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Chapter 1

Introduction

A Calabi-Yau manifold is a Kähler manifold endowed with a constant and nor-
malized complex volume form. Equivalently a Calabi-Yau manifold can be de-
�ned as a manifold equipped with an integrable SU(n)-structure. The study of
this class of manifolds begins with the proof of the celebrated Calabi's conjec-
ture given by Yau in [71, 72]. As a direct consequence of Calabi-Yau theorem
we get that any compact simply connected Kähler manifold with vanishing �rst
Chern class admits a Calabi-Yau structure.

Moreover Calabi-Yau manifolds have a central role in string theory. In fact
in this physical theory the universe is represented as

X × C

where X denotes the Minkowski space and C is a compact Calabi-Yau 3-fold.
Furthermore the Hitchin-Strominger-Yau-Zaslow theory of deformation of

Special Lagrangian submanifolds introduced in the study of Mirror Symmetry
imposes to consider generalizations of the Calabi-Yau structure (see e.g. [39]).

In [28] de Bartolomeis and Tomassini introduce a natural generalization
of Calabi-Yau manifolds to the non-holomorphic case. Namely, a generalized
Calabi-Yau manifold is a symplectic manifold endowed with a compatible al-
most complex structure and a normalized complex volume form ε covariant
constant with respect to the Chern connection. Special Lagrangian submani-
folds of generalized Calabi-Yau manifolds have the important property to have
vanishing Maslov class.

In dimension six the de�nition of generalized Calabi-Yau manifold can be
improved by requiring that real part of ε to be closed. Such manifolds are called
special generalized Calabi-Yau manifolds. In this case the form <e ε is a calibra-
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6 Chapter 1. Introduction

tion and special Lagrangian submanifolds are calibrated submanifolds (see [37]).

The �rst problem faced in this thesis is to give a description of the in�nites-
imal deformations of the almost complex structures on a compact symplectic
manifold admitting a generalized Calabi-Yau structure (such structures will be
called admissible). At the beginning of Chapter 2 we give an example of a
non-admissible almost complex structure calibrated by a symplectic form on a
nilmanifold (see example 3.9). After that we compute the tangent space to the
moduli space of admissible almost complex structures calibrated by the same
symplectic form. As a direct application we get that the standard holomorphic
structure on the complex torus is not rigid.

In the second part of chapter 3 we take into account 6-dimensional spe-
cial generalized Calabi-Yau manifolds. In order to determine some Riemannian
properties of our manifolds we write down (with the aid of MAPLE) an explicit
formula for the scalar curvature and the Ricci tensor of an arbitrary SU(3)-
structure (see theorems 3.32, 3.34). As a direct application of our formulae we
get that the scalar curvature of a 6-dimensional generalized Calabi-Yau manifold
is always non-positive and that the Einstein equation forces a special general-
ized Calabi-Yau structure to be integrable (also in the non-compact case) (see
corollary 3.36). In chapter 4 we take into account special generalized Calabi-Yau
structures. In the �rst part of this chapter we give some examples of special
generalized Calabi-Yau structures on compact manifolds and we describe some
special Lagrangian submanifolds. After that we prove that the set of the Calabi-
Yau structures can be not open in the set of generalized Calabi-Yau structures
(see remark 4.10) and we give a compact example of a complex manifold admit-
ting generalized Calabi-Yau structures, but no special generalized Calabi-Yau
structures. In section 4.1.3 we study special Lagrangian geometry proving an
extension theorem. More precisely, we prove that, given a family of special gen-
eralized Calabi-Yau manifolds (M, κt, Jt, εt) and a compact special Lagrangian
submanifold p0 : L ↪→ M of (κ0, J0, ε0) under some cohomological conditions
there exists a family of special Lagrangian submanifolds pt : L ↪→ (M, κt, Jt, εt),
that extends p0 : L ↪→ M (see theorem 4.13). This is an extension of a the-
orem of Lu Peng (see [45] and also [56]) to the context of special generalized
Calabi-Yau manifolds. In the last part of this chapter we generalize the Lu Peng
theorem to the 4-dimensional case.

In the last chapter we introduce a generalization of the Calabi-Yau structure
to the contest of contact manifolds introducing the de�nition of contact Calabi-
Yau manifold . Roughly speaking, a contact Calabi-Yau manifold is a 2n + 1-
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dimensional manifold M endowed with a contact form α, a complex structure
J on ξ = kerα calibrated by κ = 1

2 dα and a closed complex basic volume form
ε. These manifolds are a special class of α-Einstein null-Sasakian manifolds.
As a direct consequence of the de�nition, in a contact Calabi-Yau manifold
(M,α, J, ε) the real part of ε is a calibration. Furthermore, it turns out that a
submanifold p : L ↪→ M of a contact Calabi-Yau manifold is calibrated by <e ε

if and only if
p∗(α) = 0 , p∗(=m ε) = 0 .

In such a case L is said to be a special Legendrian submanifold. We prove that the
Moduli space of deformations of special Legendrian submanifolds near a �xed
compact one L is a smooth 1-dimensional manifold. Furthermore we study
Lu Peng problem in this class of manifolds. Then we classify 5-dimensional
nilpotent algebras admitting an invariant contact Calabi-Yau structure and in
the last section we generalize our results to the r-contact manifolds.
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forms has been computed in collaboration to Lucio Bedulli. I would like to thank
him. The proof of this formula has been obtained with the aid or MAPLE. I
am grateful to Robert Bryant for supplying me with the computer programs he
used to perform the symbolic computations in the G2-case. I am also grateful
to Richard Cleyton for suggesting a considerable strengthening of a previous
version of Corollary 3.36 and useful discussions.
Finally, I am pleased to thank the referees for valuable remarks and suggestions
for a better presentation of the results present in this paper.



8 Chapter 1. Introduction

Notation: In this thesis we use the following notation:
Given a manifold M , we denote by ΛrM the space of smooth r-forms on M and
we set ΛM :=

⊕n
r=1 ΛrM .

Furthermore when a coframe {α1, . . . , αn} is given we will denote the r-form
αi1 ∧ · · · ∧ αir by αi1...ir . We use the convention:

α ∧ β = α⊗ β − β ⊗ α .

In the indicial expressions the symbol of sum over repeated indices is sometimes
omitted.



Chapter 2

Background

2.1 Symplectic vector spaces
Let V be a 2n-dimensional real vector space. A symplectic structure on V is a
skew-symmetric non-degenerate 2-form κ, i.e. a 2-form satisfying κn 6= 0. The
pair (V, κ) is called a symplectic vector space. A symplectic structure κ gives a
duality ]κ : V → V ∗ de�ned by

]κ(v)w = κ(v, w) ,

for v, w ∈ V .

Example 2.1. Let us denote by {e1, . . . e2n} the standard basis of R2n and by
{e1, . . . , e2n} the respective dual frame. The 2-form

κ0 =
n∑

i=1

e2i−1 ∧ e2i ,

is a symplectic structure on R2n called the standard symplectic structure. The
pair (R2n, κ0) is said to be the standard symplectic vector space.

An endomorphism φ between two symplectic vector spaces (V1, κ1), (V2, κ2) is
said to be a symplectomorphism if

φ∗(κ2) = κ1 .

It is well known that any 2n-dimensional symplectic vector space (V, κ) is
symplectomorphic to (R2n, κ0).

9



10 Chapter 2. Background

An endomorphism J of V is said to be a complex structure if it satis�es
J2 = −I, where I denotes the identity on V . The pair (V, J) is called a complex
vector space.

Example 2.2. Let J0 ∈End(R2n) be represented by the matrix

J0 =

(
0 −In

In 0

)
,

where In denotes the identity of Rn. This endomorphism satis�es J2
0 = −I and

consequently it is a complex structure on R2n. We refer to J0 as to the standard
complex structure.

A complex structure J on V gives a natural splitting of V C := V ⊗ C in V C =
V 1,0

J ⊕ V 0,1
J , where V 1,0

J is the J-eigenspaces relatively to i and V 0,1
J is the

J-eigenspace relatively to −i. Furthermore if we set

Λ1,0
J V := (V 1,0

J )∗ , Λ0,1
J V := (V 0,1

J )∗

and
Λp,q

J V := Λ1,0
J V ∧ · · · ∧ Λ1,0

J V︸ ︷︷ ︸
p−times

∧Λ0,1
J V ∧ · · · ∧ Λ0,1

J V︸ ︷︷ ︸
q−times

,

we have that the vector space Λr
CV

∗ of complex valued r-forms on V splits as

Λr
CV

∗ =
⊕

p+q=r

Λp,q
J V .

Moreover the space End(V ) of endomorphisms of V decomposes in

(2.1) End(V ) = End1,0
J (V )⊕ End0,1

J (V ) ,

where

End1,0
J (V ) = {L ∈ End(V ) | J ◦ L = L ◦ J} ,(2.2)

End0,1
J (V ) = {F ∈ End(V ) | J ◦ F = −F ◦ J} .(2.3)

A positive-de�ned scalar product g on a complex vector space (V, J) is said to
be J-Hermitian if g(Jv, Jw) = g(v, w) for any v, w ∈ V . Note that if h is an
arbitrary positive-de�ned scalar product on V , then the tensor g := 1

2 (h + Jh)
de�nes a J-Hermitian metric on V . It follows that any complex structure admits
a Hermitian metric.

Let (V, κ) be a symplectic vector space. A complex structure J on V is said
to be κ-tamed if

κ(v, Jv) > 0
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for any v ∈ V , v 6= 0. Let us denote by Tκ(V ) the space of κ-tamed complex
structures on V . By the de�nition we immediately get that this space in an open
subset of End(V ). Moreover if J ∈ Tκ(V ) and Z ∈ End(V ), then J̃ = −JZ is
κ-tamed if and only if

(2.4) Z > 0 , Z−1 = J−1ZJ ,

where Z > 0 means that

gJ(v, Zv) > 0 for all v ∈ V , v 6= 0 .

Vice versa if J and J̃ are κ-tamed the endomorphism JJ̃ satis�es conditions
(2.4). It follows that Tκ(V ) is parameterized by the set

A := {Z ∈ End(V ) satisfying (2.4)} .

Let
F : A → {W ∈ End(V ) | |W | < 1} ,

be the map de�ned by

F (Z) = (I − Z)(I + Z)−1 .

This map interchanges J and −J and a vector W ∈ V belongs to the image of
F if and only if it satis�es

|W | < 1 , −W = J−1WJ .

It follows that Im(F ) is a convex space. Hence we have proved that Tκ(V ) is
contractible.
A κ-tamed complex structure J is said to be κ-calibrated (or κ-compatible) if

κ(Jv, Jw) = κ(v, w) ,

for any v, w ∈ V . Let us denote by Cκ(V ) ⊂ Tκ(V ) the space of κ-calibrated
complex structures on V . Any J ∈ Tκ(V ) induces a positive de�ned inner
product gJ on V by the relation

(2.5) gJ(v, w) :=
1
2
(κ(v, Jw)− κ(Jv,w)) .

Note that if J ∈ Cκ(V ), then gJ is simply obtained by gJ(v, w) = κ(v, Jw).

Example 2.3. The standard complex structure J0 is κ0-calibrated and it in-
duces the standard inner product on R2n.
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The scalar product gJ is obviously J-Hermitian. Consequently gJ induces the
Hodge star operator ∗ : Λp,q

J V → Λn−q,n−p
J V , de�ned by

α ∧ ∗β = gJ(α, β)
κn

n!
.

We recall that ∗2 = (−1)p+qI and that it is C-linear. In a analogue way κ

induces an operator F : ΛrV ∗ → Λ2n−rV ∗, called the symplectic star operator,
by means of the relation

α ∧Fβ = κ(α, β)
κn

n!
.

We have the following easy-prove lemma (see e.g. [27])

Lemma 2.4. These identities hold:

1. F2 = I;

2. if J ∈ Cκ(V ), then J∗ = ∗J = F.

The following lemma, proved in [27], will be useful in chapter 3.

Lemma 2.5. Let ζ ∈ Λ1V ∗ and γ ∈ ΛrV ∗; we have

(2.6) F(ζ ∧ γ) = (−1)rζ ∧F(κ ∧ γ)− (−1)rF(κ ∧F(ζ ∧Fγ)) .

2.1.1 Lagrangian subspaces
Let (V, κ) be a symplectic vector space. A subspace i : W ↪→ V is said to be
isotropic if i∗κ = 0. We have the following lemma (see e.g. [48])

Lemma 2.6. Let i : W ↪→ V be an isotropic subspace, then dimRW ≤ 1
2 dimRV .

We recall the following

De�nition 2.7. A subspace i : W ↪→ V of a symplectic vector space (V, κ) is
said to be Lagrangian if

1. it is isotropic ;

2. dimRW = 1
2 dimRV .

Let i : W ↪→ V be a Lagrangian subspace; �x J ∈ Cκ(M) and consider the
metric gJ induced by (κ, J) by (2.5). Since i∗κ = 0 we have that

(2.7) gJ (w, Jw) = 0
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for any w ∈ W . Consequently if {w1, . . . , wn} is a gJ -orthonormal basis of W ,
then {w1, . . . , wn, Jw1, . . . , Jwn} is an orthonormal basis of the ambient space
V . It follows that, if we denote by Λ(V, κ) the set of the Lagrangian vector
subspaces of (V, κ), then

Λ(V, κ) ' U(n)/O(n) .

In the sequel we will denote by Λ(n) the homogeneous space U(n)/O(n).

2.2 Symplectic manifolds and calibrated almost
complex structure

Let M be a 2n-dimensional manifold.

De�nition 2.8. An almost symplectic structure on M is a non-degenerate 2-
form κ. The pair (M, κ) is said to be an almost symplectic manifold.
If further κ is closed, i.e. dκ = 0, then it is called a symplectic structure and
(M,κ) a symplectic manifold.

As in the linear case an almost symplectic structure κ induces an endomorphism

]κ : TM → T ∗M ,

given by

(2.8) ]κ(X)(Y ) = κ(X, Y ) .

An easy application of Stokes' theorem gives the following

Lemma 2.9. Let (M, κ) be a compact symplectic manifold and let bj(M) :=
dim Hj(M,R) be the j-th Betti number of M . Then

b2i 6= 0 ,

for any 1 ≤ i ≤ n.

Let (M1, κ1), (M2, κ2) be symplectic manifolds; a di�eomorphism φ : M1 →
M2 satisfying

φ∗(κ1) = κ2

is said to be a symplectomorphism. Let us denote by Sp(M,κ) the group of the
symplectomorphisms of (M,κ). We have the following well-known
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Lemma 2.10 (Darboux). Any symplectic manifold is locally symplectomorphic
to (R2n, κ0).

Hence there are no local symplectic invariants.

Now we recall the de�nitions of complex and almost complex structure:

De�nition 2.11. An almost complex structure on M is an endomorphism J

of TM satisfying J2 = −I. The couple (M, J) is called an almost complex
manifold.

If M admits a holomorphic atlas, then it inherits a canonical almost complex
structure J , locally de�ned by





J(∂xi
) = ∂yi

, for i = 1 . . . n ,

J(∂yj ) = −∂xi , for i = 1 . . . n ,

where {zi = xi + iyi} is a system of holomorphic coordinates.

De�nition 2.12. An almost complex structure is said to be integrable, or a
complex structure, if it is induced by a holomorphic atlas. In this case the
couple (M,J) is called a complex manifold.

For any almost complex manifold (M, J) it is de�ned the Nijenhuis tensor of J :

NJ (X, Y ) = [JX, JY ]− J [JX, Y ]− J [X,JY ]− [X,Y ] ,

for X, Y ∈ TM . Obviously, if J is integrable, the correspondent Nijenhuis
tensor vanishes. We have the following important

Theorem 2.13 (Newlander-Nirenberg [53]). An almost complex structure J is
integrable if and only the Nijenhuis tensor NJ vanishes identically.

Let (M,J) be an almost complex manifold; according with the decompo-
sition of Λr

CM in Λr
CM =

⊕
p+q=r Λp,q

J M , the exterior derivative d : Λr
CM →

Λr+1
C M splits as

d : Λp,q
J M → Λp+2,q−1

J M ⊕ Λp+1,q
J M ⊕ Λp,q+1

J M ⊕ Λp−1,q+2
J M ,

d = AJ + ∂J + ∂J + AJ .

It is well known that J is integrable if and only if ∂
2

J = 0 (or equivalently if and
only if AJ = 0).

Finally we recall that a complex p-form γ on an almost complex manifold
(M, J) is said to be holomorphic if it is of type (p, 0) and satis�es

∂Jγ = 0 .
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2.2.1 Hermitian structures
A Riemann metric g on a complex manifold (M,J) is said to be J-Hermitian
if it is preserved by J . In this case the triple (M, g, J) is said to be an almost
Hermitian manifold. If further the almost complex structure J is integrable,
then (M, g, J) is called a Hermitian manifold. If h is an arbitrary metric on M ,
then the tensor g := 1

2 (h+Jh) de�nes a Hermitian metric on (M,J). It follows
that any almost complex manifold (M, J) admits Hermitian metrics. An almost
Hermitian structure (g, J) induces an almost symplectic structure κ on M given
by the relation

(2.9) κ(X, Y ) := g(JX, Y ) .

Let us consider now an almost symplectic manifold (M, κ). An almost com-
plex structure J on M is said to be κ-tamed if for any x ∈ M , Jx is a linear
complex structure on TxM tamed by κx. Since the space of the complex struc-
tures on a vector space tamed by a linear symplectic structure is contractible,
any symplectic manifold (M, κ) admits a κ-tamed almost complex structure.
Furthermore the space Tκ(M) of κ-tamed almost complex structures on M is
a contractible space, too. A κ-tamed almost complex structure is said to be
κ-calibrated if

κx(Jxv, Jxw) = κx(v, w) ,

for any x ∈ M , v, w ∈ TxM . As in the tamed case we have that any symplectic
structure κ admits a κ-calibrated almost complex structure and that the space
Cκ(M) of the κ-calibrated almost complex structures is a contractible subspace
of Tκ(M).

Any κ-calibrated almost complex structure J induces a Hermitian metric
gJ by relation (2.9). Hence one can de�ne an almost Hermitian structure as a
couple (κ, J) instead of a couple (g, J).

Notation: From now on, when an almost Hermitian structure (κ, J) is
given, we will denote by gJ the induced metric and by ∇ the Levi-Civita
connection of gJ .

We have following well-known

Lemma 2.14. Let (M,κ, J) be an almost Hermitian manifold. The following
formula holds

(2.10) 2gJ((∇XJ)Y,Z) = dκ(X, Y, Z)− dκ(X,JY, JZ) + gJ(NJ(Y, Z), JX) ,
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for any vector �elds X,Y, Z on M .

In the sequel we will use the following

Lemma 2.15. Let (M, J) be a compact almost complex manifold. Let f : M →
C be a holomorphic map, i.e. a map satisfying ∂Jf = 0, then it is constant.

2.2.2 Symplectic and complex bundles
De�nitions of symplectic and complex structure can be easily generalized to
�bre bundles. Symplectic bundles will be used in chapter 5.

Let π : F → M be a vector bundle on an arbitrary manifold M . A symplectic
structure on F is by de�nition a smooth section κ of F ∗ ⊗ F ∗ such that κx is
a symplectic structure on the �bre Fx for any x ∈ M . For example an almost
symplectic structure on M is a symplectic structure on the tangent bundle TM .

If κ is a symplectic structure on F , then the pair (F, κ) is said to be a
symplectic vector bundle on M . Let J be an endomorphism of F . If J2 = −IF ,
then it is said to be a complex structure on F and the pair (F, J) is called a
complex vector bundle. A complex structure J on F is said to be calibrated by
a symplectic structure κ if

κ(J ·, J ·) = κ(·, ·) , κ(·, J ·) > 0 .

In this case the tensor gJ(·, ·) := κ(·, J ·) is a J-Hermitian metric on F . Also in
this case the space Cκ(F ) of κ-calibrated complex structures on F is non-empty
and contractible.

2.2.3 The Chern connection
Let (M, κ) be an almost symplectic manifold and let J be a κ-calibrated almost
complex structure on M . The pair (κ, J) induces a connection on M , called
the Chern connection, whose covariant derivative characterized by the following
properties

∇̃J = 0 , ∇̃gJ = 0 , T ∇̃(JX, Y ) = T ∇̃(X, JY ) ,

If further κ is a symplectic structure, then the relative Chern connection is
simply given by the formula

(2.11) ∇̃ := ∇− 1
2

J∇J ,
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where ∇ is the Levi Civita connection associated to the metric gJ induced by
(κ, J). In this case the torsion of ∇̃ reduces to

T ∇̃ =
1
4

NJ .

In the symplectic case we also have that if we denote by ∇̃0,1 the (0,1)-part of
∇̃, then ∇̃0,1 = ∂J (see e.g. [28]).

2.2.4 First Chern class of a symplectic manifold
Let (M, κ) be an almost symplectic manifold. Since Tκ(M) is a contractible
space, then the �rst Chern class of (M,J) does not depend from the choice of
J ∈ Tκ(M). Hence we can de�ne the �rst Chern class c1(M, κ) ∈ H2(M,C) of
an almost symplectic manifold (M, κ) as the �rst Chern class of (M,J), where
J is arbitrary element of Tκ(M).
If J belongs to Cκ(M), then the Ricci form ρ̃ of the respective Chern connection
is a closed form. It can be seen that

c1(M, κ) = [
1
2π

ρ̃ ] .

