2. With the same argument, it
is possible to prove that b,41(M) > 2 by showing that [QAa] and [JQA«]
are R-independent in H"1(M).
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The following is an immediate consequence of proposition 5.6.

Corollary 5.7. A 3-dimensional compact manifold M admitting contact
Calabi-Yau structure has by(M) > 2. In particular, there are no compact 3-
dimensional simply connected contact Calabi-Yau manifolds.

Moreover, the 2n + 1-dimensional sphere has no contact Calabi- You structures.

5.1.1 Sasakian manifolds and contact Calabi-Yau mani-
folds

Let (M, &) be a contact manifold. Let a be a 1-form defining &, k = 1/2da

and J € C,;(€). The pair (a,§) induces an almost Kéhler structure (x,.J) on the
cone V = M x RT, by taking

Jon &

F=tdtha+t2k, J={ X

Furthermore, as in the almost complex case, it is defined the Nijenhuis tensor
of J by

N;(X,Y)=[JX,JY] - J[JX,Y] - J[X,JY] + J*[X,Y]

for X,Y € TM, where J is extended in TM by J(R,) = 0. We recall the
following

Theorem 5.8. The following facts are equivalent
1. the almost Kihler structure (%,.J) is integrable;
2. Ny =—-da® R,.
Now we can recall the following
Definition 5.9. A Sasakian structure on M is a pair («, J), where
e ( is a contact form,

o J e (C,(&) satisfies Ny = —da ® R, being € = ker .

The triple (M, a, J) is called a Sasakian manifold.
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It is known that if (M, «,J) is a Sasakian manifold, then R, is a Killing
vector field of the metric g = g5 + @ ® a (where as usual g is the transversal
metric induced by (k,J)) and

VxR, =JX,

for any X € &, where V denotes the Levi Civita connection of g. Moreover in this
case J takes basic forms in basic forms and consequently the basic cohomology

groups of (M, «) split as

Hy(M)= P Hy (M),
r+s5=p

One easily get that da defines a non zero class in Hy'(M).
A Sasakian structure (o, J) induces a natural connection V¢ on ¢ given by the

relations
VEY = (VXY)E if X e¢
X .
[Ro,Y] if X =R,,

where the subscript £ denotes the projection onto £. One easily gets
V&I =0, Vigs=0, Vida=0, VY -V{X =[X Y]
for any XY € TM. Consequently we have
Hol(V*®) C U(n).

Moreover it is defined the transverse Ricci tensor Ric! as the Ricci tensor

associated to V¢, i.e.

2n
Ric"(X,Y) = > g(V§ Ve ei — VE Ve — Vi, e, Y)
(X e:]
i=1

for any X,Y € &, where {ej,...,e2,} is an arbitrary orthonormal frame of £. It
is known that Ric” satisfies

Ric’ (X,Y) = Ric(X,Y) + 29(X,Y)

for any X,Y € £, where Ric denotes the Ricci tensor of the Riemannian metric
g =gy +a®a. Let us denote by p” the Ricci form of Ric” ) i.e.

pT(X,Y) =Ric’ (JX,Y) = Ric(JX,Y) + 2r(X,Y)

for any X,Y € & We recall that pT is a closed form (see e.g. [32]); it is often
called the transverse Ricci form of (o, J).
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Definition 5.10. The basic cohomology class

B (M) = o-[p") € HE' (M)

is called the first basic Chern class of (M, J) and if it vanishes (M, o, J) is

said to be null-Sasakian.
Now we have

Proposition 5.11. Let (M, a,J) be a 2n + 1-dimensional Sasakian manifold.

The following facts are equivalent
1. Hol’(V¢) C SU(n)
2. Ric” =0.

Proof. The connection V¢ induces a connection VX on A?OE which has
Hol(VE) C U(1). Since Hol®(VE) and Hol?(V¢) are related by

Hol”(VX) = det(Hol°(V*)),

where det is the map induced by the determinant U(n) — U(1), Hol®(V¥¢) C
SU(n) if and only if Hol’(VX) = {1} and in this case V¥ is flat. It can be
showed that the curvature form of V¥ coincides with the transverse Ricci form
of (v, J). Hence Hol”(V4) C SU(n) if and only if Ric” = 0. O

A Sasakian structure («, J) is said to be a-Einstein if the Riemannian metric g
induced by (a, J) satisfies

Ric(g) = A\g +ra® a,

where (\,v) is a pair of constants. This class of metrics was introduced by
Okumura in [55]. Moreover it is known that for a generic 2n + 1-dimensional
Sasakian structure the transverse Ricci tensor satisfies

Ric(Ry, X) = 2na(X),
for any X € TM (see e.g. [55]). Therefore if a Sasakian structure has
Ric” =0,
then it is a-Einstein and the Ricci tensor reduces to
(5.2) Ric=-29+(2n+2)a® .