In particular the cohomology class of ρ̃ does not depend from the choice of
J ∈ Cκ(M).

2.3 Kähler and Calabi-Yau manifolds
In this section we recall the de�nitions of Kähler and Calabi-Yau manifold and
some results which will be useful in the sequel.

2.3.1 Kähler manifolds
Let M be a 2n-dimensional manifold.

De�nition 2.16. A Kähler structure on M is a pair (κ, J), where

• κ is a symplectic structure;

• J is a κ-calibrated complex structure.

The triple (M,κ, J) is said to be a Kähler manifold.

We have the following
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Proposition 2.17. Let (M,κ, J) be an almost Hermitian manifold. The fol-
lowing facts are equivalent

1. ∇J = 0;

2. the Chern connection of (κ, J) coincides with the Levi Civita connection
induced by the metric gJ ;

3. (M, κ, J) is a Kähler manifold.

Example 2.18. The standard Hermitian space (R2n, κ0, J0) is a Kähler mani-
fold.
The complex projective space CPn equipped with the standard complex struc-
ture and the Fubini-Study metric is a Kähler manifold.

Furthermore we have that any complex submanifold of a Kähler manifold is a
Kähler manifold too. It follows that any algebraic manifold is a Kähler manifold.

Now we recall some basic properties of Kähler manifolds:

• The existence of a Kähler structure on a manifold M forces the odd Betti
numbers of M to be even.

• If ∇ denotes the Levi-Civita connection of a Kähler metric on a manifold
M , then around any o ∈ M there exists a local (1, 0)-frame {Z1, . . . , Zn}
satisfying

∇iZj [o] = ∇iZj [o] = ∇iZj [o] = 0 ,

for any 0 ≤ i, j ≤ n.

• A Kähler form κ can be always write locally as κ = i ∂J∂Jφ , for some
C∞ map φ called the potential of κ.

• In a Kähler manifold any exact (1, 1)-form γ = dη can be write as γ =
i∂J∂Jφ, for some smooth map φ.

• The curvature tensor of a Kähler metric satis�es

R(JX, JY ) = R(X,Y ) ,

for any pair of vector �elds (X, Y ).
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2.3.2 Calabi's conjecture and Calabi-Yau structures
Let (M, J) be a complex manifold admitting Kähler structures and let g be a
Kähler metric on (M,J) with Kähler form κ. If ρ denotes the Ricci form of
g, then it is a closed and satis�es c1(M, J) = 1

2π [ ρ ]. Hence it is natural to
ask which (1,1)-forms representing c1(M,J) are the Ricci form of some Kähler
metric on (M, J). In 1954 Eugenio Calabi proposed the following conjecture

Conjecture: Let (M, J) be a compact complex manifold admitting Kähler struc-
tures and let g be a Kähler metric on (M, J) with Kähler form κ. Let ρ′ be a
real closed (1, 1)-form on M such that c1(M, J) = 1

2π [ ρ′ ]. Then there exists a
unique (up to homothety) Kähler metric g′ on (M, J) with Kähler form κ′ such
that [κ] = [κ′] ∈ H2(M,C) and ρ′ is the Ricci form of g′.

A complete proof of the Calabi's conjecture was given by Yau in the celebrated
papers [71] and [72].

As a direct consequence of the Calabi's conjecture we have the following

Corollary 2.19. Let (M, J) be a compact complex manifold admitting Kähler
structure and with vanishing �rst Chern class. Then there exists a Ricci-�at
Kähler metric on (M,J).

Furthermore

Lemma 2.20. Let (M, κ, J) be a 2n-dimensional Kähler manifold. The follow-
ing facts are equivalent

1. the metric gJ is Ricci-�at;

2. the restricted holonomy group of Hol0(∇) is contained in SU(n).

Hence we have the following

Corollary 2.21. Let (M, κ, J) be a 2n-dimensional simply connected Kähler
manifold. The following facts are equivalent

1. the metric gJ is Ricci-�at;

2. there exists ε ∈ Λn,0
J M satisfying ∇ε = 0.

Now we can recall the de�nition of Calabi-Yau manifold

De�nition 2.22. Let M be a 2n-dimensional manifold. A Calabi-Yau structure
on M is a triple (κ, J, ε), where

• (κ, J) is a Kähler structure on M ;
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• ε ∈ Λn,0
J M is a nowhere vanishing form satisfying

∇ε = 0 ,

where∇ is the Levi-Civita connection of the metric gJ associated to (κ, J).
The triple (M,κ, J, ε) is called a Calabi-Yau manifold.

Summarizing we have

• A Calabi-Yau structure induces a Ricci-�at metric.

• If (M,J) is a compact simply connected complex manifold admitting Käh-
ler metric and with vanishing �rst Chern, then it is always possible to �nd
a Calabi-Yau structure on M compatible with J .

2.4 G-structures and intrinsic torsion
Let M be a n-dimensional manifold and let L(M) be the GL(n,R)-principal
bundle of the linear frames on M . Let G be a subgroup of GL(n,R). A G-
structure on M is a reduction Q of L(M) with structure group G. Let H be a
connection on M ; H is said be compatible with Q if H|Q de�nes a connection on
Q. A linear connection ∇ on TM is said to be compatible with a G-structure Q
if it is induced by a Q-admissible connection on L(M). We have the following

Theorem 2.23. A connection ∇ on TM is compatible with Q if and only if it
has Holonomy group Hol(∇) contained in G.

Now we can recall the de�nition of integrable G-structure

De�nition 2.24. A G-structure Q on M is said to be torsion-free if there exists
a Q-compatible torsion-free connection ∇ on TM .

In order to study the torsion of a G-structure it is useful to introduce the
map (with notation of [43])

σ : g⊗ (Rn)∗ → (Rn)∗ ⊗ Λ2(Rn)∗

given by the relation
σ(v ⊗ α⊗ w) := v ⊗ α ∧ β

(where we identify the Lie algebra g of G with a subspace of Rn ⊗ (Rn)∗) and
the vector spaces

W1 := Rn ⊗ Λ2(Rn)∗ , W2 := Imσ , W3 := W1/W2 , W4 := kerσ .
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Let ρi : Wi → Aut(Wi) be the standard representation and let

ρi(Q) := Q×Wi/G

be the vector bundle associated to Wi. If ∇,∇′ are two connections on TM

compatible with Q, then their projections on ρ3(Q) coincide. So we can de�ne
the intrinsic torsion T i(Q) of a G-structure Q as the projection on ρ3(Q) of
the torsion of an arbitrary connection on TM compatible with Q. It easy to
see that if T i(Q) vanishes, then there exists a torsion-free connection ∇ on
TM compatible with Q. Hence the intrinsic torsion of a G-reduction Q is an
obstruction to �nd torsion-free connections on TM compatible with Q.

Example 2.25. If (M,J) is an almost complex manifold, then the almost
complex structure J induce a GL(n,C)-reduction Q of L(M). Let g be an
arbitrary J-Hermitian metric on M and let ∇̃ be the Chern connection of (M, J).
Since ∇̃J = 0, then ∇̃ is a connection compatible with Q. We can write

T ∇̃ =
1
4

NJ + LJ .

It is easy to see that LJ ∈ ρ3(Q). Consequently the intrinsic torsion of Q is

T i(Q) =
1
4

NJ .

Example 2.26. Let (M, g, J) be an almost Hermitian manifold. The pair (g, J)
induces a U(n)-reduction Q of L(M). Since

∇̃J = 0 , ∇̃g = 0 ,

then ∇̃ is compatible with Q. In this case we have

T i(Q) = T ∇̃ ,

so that the U(n) reduction is integrable if and only if (g, J) induces a Kähler
structure on M .
Note that if dκ = 0, then the intrinsic torsion of (κ, J, ε) reduces to 1

4 NJ .





Chapter 3

SU(n)-structures

In this chapter, which is the core of the present work, we take in consider-
ation SU(n)-structures. In the �rst section we recall the de�nition of gener-
alized Calabi-Yau manifold, given in [28], which is a natural generalization of
the Calabi-Yau structure to the non-holomorphic case. In §3.1.1 we introduce
the de�nition of κ-admissible almost complex structure, which simply refers to
a κ-calibrated almost complex structure admitting a generalized Calabi-Yau
structure. Furthermore, in the spirit of Kodaira-Spencer theory of deformations
of complex structures, we study in�nitesimal deformations of admissible almost
complex structures computing the tangent space to the Moduli Space. In §3.1.4
we perform our computations in the explicit case of the complex torus showing
that the standard complex structure is not rigid.
In §3.2 we specialize to the 6-dimensional case. After some algebraic preliminar
computations we characterize some special SU(3)-structures in terms of intrinsic
torsion and we write down an explicit formula for the scalar curvature and the
Ricci tensor of an arbitrary SU(3)-manifold. It turns out that the scalar curva-
ture of the metric induced by a 6-dimensional generalized Calabi-Yau structure
is non positive and that the Einstein condition forces a 6-dimensional special
generalized Calabi-Yau structure to be integrable.

3.1 Generalized Calabi-Yau manifolds

Let M be a 2n-dimensional manifold. Since SU(n) is the Lie group of the
Endomorphisms of Rn preserving the standard symplectic structure κ0, the

23
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standard complex structure J0 and the complex volume form

ε0 := dz1 ∧ · · · ∧ dzn ,

where z1, . . . , zn are the standard coordinates on Cn, then a SU(n)-structure on
M is determined by the following data

• an almost symplectic structure;

• a κ-calibrated almost complex structure J ;

• a nowhere vanishing ε ∈ Λn,0
J M satisfying ε ∧ ε = cn

κn

n! , where cn =

2n(−1)
n2+n

2 in.

In fact, if (κ, J, ε) are given, then the SU(n)-structure is de�ned by

Q = {u ∈ L(M) | u∗(κ0) = κ , uJu−1 = J , u ∗ (ε0) = ε} .

On other hand, if Q is a SU(n)-structure on M , then it de�nes a triple (κ, J, ε)
in an obvious way. In the sequel we will refer to a SU(n)-structure on a n-
dimensional manifold as to a triple (κ, J, ε) satisfying the properties stated above
and we will call SU(n)-manifold the quadruple (M,κ, J, ε).

Since SU(n) ⊂ O(n,R), then a SU(n)-structure (κ, J, ε) induces a Riemann
metric gJ on M . This metric is simply de�ned by formula (2.9). Let ∇ be
the Levi-Civita connection of gJ . Then, according to section 2.4, the SU(n)-
structure (κ, J, ε) is integrable if and only if it satis�es

(3.1) ∇κ = 0 , ∇J = 0 , ∇ε = 0 ,

i.e. if and only if it is a Calabi-Yau structure (or equivalently if and only if the
Holonomy group of gJ is included in SU(n)). Furthermore it can be seen that
equations (3.1) are equivalent to

∆κ = 0 , ∆ε = 0 .

Moreover we have the following two lemmas.

Lemma 3.1. Let (M, J) be an almost complex manifold. Assume that there
exists a closed nowhere vanishing ε ∈ Λn,0

J M ; then J is integrable.

Proof. Let α ∈ Λ0,1
J M . Since ε is closed we have

d(ε ∧ α) = (−1)n ε ∧ dα = (−1)n ε ∧ (∂Jα + ∂Jα) ,

which forces AJ to vanish. Consequently J has to be integrable.
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Lemma 3.2. A SU(n)-structure (κ, J, ε) is integrable if and only if the forms
κ, ε are closed.

Proof. Let gJ be the J-Hermitian metric induced by (κ, J). The SU(n)-structure
(κ, J, ε) is integrable if and only if

∇κ = 0 , ∇J = 0 , ∇ε = 0 .

Hence, if (κ, J, ε) is integrable, we immediately get

dκ = 0 , dε = 0 .

Vice versa assume dκ = 0, dε = 0; then, by lemma 3.1, it follows NJ = 0.
Consequently the pair (κ, J) de�nes a Kähler structure on M and therefore

∇κ = 0 , ∇J = 0 .

Finally we observe that the condition ε ∧ ε = cn
κn

n! implies ∇ε = 0.

3.1.1 Maslov class of Lagrangian submanifolds
Let (M,κ) be a symplectic manifold and let p : L ↪→ M be a submanifold; if
for any x ∈ L the vector space p∗(TxL) is a Lagrangian subspace of (TxM,κx),
then L is said to be a Lagrangian submanifold of (M,κ). For any x ∈ M

let us denote by Λx(M) the set of Lagrangian subspaces of (TxM,κx); then
Λ(M) :=

⋃
x∈M Λx(M) is a �bre bundle over M with standard �bre U(n)/O(n).

Note that p : L ↪→ M is a Lagrangian submanifold if and only if the Gauss map
G : x 7→ TxL is a section of p∗(Λ(M)).

Let consider now a symplectic manifold (M,κ) with vanishing �rst Chern
class and �x an almost complex structure J ∈ Cκ(M). Then the couple (κ, J)
de�nes a U(n)-structure U(M) on M and, since c1(M,κ) = 0, there exists a
complex volume form ε ∈ Λn,0

J M . Such as ε induces a smooth map

det : U(M) → S1

de�ned by the relation
u∗(ε0) = det(u) ε .

Consequently we can de�ne the map

φ : Λ(M) → S1 ,

given by φ = det2. We have
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De�nition 3.3. Let
ϑ :=

1
2πi

dz

z

be the standard volume form of S1 and let

µL := (φ ◦G)∗ϑ .

Then µL is called the Maslov form of L with respect to (κ, J, ε) and its class in

H1(L,Z)/p∗(H1(M,Z))

is said to be the Maslov index of L.

Note that the Maslov index of L does not depend form the choice of (J, ε).
In [28] the authors prove the following

Lemma 3.4. Let ∇̃ be the Chern connection of (κ, J) and assume that there
exists a complex volume form ε ∈ Λn,0

J M satisfying

∇̃ ε = 0 .

Then

(3.2) φ∗(ϑ) =
1
πi

trωJ ,

where ωJ denotes the connection 1-form of ∇̃.

Some computations imply the following (see [28] again)

Proposition 3.5. Assume that ∇̃ε = 0 and let

H̃ := −
n∑

j=1

(J∇ej Jej)N ,

be the complex mean curvature vector of L, where {e1, . . . , en} is a gJ -
orthonormal frame of L and ( · )N denotes the normal component with respect
to L. Then the Maslov index of L is represented by ιH̃κ, i.e.

µL = [ιH̃κ] ∈ H1(L,Z)/p∗(H1(M,Z)) .

Finally we have

Theorem 3.6. If ∇̃ε = 0 and there exists θ ∈ S1 such that

p∗(eiθ ε) = 0 ,

then
µL = 0 .

Proof. See [28].
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3.1.2 Generalized Calabi-Yau structures
The previous results on the Maslov class of Lagrangian submanifolds suggests
to consider the following de�nition

De�nition 3.7. [28] A SU(n)-structure (κ, J, ε) on M is said to be a generalized
Calabi-Yau structure if

• κ is a symplectic form;

• J is a κ-calibrated almost complex structure;

• ε is a nowhere vanishing form in Λn,0
J M satisfying

∇̃ε = 0 .

The quadruple (M, κ, J, ε) is said to a generalized Calabi-Yau manifold (GCY).

Note that in this case the Chern connection ∇̃ is a connection compatible with
the SU(n)-reduction Q induced by (κ, J, ε). Furthermore the torsion of ∇̃ coin-
cides with the intrinsic torsion of Q and it is determined by the Nijenhuis tensor
of J . Moreover, since ∇̃0,1 = ∂J and ε ∧ ε = cn

κn

n! , we have that

∇̃ε = 0 ⇐⇒ ∂Jε = 0 .

Therefore condition ∇̃ε = 0 can be replaced by

∂Jε = 0 .

Finally we remark that the existence of such a ε implies that the Ricci tensor
of ∇̃ vanishes (see [28], again).

Example 3.8. On C3 with coordinates z1, z2, z3 let us consider the following
product ∗ de�ned by

(z1, z2, z3) ∗ (w1, w2, w3) = (z1 + w1, e
−w1z2 + w2, e

w1z3 + w3) .

Then (C3, ∗) is a solvable non-nilpotent Lie group admitting a cocompact lattice
Γ (see e.g. [52]).
Let

φ1 = dz1 , φ2 = ez1dz2 , φ3 = e−z1dz3 .

Then {φ1, φ2, φ3} de�ne a complex coframe on M that is holomorphic with
respect to the complex structure induced by C3. Set

φr = αr + iαr+3 , r = 1, 2, 3 .
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Then a direct computation gives




dα1 = dα4 = 0

dα2 = α1 ∧ α2 − α4 ∧ α5

dα3 = −α1 ∧ α3 + α4 ∧ α6

dα5 = α1 ∧ α5 − α2 ∧ α4

dα6 = −α1 ∧ α6 + α3 ∧ α4 .

Let
κ = α1 ∧ α4 + α3 ∧ α5 + α6 ∧ α2

and let J be the almost complex structure de�ned by relations

J(ξ1) = ξ4 , J(ξ3) = ξ5 , J(ξ6) = ξ2

J(ξ4) = −ξ1 , J(ξ5) = −ξ3 , J(ξ2) = −ξ6 .

Then dκ = 0 and J is a κ-calibrated non-integrable almost complex structure
on M . Set

ε = (α1 + iα4) ∧ (α3 + iα5) ∧ (α6 + iα2) .

We easily get 



∂Jε = 0

ε ∧ ε = −iκ3 .

Hence (M, κ, J, ε) is a GCY manifold.
In [29] the authors prove that M does not admit any Kähler structure and that
κ satis�es the HLC condition.

If (M, κ, J, ε) is a generalized Calabi-Yau manifold, then c1(M, κ) = 0. A central
problem in the study of this class of manifolds is to establish if the vice versa is
true:
Problem: Does any symplectic manifold (M, κ) with c1(M, κ) = 0 admit a
structure of generalized Calabi-Yau manifold ?

This problem is strictly related with the following
Problem: Given a symplectic manifold (M, κ), describe the moduli space of the
κ-calibrated complex structures admitting a generalized Calabi-Yau structure.
The last problem will be study in the next section where we will compute the
tangent space to the moduli space of such structures.
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3.1.3 Admissible complex structures
Let (M,κ) be a 2n-dimensional symplectic manifold. An almost complex
structure J ∈ Cκ(M) is said to be κ-admissible if there exists ε ∈ Λn,0

J M such
that (M, κ, J, ε) is a generalized Calabi-Yau manifold.

Now we describe an example of an almost complex structure calibrated
by a symplectic form on a compact nilmanifold which is not admissible.

Example 3.9. Let G be the Lie group

G =








1 x y

0 1 t

0 0 1


 : x, y, t ∈ R





and let Γ ⊂ G be the cocompact lattice of the matrices with integral entries.
Then KT= G/Γ is called the Kodaira-Thurston manifold.
Let M = T3×KT, where T3 is the 3-dimensional standard torus. We can identify
M with a quotient of R6, where the class of an arbitrary point (x1, . . . , x6) is
given by

[(x1, x2, x3, x4, x5, x6)] =

[(x1 + m1, x2 + m2, x3 + m3, x4 + m4, x5 + m5, x6 + m4x5 + m6)] ,

and (m1,m2,m3,m4,m5,m6) ∈ Z6. The 1-forms

α1 = dx1 , α2 = dx2 , α3 = dx3 ,

α4 = dx4 , α5 = dx5 , α6 = dx6 − x4dx5 ,

de�ne a global coframe on M . We have

dαi = 0 , for i = 1, . . . , 5 ,

dα6 = −α4 ∧ α5 .

The 2-form
κ = α12 + α34 + α56

is a symplectic structure on M . Let J be the complex structure de�ned on the
dual frame of {α1, . . . , α6} by the relations

J(X1) := X2, J(X3) := X4, J(X5) := X6,

J(X2) := −X1, J(X4) := −X3, J(X6) := −X5 .
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Then J is a κ-calibrated complex structure on M . Moreover

ε := (α1 + iα2) ∧ (α3 + iα4) ∧ (α5 + iα6)

is a nowhere vanishing section of Λ3,0
J M . We easily get

∂Jε = −(α3 − iα4) ∧ ε .

In order to prove that there are not nowhere vanishing (3,0)-forms η on M such
that ∂Jη = 0 we set

Zj =
1
2
(Xj − iJXj) , j = 1, 2, 3

and
ζj = αj + iJαj , j = 1, 2, 3 .

Let η ∈ Λ3,0
J M , then there exists a function f = u + iv ∈ C∞(M,C) such that

ε = f η. We have

∂Jη = ∂J(fε) = ∂Jf ∧ ε + f∂Jε = (
3∑

j=1

Zj(f) ζj − f ζ2) ∧ ε .

Therefore ∂Jη = 0 if and only if the following systems of PDE's are satis�ed:

a.





∂x1u− ∂x2v = 0

∂x2u + ∂x1v = 0 ,

b.





∂x3u− ∂x4v − u = 0

∂x4u + ∂x3v − v = 0 ,

c.





∂x6v − ∂x5u− x4∂x6u = 0

∂x6u + ∂x5v + x4∂x6v = 0 .

Equations a. imply that f = f(x3, x4, x5, x6). Since f is a function on M , then
it is Z−periodic in the variables x3, x5, x6. Set

u(x3, x4, x5, x6) =
∑

uN (x4) e2πi(n3x3+n5x5+n6x6) ,

v(x3, x4, x5, x6) =
∑

vN (x4) e2πi(n3x3+n5x5+n6x6) .

We have

(3.3) ∂x5u =
∑

2πin5uN (x4) e2πi(n3x3+n5x5+n6x6) .
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The same relations hold for ∂x6u, ∂x5v, ∂x6v. Hence, by plugging (3.3) and the
other expressions into equations c., we get





(m5 + x4m6)uN (x4)−m6 vN (x4) = 0

m6uN (x4) + (m5 + x4m6) vN (x4) = 0 ,

for any N = (n3, n5, n6) ∈ Z3. If (m5 + x4m6)2 + m2
6 6= 0, then uN (x4) =

vN (x4) = 0. Therefore if f satis�es equations a. and c. then f = f(x3, x4). In
particular f must be Z2-periodic. By equations b. we immediately get f ≡ 0.
Hence the almost complex structure J is not admissible.

Moduli space of admissible almost complex structures

Let (M, κ) be a symplectic manifold with vanishing �rst Chern class. Let us
denote by ACκ(M) the space of κ-admissible complex structures on M . The
Lie group Spκ(M) of the di�eomorphisms of M preserving κ acts on ACκ(M)
by

(φ, J) = φ∗Jφ−1
∗ .

Let
M(ACκ(M)) = ACκ(M)/Spκ(M) ,

be the relative moduli space.

De�nition 3.10. Let J be a κ-calibrated almost complex structure on M ;
another almost complex structure J̃ ∈ Cκ(M) is said to be close to J if det(I −
J̃J) 6= 0.

It is known that the space of κ-calibrated almost complex structures close
to a �xed J is parameterized by the symmetric tangent bundle endomorphisms
anticommuting with J and having norm less than 1: namely J̃ is close to J if
and only if there exists a unique L ∈ End(TM) such that

J̃ = RJR−1 , LJ = −JL , tL = L , ||L|| < 1 ,

where R = I + L and the transpose and the norm of L are taken with respect
to the metric gJ .

In order to describe the behavior of the ∂ operator for J̃ close to a �xed J

we give the following proposition which is interesting in its own.

Proposition 3.11. Let R = I + L be an arbitrary isomorphism of TM . Then

(3.4) RdR−1γ = dγ + [τL, d]γ + σLγ

for any di�erential form α on M of positive degree; where:
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• τL is the zero order derivation de�ned on the r-forms by

τLγ(X1, X2 . . . , Xr) =γ(LX1, X2, . . . , Xn) + γ(X1, LX2, . . . , Xn)+

· · ·+ γ(X1, X2, . . . , LXn) ;

• [τL, d] = τLd− dτL;

• σL is the operator de�ned on the 1-form as

σLα(X, Y ) := α(R−1(NL(X,Y )))

(being NL(X, Y ) := [LX, LY ]− L[LX, Y ]− L[X, LY ] + L2[X, Y ]), and it
is extended on the forms of arbitrary degree by the Leibniz rule.

Proof. Let α ∈ Λ1(M) and X, Y ∈ TM . We have

RdR−1α(X,Y ) =dR−1α(RX, RY )

=RXα(Y )−RY α(X) + α(R−1[RX,RY ])

=Xα(Y )− Y α(X) + α([X,Y ]) + LXα(Y )− LY α(X)

+ α(R−1[RX,RY ]− [X,Y ])

=dα(X, Y ) + LXα(Y )− LY α(X) + α(R−1[RX,RY ]− [X,Y ]) .

Moreover

τLdα(X,Y ) =dα(LX, Y ) + dα(X, LY )

=LXα(Y )− Y α(LX) + α([LX, Y ]) + Xα(LY )− LY α(X)+

α([X, LY ])

and
dτLα(X, Y ) = Xα(LY )− Y α(LX) + α(L[X, Y ]) .

Therefore we obtain

(RdR−1 − [τL, d])α(X,Y ) =dα(X, Y )+

α(R−1[RX, RY ]− [LX, Y ]− [X, LY ] + L[X, Y ]− [X, Y ]) .

Furthermore

R(R−1[RX,RY ]− [LX, Y ]− [X, LY ] + L[X,Y ]− [X, Y ]) =

= [RX, RY ]−R[LX, Y ]−R[X, LY ] + RL[X, Y ]−R[X,Y ] =

= [LX, LY ] + [LX, Y ] + [X, LY ] + [X, Y ]− [LX, Y ]− L[LX, Y ]

− [X, LY ]− L[X,LY ] + L[X, Y ] + L2[X,Y ]− [X,Y ] =

= NL(X, Y ) ,
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i.e.

R−1[RX, RY ]− [LX, Y ]− [X, LY ] + L[X, Y ]− [X, Y ]) = R−1(NL(X,Y ))

Hence we have

(RdR−1 − [τL, d])α(X,Y ) = dα(X,Y ) + α(R−1(NL(X, Y )))

which proves the proposition when α is a 1-form. Since the operators on the
two sides of formula (3.4) satisfy Leibnitz rule, the proof is complete.

Now we are ready to give the following

Proposition 3.12. Let J, J̃ be closed almost complex structures in Cω(M) and
let ∂J , ∂J̃ be the ∂-operators with respect to J , J̃ respectively. Then

1. R∂J̃f = ∂Jf + L∂Jf ,

2. R∂J̃R−1γ = ∂Jγ + [τL, d]p,q+1γ + σp,q+1
L γ ,

where f ∈ C∞(M,C), γ ∈ Λp,q

J̃
(M), J̃ = RJR−1, R = I + L and

[τL, d]p,q+1, (σL)p,q+1 denote the projection of the bracket [τL, d] = τLd − dτL

and of the operator σL on the space Λp,q+1
J (M), respectively.

Proof. 1. Let f ∈ C∞(M,C). We have

R∂J̃f = R(df)0̃,1 = (Rdf)0,1 = (df + Ldf)0,1 = ∂Jf + Ldf0,1 = ∂Jf + L∂Jf ,

where the subscript 0̃, 1 denotes the projection onto Λ0,1

J̃
(M).

2. Let γ ∈ Λp,q
J (M). Then we have

R∂J̃R−1γ = R(dR−1γ)p̃,q+1 = (RdR−1γ)p,q+1

= (dγ)p,q+1 + [τL, d]p,q+1γ + σp,q+1
L γ

= ∂Jγ + [τL, d]p,q+1γ + σp,q+1
L γ ,

where the subscript p̃, q + 1 denotes the projection onto Λp,q+1

J̃
(M).

Now we compute the (virtual) tangent space to ACκ(M) at an arbitrary
point [J ].
Let J ∈ Cκ(M) be a κ-admissible almost complex structure on M ; then there
exists a nowhere vanishing ε ∈ Λn,0

J M such that ∂Jε = 0.
Let J̃ be a κ-calibrated almost complex structure close to J , then J̃ = RJR−1
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where R = I + L, LJ + JL = 0, L = tL, ‖L‖ < 1. The form R−1ε is a nowhere
vanishing form in Λn,0

J̃
M . Any other section ε′ which trivializes Λn,0

J̃
M is a

multiple of ε, namely ε′ = fε, with f ∈ C∞(M,C), f(p) 6= 0 for any p ∈ M .
Let J̃ be κ-admissible, then there exists f ∈ C∞(M,C) such that

∂J̃fR−1ε = 0 ,

where f 6= 0.
By formulae of proposition 3.12 we have

R∂J̃(fR−1ε) =R(∂J̃f ∧R−1ε + f∂J̃R−1ε)

=R(∂J̃f) ∧ ε + fR∂J̃R−1ε

=∂Jf ∧ ε + L∂Jf ∧ ε + f(∂Jε + [τL, d]n,1ε + (σL)n,1ε)

=∂Jf ∧ ε + L∂Jf ∧ ε + f([τL, d]n,1ε + (σL)n,1ε) ,

i.e.

(3.5) R∂J̃ (fR−1ε) = ∂Jf ∧ ε + L∂Jf ∧ ε + f [τL, d]n,1ε + f(σL)n,1ε .

Let us consider a smooth curve of κ-admissible almost complex structures Jt

close to J , such that J0 = J . For any t there exists Lt ∈ End(TM) such that if
Rt = I + Lt, then Jt = RtJR−1

t , for LtJ + JLt = 0, Lt = tLt, ‖Lt‖ < 1 .
Let ε ∈ Λn,0

J M be a nowhere vanishing ∂J -closed form. In correspondence of
any t there exists ft : M → C, ft 6= 0, such that

∂JtftR
−1
t ε = 0 .

Hence by formula (3.5) it has to be

(3.6) ∂Jft ∧ ε + Lt∂Jft ∧ ε + ft[τLt , d]n,1ε + ft(σLt)
n,1ε = 0 .

We may assume without loss of generality that

f0 = 1 ,

L0 = 0 .

The derivative of (3.6) at t = 0 is

(3.7) ∂J ḟ0 ∧ ε + [τL, d]n,1ε ,

where we set L = L̇0.
Let us compute [τL, d]n,1ε. We have

(τLdε)n,1 = (τLAJε)n,1 ,

(dτLε)n,1 = ∂JτLε .
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We may write

(3.8) (τLAJε)n,1 = µL(ε) ∧ ε

and

(3.9) ∂JτLε = γL(ε) ∧ ε ,

for µL(ε), γL(ε) ∈ Λ0,1
J M . Therefore (3.7) reduces to

(3.10) ∂J ḟ0 ∧ ε + µL(ε) ∧ ε + γL(ε) ∧ ε = 0 ,

and it is equivalent to

(3.11) ∂J ḟ0 + µL(ε) + γL(ε) = 0 .

The following lemma gives the behavior of µL and γL when the complex volume
form ε changes.

Lemma 3.13. Let ε, ε′ ∈ Λn,0
J M be ∂J -closed. Let {Z1, . . . , Zn} be a local

(1, 0)-frame and {ζ1, . . . , ζn} be the dual frame. Then

1. µL(ε′) = µL(ε) ,

2. γL(ε′) = γL(ε) + η(f) ,

where ε′ = fε and η(f) is the (0, 1)-form de�ned locally as

η(f) = − 1
f

n∑

k,r=1

Zk(f)Lrkζr .

Proof. By de�nition we get

µL(ε′) ∧ ε′ =(τLAJε′)n,1 = (τLAJfε)n,1 = f(τLAJε)n,1

=fµL(ε) ∧ ε = µL(ε) ∧ ε′ .

Therefore 1. is proved.
We have

γL(ε) ∧ ε′ = ∂JτLε′ = ∂JτLfε

= ∂Jf ∧ τLε + f∂JτLε

= ∂Jf ∧ τLε + fγL(ε)ε

= ∂Jf ∧ τLε + γL(ε) ∧ ε′ .

Now we express ∂Jf ∧ τLε in terms of ε′. With respect to the local (1,0)-frame
{Z1, . . . , Zn} we have

ε = h ζ1 ∧ · · · ∧ ζn
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and
∂Jf =

n∑

k=1

Zk(f)ζk .

Now we have

τLε = hL(ζ1) ∧ · · · ∧ ζn + · · ·+ hζ1 ∧ · · · ∧ L(ζn)

= h

n∑

k,r=1

{Lr1ζr ∧ · · · ∧ ζn + · · ·+ (−1)n−1Lrnζr ∧ · · · ∧ ζn−1} .

Therefore
∂Jf ∧ τLε =−

n∑

k,r=1

Zk(f)Lrkζr ∧ ε

=− 1
f

n∑

k,r=1

Zk(f)Lrkζr ∧ ε′ .

Hence
γL(ε′) = γL(ε) + η(f) ,

i.e. 2 is proved.

From now on we assume that M is compact. In this case, since any holomor-
phic map h : M → C is constant (see lemma 2.15), for any J ∈ ACκ(M) there
exists a unique ε ∈ Λn,0

J M (modulo constants) such that ∂Jε = 0. Therefore, in
view of the last lemma, the (0, 1)-forms µL and γL do not depend on the choice
of the volume form ε. Therefore by formula (3.11) a tangent vector to ACκ(M)
at a point J is an endomorphism JL, where L ∈ End(TM) anticommutes with
J and it is such that the (0, 1)-form µL − γL is ∂J -exact. Hence

TJACκ(M) = {JL |L ∈ End0,1
J (TM) ,tL = L , µL − γL is ∂J − exact} .

We have proved the following

Proposition 3.14. Let J ∈ ACκ(M); then the tangent space to ACκ(M) at J

is given by

TJACκ(M) = {JL |L ∈ End0,1
J (TM) ,tL = L , µL − γL is ∂J − exact} .

In the last part of this section we are going to compute the tangent space to
the Moduli space of the κ-admissible almost complex structures.
Recall that by de�nition

M(ACκ(M)) = ACκ(M)/Spκ(M) .
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Let J ∈ ACκ(M) and let OJ (M) be the orbit of J under the action of Spκ(M);
then

TJM(ACκ(M)) = TJACκ(M)/TJOJ (M) .

Therefore we have to compute TJOJ(M). We have

Lemma 3.15. The tangent space to OJ(M) at J is given by

TJOJ (M) = {LXJ | X ∈ TM and LXκ = 0} ,

where L denotes the Lie derivative.

Proof. Let α(t) be a curve in OJ(M) such that α(0) = I and let A = d
dtα(t)|t=0.

Then there exists a smooth curve φt ∈Spκ(M) such that

φ0 = I , α(t) = φ−1
t∗ Jφt∗ .

Fix a system of local charts in M {x1, . . . , x2n} and let X be the vector �eld
associated to the 1-parameter group φt. Then we have

d

dt
{φ−1

t∗ Jφt∗[x](
∂

∂xi
)}|t=0 =

2n∑

j,h,r=1

d

dt
{ ∂

∂xi
(φj

t )(x)Jhj(φt(x))(φ−1
t∗ )rh(

∂

∂xr
)}|t=0 =

=
2n∑

j,h=1

{ ∂

∂xi
(Xj)Jhj(x) + Xj ∂

∂xj
(Jhi)(x)− Jji

∂

∂xj
(Xh)(x)} ∂

∂xh
,

i.e.
Ahi =

n∑

j=1

(Jhj
∂

∂xi
(Xj)− Jji

∂

∂xj
(Xh)) + X(Jhi) .

Therefore
A(Y ) = [X,JY ]− J [X,Y ] = LX(Y )

for any Y ∈ TM . Now we observe that, since by hypothesis φt ∈Spκ(M), then

0 =
d

dt
φ∗t (κ)|t=0 = LXκ .

We can summarize the previous facts in the following

Theorem 3.16. Let (M, κ) be a compact symplectic manifold of dimension
2n. Let ACκ(M) = ACκ(M)/Spκ(M) be the moduli space of κ-admissible al-
most complex structures on M . Let J ∈ ACκ(M); then the tangent space to
M(ACκ(M)) at [J ] is given by

T[J]M(ACκ(M)) =
{JL |L ∈ End(0,1)

J (TM) ,tL = L , µL − γL is ∂J − exact}
{LXJ | X ∈ TM and LXκ = 0} ,
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where µL, γL are the (0, 1)-forms de�ned by

(τLAJε)n,1 = µL ∧ ε , ∂JτLε = γL ∧ ε ,

ε is a nowhere vanishing ∂J -closed form in Λn,0
J M and L denotes the Lie deriva-

tive.

Remark 3.17. If J is an admissible complex structure, then the form µL van-
ishes, since AJ = 0.

3.1.4 Admissible complex structures on the Torus
In this section we apply our construction to the torus, computing explicitly the
tangent space to M(ACκ(T2n)).

Let T2n = Cn/Z2n be the standard 2n-dimensional complex torus and let
{z1, . . . , zn} be coordinates on Cn, zα = xα + ixα+n for n = 1, . . . , n.
Then

κn =
i

2

n∑
α=1

dzα ∧ dzα ,

εn = dz1 ∧ · · · ∧ dzn

de�ne a Calabi-Yau structure on T2n. Let gn := gJn be the Hermitian metric
induced by (Jn, κn). The standard complex structure Jn is a κn-admissible
complex structure on T2n.
Now we want to deform Jn computing the tangent space TJnM(ACκn(M)) to
the moduli space M(ACκn(M)). According to the previous section, given a gn-
symmetric L ∈ End(0,1)

J (TM) we have to write down the (0,1)-form γL de�ned
by

∂J(τLεn) = γL ∧ εn .

Let
L =

n∑
s,r=1

{Lrsdzs ⊗ ∂

∂zr
+ Lrsdzs ⊗ ∂

∂zr
} ,

where {Lsr} are Z2n-periodic functions. Then we get

τLεn = L(dz1) ∧ · · · ∧ dzn + · · ·+ dz1 ∧ · · · ∧ L(dzn)

=
n∑

r=1

{L1r dzr ∧ · · · ∧ dzn}+ · · ·+
n∑

r=1

{(−1)n−1Lnr dzr ∧ · · · ∧ dzn−1}

=
n∑

r,s=1

(−1)r+1Lsr dzr ∧ dz1 ∧ · · · ∧ d̂zs ∧ · · · ∧ dzn ,
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where ̂ means that the corresponding term is omitted. Therefore we obtain

∂J(τLε) = −
n∑

r,s=1

∂

∂zs
Lsr dzr ∧ ε ,

i.e.

γL = −
n∑

r,s=1

∂

∂zs
Lsr dzr .

Then the tangent space to ACκ(T2n) at Jn is given by

TJn
ACκ(T2n) = {JnL ∈ End(TT2n) | L =tL, JnL = −LJn and γL is ∂Jn

−exact} .

In order to compute TJn
M(ACκ(T2n)) we have to compute LXJn , for

X ∈End(TM) such that LXκn = 0. Let X =
∑2n

r=1 ar
∂

∂xr
be a real vector

�eld on T2n, then

LX(Jn)
( ∂

∂zs

)
=

2n∑
r=1

−i
∂ar

∂zs

∂

∂xr
+

∂ar

∂zs
Jn

( ∂

∂xr

)

=
2n∑

r=1

−i
∂ar

∂zs

( ∂

∂xr
+ iJn

∂

∂xr

)

=
n∑

r=1

−i
∂ar

∂zs

( ∂

∂xr
− i

∂

∂xr+n

)
− i

∂ar+n

∂zs

( ∂

∂xr+n
− i

∂

∂xr

)

=−
n∑

r=1

∂

∂zs
(iar + ar+n)

( ∂

∂xr
+ i

∂

∂xr+n

)

=− 2
n∑

r=1

∂

∂zs
(iar + ar+n)

∂

∂zr
,

i.e.

LX(Jn) = −2
n∑

r,s=1

{ ∂

∂zs
(iar + ar+n)dzs⊗ ∂

∂zr
+

∂

∂zs
(−iar + ar+n)dzs⊗ ∂

∂zr

}
.

Therefore L = LXJn if and only if

(3.12) Lrs = 2
∂

∂zs
(ar − iar+n) ,

for some periodic functions ar on R2n.
Let consider now L ∈ End(TT2n) such that it anticommutes with Jn and let
Lrs be constant functions.
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By equation (3.12) there exists X ∈ TM such that L = LX(Jn) if and only if

Lrs = 2
∂

∂zs
(ar − iar+n) =

∂

∂xs
(ar − iar+n)− i

∂

∂xs+n
(ar − iar+n)

=
(∂ar

∂xs
− ∂ar+n

∂xs+n

)
− i

(∂ar+n

∂xs
+

∂ar

∂xs+n

)
.

Therefore 



∂ar

∂xs
− ∂ar+n

∂xs+n
= constant

∂ar+n

∂xs
+ ∂ar

∂xs+n
= constant ,

that imply
∂2ar

∂x2
s

+
∂2ar

∂x2
s+n

= 0

for any r, s = 1, . . . , n.
It follows that the {ar} are harmonic functions on the standard torus T2n

and then they are constant. Therefore any constant gn-symmetric L ∈
End(0,1)

Jn
(TT2n) de�nes a non-trivial element of T[Jn]M(ACκ(M)). Moreover

any constant endomorphisms L1, L2 of such type give rise to di�erent elements
of T[Jn]M(ACκ(M)). Hence Jn is not a rigid structure.

3.2 Six-dimensional generalized Calabi-Yau
structures

Since the integrability of a SU(n)-structure forces the induced metric to be
Ricci-�at, the Ricci tensor of a SU(n)-manifold (M, κ, J, ε) depends only on the
intrinsic torsion of (κ, J, ε).
In this section we write down the Ricci tensor and the scalar curvature of a
SU(3)-manifold in terms of torsion forms. Our approach is similar to that one
used by Bryant in [15] to compute the Ricci tensor of a G2-structure. This
result has been proved with the aid of MAPLE.

As a direct application of our formulae we have that the scalar curvature of
the metric associted to 6-dimensional GCY structure is non-positive and that
the Einstein equation forces a special class of 6-dimensional GCY structures to
be integrable.

3.2.1 Linear symplectic algebra in dimension 6

In this section we recall same basic facts of Linear algebra in diemension 6.
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Let us denote by {e1, . . . , e6} the standard basis of R6 and by {e1, . . . , e6}
the dual one. Let

κ0 = e12 + e34 + e56

be the standard symplectic structure of R6. The space of 3-forms on R6 splits
into the following two Sp(3,R)-irreducible vector spaces

Λ3
0R6∗ = {γ ∈ Λ3R6∗ | γ ∧ κ0 = 0},

Λ3
6R6∗ = {α ∧ κ0 |α ∈ R6∗} .