Let consider now a contact Calabi-Yau case. We have the following
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Lemma 5.12. Let (M, «, J,€) be a contact Calabi-Yau manifold. Then (o, J)

is a Sasakian structure on M.

Proof. Let kK, J be the almost Kihler structure induced by (a,J) on the cone
V =M x Rt and let

¢ =en(a+il/td) e ATHOM.
The form % is nowhere vanishing on V' and
dyp =d(eN(a+il/tdt)) =eNda=0.

Therefore 1) is a closed complex volume form on V. Consequently Jis integrable
and (M, a, J) is a Sasakian manifold. O

Moreover we have that if (M, «, J,€) is contact Calabi-Yau, then
Hol(V*®) € SU(n)

and, by proposition 5.11, the transverse Ricci tensor of («, J) vanishes.
Summarizing we have the following

Proposition 5.13. Let (M,«,J,e) be a contact Calabi-Yau manifold, then
(M, «,J) is a null-Sasakian manifold with vanishing transverse Ricci tensor.

Consequently M is a-Finstein and has scalar curvature equal to —2n.

Therefore contact Calabi-Yau manifolds can be considered a special class of

null-Sasakian manifolds.

5.2 Special Legendrian submanifolds

Let us consider on R?"*! the standard basis {e1,...,e2,11} and let V < R?+1
be the subspace spanned by {e1,...,ea,}. Let Jy be the endomorphism which
coincides with the standard complex structure on V and fixes eg,, 1. Let

n

n
Qo = €2n+17 Ko 1= § e2i—1 A 6217 €0 1= /\(62171 +’i€2l) )
i=1 i=1

Then, with notation of last section, € € AT};}OV. The Lie group SU(n) can be
viewed as the set of transformations in GL(2n + 1, R) fixing (ag, 0, Jo,£0). Let
G(n) be the set of the n-dimensional subspaces of R?"*1, We have the following
easy-proof
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Proposition 5.14. The form Reeq is a calibration on R*" T and W € G(n) is
Re eg-calibrated if and only if

e W <V;
e i*(kg) =0, *(Smegy=0);

where i: W — R2"*1 s the natural embedding.
We recall the following

Definition 5.15. Let (M, &) be a contact 2n + 1-dimensional manifold and let
a be the 1-form defining €. A submanifold p: L — M is said to be a Legendrian

submanifold if

2. dimL=n.

Let consider now a 2n + 1l-dimensional contact Calabi-Yau manifold
(M, «, J,e). The n-form Q = Ree is a calibration on M with respect to the
metric g induced by («, J). Furthermore, by proposition 5.14, a submanifold
p: L — M satisfies the conditions

if and only if there exists an orientation making it calibrated by Ree. Hence we

can give the following

Definition 5.16. Let (M, «, J,e) be a contact Calabi-Yau manifold. A Legen-
drian submanifold p: L < M is said to be special Legendrian if it satisfies the

equations

Example 5.17. Let (M = H(3)/T,«,J,e) be the contact manifold of the
example 5.5; then the submanifold

1 =z
L:=([Ale M|A= 0 1
0 0

_ o O
1
w0,

is a compact special Legendrian submanifold.
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5.2.1 Deformation of Special Legendrian submanifolds

Let (M, a, J, €) be a contact Calabi-Yau manifold and let p: L < M be a special
Legendrian submanifold. Another special Legendrian submanifold py: L —
M is said to be a deformation of pg: L — M if there exist a smooth map
F: L x[0,1] — M such that

1. Fi: L — M is a special Legendrian submanifold for any t € [0, 1];
2. Fo=p, F1 =p1.

Let
IM(L) := {special Legendrian submanifolds of (M,a,J, )

which are deformations of p: L — M}/ ~,

be the moduli space of special Legendrian submanifolds near p: L <— M, where
two embeddings are considered equivalent if they differ by a diffeomorphism of
L. We have the following

Theorem 5.18. Assume that L is compact. Then IM(L) is a 1-dimensional

smooth manifold.

Proof. Let N (L) be the normal bundle to L. Then
N(L) =< R, > @®J(p.(TL)),

where R, is the Reeb vector field of a. Let Z be a vector filed normal to L and
let exp,: L — M be defined as

expy(z) = exp, (Z(x))

for any x € L. Let U be a neighborhood of 0 in C*%(< R, >)&CH(J(p«(TL)))
and let
F:U — CY(A'L)® C%*(A"L),

be defined as
F(Z) = (expz(a),2expy(Ime)) .