The 3-forms lying in Λ3
0R6∗ are called e�ective 3-forms. Let

ε0 = (e1 + ie2) ∧ (e3 + ie4) ∧ (e5 + ie6) ,

be the standard complex volume form on C3; then the real part of ε0

Ω0 = e135 − e146 − e245 − e236 ,

is an e�ective 3-form. Let consider the action of the Lie group G =Sp(3,R)×R+

on Λ3
0 (R6)∗ given by

(ψ, t)α = t (ψ−1)∗(α)

and let O be the orbit of Ω0 under this action. It is known (see e.g [8, 58]) that
the stabilizer of Ω0 is locally isomorphic to SU(3). Consequently O is an open
subspace of Λ3

0R6∗. If (V, κ) is an arbitrary 6-dimensional symplectic vector
space we can �x an isomorphism φ : V → R6 satisfying φ∗(κ0) = κ and consider
the spaces

Λ3
0(V

∗) := φ∗(Λ3
0R6∗) , O(V ) := φ∗(O) .

These spaces do not depend form the choice of the symplectomorphism φ. The
elements of Λ3

0(V
∗) are called κ-e�ective 3-forms, while the forms lying in O(V )

are called κ-positive.
Let (V, κ) be a 6-dimensional symplectic vector space. Given an e�ective

3-form Ω let us consider the map FΩ : Λ1V ∗ → Λ4V ∗ de�ned by

FΩ(α) = Ω ∧ α .

Proposition 3.18. The following facts are equivalent

1. Ω is a positive 3-form on V ;

2. FΩ is an injective map and κ is negative de�nite on the image of FΩ.

Proof. See [28].
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Let �x now an arbitrary κ-positive 3-form Ω on V . Since the stabilizer of
Ω is isomorphic to SU(3), then it determines a κ-calibrated almost complex
structure JΩ on V . In order to write down an explicit formula for JΩ

PΩ : Λ1V ∗ → Λ1V ∗

de�ned by
PΩα := −1

2
F(Ω ∧F(Ω ∧ α)) .

We have

Proposition 3.19. The endomorphism PΩ satis�es

1. P 2
Ω = det(PΩ)−

1
6 I,

2. κ(PΩα, β) = −κ(α, PΩβ).

Proof. 1. First we observe that PΩ is a SU(3)-invariant endomorphism of V ∗,
since it is built using only Ω and F. Since SU(3) acts irreducibly on V ∗, the
real version of Schur's lemma assures that PΩ = aI + Jb, where J is a complex
structure on V ∗ and a, b are real numbers.
Now we claim that P 2

Ω has a negative eigenvalue. From this claim the conclusion
follows. Suppose indeed that there exists v 6= 0 such that P 2

Ωv = λ v, with λ < 0.
Then

2ab Jv = (λ2 − a2 + b2) v .

If ab 6= 0, then J would have a real eigenvalue and this is impossible. On the
other hand if b = 0 then P 2

Ω = a2I, which is a contradiction with the claim.
Hence PΩ = bJ . To prove the claim we must use an explicit frame {e1, . . . , e6}
of V ∗ in which κ and Ω takes the standard form and perform the computation
e.g. of P 2

Ωe1.

2. We have

κ(PΩα, β)
κ3

6
=− κ(β, PΩα)

κ3

6
=

1
2
β ∧ Ω ∧F(Ω ∧ α) =

=− 1
2
κ(β ∧ Ω, α ∧ Ω)

κ3

6
= −1

2
κ(α ∧ Ω, β ∧ Ω)

κ3

6
=

=κ(PΩβ, α)
κ3

6
= −κ(α, PΩβ)

κ3

6
.
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Therefore if Ω is a κ-positive 3-form, then the endomorphism

JΩ : V → V

dual to det(PΩ)−
1
6 PΩ is a complex structure in Cκ(V ).

Example 3.20. The form Ω0 in R6 induces the standard complex structure
and the standard complex volume form on R6.

An κ-positive 3-form Ω will be said to be normalized if detPΩ = 1. Now we
have

Proposition 3.21. Let Ω be a normalized κ-positive 3-form on (V, κ) and let
JΩ be the endomorphism dual to PΩ. Then the form

ε := Ω + iJΩΩ

is of type (3, 0) with respect to JΩ and satis�es

ε ∧ ε = −i
4
3

κ3 .

Vice versa let J ∈ Cκ(V ) and let ε ∈ Λ3,0
J V such that

ε ∧ ε = −i
4
3

κ3 ,

then Ω := <e ε is a normalized κ-positive 3-form on V such that PΩ is the
complex structure dual to J .

It follows that a SU(3)-structure on a 6-dimensional vector space is deter-
mined by the following data

• a symplectic structure κ;

• a normalized κ-positive 3-form Ω.

From now on when a SU(3)-structure is given we will denote by (κ, Ω) the
structure forms, by J the induced complex structure, by gJ the induced metric,
by ∗ the Hodge star operator associated to gJ and by F be the symplectic star
operator of κ. We have the following easy proof

Lemma 3.22. Let (κ, Ω) be structures forms of a SU(3)-structure on V . Then

1. Fκ = ∗κ = 1
2 κ2;

2. Ω ∧ ∗Ω = 2
3 κ3;

3. ∗Ω = JΩ (and consequently κ ∧ JΩ = 0).
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Decomposition of the exterior algebra

A SU(3)-structure on a vector space V induces a canonical action on the exterior
algebra ΛV ∗. Obviously this action is irreducibly on V ∗ and Λ5V ∗, while Λ2V ∗

and Λ3V ∗ decompose as follows:

Λ2V ∗ = Λ2
1V

∗ ⊕ Λ2
6V

∗ ⊕ Λ2
8V

∗ ,

Λ3V ∗ = Λ3
<eV

∗ ⊕ Λ3
=mV ∗ ⊕ Λ3

6V
∗ ⊕ Λ3

12V
∗ ,

where we set

• Λ2
1V

∗ = Rκ ,

• Λ2
6V

∗ = {F(α ∧ Ω) |α ∈ Λ1V ∗} = {φ ∈ Λ2V ∗ | Jφ = −φ} ,

• Λ2
8V

∗ = {φ ∈ Λ2V ∗ |φ ∧ Ω = 0 and Fφ = −φ ∧ κ}
= {φ ∈ Λ2V ∗ | Jφ = φ , φ ∧ κ2 = 0} ,

and

• Λ3
<eV

∗ = RΩ ,

• Λ3
=mV ∗ = R JΩ = {γ ∈ Λ3V ∗ | γ ∧ κ = 0 , γ ∧ Ω = c κ3, c ∈ R} ,

• Λ3
6V

∗ = {α ∧ κ |α ∈ Λ1V ∗} = {γ ∈ Λ3V ∗ |Fγ = γ} ,

• Λ3
12V

∗ = {γ ∈ Λ3V ∗ | γ ∧ κ = 0 , γ ∧ Ω = 0 , γ ∧ JΩ = 0} .

Remark 3.23. Now we emphasize some relations which will be useful:

1. If φ ∈ Λ2
6V

∗ ⊕ Λ2
8V

∗, then Fφ = −φ ∧ κ .

2. If γ ∈ Λ3
<eV

∗ ⊕ Λ3
=mV ∗ ⊕ Λ3

12V
∗ , then Fγ = −γ and γ ∧ κ = 0.

3. If α is an arbitrary 1-form, then J(α ∧ Ω) = −α ∧ Ω, consequently from
the de�nition of J it follows

JΩ ∧F(Ω ∧ α) = −2 Fα .

4. If β ∈ Λ2
8V

∗ then

∗(β ∧ β) ∧ κ2 = β ∧ β ∧ ∗κ2 = 2 β ∧ β ∧ κ

= −2 β ∧Fβ = −2|β|2 κ3

6
,

so that

(3.13) ∗(κ2 ∧ ∗(β ∧ β)) = −2|β|2.
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We can obtain the decomposition of Λ4V ∗ using the duality given by the sym-
plectic star operator.

Moreover we de�ne the projections

E1 : Λ2V ∗ → Λ2
8V

∗ ,

E2 : Λ3V ∗ → Λ3
12V

∗

by

E1(α) =
1
2
(α + Jα)− 1

18
∗ ((∗(α + Jα) + (α + Jα) ∧ κ) ∧ κ) κ ,(3.14)

E2(β) = β − 1
2
∗ (Jβ ∧ κ) ∧ κ− 1

4
∗ (β ∧ JΩ)Ω− 1

4
∗ (Ω ∧ β)JΩ .(3.15)

Note that E2 commutes with ∗ since the latter is an automorphism of Λ3
12V

∗.
The same is true for J (hence also for F).

The ε-identities

As done by Bryant in the G2-case we introduce the following ε-notation, which
will be useful in the following. Let (κ0,Ω0) be the standard SU(3)-structure on
R6; we write

Ω0 =
1
6
εijkeijk , ∗Ω =

1
6
εijkeijk , κ0 =

1
2
κije

ij .

We have the following identities, whose proof is straightforward:

(3.16)

εipqκpq = 0 ,

κipκpj = −δij ,

εijpκpr = εijr ,

εijpκpr = −εijr ,

εipqεjpq = −4κij ,

εipqεjpq = 4δij = εipqεjpq ,

εijpεklp = −κikδjl + κjkδil + κilδjk − κjlδik ,

εijpεklp = −κikκjl + κilκjk + δikδjl − δjkδil = εijkεipq .

As �rst application of formulae (3.16) we have the decomposition

(3.17) so(6) = su(3)⊕ [R]1 ⊕ [R6]2,

of so(3) in SU(3)-invariant subspaces, where we use the notation

([a]1)ij = aκij , ([v]2)ij = εijpvp .



46 Chapter 3. SU(n)-structures

Decomposition of symmetric 2-tensors

The 21-dimensional space of symmetric 2-tensor on a vector space V equipped
by a SU(3)-structure splits into irreducible su(3)-modules as follows:

S2V ∗ = RgJ ⊕ S2
+ ⊕ S2

− ,

where
S2

+ = {h ∈ S2V ∗ : Jh = h, trgh = 0} ,

S2
− = {h ∈ S2V ∗ : Jh = −h} .

The spaces S2
+ and S2

− are isomorphic respectively to Λ2
8V

∗ and Λ3
12V

∗. In the
standard case (R6, κ0, Ω0) the maps

ι : S2
+ −→ Λ2

8V
∗ ,

γ : S2
− −→ Λ3

12V
∗

given by
ι(hije

iej) = hipκpje
ij ,

γ(hije
iej) = hipεpjkeijk

de�nes su(3)-isomorphisms.

3.2.2 SU(3)-manifolds
First of all we introduce the following

De�nition 3.24. Let (M, κ) be a 6-dimensional almost symplectic manifold.
A 3-form Ω on M is called e�ective if Ω ∧ κ = 0. If further Ωx is normalized
and κx-positive for any x ∈ M , then Ω will be called normalized κ-positive.

By proposition 3.21 a SU(3)-structure on a 6-dimensional manifold M is
determined by the choice of:

• an almost symplectic structure κ,

• a normalized κ-positive 3-form Ω.

In fact if Ω is a normalized κ-positive it determines a κ-calibrated almost com-
plex structure J on M such that ε = Ω + iJΩ is of type (3, 0).
Furthermore the spaces of r-forms on M split in su(3)-modules as follows:

Λ2M = Λ2
1M ⊕ Λ2

6M ⊕ Λ2
8M ,

Λ3M = Λ3
ReM ⊕ Λ3

ImM ⊕ Λ3
6M ⊕ Λ12

3 M ,

Λ4M = Λ4
1M ⊕ Λ4

6M ⊕ Λ4
8M ,
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where the meaning of symbols is obvious. Consequently the derivatives of the
structure forms decompose as

(3.18)
dκ = ν0 Ω + α0 JΩ + ν1 ∧ κ + ν3 ,

dΩ = π0 κ2 + π1 ∧ Ω− π2 ∧ κ ,

dJΩ = σ0 κ2 + σ1 ∧ Ω− σ2 ∧ κ ,

where ν0, α0, π0, σ0 ∈ C∞(M,R), ν1, π1, σ1 ∈ Λ1M , π2, σ2 ∈ Λ2
8M and ν3 ∈

Λ3
12M .

3.2.3 A formula for SU(3)-manifolds
The goal of this section is to prove the following

Lemma 3.25. The formulae

∗(dκ) ∧ Ω− 1
2
κ2 ∧ ∗dJΩ = 0 ,(3.19)

JΩ ∧ (∗dJΩ)− (∗dΩ) ∧ Ω = 0(3.20)

hold for any SU(3)-structure (κ, Ω).

In order to prove this theorem we need recall some basic facts on G2-structures.
We consider on R7 the 3-form

σ0 = Ω0 + κ0 ∧ e7

where R7 =< e1, . . . , e7 > and the standard forms κ0, Ω0 are computed with
respect to {e1, . . . , e6}. The Lie group G2 is by de�nition the stabilizer of σ0

under the standard action of GL(7,R) on the vector space Λ3R7∗ of 3-forms on
R7. This group preserves the standard metric and the standard orientation of
R7. Since the dimension of G2 is 14, the orbit of σ0 under the action of GL(7,R)
is an open subspace of Λ3R7∗. Let us denote by Λ3

+R7∗ this space and we call
its elements de�nite 3-forms.

Let V be an arbitrary 7-dimensional vector space and φ : V → R7 be an
isomorphism. Let Λ3

+V ∗ = φ∗(Λ3
+R7∗). Since Λ3

+R7∗ consists of a single orbit,
Λ3

+V ∗ does not depend from the choice of φ ∈End(V,R7). The forms σ ∈ Λ3
+V ∗

will be called de�nite 3-forms. If σ is an e�ective 3-form on V , then it induces
a canonical metric g in the following way: one �xes an isomorphism φ : V → R7

satisfying φ∗(σ0) = σ and takes g = φ∗(g0).
Let consider now a 7-dimensional manifold N . A G2-structure on N is

determined by the choice of a 3-form σ on M such that

σx ∈ Λ3
+T ∗x M ,



48 Chapter 3. SU(n)-structures

for any x ∈ M . A G2-structure induces a Riemannian metric gσ on M . Let
us denote by ∗ the Hodge star operator of gσ. In [14] R. Bryant proves the
following

Theorem 3.26. A form σ de�ning a G2-structure satis�es the following for-
mula

(3.21) ∗σσ ∧ ∗σ(d ∗σσ) + (∗σdσ) ∧ σ = 0 .

Now we can prove lemma 3.25.

Proof. Let (M, κ, Ω) be a SU(3)-manifold, N = M × R and

p1 : N → M ,

p2 : N → R

be the standard projections. Identifying κ and Ω with their pull-backs by p1

and dt with its pull-back by p2, we get that the 3-form

σ = Ω + κ ∧ dt ,

de�nes a G2-structure on N . A computation gives

dσ = dΩ + dκ ∧ dt ,(3.22)

∗σσ = (∗Ω) ∧ dt + ∗κ = (JΩ ∧ dt +
1
2
κ2) ,(3.23)

d∗σσ = (dJΩ) ∧ dt + (dκ) ∧ κ ,(3.24)
∗σdσ = ∗dΩ ∧ dt− ∗dκ .(3.25)

Furthermore we have

∗σσ ∧ ∗σ(dσ) + (∗σdσ) ∧ σ =JΩ ∧ (∗dJΩ) ∧ dt +
1
2
κ2 ∧ ∗(dκ ∧ κ) ∧ dt

+
1
2
κ2 ∧ ∗dJΩ− (∗dΩ) ∧ Ω ∧ dt

− ∗(dκ) ∧ Ω− ∗(dκ) ∧ κ ∧ dt .

Therefore equation (3.21) implies

• ∗(dκ) ∧ Ω = 1
2κ2 ∧ ∗dJΩ,

• JΩ ∧ (∗dJΩ) + 1
2κ2 ∧ ∗(dκ ∧ κ)− (∗dΩ) ∧ Ω− ∗(dκ) ∧ κ = 0 .

Equation (3.19) is proved. In order to show that equation (3.20) holds we need
to prove the following identity

(3.26) 1
2
κ2 ∧ ∗(dκ ∧ κ) = ∗(dκ) ∧ κ .
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The decomposition of 3-forms on M implies

(3.27) 1
2
κ2 ∧ ∗(dκ ∧ κ) =

1
2
κ2 ∧ ∗(ν1 ∧ κ2) = (Fκ) ∧ ∗(ν1 ∧ κ2)

and

(3.28) ∗(dκ) ∧ κ = ∗(ν1 ∧ κ) ∧ κ ,

where ν1 ∧ κ ∈ Λ3
6M = {γ ∈ Λ3M |Fγ = γ}. Now we apply equation (2.6)

taking ζ = ∗(ν1 ∧ κ2) and γ = 1 ∈ Λ0M . We have

(3.29) (Fκ) ∧ ∗(ν1 ∧ κ2) = F(∗(ν1 ∧ κ2)) = ∗J(∗(ν1 ∧ κ2)) = −Jν1 ∧ κ2 .

Moreover, since ν1 ∈ Λ3
6M , we have

(3.30) ∗(ν1 ∧ κ) ∧ κ = −Jν1 ∧ κ2 .

Equation (3.29) together with equation (3.30) imply (3.26), so that equation
(3.20) is proved.

3.2.4 Torsion forms
Let (M, κ, Ω) be a SU(3)-manifold. Then, with notation of section 3.2.2, we
have the following

Proposition 3.27. These relations hold:

1. π0 = 2
3α0 ,

2. σ0 = − 2
3ν0 ,

3. σ1 = Jπ1 .

Proof. 1. The relation Ω ∧ κ = 0 implies

0 = d(Ω ∧ κ) = dΩ ∧ κ− Ω ∧ dκ

= π0κ
3 − π2 ∧ κ− α0Ω ∧ JΩ− Ω ∧ ν3

= (π0 − 2
3
α0)κ3

and the claim follows.
2. Analogous to 1 starting from κ ∧ JΩ = 0.



50 Chapter 3. SU(n)-structures

3. This formula is a consequence of the formula (3.20) together with the de�ni-
tion of J ; in fact we have

0 = (∗dΩ) ∧ Ω + JΩ ∧ ∗dJΩ

= ∗(π1 ∧ Ω) ∧ Ω + JΩ ∧ ∗(σ1 ∧ Ω)

= −J(F(π1 ∧ JΩ) ∧ Ω)− J(Ω ∧F(σ1 ∧ Ω))

= J(−2JFπ1)− J(2JFσ1)

= −2JFπ1 + 2Fσ1 .

De�nition 3.28. The forms {π0, σ0, π1, ν1, , σ2, ν3} are called the torsion forms
of the SU(3)-structure.

We immediately get that a SU(3)-structure is integrable if and only if all of the
torsion forms vanish identically.

Now we characterizes two special SU(3)-structures in terms of torsion forms

• Half-�at structures: We recall that a SU(3)-structure (κ,Ω) is said to
be half-�at if the pair (κ,Ω) satis�es

dκ ∧ κ = 0 , dΩ = 0 .

This de�nition has been introduced by Chiossi-Salamon in [18]. A hyper-
surface of a G2-manifold inherits a Half-�at structure in a natural way.
Furthermore has been proved that any analytic half-�at manifold can be
realized has a hypersurface of a G2-manifold (but Bryant showed that this
fact is not always true if the Half-�at manifold is not analytic!).

Let (κ,Ω) be a half-�at structure. By the hypothesis dΩ = 0 we get

πi = 0 , i = 0, 1, 2 ,

so that
dκ = −3

2
σ0 Ω ∧ κ + ν1 ∧ κ + ν3 .

On other hand the hypothesis dκ ∧ κ = 0 implies

0 = dκ ∧ κ = ν1 ∧ κ2

which forces ν1 to vanish.
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• Six-dimensional GCY structures: Let (M, κ, J, ε) be a 6-dimensional
GCY manifold. The equation dκ = 0 implies

π0 = σ0 = 0 , ν1 = 0 , ν3 = 0 .

Therefore dΩ and dJΩ reduce to

dΩ = π1 ∧ Ω− π2 ∧ κ ,

dJΩ = Jπ1 ∧ Ω− σ2 ∧ κ .

Since the complex volume form ε associated to (κ,Ω) is of type (3,0), ∂Jε

is the (3, 1)-part (hence the J anti-invariant part) of dε. Thus we have

∂Jε =
1
2
(dε− Jdε)

and

∂Jε =
1
2
(dε− Jdε)

=
1
2
(dΩ + idJΩ− JdΩ− iJdJΩ)

=
1
2
{dΩ− JdΩ + i(dJΩ− JdJΩ)}

=
1
2
{π1 ∧ Ω− J(π1 ∧ Ω) + i(Jπ1 ∧ Ω− J(Jπ1 ∧ Ω))}

=π1 ∧ Ω + i Jπ1 ∧ Ω.

Hence, by proposition 3.18, equation ∂Jε = 0 is equivalent to π1 = 0.
It follows that 6-dimensional GCY structures can be de�ned as SU(3)-
structures satisfying

π0 = σ0 = 0 , ν1 = π1 = 0 , ν3 = 0 .

3.2.5 The Ricci tensor of a SU(3)-manifold in terms of
torsion forms

Fix a SU(3)-reduction Q of the linear frame bundle L(M), given by the pair
(κ,Ω). Then Q is a subbundle of the principal SO(6)-bundle p : F → M of the
normal frames of the metric g associated to the pair (κ,Ω). Consider on the
bundle F the tautological R6-valued 1-form ω de�ned by ω[u](v) = u(p∗[u]v)
for every u ∈ F and v ∈ TuF . On F we have also the Levi-Civita connection
1-form ψ taking values in so(6). Using the canonical basis {e1, . . . , e6} of R6 we
will regard ω as a vector of R-valued 1-forms on F

ω = ω1e1 + · · ·+ ω6e6
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and ψ as a skew-symmetric matrix of 1-forms, i.e. ψ = (ψij). With these
notations the �rst structure equation relating ω and ψ

(3.31) dω = −ψ ∧ ω ,

becomes dωi = −ψij ∧ ωj . Note that equation (3.31) simply means that ψ is
torsion-free.
The curvature of ψ is by de�nition the so(6)-valued 2-form Ψ = dψ + ψ ∧ψ. In
index notation

Ψij = dψij + ψik ∧ ψkj =
1
2
Rijkl ωk ∧ ωl .

We consider the pull-backs of ψ and ω to Q and denote them by the same
symbols for the sake of brevity. The intrinsic torsion of the SU(3)-structure
measures the failing of ψ to take values in su(3). More precisely, according to
the splitting so(6) = su(3)⊕ [R]1 ⊕ [R6]2, we decompose ψ as follows

ψ = θ + [µ]1 + [τ ]2 .

Thus θ is a connection 1-form on Q which in general is not torsion-free.
As before we shall regard τ as a vector of 1-forms τ = τiei. Furthermore we can
write

(3.32) τi = Tij ωj and µ = Mi ωi ,

where Tij and Mi are smooth functions. The fact that ψ is torsion-free implies

(3.33) dωi = −θij ∧ ωj − εijk τk ∧ ωj − κij µ ∧ ωj .

We have the following

Lemma 3.29. These identities hold:

1. θ ∧ [µ]1 + [µ]1 ∧ θ = 0 ;

2. [τ ]2 ∧ [µ]1 − [µ]1 ∧ [τ ]2 = 0 ;

3. θ ∧ [τ ]2 + [τ ]2 ∧ θ = [θ ∧ τ ]2 ;

4. [τ ]2 ∧ [µ]1 + [[µ]1 ∧ τ ]2 = 0 .

Proof. The proof is a straightforward application of ε-identities. To see how
things work, we prove the �rst one. Since θ takes values in su(3) we have

εpkl θkl = εklp θkl = 0 .
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So
εijpεklp θkl = 0

for every i, j = 1, . . . , 6. Then applying the ε-identities we get

0 =εijpεklp θkl

=(−κikδjl + κjkδil + κilδjk − κjlδik) θkl

=2κjk θki − 2κik θkj ,

i.e.
κjk θki = κik θkj .

Consequently
θik ∧ κkj µ + κik µ ∧ θkj = 0 ,

i.e.
θ ∧ [µ]1 + [µ]1 ∧ θ = 0 .

Now we can introduce the following quantities

Dθ = dθ + θ ∧ θ + [τ ]2 ∧ [τ ]2 − 2
3
[κij τi ∧ τj ]1 ,(3.34)

Dτ = dτ + θ ∧ τ − 2 [µ]1 ∧ τ ,(3.35)

Dµ = dµ +
2
3
κij τi ∧ τj .(3.36)

With this de�nition Dθ takes values in su(3). Moreover by lemma 3.29 we get

Ψ =d(θ + [τ ]2 + [µ]1) + (θ + [τ ]2 + [µ]1) ∧ (θ + [τ ]2 + [µ]1)

=Dθ + [Dτ ]2 + [Dµ]1 .

Using the ω-frame we shall write

Dθij =
1
2
Sijkl ωk ∧ ωl ,(3.37)

Dτi =
1
2
Tijk ωj ∧ ωk ,(3.38)

Dµ =
1
2
Nkl ωk ∧ ωl .(3.39)

By the de�nition of the curvature form we have

Rijkl = Sijkl + εijpTpkl + κijNkl .

In this notation the �rst Bianchi identity

Ψ ∧ ω = 0 ,
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has the indicial expression

(3.40)
Sijkl + Siljk + Siklj+

+ εijpTpkl + εilpTpjk + εikpTplj + κijNkl + κilNjk + κikNlj = 0

Let Ricij = Rikkj and s = Rickk be respectively the Ricci tensor and the scalar
curvature of (M, g). Starting from equation (3.40) we can derive the following

Theorem 3.30. In the previous notation we have

Ricij = 2εipqTpqj − 3κipNpj ,

s = 2εkpqTpqk − 3κkpNpk .

Denote by π the projection π : Q → M . In terms of the ω-frame the pull-backs
of the structure forms take their standard expression, i.e.

π∗(Ω) =
1
6
εijk ωi ∧ ωj ∧ ωk ,

π∗(JΩ) =
1
6
εijk ωi ∧ ωj ∧ ωk ,

π∗(κ) =
1
2
κij ωi ∧ ωj .

Taking into account formula (3.33) and ε-identities, we immediately get

Proposition 3.31. The derivatives of the structure forms are

dπ∗(Ω) =
1
2
(−κjaκkb + κjbκka) τb ∧ ωa ∧ ωj ∧ ωk − 3 µ ∧ π∗(JΩ) ,

dπ∗(JΩ) = (τj ∧ ωj) ∧ π∗(κ)− 3 µ ∧ π∗(Ω) ,

dπ∗(κ) = εlrj τl ∧ ωr ∧ ωj .

A direct computation gives the following formulae

π∗(π0) =
2
3
Tii ,

π∗(π1) = εijkTij ωk + 3κikMi ωk ,

π∗(π2) =
1
2
εsraεaijTsr ωi ∧ ωj − 2κiaTaj ωi ∧ ωj +

2
3
Tii π∗(κ) ,

π∗(σ0) =
2
3
κij Tij ,

π∗(σ2) =
1
2
εrsaεaijTrs ωi ∧ ωj − 2Tijωi ∧ ωj +

2
3
κijTij π∗(κ) ,

π∗(ν1) = εijkTij ωk ,

π∗(ν3) = εaijTak ωi ∧ ωj ∧ ωk +
1
6
κabTabεijk ωi ∧ ωj ∧ ωk

− 1
6
Taaεijk ωi ∧ ωj ∧ ωk − 1

2
Tabεabiκjk ωi ∧ ωj ∧ ωk .
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Warning: From now on we identify the torsion forms with their pull-backs to
the principal SU(3)-bundle Q.

Combining the previous formulae and (3.33) we are able to prove the
following

Theorem 3.32. In terms of torsion forms the scalar curvature of the metric
induced by the SU(3)-structure is expressed as

(3.41)
s =

15
2

π2
0 +

15
2

σ2
0 + 2d∗π1 + 2d∗ν1 − |ν1|2 − 1

2
|σ2|2

− 1
2
|π2|2 − 1

2
|ν3|2 + 4〈π1, ν1〉 .

Proof. First of all we introduce the 1-forms Sijk ωk, Vik ωk, de�ned by the rela-
tions

dTij = Tik θkj + Tkj θki + Sijk ωk ,

dMi = Mk θki + Vik ωk .

Using equations (3.35) and (3.36) and the de�nition of Tij , Mi given in (3.32)
we have

Dτi =dTij ∧ ωj + Tij dωj − 2 κij µ ∧ τj

=(Siba − TijTqaεjbq − TijκjbMa − 2κijMaTjb) ωa ∧ ωb ,

and
Dµ =dMr ∧ ωr + Mrdωr +

2
3
κij τi ∧ τj

=(Vba −MrεrbqTqa −MrκrbMa +
2
3
κijTiaTjb)ωa ∧ ωb .

Therefore, taking into account (3.38), (3.39), we obtain

Tiab = 2(Siba − TijTqaεjbq − TijκjbMa − 2κijMaTjb) ,

Nab = 2(Vba −MrεrbqTqa −MrκrbMa +
2
3
κijTiaTjb) .

It follows that

εipqTpqj = 2(εipqSpjq − εipqεrjsTprTsq − εipqTprκrjMq + 2εiqrTrjMq) ,

κipNpj = 2(κipVjp − κipεrjqTqpMr − κipκrjMrMp +
2
3
κipκqrTqpTrj)
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and using the ε-identities

εipqTpqi =2(−εipqSipq − εipqεrisTprTsq − εprqTprMq + 2εqriTriMq)

=2(−εipqSipq − εipqεrisTprTsq + εprqTprMq) ,

κipNpi =2(κipVip − κipεriqTqpMr − κipκriMrMp +
2
3
κipκqrTqpTri)

=2(κipVip + εrqpTqpMr +
2
3
κipκqrTqpTri + Σi M2

i ) .

Then by theorem 3.30 we get

s =4(−εipqSipq − εipqεrisTprTsq + εprqTprMq)

− 6(κipVip + εrqpTqpMr +
2
3
κipκqrTqpTri + Σi M2

i )

=− 4εipqSipq − 4εipqεrisTprTsq − 2εprqTprMq

− 6κipVip − 4κipκqrTqpTri − 6Σi M2
i .

Furthermore a straightforward computation gives the following formulae

π2
0 =

4
9
TiiTjj ,

σ2
0 =

4
9
κijκsrTijTsr ,

|π2|2 = −4
3
TiiTjj + 4T 2

ij − 2εsraεaijTsrTij + 4κirκjsTijTsr ,

|σ2|2 = −2εsraεaijTsrTij − 4
3
κijκabTijTab − 4TijTji + 4ΣijT

2
ij ,

|ν1|2 = εijkεkabTijTab ,

|ν3|2 = 2T 2
ij + 2TijTji − 2κjrκisTijTrs − 2κirκjsTijTrs ,

d∗π1 = −εsraεaijTsrTij + 4εijkTijMk − εsraSsra − 3κijVij − 3Σi M2
i ,

d∗ν1 = −εsraεaijTsrTij + εijkTijMk − εsraSsra ,

〈π1, ν1〉 = εabkεkijTabTij − 3εijkTijMk .

Therefore we get
15
2

π2
0 +

15
2

σ2
0 + 2d∗π1 + 2d∗ν1 − |ν1|2 − 1

2
|σ2|2 − 1

2
|π2|2 − 1

2
|ν3|2 + 4〈π1, ν1〉 =

=4TiiTjj + 4κijκsrTijTsr − 5ΣijTij + εsraεaijTsrTij + TijTji − 2εijkTijMk

− 6κijVij − 6Σi M2
i + (−κiaκjb + κibκja)TijTba − 4εijkSijk =

=4εipqSipq − 4εipqεrisTprTsq − 2εprqTprMq − 6κipVip − 4κipκqrTqpTri − 6Σi M2
i ,
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i.e.

s =
15
2

π2
0 +

15
2

σ2
0 + 2d∗π1 + 2d∗ν1 − |ν1|2 − 1

2
|σ2|2 − 1

2
|π2|2 − 1

2
|ν3|2 + 4〈π1, ν1〉

and the theorem is proved.

Here we collect some consequences of formula (3.41) when the SU(3)-structure
has special features.

1. Half-�at structures. The condition dκ∧κ = 0 reads in terms of torsion
forms as ν1 = 0. Thus in the half-�at case the scalar curvature takes the
form

s =
15
2

σ2
0 −

1
2
|σ2|2 − 1

2
|ν3|2 .

2. GCY structures. The condition ∂Jε = 0 reads as π1 = 0, so that, taking
into account dκ = 0,

s = −1
2
|σ2|2 − 1

2
|π2|2 .

Corollary 3.33. The scalar curvature of a 6-dimensional generalized Calabi-
Yau manifold is everywhere non-positive and it vanishes identically if and only
if the SU(3)-structure has no torsion.

Now we write the Ricci curvature Ricij = 2εipqTpqj − 3κipNpj in terms of the
torsion forms using the operators ι and γ de�ned in section 3.2.1.

Theorem 3.34. If M is endowed with the SU(3)-structure (κ, Ω) with torsion
forms given by (3.18) , then the traceless part of the Ricci tensor of the induced
metric is

(3.42) Ric0 = ι−1(E1(φ1)) + γ−1(E2(φ2)) ,

where

φ1 =− ∗(ν1 ∧ Jν3) +
1
4
∗ (π2 ∧ π2) +

1
4
∗ (σ2 ∧ σ2)+

+ dJπ1 +
1
2

d∗ν3 +
1
2

d∗(ν1 ∧ κ)− 1
4

d ∗ (π0 Ω) +
1
4

d∗(σ0 Ω) ,

φ2 =− 2σ0 ν3 − 4 σ2 ∧ ν1 − 2 Jdπ2 − 2 Fdσ2 − 4 d ∗ (ν1 ∧ ∗Ω)+

− 2d ∗ (Jπ1 ∧ Ω) + 2π0 J ν3 − 2 Jd ∗ (π1 ∧ Ω)− 4 π2 ∧ Jπ1+

+ 4 ν1 ∧ ∗(Jπ1 ∧ Ω)− 2 Jν1 ∧ ∗(ν1 ∧ Ω)− 1
2
Q(ν3, ν3) ,
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E1 and E2 are the maps de�ned by equations (3.14) and (3.15) and Q is the
bilinear form Q : Λ3

12M × Λ3
12M → Λ3M de�ned by

Q(α, β) = εijlιej ιei α ∧ ιel
β ,

where {e1, . . . , e6} is a unitary frame and ι denotes the contraction of forms.

Remark 3.35. The formulae for the scalar curvature and for the traceless part
of the Ricci tensor are justi�ed by representation theory. Both s and Ric0 must
be the linear combination of linear terms in V2(su(3)) and quadratic terms in
V1(su(3)). For the scalar curvature the terms must take values in the V0,0 copies
of V1 and V2, while for the Ricci curvature the terms must take values in Λ2

8

and Λ3
12 copies of V1 and V2. (For S2

0 = Λ2
8 ⊕ Λ3

12). So we have to consider:

S2(V1(su(3))) =11 V0,0 ⊕ 13 V1,0 ⊕ 17 V1,1 ⊕ 12 V2,0⊕
⊕ 3 V3,0 ⊕ 4 V2,2 ⊕ 9 V2,1 ⊕ 2 V3,1 .

The 11 copies of V0,0 are generated by

• π2
0 , σ2

0 , π0σ0;

• |π1|2, |ν1|2, < π1, ν1 > and another bilinear expression in π1, ν1 which
does not appear in formula (3.41);

• |σ2|2, |π2|2, and a bilinear expression in π2, σ2 which does not appear;

• |ν3|2.

The 17 copies of V1,1 are generated by the projections of

• π0π2, π0σ2, σ0σ2, σ0π2;

• 4 bilinear expressions in π1 and ν1 which does not appear in formula (3.42);

• ∗π1 ∧ Jν3 and 3 more bilinear expressions in π1 and ν3;

• ∗(π2 ∧ π2), ∗(σ2 ∧ σ2) and 2 more bilinear expressions in π2 and σ2;

• a bilinear form in ν3.

The 12 copies of V2,0 are generated by the projections of

• π0ν3, σ0ν3;

• ν1 ∧∗(Jπ1 ∧Ω), Jν1 ∧∗(ν1 ∧Ω) and other 2 bilinear expressions in π1, ν1;
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• σ2 ∧ ν1, π2 ∧ ν1, σ2 ∧ π1, π2 ∧ π1;

• two bilinear expressions in σ2, ν3 and π2, ν3;

• Q(ν3, ν3).

An analogous discussion can be done for the second order expressions after
considering the splitting:

V2(su(3)) =3 V0,0 ⊕ 4 V1,0 ⊕ 5 V1,1 ⊕ 3 V2,1 ⊕ 4 V2,0 ⊕ V3,0 ⊕ V2,2 .

3.2.6 Ricci tensor of generalized Calabi-Yau manifolds
Suppose now that the pair (κ, Ω) gives a generalized Calabi-Yau structure on
M . In this case all the torsion is encoded by π2 and σ2; in fact dΩ and dJΩ
reduce to

dΩ = −π2 ∧ κ , dJΩ = −σ2 ∧ κ .

Therefore we get

0 = d2Ω = −dπ2 ∧ κ ,

0 = d2JΩ = −dσ2 ∧ κ ,

i.e. dπ2 and dσ2 are e�ective 3-forms. Since π2 ∈ Λ2
8M

0 = d(π2 ∧ Ω) = dπ2 ∧ Ω + π2 ∧ dΩ

= dπ2 ∧ Ω− π2 ∧ π2 ∧ κ

= dπ2 ∧ Ω + π2 ∧ ∗π2

= dπ2 ∧ Ω + |π2|2 ∗ 1 ,

i.e.
dπ2 ∧ Ω = −|π2|2 ∗ 1 .

Analogously we get
dσ2 ∧ JΩ = −|σ2|2 ∗ 1 .

Now we can express the Ricci tensor of a generalized Calabi-Yau manifold in
terms of π2 and σ2. In this case equation (3.42) reduces to

Ric0 =
1
4

ι−1(E1(∗(π2 ∧ π2 + σ2 ∧ σ2)))− 2 γ−1(E2(Jdπ2 + Fdσ2)) .

Since dσ2 is e�ective, Fdσ2 = −dσ2. Thus

Ric0 =
1
4

ι−1(E1(∗(π2 ∧ π2 + σ2 ∧ σ2)))− 2 γ−1(E2(Jdπ2 − dσ2)) .
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By the de�nitions of E1 and E2, using the J-invariance of π2 and formula (3.13),
we have

E1(∗(π2 ∧ π2)) = ∗(π2 ∧ π2)− 1
9
∗ ((π2 ∧ π2 + ∗(π2 ∧ π2) ∧ κ) ∧ κ)κ

= ∗(π2 ∧ π2) +
1
9
|π2|2κ− 1

9
∗ (∗(π2 ∧ π2) ∧ κ2)κ

= ∗(π2 ∧ π2) +
1
9
|π2|2κ +

2
9
|π2|2κ

= ∗(π2 ∧ π2) +
1
3
|π2|2κ

and

E2(dπ2) = dπ2 − 1
2
∗ (Jdπ2 ∧ κ) ∧ κ− 1

4
∗ (dπ2 ∧ JΩ)Ω +

1
4
∗ (dπ2 ∧ Ω) JΩ

= dπ2 − 1
4
∗ (dπ2 ∧ JΩ)Ω− 1

4
|π2|2 JΩ

= dπ2 +
1
4
∗ (π2 ∧ σ2 ∧ κ)Ω− 1

4
|π2|2 JΩ ,

where in the last step we have used

0 = d(π2 ∧ JΩ) = dπ2 ∧ JΩ + π2 ∧ dJΩ = dπ2 ∧ JΩ− π2 ∧ σ2 ∧ κ .

In the same way we get

E1(∗(σ2 ∧ σ2)) = ∗(σ2 ∧ σ2) +
1
3
|σ2|2κ

and
E2(dσ2) = dσ2 +

1
4
∗ (π2 ∧ σ2 ∧ κ)JΩ +

1
4
|σ2|2 Ω .

Therefore, taking into account that E2 commutes with J , the traceless Ricci
tensor of a special generalized Calabi-Yau manifold is given by

(3.43)
Ric0 =

1
4

ι−1(∗(σ2 ∧ σ2 + π2 ∧ π2) +
1
3
(|σ2|2 + |π2|2) κ)

− 2γ−1(Jdπ2 − dσ2 +
1
4
(|π2|2 − |σ2|2)Ω) .

Formula (3.43) implies that the metric induced by a GCY structure (κ,Ω) is
Einstein (i.e. Ric0 = 0) if and only if the torsion forms π2, σ2 satis�es

(3.44)





σ2 ∧ σ2 + π2 ∧ π2 + 1
6 (|π2|2 + |σ2|2)κ ∧ κ = 0

Jdπ2 − dσ2 + 1
4 (|π2|2 − |σ2|2)Ω = 0 .

We have the following
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Corollary 3.36. Let (M, κ, Ω) be a GCY manifold and assume π2 = 0 (or
σ2 = 0), then (M,κ, Ω) is Einstein if and only if it is a genuine Calabi-Yau
manifold.

The GCY manifolds having π2 = 0 are called Special generalized Calabi-Yau
manifold and will be to taken into account in the next chapter.
The proof of Corollary 3.36 relies on the following lemma which is interesting
in its own.

Lemma 3.37. Let (V, κ, Ω) be a 6-dimensional symplectic vector space endowed
with a normalized κ-positive 3-form. Let α ∈ Λ2

8V
∗ be a non-zero form, then

α ∧ α does no belong to the 1-dimensional SU(3)-module generated by κ ∧ κ.

Proof. The key observation here is that Λ2
8V

∗ is isomorphic as a SU(3)-
representation to the adjoint representation V1,1. Since every element in su(3)
is Ad(SU(3))-conjugated to an element of a �xed Cartan subalgebra of su(3),
there exists a SU(3)-basis {e1, . . . , e6} of V ∗ such that

α = λ1 e12 + λ2 e12 − (λ1 + λ2) e56 ,

for some λ1, λ2 ∈ R. Now suppose that α ∧ α = q κ ∧ κ for some q ∈ R. Setting
to zero the three components of α ∧ α− q κ ∧ κ gives the equations

λ2
1 + λ1λ2 + q = 0 ,

λ2
2 + λ1λ2 + q = 0 ,

λ1λ2 − q = 0 ,

which readily imply q = 0.

Proof of corollary 3.36. By lemma 3.37, since π2 = 0, the �rst equation of (3.44)
can be satis�ed if and only if |σ2|2 = 0. Therefore the Einstein condition forces
(κ,Ω) to be a Calabi-Yau structure on M .
The same argument can be used starting with σ2 = 0 instead of π2 = 0

Remark 3.38. In [31] it has been proven (see theorem 1) that a compact
Einstein almost Kähler manifold with vanishing �rst Chern class is actually a
Kähler-Einstein manifold. Note that our result holds with no the compactness
assumption.