We obviously have
Z € F710,0)NnC>®°(N(L)) <= expy(L) is a special Legendrian submanifold.
Note that since exp, and p are homotopic via exp, ,, we have

[expZ(Sme)] = [p"(Sme)] = 0.
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Therefore
F:U — CH(A'L) @ dCH™(A"'L).

Let us compute the differential of the map F.

R0)(2) = & (expi 7(a), 2630 £(Sm2) = (0" (Lz0), 2" (L59me)),

where £ denotes the Lie derivative. We may write Z = JX + f R,; then

applying Cartan formula we obtain

E0)(Z) = (p*(£z0a),2p"(LzSme))

* dLZa+LZda) 2p* (dezSme))

*

" (
= ("(
= (p*(dtyx+f RaO + Lyx+f RLd), 2D" (dLyx 4§ R, SME))
= (p*(disr, o + tyxda),2p* (diyx Sme))

= (p"(

“(df + tyxda),2dp* (LixSme)).

Applying lemma 4.14, we get
2p*(LJXng) = — *p*(bjxda) ,

where * is the Hodge star operator with respect to the metric p*(gs) and the
volume form p*(Ree). Consequently we obtain

(5.3) F[0](Z) = (d(f op) + p"(Lyxda), —d * p* (s xdar)) .

The next step consists to show that F.[0] is a surjective operator. Let
(n,dy) € CY*(A'L) ® dCY*(A"(L)). By the Hodge decomposition theorem
we may assume

dy = —d * du with v € C*(L)

and we have
n=dv+d*B+hn)

where v € C**L, 3 € C?>*(A%L) and h(n) denotes the harmonic component of
7. Then we have

(n,dy) =(du — du + dv + d* B + h(n), —d * du)
(dv —du+du+d* S+ h(n),—d=* (du+d*B+ h(n)) .

We can find f € C?%(p(L)) and X € C*(p,(TL)) such that

fop=v—u
p*(tyxda) =du+d* B+ h(n).



92 Chapter 5. SU(n)-structures on contact manifolds

Hence
(n,dy) = (d(f o p) + p*(tuxda), —d * p* (tx da))
and F,[0] is surjective. Therefore (0,0) is a regular value of F.
Now we compute ker F,[0]. Formula (5.3) implies that Z € ker F,[0] if and only
if
(5.4) d(fop)+p (Lixda) =0
(5.5) d*p*(Lyxda) =0.

By applying d* to both sides of (5.4) and taking into account (5.5) we get
0=d*d(fop)+d'p*(tyxda) = d"d(f o p),
ie.
A(fop)=0.

Since L is compact f is constant. Hence (5.4) reduces to
(5.6) p*(LJXdO() =0.

The map
O: p.(TL) — AY(L)

defined by
O(X) = p*(Lyxda)

is an isomorphism; hence equation (5.6) implies X = 0. Therefore Z = W+ f R,
belongs to ker F,[0] if and only if

W =20

f = constant .

It follows that ker F.[0] =Spang(R,) C C°°(N(L)). The implicit function
theorem between Banach spaces implies that the Moduli space (L) is a 1-
dimensional smooth manifold. O

Remark 5.19. Note that the dimension of 9(L) does not depend on that one
of L. This is quite different from the Calabi-Yau case, where the dimension
of the Moduli space of deformations of special Lagrangian submanifolds near
a fixed compact L is equal to the first Betti number of L. This difference can
be explained in the following way: the deformations parametrized by curves
tangent to the contact structure are trivial, while those one along the Reeb
vector field R, parameterize the Moduli space.



5.2. Special Legendrian submanifolds 93

5.2.2 The Lu Peng problem in contact Calabi-Yau mani-
folds

In this section we study the Lu Peng problem for special Legendrian submani-
folds. We have the following

Theorem 5.20. Let (M, o, Ji, €t )1e(—s,5) be a smooth family of contact Calabi-
You manifolds. Let p: L — M be a compact special Legendrian submanifold of
(M, v, Jo,€0). There exists, for small t, o family of compact special Legendrian
submanifolds p: L — (M, oy, Ji,¢) such that po = p if and only if the condition

(5.7) [p*(Smey)] =0
holds for t small enough.