Chapter 4

Special generalized
Calabi-Yau manifolds and
deformations of Special
Lagrangian submanifolds

Let (M, g) be a Riemannian manifold. An oriented p-plane ξ on M is a p-
dimensional vector subspace ξ of some tangent space TxM , equipped with an
orientation. If ξ is an oriented p-plane on M , then the orientation of ξ and the
restriction of the metric g to it induce a natural volume form Vol(ξ) on ξ. Let
φ be a p-form on M , then

φ|ξ = aVol(ξ)

for some a ∈ R. If a ≤ 1, then we say that φ|ξ ≤Vol(ξ). The following de�nition
was introduced by Harvey and Lawson in [37]

De�nition 4.1. A p-form φ on M is said to be a calibration if

1. dφ = 0,

2. φ|ξ ≤Vol(ξ) for any oriented p-plane ξ on M .

The triple (M, g, φ) is sometimes called a calibrated manifold. Let i : L ↪→
(M, g, φ) be an oriented submanifold, then the pull-back of the metric g to L

induces a volume form Vol(L) on L.

63
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De�nition 4.2. If
i∗(φ) = Vol(L)

then i : L ↪→ M is said to be a calibrated submanifold of (M, g, φ).

We have the following

Theorem 4.3 (Harvey-Lawson). Let (M, g, φ) be a calibrated manifold and let
i : N ↪→ M be a compact calibrated submanifold. Then

V(L) ≤ V(L′) ,

for any compact submanifold i′ : L′ ↪→ M homologous to L, where V(L) demotes
the volume of L.

Let (M, κ, J, ε) be a Calabi-Yau manifold, then the form <e ε de�nes a calibra-
tion on (M, gJ ). An oriented submanifold p : L ↪→ M calibrated by <e ε is said
to be special Lagrangian. We have the following easy proof

Lemma 4.4. Let (M,κ, J, ε) be a Calabi-Yau manifold and let p : L ↪→ M be a
submanifold. The following facts are equivalent

1. there exists an orientation on L making it calibrated by <e ε;

2. p∗(κ) = 0 and p∗(=m ε) = 0.

In [49] McLean proves that the moduli space M(L) of special Lagrangian
submanifolds near a �xed compact one L is a smooth manifold of dimension
equal to the �rst Betti number of L. Furthermore Hitchin in [41] proves that
M(L) has a natural embeddings in (H1(L,R)×Hn−1(L,R), κL) as Lagrangian
submanifold, where κL denotes the canonic (linear) symplectic structure on
H1(L,R)×Hn−1(L,R).

In [45] Peng Lu studies the following problem:

Let (M, κt, Jt, εt), t ∈ (−δ, δ), be a smooth family of Calabi-Yau manifolds and
let p : L ↪→ M be a compact special Lagrangian submanifold of (M, κ0, J0, ε0).
Is possible to �nd a family pt : L ↪→ M of special Lagrangian submanifolds of
(M, κt, Jt, εt) such that p0 = p ?

Note that in general this problem can not be solved. Indeed, if pt : L ↪→
(M, κt, Jt,=m εt) is a smooth family of special Lagrangian submanifolds, then
the cohomology classes

[p∗0(κt)] ∈ H2(L,R) , [p∗0(=m εt)] ∈ H3(L,R)
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vanishes, since p∗0(κt) is homotopic to p∗t (κt) and p∗0(=m εt) is homotopic
p∗t (=m εt).

We have the following

Theorem 4.5 ([45, 56]). The Lu Peng problem can be solved if and only if the
special Lagrangian submanifold p : L ↪→ M satis�es, for t su�ciently small, the
equations

p∗(κt) = 0 , p∗(=m εt) = 0 .

In next the section we study the Lu Peng problem in a special class of SU(3)-
manifolds.

4.1 Special Generalized Calabi-Yau manifolds
Lemma 4.4 allows to generalize the de�nition of special Lagrangian submanifold
to a non-integrable SU(n)-manifold.

De�nition 4.6. Let (M, κ, J, ε) be a SU(n)-manifold and let p : L ↪→ M be a
submanifold. If

p∗(κ) = 0 , p∗(=m ε) = 0 ,

then L is said to be a special Lagrangian submanifold.

First of all we note that theorem 3.6 implies that if (M, κ, J, ε) is a GCYmanifold
and p : L ↪→ M is a special Lagrangian submanifold, then the Maslov class of L

vanishes. Unfortunately in the GCY case the real part of the complex volume
form ε is not necessary closed. Consequently <e ε does not de�ne a calibration
on M and special Lagrangian submanifolds are not calibrated submanifolds.
This fact suggest to consider a new class of SU(n)-structures constituted by the
GCY structures (κ, J, ε) satisfying

(4.1) d<e ε = 0 .

It turns out that, if n > 3 and (M, κ, J, ε) is a 2n-dimensional GCY manifold
with complex volume form satisfying equation (4.1), then it is a genuine Calabi-
Yau manifold (see [28]). However in dimension 6 this is not still true and there
are a lot of examples of GCY structures satisfying equation (4.1) and de�ned on
manifolds which do not admit Kähler structures (see [28], [29] and the examples
described in the next section). Moreover it easy to check that if (M,κ, J, ε) is a
6-dimensional symplectic SU(3)-manifold endowed with a complex volume form
satisfying equation (4.1), then it is in particular a GCY manifold. This justi�es
the following
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De�nition 4.7. A special generalized Calabi-Yau manifold, or shortly a SGCY
manifold, is a quadruple (M, κ, J, ε) where

• (M, κ) is a 6-dimensional symplectic manifold;

• J is a κ-calibrated almost complex structure on M ;

• ε ∈ Λ3,0
J M satis�es 




ε ∧ ε = −i4
3κ3

d<e ε = 0 .

We immediately get that a submanifold L of a SGCY manifold is special La-
grangian if and only if admits an orientation making it calibrated by <e ε.

4.1.1 Examples
In this section we give some examples of SGCYmanifolds and special Lagrangian
submanifolds.

Example 4.8. Let G be the Lie group of matrices of the form

A =




et 0 xet 0 0 y1

0 e−t 0 xe−t 0 y2

0 0 et 0 0 w1

0 0 0 e−t 0 w2

0 0 0 0 1 t

0 0 0 0 0 1




Let

(4.2)
α1 = dt, α2 = dx, α3 = e−tdy1 − xe−tdw1

α4 = etdy2 − xetdw2, α5 = e−tdw1, α6 = etdw2 .

Then {α1, . . . , α6} is a basis of left-invariant 1-forms. By (4.2) we easily get

(4.3)





dα1 = dα2 = 0

dα3 = −α1 ∧ α3 − α2 ∧ α5

dα4 = α1 ∧ α4 − α2 ∧ α6

dα5 = −α1 ∧ α5

dα6 = α1 ∧ α6 .
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Let {ξ1, . . . ξ6} be the dual frame of {α1, . . . , α6}; we have

(4.4)
ξ1 =

∂

∂t
, ξ2 =

∂

∂x
, ξ3 = et ∂

∂y1
, ξ4 = e−t ∂

∂y2

ξ5 = et ∂

∂w1
+ xet ∂

∂y1
, ξ6 = e−t ∂

∂w2
+ xe−t ∂

∂y2
.

From (4.4) we obtain

(4.5)
[ξ1, ξ3] = ξ3, [ξ1, ξ4] = −ξ4, , [ξ1, ξ5] = ξ5

[ξ1, ξ6] = −ξ6, [ξ2, ξ5] = ξ3, [ξ2, ξ6] = ξ4

and the other brackets are zero. Therefore G is a non-nilpotent solvable Lie
group. By [33] G has a cocompact lattice Γ. Hence

M = G/Γ

is a compact solvmanifold of dimension six. Let us denote with π : R6 → M the
natural projection. De�ne

κ = α1 ∧ α2 + α3 ∧ α6 + α4 ∧ α5

and
J(ξ1) = ξ2 , J(ξ3) = ξ6 , J(ξ4) = ξ5

J(ξ2) = −ξ1 , J(ξ6) = −ξ3 , J(ξ5) = −ξ6 .

Then κ is a symplectic form on M and J is a κ-calibrated almost complex
structure on M . Set

ε = i(α1 + iα2) ∧ (α3 + iα6) ∧ (α4 + iα5) ;

a direct computation shows that (κ, J, ε) is a special generalized Calabi-Yau
structure on M . Let consider now the lattice Σ ⊂ R4 given by

Λ := SpanZ








−µ

1
0
0


 ,




1
µ

0
0


 ,




0
0
−µ

1


 ,




0
0
1
µ








,

where µ =
√

5−1
2 . Let T4 be the torus

T4 = R4/Λ .
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For any p, q ∈ Z let ρ(p, q) be the transformation of T4 represented by the matrix



epλ 0 qepλ 0
0 e−pλ 0 qe−pλ

0 0 epλ 0
0 0 0 e−pλ


 ,

where λ = log 3+
√

5
2 . Then

A(p, q)([y1, y2, z1, z2], (t, x)) = (ρ(p, q)[y1, y2, z1, z2], (t + p, x + q))

is a transformation of T4 × R2 for any p, q ∈ Z. Let Θ be the group of such
transformations. The manifold M can be identi�ed with

(4.6) T4 × R2

Θ

(see [33]).
Let consider now the involutive distribution D generated by {ξ2, ξ3, ξ4} and let
p : L ↪→ M be the leaf through π(0).
By (4.4) and the identi�cation (4.6) we get

π−1(L) = {x = (x1, . . . , x6) ∈ R6 | x1 = x5 = x6 = 0} ;

hence L is a compact submanifold of M . By a direct computation one can check
that {

p∗(κ) = 0 ,

p∗(=m ε) = 0 .

Hence L is a special Lagrangian submanifold.

Example 4.9. Let (x1, . . . , x6) be coordinates on R6 and let

κ3 = dx1 ∧ dx4 + dx2 ∧ dx5 + dx3 ∧ dx6 .

Let a = a(x1), b = b(x2), c = c(x3) be three smooth functions such that

λ1 := b(x2)− c(x3), λ2 := −a(x1) + c(x3), λ3 = a(x1)− b(x2)

are Z6-periodic. Let us consider the κ3-calibrated complex structure on R6

de�ned by 



J( ∂
∂xr

) = e−λr ∂
∂x3+r

J( ∂
∂x3+r

) = −eλr ∂
∂xr
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r = 1, 2, 3. De�ne a (3,0)-form on R6 by

ε = i(dx1 + ieλ1dx4) ∧ (dx2 + ieλ2dx5) ∧ (dx3 + ieλ3dx6) .

Then we get 



ε ∧ ε = −i 4
3κ3

3

d<e ε = 0 .

Since λ1, λ2, λ3 are Z6-periodic, (κ3, J, ε) de�nes a special generalized Calabi-
Yau structure on the torus T6 = R6/Z6. Now consider the three-torus L =
π(X), where π : R6 → T6 is the natural projection and

X = {(x1, . . . , x6) ∈ R6 | x1 = x2 = x3 = 0}.

It is immediate to check that L is a special Lagrangian submanifold of T6.

Remark 4.10. The previous example shows that, if (M,κt, Jt, εt) is a fam-
ily of special generalized Calabi-Yau manifolds with holomorphic initial datum
(M,κ0, J0, ε0), then (M, κt, Jt, εt) is not necessary holomorphic Calabi-Yau, for
small t. Indeed, with the notation used above, de�ne





J( ∂
∂xr

) = e−tλr ∂
∂x3+r

J( ∂
∂x3+r

) = −etλr ∂
∂xr

,

for r = 1, 2, 3,
κt = dx1 ∧ dx4 + dx2 ∧ dx5 + dx3 ∧ dx6

and
εt = i(dx1 + ietλ1dx4) ∧ (dx3 + ietλ2dx5) ∧ (dx3 + ietλ3dx6) .

Then (T6, κt, Jt, εt) is a special generalized Calabi-Yau manifold for any t ∈ R,
such that (T6, κ0, J0, ε0) is the standard holomorphic Calabi-Yau torus and Jt

is non integrable for t 6= 0 (here we assume that λ1, λ2, λ3 are not constant).

Example 4.11. Let consider now the Lie group G of matrices of the form

A =




1 0 x1 u1 0 0
0 1 x2 u2 0 0
0 0 1 y 0 0
0 0 0 1 0 0
0 0 0 0 1 t

0 0 0 0 0 1



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where x1, x2, u1, u2, y, t are real numbers. Let Γ be the subgroup G formed by
the matrices having integral entries. Since Γ is a cocompact lattice of G, then
M := G/Γ is a six-dimensional nilmanifold.
Let consider

ξ1 =
∂

∂y
+ x1

∂

∂u1
+ x2

∂

∂u2
, ξ2 =

∂

∂x2
,

ξ3 =
∂

∂x1
, ξ4 =

∂

∂t
, ξ5 =

∂

∂u1
, ξ6 =

∂

∂u2
.

Then {ξ1, . . . , ξ6} is a G-invariant global frame on M .
The respective coframe {α1, . . . , α6} satis�es

(4.7)





dα1 = dα2 = dα3 = dα4 = 0

dα5 = α1 ∧ α3

dα6 = α1 ∧ α2 .

The special generalized Calabi-Yau structure on M is given by the symplectic
form

κ = α1 ∧ α4 + α2 ∧ α5 + α3 ∧ α6 ,

by the κ-calibrated almost complex structure

J(ξ1) = ξ4 , J(ξ2) = ξ5 , J(ξ3) = ξ6 ,

J(ξ4) = −ξ1 , J(ξ5) = −ξ2 , J(ξ6) = −ξ3

and by the complex volume form

ε = (α1 + iα4) ∧ (α2 + iα5) ∧ (α3 + iα6) .

By a direct computation we get

<e ε = α123 − α345 + α246 − α156 ,

=m ε = α234 − α135 + α126 − α456; .

Let
X = {A ∈ G | y = x2 = u2 = 0}

and
L = π(X) ,

π : G → M being the canonical projection. Then L is a special Lagrangian torus
embedded in (M,κ, J, ε).

Now we give an example of a compact 6-dimensional complex manifold ad-
mitting generalized Calabi-Yau structures, but which can not admit any special
generalized Calabi-Yau structure.
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Example 4.12. Let

G =








1 z1 z2

0 1 z3

0 0 1


 : z1, z2, z3 ∈ C





be the complex Heisenberg group and let Γ ⊂ G be the subgroup with integral
entries. Then M = G/Γ is the Iwasawa manifold. It is known that M is
symplectic, but it has no Kähler structures (see [34]).
Let zr = xr + ixr+3, r = 1, 2, 3, and set

α1 = dx1, α2 = dx3 − x1dx2 + x4dx5, α3 = dx5

α4 = dx4, α5 = dx2, α6 = dx6 − x4dx2 − x1dx5 ,

then {α1, . . . , α6} are G-invariant, so that {α1, . . . , α6} is a global coframe on
M . We immediately get





dα1 = dα3 = dα4 = dα5 = 0

dα2 = −α1 ∧ α5 − α3 ∧ α4

dα6 = −α4 ∧ α5 − α1 ∧ α3 .

Let {ξ1, . . . ξ6} be the dual frame of {α1, . . . , α6}, then
{

J(ξr) = ξr+3 r = 1, 2, 3 ,

J(ξ3+r) = −ξr r = 1, 2, 3 ,

de�nes a complex structure on M calibrated by the symplectic form

κ = α14 + α25 + α36 .

Let ε = (α1 + iα4) ∧ (α2 + iα5) ∧ (α3 + iα6), then a direct computation gives




ε ∧ ε = − 4
3 iκ3

∂Jε = 0 ,

i.e. (κ, J, ε) is a generalized Calabi-Yau structure on M .
Now we prove that there are no nowhere vanishing (3,0)-forms η on M such
that

d<e η = 0 .

In particular (M, J) does not admit any special generalized Calabi-Yau struc-
ture. In order to show this let η ∈ Λ3,0

J M ; then there exists f ∈ C∞(M,C) such
that

η = fε .
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Let f = u + iv and set

du =
n∑

i=1

uiαi , dv =
n∑

i

viαi .

A direct computation shows that

d<e η =(u6 + v3)α3456 + (v2 + u5)α2456 + (−u1 + v4)α1345+

+ (−u6 − v3)α1236(−u3 + v6)α2346 + (−u5 − v2)α1235+

+ (u1 − v4)α1246 + (u3 − v6)α1356 + v α1245+

− v α1346 + (u + u4 + v1)α1456 + (u− u4 − v1)α1234+

+ (−u2 + v5)α2345 + (u2 − v5)α1256 .

Hence d<e η = 0 if and only if u = v = 0.

4.1.2 The Lu Peng problem in SGCY manifolds
In this section we study the Lu Peng problem in SGCY manifolds.
We have the following

Theorem 4.13. Let (M,κt, Jt, εt) be a family of SGCY manifolds and let
p0 : L ↪→ M be a compact special Lagrangian submanifold of (M, κ0, J0, ε0).
Assume that :

• the cohomology classes

[p∗0(κt)] ∈ H2(L,R) , [(expV )∗=m εt)] ∈ H3(L,R)

vanishes for any t and any vector �eld V normal to L, where expV : L →
M is the smooth map

expV (x) := expx(V (x));

• for any vector �eld V normal to L, ε0 satis�es

p∗0(ιV d=m ε0) = 0 ;

then there exists δ > 0 and a family pt : L ↪→ M of special Lagrangian subman-
ifolds of (M, Jt, κt, εt), for t ∈ (−δ, δ), that extends p0 : L ↪→ M .

Before the proof we need the following preliminar

Lemma 4.14. Let (V, κ) be a symplectic vector space and let p : W ↪→ V be a
Lagrangian subspace. Then
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1. τ : V/W → W ∗ de�ned as τ([v]) = p∗(ιvκ) is an isomorphism;

2. let J be a κ-calibrated complex structure on V and let ε ∈ Λn,0
J V ∗ satisfying

p∗(=m ε) = 0 , ε ∧ ε = cn
κn

n!
.

Then θ : V/W → Λn−1(W ∗) de�ned as θ([v]) := p∗(ιv=m ε) is an isomor-
phism. Moreover for any v ∈ V , we have

θ([v]) = − ∗ τ([v]) ,

where ∗ is computed with respect to p∗(gJ(·, ·)) := p∗(κ(·, J ·)) and the volume
form Vol(W ) := p∗(<e ε).

Proof. See [49], page 722.

Now are ready to prove theorem 4.13.

Proof of theorem 4.13. Let

F : (−σ, σ)× C(1,α)(N(L)) → C(0,α)(Λ2L)
⊕

C(0,α)(Λ3L)

be de�ned by
F (t, V ) = ((expV )∗κt, (expV )∗=m εt) .

Observe that for any �xed t the form (expV )∗κt is homotopic to p∗0(κt). There-
fore our hypothesis imply that

F
(
(−σ, σ)× C(1,α)(N(L))

) ⊂ d
(
C(1,α)(Λ1L

) ⊕
d
(
C(1,α)(Λ2L

)
.

A direct computation gives that the di�erential DF of the map F at the point
[(0, 0)] is

DF [(0, 0)](0, V ) = (p∗0(d(ιV κ0)), p∗0(d(ιV =m ε0) + ιV d(=m ε0))) .

Then, by our assumptions, we get

(4.8) DF [(0, 0)](0, V ) = (p∗0(d(ιV κ0)), p∗0(d(ιV =m ε0))) .

In view of lemma 4.14, we get

−p∗0(ιV =m ε0) = ∗p∗0(ιV κ0) ,

where ∗ is computed with respect to the metric p∗0(gJ ) and the volume form
p∗0(<e ε). Consequently we obtain

DF [(0, 0)](0, V ) = (d(p∗0(ιV κ0)),−d ∗ (p∗0(ιV κ0))) .
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By the Hodge decomposition of Λ1L it follows that

DF [(0, 0)] : R× C(1,α)(N(L)) → d
(
C(1,α)(Λ1L

) ⊕
d
(
C(1,α)(Λ2L)

)
.

is surjective and

(4.9) kerDF [(0, 0)]|{0}×C(1,α)(N(L))
∼= H1(L) ,

where H1(L) denotes the space of C(1,α) harmonic 1-forms on L.
Let A be the space of normal vector �elds V in C(1,α)(N(L)), identi�ed by the
isomorphism ]κ0 : C(1,α)(N(L)) → C(1,α)(Λ1L) to one-forms on L belonging to

d(C(2,α)(L))
⊕

d∗(C(2,α)(Λ2L)

and let
F̂ = F |(−σ,σ)×A .

Then, (4.9) and the Hodge decomposition theorem imply that

DF̂ |{0}×A : A → d(C(2,α)L)
⊕

d∗(C(2,α)(Λ2L))

is an isomorphism.
Therefore we can apply the implicit function theorem to F̂ and �nd, for small
t, a solution V of the equation





V (0) = 0

F̂ (t, V (t)) = 0 .

Taking the derivative of F̂ (t, V (t)) = 0 with respect to t, we get that V̇ (t) is
solution of an elliptic equation. Consequently V (t) is a smooth vector �eld for
any t. Then

pt(x) := expx V (t, x)

is a family of special Lagrangian submanifolds of M that extends L.

4.2 Four-dimensional generalized Calabi-Yau
manifolds

In this section we study a generalization of the Calabi-Yau structure to dimen-
sion 4.
First of all we consider the following proposition, essentially due to Conti and
Salamon (see [22]), which gives a characterization of SU(2)-structures on 4-
manifolds in terms of torsion forms
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Proposition 4.15 ([22]). SU(2)-structures on a 4-manifold M are in one-to-
one correspondence with the triple of 2-forms (ω1, ω2, ω3) satisfying

ωi ∧ ωj = δij v for i = 1, 2, 3

for some 4-form v 6= 0, and

ιXω1 = ιY ω2 =⇒ ω3(X, Y ) ≥ 0 .