Proof. The condition (5.8) is necessary. Indeed if we can extend L, then Sme;

is a closed form such that pf(Sme;) = 0. Since p; is homotopic to py we have
[po(Smer)] = [p; (Smey)] = 0.
In order to prove that condition (5.8) is sufficient, we can consider the map
G: (—0,0) x CHO(J(p,TL)) — C¥*(A2L) @ C(O9) (A" L)

defined by
G(t,Z) = (expy(doy), 2expy(Smey)) .

By our assumption it follows that
Im(G) C dC**(A'L) & dC*) (A"~ L)
Let X € p.(TL); a direct computation gives
G.[(0,0)](0, JX) =(dp* (tyxdag), 2dp™ (L x Sme))
=(dp* (tyxdag), —d * p* (tyxdag)),

where * is the Hodge operator of the metric p*(gs) with respect to the volume
form p*(Ree) (here we have applied again formula lemma 4.14). It follows that
G.[(0,0)](0,-) is surjective and that

ker G, [(0,0)] 0y x oo (p. (s (TL))) = H'(L).
Let

A={X € C"(p.(TL)) s.t. p*(tyxda) € ACH*(L) @ d*CH*(A*L)}
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and
G =G (—55)xA -

Then by the Hodge decomposition of A(L) it follows that
G.[(0,0)]{01xa: A — dC*(L) & d*CH*(A*L)

is an isomorphism. Again by the implicit function theorem and the there exists
a local solution of the equation

¥(0) =0
Gt, () =0.

)

Taking into account the derivative of the equation G(t,1(t)) = 0 with respect
to ¢, we get that z/J(t) is solution of an elliptic equation for any ¢. It follows that
(t) is a curve of smooth vector fields. The extension of p: L — M is obtained
by considering
Pt 1= €XPy(y) -
O

5.3 Interplay between Calabi-Yau and contact

Calabi-Yau structures

The interplay between Calabi-Yau and contact Calabi-Yau manifolds can be

summarized with the following table

’ (M, k, J,e) Calabi-Yau ‘ (M, «, J,e) Contact Calabi-Yau
Hol(V) C SU(n) Hol(V¢) c SU(n)
Ric=0 Ric” =0
c1(M)=0 cB(M)=0
Ree is a calibration on M Ree is a calibration on M
a submanifold p: L — M a submanifold p: L — M
is calibrated by Ree if and is calibrated by Ree if and
only if p*(k) = p*(Sme) =0 only if p*(a) = p*(Sme) =0
the moduli space of special the moduli space of special
Lagrangian submanifolds closed | Lagendrian submanifolds closed
to a compact one L is a smooth | to a compact one L is a
of dimension by (L) a 1-dimensional manifold

Where in the left side V denotes the Levi-Civita connection of the Riemannian

metric g; associated to (k,J) and Ric is the Ricci tensor of g;.
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5.4 The 5-dimensional nilpotent case

In this section we study invariant contact Calabi-Yau structure on 5-dimensional
nilmanifolds. We will prove that a compact 5-dimensional nilmanifold carrying
an invariant Calabi-Yau structure is covered by a Lie group whose algebra is

isomorphic to
g =(0,0,0,0,12 + 34),

just described in section 2. Notation g = (0,0,0,0, 12 4+ 34) means that there
exists a basis {a1, ..., a5} of the dual space of the Lie algebra g such that

day =dag =dag =day =0, das=a1 Nas+azAay.

First of all we note that 5-dimensional contact Calabi-Yau are in particular
Hypo. Recall that an Hypo structure on a 5-dimensional manifold is the datum
of (a,wy,ws,ws), where a € AY(M) and w; € A?(M) and

1. w; Awj = d;; v, for some v € A*(M) satisfying v A a # 0;
2. 1xw1 = lyws <= w3(X,Y) >0:

3. dw1 =0, dwa Aa) =0, d(ws A ) =0.

These structures have been introduced and studied by D. Conti and S. Salamon
in [22].
Let (M, «, J,€) be a contact Calabi-Yau manifold of dimension 5. Then

1
a, wlzida, wy =MRee, wz=Sme,

define an Hypo structure on M.
The following lemma, whose proof is immediate, will be useful in the sequel

Lemma 5.21. Let M = G/T be a manifold of dimension 5. If M admits an
invariant contact form, then the Lie algebra of G is isomorphic to one of the

following models
e (0,0,12,13,14 4 23);
e (0,0,0,12,13 + 24);

e (0,0,0,0,12 + 34).
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Let g be a non-trivial 5-dimensional nilpotent Lie algebra and denote by
V = g* the dual vector space of g. There exists a filtration of V'

Vicvicvicvicvi=v,

with dV? € A2V*~! and dimgV* = i. We may chose the filtration V in such a
way that V2 C kerd C V4.