In particular any ωi is a symplectic structure on M . The triple (ω1, ω2, ω3)
induces a triple of almost complex structures an M which we describe in the
following

Lemma 4.16. Let

Pr : Λ1M → Λ1M , for r = 1, 2, 3 ,

be the C∞(M)-linear endomorphisms de�ned by

P1(φ) = F1(ω3 ∧F1(ω2 ∧ φ)) ,

P2(φ) = F2(ω1 ∧F2(ω3 ∧ φ)) ,

P3(φ) = F3(ω2 ∧F3(ω1 ∧ φ)) ,

where Fr is the symplectic star operator induced by ωr. Denote by Jr the
endomorphism dual to Pr with respect to the duality induced by ωr. Then Jr is
a ωr-calibrated almost complex structure on M . Moreover these almost complex
structures satisfy the following �quaternionic-like� identities

JrJs = −JsJr , for r, s = 1, 2, 3

and
J1J2 = J3 .

Moreover the triple (ω1, ω2, ω3) induces a Riemannian metric g on M by the
following formulae

g(X, Y ) = ω1(X,J1Y ) = ω2(X, J2Y ) = ω3(X, J3Y )

for every X,Y ∈ TM and a triple of complex volume forms {ε1, ε2, ε3} by the
realtions

ε1 = ω2 + iJ1ω3 ,

ε2 = ω1 − iJ2ω3 ,

ε3 = ω1 + iJ3ω2 .

In this way one has εr ∈ Λ2,0
Jr

M .
Equivalently an SU(2)-structure on a 4-manifold M is completely determined

by a triple (κ, J, ε), where
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• κ is a symplectic form,

• J is a κ-calibrated almost complex structure on M ,

• ε is a non-vanishing (2, 0)-form satisfying

ε ∧ ε = 2 κ2 ,

in fact in this case one takes

ω1 = κ , ω2 = <e ε , ω3 = =m ε .

Now we consider the symplectic case:
Let (M,κ) be a four-dimensional symplectic manifold and let J be a κ-calibrated
almost complex structure on M . Let ε be a nowhere vanishing (2, 0)-form on
M satisfying

ε ∧ ε = 2 κ2 .

Then conditions 


∇̃ε = 0

d<e ε = 0

imply
d=m ε = 0 .

Indeed, if ∇̃ε = 0, then ∂Jε = 0 and

d<e ε = 0 =⇒ ∂Jε + ∂Jε + AJε + AJε = AJε + AJε = 0 .

Since AJε ∈ Λ1,2
J M and AJε ∈ Λ2,1

J M , we get dε = 0 which implies that J is
integrable. In dimension four we adopt the following de�nition

De�nition 4.17. Let M be a (compact) four-manifold. A generalized Calabi-
Yau structure on M is a triple (κ, J, ε), where

• κ is a symplectic form,

• J is a κ-calibrated almost complex structure on M ,

• ε is a non-vanishing (2, 0)-form satisfying




ε ∧ ε = 2 κ2

d<e ε = 0 .
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In an obvious way we have the de�nition of special Lagrangian submanifold also
in the four dimensional case.

Example 4.18. We recall the construction of the Kodaira-Thurston manifold.
Let G be the Lie subgroup of GL(5,R) whose matrices have the following form

A =




1 x z 0 0
0 1 y 0 0
0 0 1 0 0
0 0 0 1 t

0 0 0 0 1




where x, y, z, t ∈ R. Let Γ be the subgroup of G of matrices with integers entries.
Since Γ is a cocompact lattice in G, we get that

M = G/Γ

is a compact manifold. M is called the Kodaira-Thurston manifold.
Let {ξ1, . . . , ξ4} be the global frame of M given by

ξ1 =
∂

∂x
, ξ2 =

∂

∂y
+ x

∂

∂z
, ξ3 =

∂

∂z
, ξ4 =

∂

∂t
.

We easily get
[ξ1, ξ2] = ξ3

and the other brackets are zero. The dual frame of {ξ1, . . . , ξ4} is given by

α1 = dx , α2 = dy , α3 = dz − xdy , α4 = dt .

We have
dα1 = dα2 = dα4 = 0 , dα3 = −α1 ∧ α2 .

The generalized Calabi-Yau structure on M is given by the forms




κ = α1 ∧ α3 + α2 ∧ α4

ε = i(α1 + iα3) ∧ (α2 + iα4)

and by the almost complex structure

J(ξ1) = ξ3 , J(ξ2) = ξ4 ,

J(ξ3) = −ξ1 , J(ξ4) = −ξ2 .

We immediately get
=m ε = α1 ∧ α2 − α3 ∧ α4 ,

<e ε = α2 ∧ α3 − α1 ∧ α4 .
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Hence
dκ = 0 ,

d<e ε = 0 .

Let X ⊂ G be the set
X = {A ∈ G | x = t = 0}

and
L = π(X),

where π : G → M is the natural projection. Hence L is a compact manifold
embedded in M . Moreover the tangent bundle to L is generated by {ξ2, ξ3}; so
we get

p∗(κ) = 0 ,

p∗(=m ε) = 0 .

Hence L is a special Lagrangian torus.

The following lemma gives a topological obstruction for the existence of
generalized Calabi-Yau structures on compact 4-manifolds.

Lemma 4.19. Let M be a 4-dimensional compact manifold admitting a special
generalized Calabi-Yau structure, then

dim(H2(M,R)) ≥ 2 .

Proof. Let (κ, J, ε) be a generalized Calabi-Yau structure on M and let ω2 =
<e ε, ω3 = =m ε. First of all we observe that ω2 is a symplectic form on M

and consequently it cannot be exact. Furthermore if a[κ] + b[ω2] = 0 for some
a, b ∈ R, then

aκ + ω2 = dα ,

for some α ∈ Λ1M and this last equation together with ω2 ∧ κ = 0 readily
implies bκ2 = d(α ∧ κ), which forces b to vanish. Hence κ and ω2 induce R-
linear independent classes in H2(M,R) and dim(H2(M,R)) ≥ 2.
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SU(n)-structures on contact
manifolds

In this chapter we give a generalization of Calabi-Yau structure to the context
of contact manifolds. A contact Calabi-Yau manifold is a 2n + 1-dimensional
manifold M endowed with a contact form α, a dα-calibrated complex structure
J on the contact distribution ξ = ker α and a closed basic complex volume form
ε. As in the Calabi-Yau case, if a contact Calabi-Yau structure (M, α, J, ε) is
given, the real part of ε is a calibration on M . An oriented submanifold is said
to be special Legendrian if it is calibrated by <e ε. In section 5.2.1 we prove that
the moduli space of special Legendrian submanifolds near a �xed compact one
is always a smooth 1-dimensional manifold. Hence this case is quite di�erent
from the Calabi-Yau one where the dimension of the moduli space of special La-
grangian submanifolds near a compact one depends form the �rst Betti number
of the base point.
In section 5.2.2 we study the Lu Peng problem for special Legendrian subman-
ifolds and in section 5.4 we classify invariant contact Calabi-Yau structures on
5-dimensional nilmanifolds. In the last section we generalize to the codimension
r.

5.1 SU(n)-structures on 2n + 1-manifolds
Let M be a 2n+1-dimensional manifold and let α ∈ Λ1M be a nowhere vanishing
1-form. Assume that there exists a 2-form κ on M satisfying

α ∧ κn 6= 0

79
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and let ξ = ker α. Then the couple (ξ, κ) de�nes a symplectic vector bundle on
M . Let us denote by Cκ(ξ) the space of the complex structures on the vector
bundle ξ calibrated by κ. Let J ∈ Cκ(ξ) and let Rα be the Reeb vector �eld of
the couple (α, κ), i.e. the unique vector �eld on TM satisfying

α(Rα) = 1 , ιRακ = 0 .

We recall the following

De�nition 5.1. A complex p-form γ on M is said to be transverse if

ιRα
γ = 0 .

If further
ιRα

dγ = 0

γ is said to be basic.

Let us denote by Λp
0M the set of the tansverse p-form on M and by Λp

BM the
space of basic p-form. Note that d takes basic forms in basic forms. Furthermore
one can de�ne the basic cohomology groups Hr

B(M) of (M, α) as the cohomology
groups of the complex (ΛBM,d). Extending the complex structure J on TM

as zero on Rα, we have
J(Λp

0M) ⊂ Λp
0M .

Consequently Λp
0M ⊗ C splits as

Λp
0M ⊗ C =

⊕
r+s=p

Λr,s
J ξ .

Proposition 5.2. Let M be a 2n+1-dimensional manifold. A SU(n)-structure
on M is determined by the following data

• a nowhere vanishing 1-form α on M ;

• a 2-form κ satisfying α ∧ κn 6= 0;

• a complex structure J ∈ Cκ(ξ) (where ξ = kerα);

• a nowhere vanishing ε ∈ Λn,0
J ξ satisfying ε ∧ ε = cn

κn

n! .

Since SU(n) ⊂ O(2n + 1,R), a SU(n)-structure on M induces a Riemannian
metric g. This metric can be described in terms of (α, κ, J, ε) by

g = gJ + α⊗ α ,
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where

(5.1) gJ(·, ·) := κ(·, J ·)

is the metric on ξ induced by the pair (κ, J). Note that a SU(n)-structure is
integrable if and only if

∇α = 0 , ∇κ = 0 , ∇J = 0 , ∇ε = 0 .

Moreover we have that κ ∈ Λ1,1
J ξ and consequently

ε ∧ κ = 0 .

Any contact SU(n)-structure on M induces a SU(n + 1)-structure (κ̃, J̃ , ε̃) on
the cone

V = M × R+

by taking

κ̃ = tdt ∧ α + t2 κ , J̃ =





J on ξ

J̃(∂t) = 1
t Rα

, ε̃ = tn ε ∧ (tα + idt) .

From the de�nitions of κ̃ and ε̃ we immediately get

κ̃n+1 = λ ε̃ ∧ ε̃ ,

where λ is a complex constant. A direct computation gives

dκ̃ = 0 ⇐⇒ κ =
1
2
dα .

We recall that α ∈ Λ1M is a contact form if

α ∧ (dα)n 6= 0 .

In this case the distribution ξ = kerα is said to be a contact structure. A
SU(n)-structure (α, κ, J, ε) is said to be contact if

κ =
1
2
dα .

Note that if (M, α, J, ε) is a contact SU(n)-manifold, then κ̃ is a symplectic
structure on V . We can introduce the following

De�nition 5.3. A contact SU(n)-structure (α, J, ε) is said to be contact Calabi-
Yau if the complex volume form ε is closed. In this case the quadruple
(M,α, J, ε) is said to be a contact Calabi-Yau manifold.
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Note that if (α, J, ε) is a contact Calabi-Yau structure, then ε is a basic form.

Example 5.4. Consider R2n+1 endowed with Euclidean standard coordinates
{x1, . . . , xn, y1, . . . , yn, t}. Let

α0 = 2dz − 2
n∑

i=1

yi dxi .

be the standard contact form on R2n+1 and let ξ0 = kerα0. Then ξ0 is spanned
by

{y1 ∂t + ∂x1 , . . . , yn ∂t + ∂xn
, ∂y1 , . . . , ∂yn

} .

For simplicity, set Vi = yi ∂t + ∂xi , Wj = ∂yj , i, j = 1, . . . , n and




J0(Vr) = Wr

J0(Wr) = −Vr

r = 1, . . . n .

Then J0 de�nes a complex structure in Cκ0(ξ0), where κ0 = 1
2dα0. Since the

space of transverse 1-forms is spanned by {dx1, . . . , dxn, dy1, . . . , dyn}, then
the complex valued form

ε0 := (dx1 + idy1) ∧ · · · ∧ (dxn + idyn)

is of type (n, 0) with respect to J0 and it satis�es




ε0 ∧ ε0 = cn κn
0

dε0 = 0 .

Therefore (R2n+1, α0, J0, ε0) is a contact Calabi-Yau manifold.

The following will describe a compact contact Calabi-Yau manifold.

Example 5.5. Let

H(3) :=





A =




1 x y

0 1 z

0 0 1


 | x, y, z ∈ R





be the 3-dimensional Heisenberg group and let M = H(3)/Γ, where Γ denotes
the subgroup of H(3) given by the matrices with integral entries. The 1-forms
α1 = dx, α2 = dy, α3 = x dy−dz are H(3)-invariant and therefore they de�ne a
global coframe on M . Then α = 2α3 is a contact form whose contact distribution
ξ is spanned by V = ∂x, W = ∂y + x ∂z. Again





J(V ) = W

J(W ) = −V
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de�nes a κ-calibrated complex structure on ξ and ε = α1 + i α2 is a (1, 0)-form
on ξ such that (M,α3, J, ε) is a contact Calabi-Yau manifold.

The last example gives an invariant contact Calabi-Yau structure on a nil-
manifold. It can be generalized to the dimension 2n + 1 in this way: let g be
the Lie algebra spanned by {X1, . . . , X2n+1} with

[X2k−1, X2k] = −X2n+1

for k = 1, . . . , n and the other brackets are zero. Then g is a 2n+1-dimensional
nilpotent Lie algebra with rational constant structures and, by Malcev theo-
rem, it follows that if G is the simply connected Lie group with Lie algebra
g, then G has a compact quotient. Let {α1, . . . , α2n+1} be the dual basis of
{X1, . . . , X2n+1}. Then we immediately get

dα1 = 0 , . . . , dα2n = 0 , dα2n+1 =
n∑

k=1

α2k−1 ∧ α2k .

Hence the contact form
α =

1
2

α3 ,

the complex structure on ξ determined by the realtions




J(X2k−1) = X2k

J(X2k) = −X2k−1

for k = 1, . . . , n and the complex form

ε = (α1 + i α2) ∧ · · · ∧ (α2n−1 + i α2n)

de�ne a contact Calabi-Yau structure on any compact nilmanifold associated
with g.

The following proposition gives simple topological obstructions in order
that a compact 2n + 1-dimensional manifold M carries a contact Calabi-Yau
structure.

Proposition 5.6. Let M be a 2n + 1-dimensional compact manifold. Assume
that M admits a contact Calabi-Yau structure; then

1. if n is even, then bn+1(M) 6= 0;

2. if n is odd, then 



bn(M) ≥ 2

bn+1(M) ≥ 2 ,
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where bj(M) denotes the jth Betti number of M .

Proof. Let (α, J, ε) be a contact Calabi-Yau structure on M and let ξ = ker α.
Set Ω = <e ε; then, since ε ∈ Λn,0

J ξ , we have ε = Ω + i JΩ. In view of the
assumption dε = 0, we obtain dΩ = dJΩ = 0 and since dα ∈ Λ1,1

J ξ it follows
that

Ω ∧ dα = JΩ ∧ dα = 0 .

Hence
d(Ω ∧ α) = d(JΩ ∧ α) = 0 .

Furthermore we have

ε ∧ ε = Ω ∧ Ω + JΩ ∧ JΩ if n is even;

ε ∧ ε = −2i Ω ∧ JΩ if n is odd.

1. If n is even, then α∧ (Ω∧Ω + JΩ∧ JΩ) is a volume form on M . Assume
that the cohomology classes [Ω ∧ α], [JΩ ∧ α] vanish; then there exist
β, γ ∈ ΛnM such that

α ∧ Ω = dβ , α ∧ JΩ = dγ .

By Stokes theorem we have

0 6=
∫

M

α ∧ Ω ∧ Ω + α ∧ JΩ ∧ JΩ =
∫

M

dβ ∧ Ω + dγ ∧ JΩ

=
∫

M

d(β ∧ Ω) + d(γ ∧ JΩ) = 0 ,

which is absurd. Therefore one of [Ω ∧ α], [JΩ ∧ α] does not vanish.
Consequently bn+1(M) 6= 0.

2. Let n be odd. We prove that the cohomology classes [Ω] and [JΩ] are R-
independent. Assume that there exist a, b ∈ R such that a[Ω]+ b[JΩ] = 0,
(a, b) 6= (0, 0). Then there exists β ∈ Λn−1M such that

aΩ + b JΩ = dβ .

We may assume that a = 1, so that Ω = dβ−bJΩ. Stokes theorem implies

0 6=
∫

M

α ∧ Ω ∧ JΩ =
∫

M

α ∧ dβ ∧ JΩ = −
∫

M

d(α ∧ β ∧ JΩ) = 0

which is a contradiction. Hence bn(M) ≥ 2. With the same argument, it
is possible to prove that bn+1(M) ≥ 2 by showing that [Ω∧α] and [JΩ∧α]
are R-independent in Hn+1(M).



5.1. SU(n)-structures on 2n + 1-manifolds 85

The following is an immediate consequence of proposition 5.6.

Corollary 5.7. A 3-dimensional compact manifold M admitting contact
Calabi-Yau structure has b1(M) ≥ 2. In particular, there are no compact 3-
dimensional simply connected contact Calabi-Yau manifolds.
Moreover, the 2n + 1-dimensional sphere has no contact Calabi-Yau structures.

5.1.1 Sasakian manifolds and contact Calabi-Yau mani-
folds

Let (M, ξ) be a contact manifold. Let α be a 1-form de�ning ξ, κ = 1/2 dα

and J ∈ Cκ(ξ). The pair (α, ξ) induces an almost Kähler structure (κ̃, J̃) on the
cone V = M × R+, by taking

κ̃ = tdt ∧ α + t2 κ , J̃ =





J on ξ

J̃(∂t) = 1
t Rα .

Furthermore, as in the almost complex case, it is de�ned the Nijenhuis tensor
of J by

NJ(X, Y ) = [JX, JY ]− J [JX, Y ]− J [X, JY ] + J2[X, Y ]

for X,Y ∈ TM , where J is extended in TM by J(Rα) = 0. We recall the
following

Theorem 5.8. The following facts are equivalent

1. the almost Kähler structure (κ̃, J̃) is integrable;

2. NJ = −dα⊗Rα.

Now we can recall the following

De�nition 5.9. A Sasakian structure on M is a pair (α, J), where

• α is a contact form,

• J ∈ Cκ(ξ) satis�es NJ = −dα⊗Rα, being ξ = kerα.

The triple (M,α, J) is called a Sasakian manifold.
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It is known that if (M, α, J) is a Sasakian manifold, then Rα is a Killing
vector �eld of the metric g = gJ + α ⊗ α (where as usual gJ is the transversal
metric induced by (κ, J)) and

∇XRα = JX ,

for any X ∈ ξ, where∇ denotes the Levi Civita connection of g. Moreover in this
case J takes basic forms in basic forms and consequently the basic cohomology
groups of (M,α) split as

Hp
B(M) =

⊕
r+s=p

Hr,s
B (M) .

One easily get that dα de�nes a non zero class in H1,1
B (M).

A Sasakian structure (α, J) induces a natural connection ∇ξ on ξ given by the
relations

∇ξ
XY =





(∇XY )ξ if X ∈ ξ

[Rα, Y ] if X = Rα ,

where the subscript ξ denotes the projection onto ξ. One easily gets

∇ξ
XJ = 0 , ∇ξ

XgJ = 0 , ∇ξ
Xdα = 0 , ∇ξ

XY −∇ξ
Y X = [X,Y ]ξ

for any X, Y ∈ TM . Consequently we have

Hol(∇ξ) ⊆ U(n).

Moreover it is de�ned the transverse Ricci tensor RicT as the Ricci tensor
associated to ∇ξ, i.e.

RicT (X, Y ) =
2n∑

i=1

g(∇ξ
X∇ξ

ei
ei −∇ξ

ei
∇ξ

Xei −∇ξ
[X,ei]

ei, Y )

for any X,Y ∈ ξ, where {e1, . . . , e2n} is an arbitrary orthonormal frame of ξ. It
is known that RicT satis�es

RicT (X,Y ) = Ric(X,Y ) + 2 g(X, Y )

for any X, Y ∈ ξ, where Ric denotes the Ricci tensor of the Riemannian metric
g = gJ + α⊗ α. Let us denote by ρT the Ricci form of RicT , i.e.

ρT (X, Y ) = RicT (JX, Y ) = Ric(JX, Y ) + 2 κ(X,Y )

for any X, Y ∈ ξ. We recall that ρT is a closed form (see e.g. [32]); it is often
called the transverse Ricci form of (α, J).
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De�nition 5.10. The basic cohomology class

cB
1 (M) =

1
2π

[ρT ] ∈ H1,1
B (M)

is called the �rst basic Chern class of (M, α, J) and if it vanishes (M, α, J) is
said to be null-Sasakian.

Now we have

Proposition 5.11. Let (M,α, J) be a 2n + 1-dimensional Sasakian manifold.
The following facts are equivalent

1. Hol0(∇ξ) ⊆ SU(n)

2. RicT = 0.

Proof. The connection ∇ξ induces a connection ∇K on Λn,0
J ξ which has

Hol(∇K) ⊆ U(1). Since Hol0(∇K) and Hol0(∇ξ) are related by

Hol0(∇K) = det(Hol0(∇ξ)) ,

where det is the map induced by the determinant U(n) →U(1), Hol0(∇ξ) ⊆
SU(n) if and only if Hol0(∇K) = {1} and in this case ∇K is �at. It can be
showed that the curvature form of ∇K coincides with the transverse Ricci form
of (α, J). Hence Hol0(∇ξ) ⊆ SU(n) if and only if RicT = 0.