Let (M = G/T,a,w1,ws,ws) be a nilmanifold endowed with a invariant
Hypo structure (o, w1, ws,ws)

1. Assume that o € V4. Then we have the following (see [22])

Theorem 5.22. If a € V4, then g is either (0,0,0,0,12), (0,0,0,12,13),
or (0,0,12,13,14).

In particular if (M, «, J, €) is contact Calabi-Yau, then o € V4.

2. Assume that o ¢ V4. We have the following two theorems (see [22] again)

Lemma 5.23. If o ¢ V* and all w; are closed, then « is orthogonal to
V4,

Theorem 5.24. If « is orthogonal to V*, then g is one of

(0,0,0,0,12), (0,0,0,0,12 + 34).

Let (M, «, J, €) be a contact Calabi-Yau manifold of dimension 5 endowed by an
invariant contact Calabi-Yau structure, then by 1. a does not belong to V4. By
lemma 5.23 « is orthogonal to V* and by theorem 5.24 g = (0,0,0,0,12 + 34) .
Hence we have proved the following

Theorem 5.25. Let M = G/T be a nilmanifold of dimension 5 admitting an

invariant contact Calabi-Yau structure. Then g is isomorphic to

(0,0,0,0,12 + 34) .

5.5 Calabi-Yau manifolds of codimension r.

In this section we extend the definition of contact Calabi-Yau manifold to codi-
mension r proving the analogous of theorem 5.20.
Let us consider the following
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Definition 5.26. Let M be a 2n + r-dimensional manifold. A r-contact struc-
ture on M is the datum D = {aq,..., .}, where o; € A'M, such that

e doy =dag =+ = day;
e ag A--Aap A(dag)™ #0 .

Note that if D = {a1,...,a,} is a r-contact structure and £ := [ ker o,
then (&, daq) is a symplectic vector bundle on M and there exists a unique set
of vector fields {Ry,..., R} satisfying

a;(Rj) =6;j, trda;=0foranyid,j=1,...,r.

Let us denote by C. (&) the set of complex structures on ¢ calibrated by the
symplectic form k = %doq and by AGM the set of r-form v on M satisfying

tryy=0foranyi=1,...,7
Since J(AGM) C AfM we have a natural splitting of AGM ® C in

MNMoC= @ Aye.
pt+q=r

If J € €€ is given, we extend it in TM by defining
J(R;)) =R;.
We can give the following

Definition 5.27. A r-contact Calabi-Yau manifold is the datum of (M, D, J, €),

where
e M is a 2n + r-dimensional manifold;
e D={ay,...,a.} is a r-contact structure;
o JeCl

o c € AV0(¢) satisfies
ENE=cpK

de

Il
o
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Example 5.28. Let M = H(3)/T x S be the Kodaira-Thurston manifold,
where H(3) is the 3-dimensional Heisenberg group and I is the lattice of H(3)
of matrices with integers entries. Let

a1 = 2dz + 2xdy ,
o = 2dz + 2xdy + dt .

One easily get
day = dag = 2dx A dy

and that D = {a1, a2} is a 2-contact structure on M. Note that £ = kerag N
ker cv is spanned by {X; = 0,, Xo = 20, — 0.}. Moreover the Reeb fields of D

are
1 1

Ry = §az - §8ta
1
R2 = 5@

Therefore AJM is generated by {dz,dy}. Let J € End(¢) be the complex
structure given by
J(X1)= X2, J(X2)=-X

and let € € A?;Og be the form
e=dzx+1Jdy.
Then (M, D, J,¢) is a 2-contact Calabi-Yau structure.

As in the contact Calabi-Yau case if (M, D, J,¢) is a r-contact Calabi-Yau
manifold, then the n-form = Ree is a calibration on M. Moreover a n-
dimensional submanifold p: L <— M admits an orientation making it calibrated
by Q if and only if

p*(a;) =0 for any a; € D,
p*(Sme) =0.

A submanifold satisfying these equations will be called special Legendrian.

Example 5.29. Let (M,D,J,e) be the 2-contact Calabi-Yau structure de-
scribed in example 5.28. Then

L:={[Al € HB)/T|A=

o O =
(=l

0
0 |, zeR} x{qg}~5*
1

is a Special Legendrian submanifold for any ¢ € S*.
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The proof of next theorem is very similar to that one of theorem 5.20 and it is
left to the reader

Theorem 5.30. Let (M,Dy, Ji,et)ie(—s5,5) be a smooth family of r-contact
Calabi- Yau manifolds. Let p: L — M be a compact special Legendrian sub-
manifold of (M, Dy, Jo,e0). Then there exists, for small t, a family of compact
special Legendrian submanifolds py: L — (M, Dy, Ji,et) extending p: L — M if
and only if the condilion

(5.8) [p"(Smey)] =0

holds for t small enough.






Bibliography

[1]

2]

3]

4]

[5]

[6]

7]

18]

9]

[10]

Abbena E.: An Example of an Almost Kéhler Manifold which is not K&h-
lerian, Boll. U.M.I. (6) 3-A (1984), pp. 383-392.

Agricola 1., Friedrich Th.: On the holonomy of connections with skew-
symmetric torsion. Math. Ann. 328 (2004), pp. 711-748.

Agricola, 1., Friedrich, Th., Nagy, P.-A., Puhle C.: On the Ricci tensor in
the common sector of type II string theory, Classical Quantum Gravity 22
(2005), pp. 2569-2577.

Alexandrov B., Friedrich Th., Schoemann, N.: Almost Hermitian 6-
manifolds revisited, J. Geom. Phys. 53 (2005), pp. 1-30.

Apostolov V., Draghici T.: The curvature and the integrability of almost-
Ké&hler manifolds: a survey, Symplectic and contact topology: interactions
and perspectives (Toronto, ON/Montreal, QC, 2001), 25-53, Fields Inst.
Commun., 35, Amer. Math. Soc., Providence, RI, 2003.

Apostolov V., Salamon S.: K&hler reduction of metrics with holonomy Gs,
Comm. Math. Phys. 246 (2004), pp. 43-61.

Audin M., Lafontaine J.: Holomorphic curves in symplectic geometry.
Progress in Mathematics, 117. Birkhauser Verlag, Basel, 1994. xii+328 pp.

Banos B.: On symplectic classification of effective 3-forms and Monge-
Ampére equations, Differential Geom. Appl. 19 (2003), pp. 147-166.

Bedulli L.: Tre-varieta di Calabi-Yau generalizzate, PhD thesis, Universita
di Firenze (2004).

Bedulli L., Vezzoni L.: The Ricci Tensor of SU(3)-Manifolds, to appear in
J. Geom. Phys. (2006).

101



102 BIBLIOGRAPHY

[11] Boyer C., Galicki K.: 3-Sasakian manifolds, Surveys in differential geom-
etry: essays on Finstein manifolds, Surv. Differ. Geom., VI, Int. Press,
Boston, MA (1999), pp. 123-184.

[12] Boyer C. P., Galicki K., Matzeu P.: On Eta-Einstein Sasakian Geometry,
Commun. Math. Phys. 262 (2006), pp. 177-208.

[13] Boyer C. P.; Galicki K., Nakamaye M.: On the geometry of Sasakian-
Einstein 5-manifolds, Math. Ann. 325 n. 3 (2003), pp. 485-524.

[14] Bryant R.: Metric with exceptional holonomy, Ann. of Math. (2) 126
(1987), pp. 525-576.

[15] Bryant R.: Some remarks on Ga-structures, e-print: math.DG/0305124.

[16] Brylinski J.L: A Differential Complex for Poisson Manifolds, J. Diff. Geom.
28 (1988) pp. 93-114.

[17] Cabrera F. M., Swann A.: Curvature of (special) almost Hermitian mani-
folds, e-print: math.DG/0501062.

[18] Chiossi S., Salamon S.: The intrinsic torsion of SU(3) and G2 structures.
Differential geometry, Valencia, 2001, 115-133, World Sci. Publishing,
River Edge, NJ, 2002.

[19] Cleyton R., Ivanov S.: On the geometry of closed Ga-structure, e-print:
math.DG/0306362.

[20] Chiossi S. G., Swann A.: Ga-structures with torsion from half-integrable
nilmanifolds, J. Geom. Phys. 54 (2005), pp. 262—285.

[21] Conti D., Tomassini A.: Special Symplectic Siz-Manifolds, e-print:
math.DG/0601002

[22] ContiD., Salamon S.: Generalized Killing spinors in dimension 5, e-print:
math.DG/0508375, to appear in Trans. Amer. Math. Soc..

[23] de Bartolomeis P.: Geometric Structures on Moduli Spaces of Special La-
grangian Submanifolds, Ann. di Mat. Pura ed Applicata, IV, Vol. CLXXIX,
(2001), pp. 361-382.