A Sasakian structure (α, J) is said to be α-Einstein if the Riemannian metric g

induced by (α, J) satis�es

Ric(g) = λg + να⊗ α ,

where (λ, ν) is a pair of constants. This class of metrics was introduced by
Okumura in [55]. Moreover it is known that for a generic 2n + 1-dimensional
Sasakian structure the transverse Ricci tensor satis�es

Ric(Rα, X) = 2nα(X) ,

for any X ∈ TM (see e.g. [55]). Therefore if a Sasakian structure has

RicT = 0 ,

then it is α-Einstein and the Ricci tensor reduces to

(5.2) Ric = −2g + (2n + 2) α⊗ α .

Let consider now a contact Calabi-Yau case. We have the following
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Lemma 5.12. Let (M, α, J, ε) be a contact Calabi-Yau manifold. Then (α, J)
is a Sasakian structure on M .

Proof. Let κ̃, J̃ be the almost Kähler structure induced by (α, J) on the cone
V = M × R+ and let

ψ = ε ∧ (α + i1/t dt) ∈ Λn+1,0

J̃
M .

The form ψ is nowhere vanishing on V and

dψ = d(ε ∧ (α + i1/t dt)) = ε ∧ dα = 0 .

Therefore ψ is a closed complex volume form on V . Consequently J̃ is integrable
and (M, α, J) is a Sasakian manifold.

Moreover we have that if (M,α, J, ε) is contact Calabi-Yau, then

Hol(∇ξ) ⊂ SU(n)

and, by proposition 5.11, the transverse Ricci tensor of (α, J) vanishes.
Summarizing we have the following

Proposition 5.13. Let (M, α, J, ε) be a contact Calabi-Yau manifold, then
(M, α, J) is a null-Sasakian manifold with vanishing transverse Ricci tensor.
Consequently M is α-Einstein and has scalar curvature equal to −2n.

Therefore contact Calabi-Yau manifolds can be considered a special class of
null-Sasakian manifolds.

5.2 Special Legendrian submanifolds
Let us consider on R2n+1 the standard basis {e1, . . . , e2n+1} and let V < R2n+1

be the subspace spanned by {e1, . . . , e2n}. Let J0 be the endomorphism which
coincides with the standard complex structure on V and �xes e2n+1. Let

α0 := e2n+1 , κ0 :=
n∑

i=1

e2i−1 ∧ e2i , ε0 :=
n∧

i=1

(e2i−1 + i e2i) .

Then, with notation of last section, ε0 ∈ Λn,0
J0

V . The Lie group SU(n) can be
viewed as the set of transformations in GL(2n+1,R) �xing (α0, κ0, J0, ε0). Let
G(n) be the set of the n-dimensional subspaces of R2n+1. We have the following
easy-proof
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Proposition 5.14. The form <e ε0 is a calibration on R2n+1 and W ∈ G(n) is
<e ε0-calibrated if and only if

• W < V ;

• i∗(κ0) = 0 , i∗(=m ε0 = 0);

where i : W ↪→ R2n+1 is the natural embedding.

We recall the following

De�nition 5.15. Let (M, ξ) be a contact 2n + 1-dimensional manifold and let
α be the 1-form de�ning ξ. A submanifold p : L ↪→ M is said to be a Legendrian
submanifold if

1. p∗(α) = 0 ;

2. dim L = n .

Let consider now a 2n + 1-dimensional contact Calabi-Yau manifold
(M,α, J, ε). The n-form Ω = <e ε is a calibration on M with respect to the
metric g induced by (α, J). Furthermore, by proposition 5.14, a submanifold
p : L ↪→ M satis�es the conditions

p∗(α) = 0 , p∗(=m ε) = 0

if and only if there exists an orientation making it calibrated by <e ε. Hence we
can give the following

De�nition 5.16. Let (M, α, J, ε) be a contact Calabi-Yau manifold. A Legen-
drian submanifold p : L ↪→ M is said to be special Legendrian if it satis�es the
equations

p∗(α) = 0 , p∗(=m ε) = 0 .

Example 5.17. Let (M = H(3)/Γ, α, J, ε) be the contact manifold of the
example 5.5; then the submanifold

L :=





[A] ∈ M |A =




1 x 0
0 1 0
0 0 1







' S1

is a compact special Legendrian submanifold.
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5.2.1 Deformation of Special Legendrian submanifolds
Let (M, α, J, ε) be a contact Calabi-Yau manifold and let p : L ↪→ M be a special
Legendrian submanifold. Another special Legendrian submanifold p1 : L ↪→
M is said to be a deformation of p0 : L ↪→ M if there exist a smooth map
F : L× [0, 1] → M such that

1. Ft : L ↪→ M is a special Legendrian submanifold for any t ∈ [0, 1];

2. F0 = p, F1 = p1.

Let
M(L) := {special Legendrian submanifolds of (M, α, J, ε)

which are deformations of p : L ↪→ M}/ ∼ ,

be the moduli space of special Legendrian submanifolds near p : L ↪→ M , where
two embeddings are considered equivalent if they di�er by a di�eomorphism of
L. We have the following

Theorem 5.18. Assume that L is compact. Then M(L) is a 1-dimensional
smooth manifold.

Proof. Let N (L) be the normal bundle to L. Then

N (L) =< Rα > ⊕J(p∗(TL)) ,

where Rα is the Reeb vector �eld of α. Let Z be a vector �led normal to L and
let expZ : L → M be de�ned as

expZ(x) := expx(Z(x)) ,

for any x ∈ L. Let U be a neighborhood of 0 in C2,α(< Rα >)⊕C1,α(J(p∗(TL)))
and let

F : U → C1,α(Λ1L)⊕ C0,α(ΛnL) ,

be de�ned as
F (Z) = (exp∗Z(α), 2 exp∗Z(=m ε)) .

We obviously have

Z ∈ F−1(0, 0)∩C∞(N (L)) ⇐⇒ expZ(L) is a special Legendrian submanifold.

Note that since expZ and p are homotopic via expt Z , we have

[exp∗Z(=m ε)] = [p∗(=m ε)] = 0 .
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Therefore
F : U → C1,α(Λ1L)⊕ dC1,α(Λn−1L) .

Let us compute the di�erential of the map F .

F∗[0](Z) =
d

dt
(exp∗t Z(α), 2 exp∗t Z(=m ε)) = (p∗(LZα), 2p∗(LZ=m ε)) ,

where L denotes the Lie derivative. We may write Z = JX + f Rα; then
applying Cartan formula we obtain

F∗[0](Z) = (p∗(LZα), 2p∗(LZ=m ε))

= (p∗(dιZα + ιZdα), 2p∗(dιZ=mε))

= (p∗(dιJX+f Rα
α + ιJX+f Rα

dα), 2p∗(dιJX+f Rα
=m ε))

= (p∗(dιfRα
α + ιJXdα), 2p∗(dιJX=m ε))

= (p∗(df + ιJXdα), 2dp∗(ιJX=m ε)) .

Applying lemma 4.14, we get

2p∗(ιJX=m ε) = − ∗ p∗(ιJXdα) ,

where ∗ is the Hodge star operator with respect to the metric p∗(gJ) and the
volume form p∗(<e ε). Consequently we obtain

(5.3) F∗[0](Z) = (d(f ◦ p) + p∗(ιJXdα),−d ∗ p∗(ιJXdα)) .

The next step consists to show that F∗[ 0] is a surjective operator. Let
(η, dγ) ∈ C1,α(Λ1L) ⊕ dC1,α(Λn(L)). By the Hodge decomposition theorem
we may assume

dγ = −d ∗ du with u ∈ C3,α(L)

and we have
η = dv + d∗β + h(η)

where v ∈ C2,αL, β ∈ C2,α(Λ2L) and h(η) denotes the harmonic component of
η. Then we have

(η, dγ) =(du− du + dv + d∗β + h(η),−d ∗ du)

(dv − du + du + d∗β + h(η),−d ∗ (du + d∗β + h(η)) .

We can �nd f ∈ C2,α(p(L)) and X ∈ C1,α(p∗(TL)) such that

f ◦ p = v − u

p∗(ιJXdα) = du + d∗β + h(η) .
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Hence
(η, dγ) = (d(f ◦ p) + p∗(ιJXdα),−d ∗ p∗(ιJXdα))

and F∗[0] is surjective. Therefore (0, 0) is a regular value of F .
Now we compute kerF∗[0]. Formula (5.3) implies that Z ∈ kerF∗[0] if and only
if

d(f ◦ p) + p∗(ιJXdα) = 0(5.4)
d∗p∗(ιJXdα) = 0 .(5.5)

By applying d∗ to both sides of (5.4) and taking into account (5.5) we get

0 = d∗d(f ◦ p) + d∗p∗(ιJXdα) = d∗d(f ◦ p) ,

i.e.
∆(f ◦ p) = 0 .

Since L is compact f is constant. Hence (5.4) reduces to

(5.6) p∗(ιJXdα) = 0 .

The map
Θ: p∗(TL) → Λ1(L)

de�ned by
Θ(X) = p∗(ιJXdα)

is an isomorphism; hence equation (5.6) implies X = 0. Therefore Z = W +f Rα

belongs to kerF∗[0] if and only if




W = 0

f = constant .

It follows that kerF∗[0] =SpanR(Rα) ⊂ C∞(N (L)). The implicit function
theorem between Banach spaces implies that the Moduli space M(L) is a 1-
dimensional smooth manifold.

Remark 5.19. Note that the dimension of M(L) does not depend on that one
of L. This is quite di�erent from the Calabi-Yau case, where the dimension
of the Moduli space of deformations of special Lagrangian submanifolds near
a �xed compact L is equal to the �rst Betti number of L. This di�erence can
be explained in the following way: the deformations parametrized by curves
tangent to the contact structure are trivial, while those one along the Reeb
vector �eld Rα parameterize the Moduli space.
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5.2.2 The Lu Peng problem in contact Calabi-Yau mani-
folds

In this section we study the Lu Peng problem for special Legendrian submani-
folds. We have the following

Theorem 5.20. Let (M, αt, Jt, εt)t∈(−δ,δ) be a smooth family of contact Calabi-
Yau manifolds. Let p : L ↪→ M be a compact special Legendrian submanifold of
(M,α0, J0, ε0). There exists, for small t, a family of compact special Legendrian
submanifolds p : L ↪→ (M,αt, Jt, εt) such that p0 = p if and only if the condition

(5.7) [p∗(=m εt)] = 0

holds for t small enough.

Proof. The condition (5.8) is necessary. Indeed if we can extend L, then =m εt

is a closed form such that p∗t (=m εt) = 0. Since pt is homotopic to p0 we have

[p∗0(=m εt)] = [p∗t (=m εt)] = 0 .

In order to prove that condition (5.8) is su�cient, we can consider the map

G : (−σ, σ)× C(1,α)(J(p∗TL)) → C0,α(Λ2L)⊕ C(0,α)(ΛnL)

de�ned by
G(t, Z) = (exp∗Z(dαt), 2 exp∗Z(=m εt)) .

By our assumption it follows that

Im(G) ⊂ dC1,α(Λ1L)⊕ dC(1,α)(Λn−1L)

Let X ∈ p∗(TL); a direct computation gives

G∗[(0, 0)](0, JX) =(dp∗(ιJXdα0), 2dp∗(ιJX=m ε))

=(dp∗(ιJXdα0),−d ∗ p∗(ιJXdα0)) ,

where ∗ is the Hodge operator of the metric p∗(gJ) with respect to the volume
form p∗(<e ε) (here we have applied again formula lemma 4.14). It follows that
G∗[(0, 0)](0, ·) is surjective and that

kerG∗[(0, 0)]{0}×C1,α(p∗(J(TL))) ≡ H1(L) .

Let

A = {X ∈ C1,α(p∗(TL)) s.t. p∗(ιJXdα) ∈ dC1,α(L)⊕ d∗C1,α(Λ2L)}
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and
Ĝ = G|(−δ,δ)×A .

Then by the Hodge decomposition of Λ(L) it follows that

G∗[(0, 0)]{0}×A : A → dC1,α(L)⊕ d∗C1,α(Λ2L)

is an isomorphism. Again by the implicit function theorem and the there exists
a local solution of the equation





ψ(0) = 0 ,

Ĝ(t, ψ(t)) = 0 .

Taking into account the derivative of the equation Ĝ(t, ψ(t)) = 0 with respect
to t, we get that ψ̇(t) is solution of an elliptic equation for any t. It follows that
ψ(t) is a curve of smooth vector �elds. The extension of p : L ↪→ M is obtained
by considering

pt := expψ(t) .

5.3 Interplay between Calabi-Yau and contact
Calabi-Yau structures

The interplay between Calabi-Yau and contact Calabi-Yau manifolds can be
summarized with the following table

(M, κ, J, ε) Calabi-Yau (M, α, J, ε) Contact Calabi-Yau
Hol(∇) ⊂ SU(n) Hol(∇ξ) ⊂ SU(n)
Ric= 0 RicT = 0
c1(M)=0 cB

1 (M) = 0
<e ε is a calibration on M <e ε is a calibration on M

a submanifold p : L ↪→ M a submanifold p : L ↪→ M

is calibrated by <e ε if and is calibrated by <e ε if and
only if p∗(κ) = p∗(=m ε) = 0 only if p∗(α) = p∗(=m ε) = 0
the moduli space of special the moduli space of special
Lagrangian submanifolds closed Lagendrian submanifolds closed
to a compact one L is a smooth to a compact one L is a
of dimension b1(L) a 1-dimensional manifold

Where in the left side ∇ denotes the Levi-Civita connection of the Riemannian
metric gJ associated to (κ, J) and Ric is the Ricci tensor of gJ .
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5.4 The 5-dimensional nilpotent case
In this section we study invariant contact Calabi-Yau structure on 5-dimensional
nilmanifolds. We will prove that a compact 5-dimensional nilmanifold carrying
an invariant Calabi-Yau structure is covered by a Lie group whose algebra is
isomorphic to

g = (0, 0, 0, 0, 12 + 34) ,

just described in section 2. Notation g = (0, 0, 0, 0, 12 + 34) means that there
exists a basis {α1, . . . , α5} of the dual space of the Lie algebra g such that

dα1 = dα2 = dα3 = dα4 = 0 , dα5 = α1 ∧ α2 + α3 ∧ α4 .

First of all we note that 5-dimensional contact Calabi-Yau are in particular
Hypo. Recall that an Hypo structure on a 5-dimensional manifold is the datum
of (α, ω1, ω2, ω3), where α ∈ Λ1(M) and ωi ∈ Λ2(M) and

1. ωi ∧ ωj = δij v, for some v ∈ Λ4(M) satisfying v ∧ α 6= 0;

2. ιXω1 = ιY ω2 ⇐⇒ ω3(X,Y ) > 0:

3. dω1 = 0, d(ω2 ∧ α) = 0, d(ω3 ∧ α) = 0.

These structures have been introduced and studied by D. Conti and S. Salamon
in [22].
Let (M,α, J, ε) be a contact Calabi-Yau manifold of dimension 5. Then

α , ω1 =
1
2
dα , ω2 = <e ε , ω3 = =m ε ,

de�ne an Hypo structure on M .
The following lemma, whose proof is immediate, will be useful in the sequel

Lemma 5.21. Let M = G/Γ be a manifold of dimension 5. If M admits an
invariant contact form, then the Lie algebra of G is isomorphic to one of the
following models

• (0, 0, 12, 13, 14 + 23) ;

• (0, 0, 0, 12, 13 + 24) ;

• (0, 0, 0, 0, 12 + 34) .
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Let g be a non-trivial 5-dimensional nilpotent Lie algebra and denote by
V = g∗ the dual vector space of g. There exists a �ltration of V

V 1 ⊂ V 2 ⊂ V 3 ⊂ V 4 ⊂ V 5 = V ,

with dV i ⊂ Λ2V i−1 and dimRV i = i. We may chose the �ltration V in such a
way that V 2 ⊂ ker d ⊂ V 4.

Let (M = G/Γ, α, ω1, ω2, ω3) be a nilmanifold endowed with a invariant
Hypo structure (α, ω1, ω2, ω3)

1. Assume that α ∈ V 4. Then we have the following (see [22])

Theorem 5.22. If α ∈ V 4, then g is either (0, 0, 0, 0, 12), (0, 0, 0, 12, 13),
or (0, 0, 12, 13, 14).

In particular if (M, α, J, ε) is contact Calabi-Yau, then α ∈ V 4.

2. Assume that α /∈ V 4. We have the following two theorems (see [22] again)

Lemma 5.23. If α /∈ V 4 and all ωi are closed, then α is orthogonal to
V 4.

Theorem 5.24. If α is orthogonal to V 4, then g is one of

(0, 0, 0, 0, 12) , (0, 0, 0, 0, 12 + 34) .

Let (M, α, J, ε) be a contact Calabi-Yau manifold of dimension 5 endowed by an
invariant contact Calabi-Yau structure, then by 1. α does not belong to V 4. By
lemma 5.23 α is orthogonal to V 4 and by theorem 5.24 g = (0, 0, 0, 0, 12 + 34) .

Hence we have proved the following

Theorem 5.25. Let M = G/Γ be a nilmanifold of dimension 5 admitting an
invariant contact Calabi-Yau structure. Then g is isomorphic to

(0, 0, 0, 0, 12 + 34) .

5.5 Calabi-Yau manifolds of codimension r.
In this section we extend the de�nition of contact Calabi-Yau manifold to codi-
mension r proving the analogous of theorem 5.20.
Let us consider the following
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De�nition 5.26. Let M be a 2n + r-dimensional manifold. A r-contact struc-
ture on M is the datum D = {α1, . . . , αr}, where αi ∈ Λ1M , such that

• dα1 = dα2 = · · · = dαr;

• α1 ∧ · · · ∧ αr ∧ (dα1)n 6= 0 .

Note that if D = {α1, . . . , αr} is a r-contact structure and ξ :=
⋂

kerαi,
then (ξ, dα1) is a symplectic vector bundle on M and there exists a unique set
of vector �elds {R1, . . . , Rr} satisfying

αi(Rj) = δij , ιRi
dαi = 0 for any i, j = 1, . . . , r .

Let us denote by Cκ(ξ) the set of complex structures on ξ calibrated by the
symplectic form κ = 1

2dα1 and by Λr
0M the set of r-form γ on M satisfying

ιRiγ = 0 for any i = 1, . . . , r.

Since J(Λr
0M) ⊂ Λr

0M we have a natural splitting of Λr
0M ⊗ C in

Λr
0M ⊗ C =

⊕
p+q=r

Λp,q
J ξ .

If J ∈ Cκξ is given, we extend it in TM by de�ning

J(Ri) = Ri .

We can give the following

De�nition 5.27. A r-contact Calabi-Yau manifold is the datum of (M,D, J, ε),
where

• M is a 2n + r-dimensional manifold;

• D = {α1, . . . , αr} is a r-contact structure;

• J ∈ Cκξ

• ε ∈ Λn,0
J (ξ) satis�es 




ε ∧ ε = cn κn

dε = 0 .
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Example 5.28. Let M = H(3)/Γ × S1 be the Kodaira-Thurston manifold,
where H(3) is the 3-dimensional Heisenberg group and Γ is the lattice of H(3)
of matrices with integers entries. Let

α1 = 2dz + 2xdy ,

α2 = 2dz + 2xdy + dt .

One easily get
dα1 = dα2 = 2dx ∧ dy

and that D = {α1, α2} is a 2-contact structure on M . Note that ξ = ker α1 ∩
kerα2 is spanned by {X1 = ∂x, X2 = x∂y − ∂z}. Moreover the Reeb �elds of D
are

R1 =
1
2
∂z − 1

2
∂t ,

R2 =
1
2
∂t .

Therefore Λ1
0M is generated by {dx, dy}. Let J ∈ End(ξ) be the complex

structure given by
J(X1) = X2 , J(X2) = −X1

and let ε ∈ Λ2,0
J ξ be the form

ε = dx + iJdy .

Then (M,D, J, ε) is a 2-contact Calabi-Yau structure.

As in the contact Calabi-Yau case if (M,D, J, ε) is a r-contact Calabi-Yau
manifold, then the n-form Ω = <e ε is a calibration on M . Moreover a n-
dimensional submanifold p : L ↪→ M admits an orientation making it calibrated
by Ω if and only if

p∗(αi) = 0 for any αi ∈ D ,

p∗(=m ε) = 0 .

A submanifold satisfying these equations will be called special Legendrian.

Example 5.29. Let (M,D, J, ε) be the 2-contact Calabi-Yau structure de-
scribed in example 5.28. Then

L :=





[A] ∈ H(3)/Γ |A =




1 x 0
0 1 0
0 0 1


 , x ∈ R




× {q} ' S1

is a Special Legendrian submanifold for any q ∈ S1.
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The proof of next theorem is very similar to that one of theorem 5.20 and it is
left to the reader

Theorem 5.30. Let (M,Dt, Jt, εt)t∈(−δ,δ) be a smooth family of r-contact
Calabi-Yau manifolds. Let p : L ↪→ M be a compact special Legendrian sub-
manifold of (M,D0, J0, ε0). Then there exists, for small t, a family of compact
special Legendrian submanifolds pt : L ↪→ (M,Dt, Jt, εt) extending p : L ↪→ M if
and only if the condition

(5.8) [p∗(=m εt)] = 0

holds for t small enough.
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