[24] de Bartolomeis P.: GBV Algebras, Formality Theorems, and Frobenius
Manifolds, Seminari di Geometria Algebrica 1998-1999, Scuola Normale
Superiore, Pisa, pp. 161-178.



BIBLIOGRAPHY 103

[25] de Bartolomeis P.: Symplectic and Holomorphic Theory in Kdihler Geome-
try, XIII Escola de Geometria Diferencial Istituto Matemética e Estatistica
Universidade de Sao Paulo, (2004)

[26] de Bartolomeis, P.: Zs and Z-deformation theory for holomorphic and
symplectic manifolds. Complex, contact and symmetric manifolds, 75-103,
Progr. Math., 234, Birkhduser Boston, Boston, MA, (2005).

[27] de Bartolomeis P., Tomassini A.: On Formality of Some Symplectic Mani-
folds, Inter. Math. Res. Notic. 24 (2001) pp. 1287-1314.

[28] de Bartolomeis P., Tomassini A.: On the Maslov Index of Lagrangian Sub-
manifolds of Generalized Calabi-Yau Manifolds, to appear in Int. J. of Math
17 (8) (2006), pp. 921-947.

[29] de Bartolomeis P., Tomassini A.: On solvable Generalized Calabi-Yau Man-

ifolds, to appear in Ann. Inst. Fourier.

[30] Deligne P., Griffiths P., Morgan J., Sullivan D.: Real Homotopy Theory of
Kahler Manifolds, Inventiones Math. 29 (1975), pp. 245-274.

[31] Draghici T.: Symplectic obstructions to the existence of w-compatible Ein-

stein metrics, preprint (2003).

[32] El Kacimi-Alaoui A.: Opérateurs transversalement elliptiques sur un feuil-
letage riemannien et applications, Compositio Math. 73, n. 1 (1990), pp.
57-106.

[33] Fernandez M., de Ledn M., Saralegui M.: A six dimensional Compact Sym-
plectic Solvmanifold without K&hler Structures, Osaka J. Math 33 (1996)
pp. 19-34.

[34] Fernandez M., Gray A.: Compact Symplectic Solvmanifolds not admitting
Complex Structures, Geometriae Dedicata 34 (1990) pp. 295-299.

[35] Gompt R.E., Mrowka T.S., Irreducible 4-manifolds Need not be Complex,
Ann. of Math. (2) 138 (1993) pp. 61-111.

[36] Gross M., Huybrechts D., Joyce D.: Calabi- Yau manifolds and related ge-
ometries, Lectures from the Summer School held in Nordfjordeid, June
2001. Universitext. Springer-Verlag, Berlin, 2003. viii-+239 pp.

[37] Harvey R., Lawson H. Blaine, Jr.: Calibrated geometries, Acta Math. 148
(1982) pp. 47-157.



104

BIBLIOGRAPHY

[38]

[39]

[40]

[41]

[42]

[43]

[44]

|45]

[46]

[47]

[48]

[49]

Hasegawa K.: A note on compact solvmanifolds with K&hler structures,
e-print CV/0406227 (2004).

Hitchin N.: Generalized Calabi-Yau Manifolds, Quart. J. Math. 54 (2003),
pp. 281-308.

Hitchin N.: Stable forms and special metrics, Global differential geometry:
the mathematical legacy of Alfred Gray (Bilbao, 2000), 70-89, Contemp.
Math., 288, Amer. Math. Soc., Providence, RI, 2001.

Hitchin N.J.: The moduli space of special Lagrangian submanifolds, Ann.
Scuola Norm. Sup. Pisa CL Sci. (4) 25 (1997), no. 3-4, pp. 503-515 (1998).
N. J. Hitchin, The Moduli Space of Special Lagrangian Submanifolds , dg-
ga/9711002

Hopf E.: Elementare Bemerkungen ueber die Loesung parzieller Differen-
tialgleichungen zweiter Ordnung von elliptischen Typus, Sitzungber. Preuss.
Akad. Wiss. phys. math. Kl. 19 (1927), pp. 147-152.

Joyce, Dominic D.: Compact manifolds with special holonomy, Oxford
Mathematical Monographs. Oxford University Press, Oxford, 2000. xii+436
pp.-

Kodaira K.: Complex manifolds and deformation of complex structures,
translated from the 1981 Japanese original by Kazuo Akao. Reprint of
the 1986 English edition. Classics in Mathematics. Springer-Verlag, Berlin,
2005. x+-465 pp.

Lu P.: K&hler-Einstein metrics on Kummer threefold and special La-
grangian tori, Comm. Anal. Geom. 7 (1999), no. 4, pp. 787-806.

Malcev A.: On a class of homogeneous spaces, Amer. Math. Soc. Transla-
tion no.42 (1951).

Mathieu O.: Harmonic cohomology classes of symplectic manifolds, Comm.
Math. Helvetici 70 (1995) pp. 1-9.

McDuff D., Salamon D.: Introduction to Symplectic Topology, Oxford
Mathematical Monographs, Oxford University Press, New York (1995).

McLean R. L.: Deformations of Calibrated Geometries, Comm. Anal.
Geom. 6, no.4, (1998) pp. 705-747.



BIBLIOGRAPHY 105

[50] Mostow G.D.: Factor spaces of solvable groups, Ann. of Math. (2) 60 (1954)
pp. 1-27.

[51] Mostow G.D.: Representative Functions on Discrete groups and Solvable
Arithmetic Subgroups, American J. of Math. 92 (1970) pp. 1-32.

[52] Nakamura I.: Complex parallelisable manifolds and their small deforma-
tions, J. of Diff. Geom. 10 (1975) pp. 85-112.

[53] Newlander A., Nirenberg L.: Complex anallytic coordinates in almost com-
plex magqnifold, Ann. of Math. 65 (1957), pp. 391-404.

[54] Nomizu K.: On the cohomology of compact homogeneous spaces of nilpo-
tent Lie groups, Ann. Math. 59 (1954), pp. 531-538.

[55] Okumura M.: Some remarks on space with a certain contact structure.
Tohoku Math J. (2), 14 (1962), pp. 135-145.

[56] Paoletti R.: On families of Lagrangian submanifolds, Manuscripta Math.
107 (2002), no. 2, pp. 145-150.

[57] Salamon S.: Riemannian geometry and holonomy groups, Pitman Research
Notes in Mathematics Series, 201. Longman Scientific & Technical, Harlow;
copublished in the United States with John Wiley & Sons, Inc., New York,
1989. viii+201 pp.

[58] Sato M., Kimura T.: A classification of irreducible prehomogeneous vector
spaces and their relative invariants, Nagoya Math. J. 65, 1977, pp. 1-155.

[59] Silva A.: Spazi omogenei Kéhleriani di gruppi di Lie complessi risolubili,
Boll. U.M.I. 2 A (1983) pp. 203-210.

[60] Strominger A., Yau S-T, Zaslow E.: Mirror Symmetry is T-Duality , Nucl.
Phys. B 479, No. 1-2, 1996, pp.243-25

[61] Thurston W., Some Ezample of Symplectic Manifolds, Proc. AM.S. 5
(1976), pp. 467-468.

[62] Tomassini A., Vezzoni L.:. Admissible Complex Structures and Moduli
Space, e-print (2006)

[63] Tomassini A., Vezzoni L.: Contact Calabi-Yau Manifolds and Special Leg-
endrian Submanifolds, to appear in Osaka J. Math..



106 BIBLIOGRAPHY

[64] Tomassini A., Vezzoni L.: Special Lagrangian Submanifolds in General-
ized Calabi-Yau Manifolds, preprint n. 411, Dipartimento di Matematica
Universita di Parma (2005).

[65] Tralle A. Kedra J.: Compact completely solvable K&hler solvmanifolds are
tori, Int. Math. Res. Not. 15 (1997) pp. 727-732.

[66] Tralle A. Oprea J.: Symplectic Manifolds with no Kéhler Structure, Lecture
Notes in Mathematics, 1661, Springer-Verlag, Berlin, 1997.

[67] Vezzoni L.: A Generalization of the Normal Holomorphic Frames in Sym-
plectic Manifolds, Boll. U.M.I. 9-B (2006), pp. 723-732.

[68] Vezzoni L.: On the Hermitian Curvature of a Symplectic Manifold, Adv.
Geom. 7 (2007), no. 2, pp. 207-214.

[69] C. Viterbo: Intersection de Sous-Varétés Lagrangiennes, Functionelles
d”action et Indice des Systémes Hamiltoniens, Bull. Soc. Math. France 115
(1987), pp. 361-390.

[70] Yan D.: Hodge Structure on Symplectic Manifolds, Adv. in Math. 120
(1996), pp. 143-154.

[71] Yau S.T.: On Calabi’s Conjecture and some new results in algebraic geom-
etry, Proc. Nat. U.S.A. 74 (1977), pp. 1789-1799.

[72] Yau S.T.: On the Ricci curvature of a Compact Kahler manifold and the
complex Monge-Ampere Equation I, Comm. Pure Appl. Math. 31 (1978),
pp. 339-411.



