
Comprehending Monads

Philip Wadler

University of Glasgow

Abstract

Category theorists invented monads in the �����s to concisely express certain
aspects of universal algebra� Functional programmers invented list comprehensions

in the �����s to concisely express certain programs involving lists� This paper shows
how list comprehensions may be generalised to an arbitrary monad� and how the
resulting programming feature can concisely express in a pure functional language
some programs that manipulate state� handle exceptions� parse text� or invoke con�
tinuations� A new solution to the old problem of destructive array update is also
presented� No knowledge of category theory is assumed�

� Introduction

Is there a way to combine the indulgences of impurity with the blessings of purity�
Impure� strict functional languages such as Standard ML �Mil��� HMT��� and Scheme

�RC��� support a wide variety of features� such as assigning to state� handling exceptions�
and invoking continuations� Pure� lazy functional languages such as Haskell �HPW�	� or
Miranda� �Tur�
� eschew such features� because they are incompatible with the advan�
tages of lazy evaluation and equational reasoning� advantages that have been described
at length elsewhere �Hug��� BW����

Purity has its regrets� and all programmers in pure functional languages will recall
some moment when an impure feature has tempted them� For instance� if a counter is
required to generate unique names� then an assignable variable seems just the ticket� In
such cases it is always possible to mimic the required impure feature by straightforward
though tedious means� For instance� a counter can be simulated by modifying the relevant
functions to accept an additional parameter �the counters current value� and return an
additional result �the counters updated value��

�Miranda is a trademark of Research Software Limited�

Author�s address� Department of Computing Science� University of Glasgow� G�� �QQ� Scotland� Elec�

tronic mail� wadler�cs�glasgow�ac�uk�

This paper appeared inMathematical Structures in Computer Science volume �� pp� 	
��	�� ����� copy�

right Cambridge University Press� This version corrects a few small errors in the published version� An

earlier version appeared in ACM Conference on Lisp and Functional Programming� Nice� June �����

	

This paper describes a new method for structuring pure programs that mimic impure
features� This method does not completely eliminate the tension between purity and
impurity� but it does relax it a little bit� It increases the readability of the resulting
programs� and it eliminates the possibility of certain silly errors that might otherwise
arise �such as accidentally passing the wrong value for the counter parameter��

The inspiration for this technique comes from the work of Eugenio Moggi �Mog��a�
Mog��b�� His goal was to provide a way of structuring the semantic description of features
such as state� exceptions� and continuations� His discovery was that the notion of a monad
from category theory suits this purpose� By de�ning an interpretation of ��calculus in
an arbitrary monad he provided a framework that could describe all these features and
more�

It is relatively straightforward to adopt Moggis technique of structuring denotational
speci�cations into a technique for structuring functional programs� This paper presents a
simpli�ed version of Moggis ideas� framed in a way better suited to functional program�
mers than semanticists� in particular� no knowledge of category theory is assumed�

The paper contains two signi�cant new contributions�
The �rst contribution is a new language feature� the monad comprehension� This

generalises the familiar notion of list comprehension �Wad���� due originally to Burstall
and Darlington� and found in KRC �Tur���� Miranda� Haskell and other languages� Monad
comprehensions are not essential to the structuring technique described here� but they do
provide a pleasant syntax for expressing programs structured in this way�

The second contribution is a new solution to the old problem of destructive array
update� The solution consists of two abstract data types with ten operations between
them� Under this approach� the usual typing discipline �e�g�� Hindley�Milner extended
with abstract data types� is su�cient to guarantee that array update may safely be
implemented by overwriting� To my knowledge� this solution has never been proposed
before� and its discovery comes as a surprise considering the plethora of more elaborate
solutions that have been proposed� these include syntactic restrictions �Sch�
�� run�time
checks �Hol���� abstract interpretation �Hud��a� Hud��b� Blo���� and exotic type systems
�GH��� Wad��� Wad�	�� That monads led to the discovery of this solution must count as
a point in their favour�

Why has this solution not been discovered before� One likely reason is that the data
types involve higher�order functions in an essential way� The usual axiomatisation of
arrays involves only �rst�order functions �index � update� and newarray� as described in
Section ����� and so� apparently� it did not occur to anyone to search for an abstract data
type based on higher�order functions� Incidentally� the higher�order nature of the solution
means that it cannot be applied in �rst�order languages such as Prolog or OBJ� It also
casts doubt on Goguens thesis that �rst�order languages are su�cient for most purposes
�Gog����

Monads and monad comprehensions help to clarify and unify some previous proposals
for incorporating various features into functional languages� exceptions �Wad�
� Spi����
parsers �Wad�
� Fai��� FL���� and non�determinism �HO���� In particular� Spiveys work
�Spi��� is notable for pointing out� independently of Moggi� that monads provide a frame�

�

work for exception handling�
There is a translation scheme from ��calculus into an arbitrary monad� Indeed� there

are two schemes� one yielding call�by�value semantics and one yielding call�by�name�
These can be used to systematically transform languages with state� exceptions� continu�
ations� or other features into a pure functional language� Two applications are given� One
is to derive call�by�value and call�by�name interpretations for a simple non�deterministic
language� this �ts the work of Hughes and ODonnell �HO��� into the more general frame�
work given here� The other is to apply the call�by�value scheme in the monad of continu�
ations� the result is the familiar continuation�passing style transformation� It remains an
open question whether there is a translation scheme that corresponds to call�by�need as
opposed to call�by�name�

A key feature of the monad approach is the use of types to indicate what parts of
a program may have what sorts of e�ects� In this� it is similar in spirit to Gi�ord and
Lucassens e�ect systems �GL����

The examples in this paper are based on Haskell �HPW�	�� though any lazy functional
language incorporating the Hindley�Milner type system would work as well�

The remainder of this paper is organised as follows� Section � uses list comprehensions
to motivate the concept of a monad� and introduces monad comprehensions� Section �
shows that variable binding �as in �let� terms� and control of evaluation order can be
modelled by two trivial monads� Section � explores the use of monads to structure pro�
grams that manipulate state� and presents the new solution to the array update problem�
Two examples are considered� renaming bound variables� and interpreting a simple im�
perative language� Section
 extends monad comprehensions to include �lters� Section �
introduces the concept of monad morphism and gives a simple proof of the equivalence of
two programs� Section � catalogues three more monads� parsers� exceptions� and continu�
ations� Section � gives the translation schemes for interpreting ��calculus in an arbitrary
monad� Two examples are considered� giving a semantics to a non�deterministic language�
and deriving continuation�passing style�

� Comprehensions and monads

��� Lists

Let us write M x for the data type of lists with elements of type x � �In Haskell� this is
usually written �x ��� For example� �� � � � � � �� M Int and ��a� �b� �c� �� M Char � We write
map for the higher�order function that applies a function to each elment of a list�

map �� �x � y�� �M x � M y��

�In Haskell� type variables are written with small letters� e�g�� x and y� and type construc�
tors are written with capital letters� e�g�� M �� For example� if code �� Char � Int maps a
character to its ASCII code� then map code ��a� �b� �c� � ��� � �� � �� �� Observe that

�i� map id � id �
�ii� map �g � f � � map g �map f �

�

Here id is the identity function� id x � x � and g � f is function composition� �g � f � x �
g �f x ��

In category theory� the notions of type and function are generalised to object and
arrow � An operator M taking each object x into an object M x � combined with an
operator map taking each arrow f �� x � y into an arrow map f �� M x � M y� and
satisfying �i� and �ii�� is called a functor� Categorists prefer to use the same symbol for
both operators� and so would write M f where we write map f �

The function unit converts a value into a singleton lists� and the function join con�
catenates a list of lists into a list�

unit �� x �M x �
join ��M �M x ��M x �

For example� unit � � �� � and join � �� � � �� �� � � � �� � � � � �� Observe that

�iii� map f � unit � unit � f �
�iv� map f � join � join �map �map f ��

Laws �iii� and �iv� may be derived by a systematic transformation of the polymorphic
types of unit and join� The idea of deriving laws from types goes by the slogan �theorems
for free� �Wad��� and is a consequence of Reynolds abstraction theorem for polymorphic
lambda calculus �Rey����

In categorical terms� unit and join are natural transformations� Rather than treat unit
as a single function with a polymorphic type� categorists treat it as a family of arrows�
unitx �� x �M x � one for each object x � satisfying map f � unitx � unity � f for any objects
x and y and any arrow f �� x � y between them� They treat join similarly� Natural
transformation is a simpler concept than polymorphic function� but we will stick with
polymorphism since its a more familiar concept to functional programmers�

��� Comprehensions

Many functional languages provide a form of list comprehension analogous to set compre�
hension� For example�

� �x � y� j x � �� � � �� y � �� � � � � � ��� � � �� �� � � �� �� � � �� �� � � ���

In general� a comprehension has the form � t j q �� where t is a term and q is a quali�er� We
use the letters t � u� v to range over terms� and p� q� r to range over quali�ers� A quali�er
is either empty� �� or a generator� x � u� where x is a variable and u is a list�valued
term� or a composition of quali�ers� �p� q�� Comprehensions are de�ned by the following
rules�

�� � � t j � � � unit t �
�� � � t j x � u � � map ��x � t� u�
�� � � t j �p� q� � � join � �t jq� j p ��

�

�In Haskell� ��terms are written ��x � t� rather than the more common ��x � t��� Note
the reversal of quali�ers in rule ���� nesting q inside p on the right�hand side means that�
as we expect� variables bound in p may be used in q but not vice�versa�

For those familiar with list comprehensions� the empty quali�er and the parentheses
in quali�er compositions will appear strange� This is because they are not needed� We
will shortly prove that quali�er composition is associative and has the empty quali�er
as unit� Thus we need not write parentheses in quali�er compositions� since ��p� q�� r�
and �p� �q� r�� are equivalent� and we need not write �q��� or ��� q� because both are
equivalent to the simpler q� The only remaining use of � is to write � t j � �� which we
abbreviate � t ��

Most languages that include list comprehensions also allow another form of quali�er�
known as a 	lter� the treatment of which is postponed until Section
�

As a simple example� we have�

� sqr x j x � �� � � � � � �
� fby �� �g

map ��x � sqr x � �� � � � � �
� freducing mapg

�� � � � � ��

The comprehension in the initial example is computed as�

� �x � y� j x � �� � � �� y � �� � � � �
� fby �� �g

join � � �x � y� j y � �� � � � � j x � �� � � � �
� fby �� �g

join �map ��y � �x � y�� �� � � � j x � �� � � � �
� fby �� �g

join �map ��x � map ��y � �x � y�� �� � � �� �� � � ��
� freducing mapg

join �map ��x � ��x � � �� �x � � ��� �� � � ��
� freducing mapg

join ���� � � �� �� � � ��� ��� � � �� �� � � ���
� freducing joing

��� � � �� �� � � �� �� � � �� �� � � ���

From �i���iv� and �� ���� � we may derive further laws�

�� � � f t j q � � map f � t j q ��
�
 � � x j x � u� � u�
�� � � t j p� x � �ujq�� r � � � tux j p� q� r

u
x ��

In �� � function f must contain no free occurrences of variables bound by quali�er q� and
in �� � the term tux stands for term t with term u substituted for each free occurrence of
variable x � and similarly for the quali�er rux � Law �� � is proved by induction over the

structure of quali�ers� the proof uses laws �ii���iv� and �� ���� �� Law �
 � is an immediate
consequence of laws �i� and �� �� Law �� � is again proved by induction over the structure
of quali�ers� and the proof uses laws �� ���� ��

As promised� we now show that quali�er composition is associative and has the empty
quali�er as a unit�

�I �� � t j �� q � � � t j q ��
�II �� � t j q� � � � � t j q ��
�III �� � t j �p� q�� r � � � t j p� �q� r� ��

First� observe that �I ����III �� are equivalent� respectively� to the following�

�I � join � unit � id �
�II � join �map unit � id �
�III � join � join � join �map join�

To see that �II �� and �II � are equivalent� start with the left side of �II �� and simplify�

� t j q� � �
� fby �� �g

join � � t j �� j q �
� fby �� �g

join � unit t j q �
� fby �� �g

join �map unit � t j q ���

That �II � implies �II �� is immediate� For the converse� take � t j q � to be � x j x � u � and
apply �
 �� The other two equivalences are seen similarly�

Second� observe that laws �I ���III � do indeed hold� For example�

join �unit �� � � �� � join ��� � � �� � �� � � ��
join �map unit �� � � �� � join ��� �� �� �� � �� � � ��

join �join ���� �� �� ��� ��� ���� � join ��� �� �� �� �� �� � �� � � � � ��
join �map join ���� �� �� ��� ��� ���� � join ��� � � �� �� �� � �� � � � � ��

Use induction over lists to prove �I � and �II �� and over list of lists to prove �III ��

��� Monads

The comprehension notation suits data structures other than lists� Sets and bags are
obvious examples� and we shall encounter many others� Inspection of the foregoing lets
us isolate the conditions under which a comprehension notation is sensible�

For our purposes� a monad is an operatorM on types together with a triple of functions

map �� �x � y�� �M x �M y��
unit �� x �M x �
join �� M �M x �� M x �

�

satisfying laws �i���iv� and �I ���III ��
Every monad gives rise to a notion of comprehension via laws �� ���� �� The three

laws establish a correspondence between the three components of a monad and the three
forms of quali�er� �� � associates unit with the empty quali�er� �� � associates map with
generators� and �� � associates join with quali�er composition� The resulting notion of
comprehension is guaranteed to be sensible in that it necessarily satis�es laws �� ���� �
and �I ����III ���

In what follows� we will need to distinguish many monads� We writeM alone to stand
for the monad� leaving the triple �mapM � unitM � joinM � implicit� and we write � t j q �M

to indicate in which monad a comprehension is to be interpreted� The monad of lists as
described above will be written List �

As an example� take Set to be the set type constructor� mapSet to be the image of a
set under a function� unitSet to be the function that takes an element into a singleton set�
and joinSet to be the union of a set of sets�

mapSet f x � f f x j x � x g
unitSet x � f x g
joinSet x �

S
x �

The resulting comprehension notation is the familiar one for sets� For instance� � �x � y� j
x � x � y � y �Set speci�es the cartesian product of sets x and y�

We can recover unit � map� and join from the comprehension notation�

�� �� unit x � � x �
�� �� map f x � � f x j x � x �
�� �� join x � � x j x � x � x � x ��

Here we adopt the convention that if x has type x � then x has type M x and x has type
M �M x ��

Thus not only can we derive comprehensions from monads� but we can also derive
monads from comprehensions� De�ne a comprehension structure to be any interpretation
of the syntax of comprehensions that satis�es laws �
 ���� � and �I ����III ��� Any monad
gives rise to a comprehension structure� via laws �� ���� �� as we have seen� these imply
�� ���� � and �I ����III ��� Conversely� any comprehension structure gives rise to a monad
structure� via laws �� ����� ��� it is easy to verify that these imply �i���iv� and �� ���� ��
and hence �I ���III ��

The concept we arrived at by generalising list comprehensions� mathematicians arrived
at by a rather di�erent route� It �rst arose in homological algebra in the 	�
�s with
the undistinguished name �standard construction� �sort of a mathematical equivalent of
�hey you��� The next name� �triple�� was not much of an improvement� Finally it was
baptised a �monad�� Nowadays it can be found in any standard text on category theory
�Mac�	� BW�
� LS����

The concept we call a monad is slightly stronger than what a categorist means by that
name� we are using what a categorist would call a strong monad in a cartesian closed

�

category� Rougly speaking� a category is cartesian closed if it has enough structure to
interpret ��calculus� In particular� associated with any pair of objects �types� x and y
there is an object �x � y� representing the space of all arrows �functions� from x to y�
Recall that M is a functor if for any arrow f �� x � y there is an arrow map f �� M x �
M y satisfying �i� and �ii�� This functor is strong if it is itself represented by a single
arrow map �� �x � y�� �M x � M y�� This is all second nature to a generous functional
programmer� but a stingy categorist provides such structure only when it is needed�

It is needed here� as evidenced by Moggis requirement that a computational monad
have a strength� a function t �� �x �M y� � M �x � y� satisfying certain laws �Mog��a�� In
a cartesian closed category� a monad with a strength is equivalent to a monad with a
strong functor as described above� In our framework� the strength is de�ned by t �x � y� �
� �x � y� j y � y �� �Following Haskell� we write �x � y� for pairs and also �x � y� for the
corresponding product type��

Monads were conceived in the 	�
�s� list comprehensions in the 	���s� They have
quite independent origins� but �t with each other remarkably well� As often happens� a
common truth may underlie apparently disparate phenomena� and it may take a decade
or more before this underlying commonality is unearthed�

� Two trivial monads

��� The identity monad

The identity monad is the trivial monad speci�ed by

type Id x � x
mapId f x � f x
unit Id x � x
joinId x � x �

so mapId � unit Id � and bind id are all just the identity function� A comprehension in the
identity monad is like a �let� term�

� t j x � u �Id

� ���x � t� u�
� �let x � u in t��

Similarly� a sequence of quali�ers corresponds to a sequence of nested �let� terms�

� t j x � u� y � v �Id � �let x � u in �let y � v in t���

Since y is bound after x it appears in the inner �let� term� In the following� comprehen�
sions in the identity monad will be written in preference to �let� terms� as the two are
equivalent�

In the Hindley�Milner type system� ��terms and �let� terms di�er in that the latter
may introduce polymorphism� The key factor allowing �let� terms to play this role is that

�

the syntax pairs each bound variable with its binding term� Since monad comprehensions
have a similar property� it seems reasonable that they� too� could be used to introduce
polymorphism� However� the following does not require comprehensions that introduce
polymorphism� so we leave exploration of this issue for the future�

��� The strictness monad

Sometimes it is necessary to control order of evaluation in a lazy functional program� This
is usually achieved with the computable function strict � de�ned by

strict f x � if x �� � then f x else ��

Operationally� strict f x is reduced by �rst reducing x to weak head normal form �WHNF�
and then reducing the application f x � Alternatively� it is safe to reduce x and f x in
parallel� but not allow access to the result until x is in WHNF�

We can use this function as the basis of a monad�

type Str x � x
mapStr f x � strict f x
unitStr x � x
joinStr x � x �

This is the same as the identity monad� except for the de�nition of mapStr � Monad laws
�i�� �iii���iv�� and �I ���III � are satis�ed� but law �ii� becomes an inequality�

mapStr g �mapStr f v mapStr �g � f ��

So Str is not quite a monad� categorists might call it a lax monad� Comprehensions for
lax monads are de�ned by laws �� ���� �� just as for monads� Law �
 � remains valid� but
laws �� � and �� � become inequalities�

We will use Str �comprehensions to control the evaluation order of lazy programs� For
instance� the operational interpretation of

� t j x � u� y � v �Str

is as follows� reduce u to WHNF� bind x to the value of u� reduce v to WHNF� bind y
to value of v � then reduce t � Alternatively� it is safe to reduce t � u� and v in parallel� but
not to allow access to the result until both u and v are in WHNF�

� Manipulating state

Procedural programming languages operate by assigning to a state� this is also possible in
impure functional languages such as Standard ML� In pure functional languages� assign�
ment may be simulated by passing around a value representing the current state� This
section shows how the monad of state transformers and the corresponding comprehension
can be used to structure programs written in this style�

�

��� State transformers

Fix a type S of states� The monad of state transformers ST is de�ned by

type ST x � S � �x �S �
mapST f x � �s � � �f x � s �� j �x � s ��� x s �Id

unitST x � �s � �x � s�
joinST x � �s � � �x � s ��� j �x � s ��� x s� �x � s ���� x s � �Id �

�Recall the equivalence of Id �comprehensions and �let� terms as explained in Section ��	��
A state transformer of type x takes a state and returns a value of type x and a new state�
The unit takes the value x into the state transformer �s � �x � s� that returns x and
leaves the state unchanged� We have that

� �x � y� j x � x � y � y �ST � �s � � ��x � y�� s ��� j �x � s ��� x s� �y� s ���� y s � �Id �

This applies the state transformer x to the state s� yielding the value x and the new state
s �� it then applies a second transformer y to the state s � yielding the value y and the
newer state s ��� �nally� it returns a value consisting of x paired with y and the �nal state
s ���

Two useful operations in this monad are

fetch �� ST S
fetch � �s � �s� s�

assign �� S � ST ��
assign s � � �s � ���� s ���

The �rst of these fetches the current value of the state� leaving the state unchanged� the
second discards the old state� assigning the new state to be the given value� Here �� is
the type that contains only the value ���

A third useful operation is

init �� S � ST x � x
init s x � � x j �x � s ��� x s �Id �

This applies the state transformer x to a given initial state s� it returns the value computed
by the state transformer while discarding the �nal state�

��� Example� Renaming

Say we wish to rename all bound variables in a lambda term� A suitable data type Term
for representing lambda terms is de�ned in Figure 	 �in Standard ML� and Figure � �in
Haskell�� New names are to be generated by counting� we assume there is a function

mkname �� Int � Name

	�

that given an integer computes a name� We also assume a function

subst �� Name � Name � Term � Term

such that subst x � x t substitutes x � for each free occurrence of x in t �
A solution to this problem in the impure functional language Standard ML is shown

in Figure 	� The impure feature we are concerned with here is state� the solution uses
a reference N to an assignable location containing an integer� The �functions� and their
types are�

newname �� ��� Name�
renamer �� Term � Term�
rename �� Term � Term�

Note that newname and renamer are not true functions as they depend on the state�
In particular� newname returns a di�erent name each time it is called� and so requires
the dummy parameter �� to give it the form of a �function�� However� rename is a
true function� since it always generates new names starting from �� Understanding the
program requires a knowledge of which �functions� a�ect the state and which do not�
This is not always easy to see � renamer is not a true function� even though it does not
contain any direct reference to the state N � because it does contain an indirect reference
through newname� but rename is a true function� even though it references renamer �

An equivalent solution in a pure functional language is shown in Figure �� This
explicitly passes around an integer that is used to generate new names� The functions
and their types are�

newname �� Int � �Name� Int��
renamer �� Term � Int � �Term� Int��
rename �� Term � Term�

The function newname generates a new name from the integer and returns an incremented
integer� the function renamer takes a term and an integer and returns a renamed term
�with names generated from the given integer� paired with the �nal integer generated�
The function rename takes a term and returns a renamed term �with names generated
from ��� This program is straightforward� but can be di�cult to read because it contains
a great deal of �plumbing� to pass around the state� It is relatively easy to introduce
errors into such programs� by writing n where n � is intended or the like� This �plumbing
problem� can be more severe in a program of greater complexity�

Finally� a solution of this problem using the monad of state transformers is shown in
Figure �� The state is taken as S � Int � The functions and their types are now�

newname �� ST Name�
renamer �� Term � ST Name�
rename �� Term � Term�

The monadic program is simply a di�erent way of writing the pure program� expanding the
monad comprehensions in Figure � and simplifying would yield the program in Figure ��

		

Types in the monadic program can be seen to correspond directly to the types in the
impure program� an impure �function� of type U � V that a�ects the state corresponds
to a pure function of type U � ST V � Thus� renamer has type Term � Term in the
impure program� and type Term � ST Term in the monadic program� and newname
has type ��� Name in the impure program� and type ST Name� which is isomorphic to
�� � ST Name� in the pure program� Unlike the impure program� types in the monadic
program make manifest where the state is a�ected �and so do the ST �comprehensions��

The �plumbing� is now handled implicitly by the state transformer rather than explic�
itly� Various kinds of errors that are possible in the pure program �such as accidentally
writing n in place of n �� are impossible in the monadic program� Further� the type sys�
tem ensures that plumbing is handled in an appropriate way� For example� one might
be tempted to write� say� App �renamer t� �renamer u� for the right�hand side of the last
equation de�ning renamer � but this would be detected as a type error�

Safety can be further ensured by making ST into an abstract data type on which
mapST � unitST � joinST � fetch� assign� and init are the only operations� This guarantees
that one cannot mix the state transformer abstraction with other functions which handle
the state inappropriately� This idea will be pursued in the next section�

Impure functional languages �such as Standard ML� are restricted to using a strict
�or call�by�value� order of evaluation� because otherwise the e�ect of the assignments
becomes very di�cult to predict� Programs using the monad of state transformers can be
written in languages using either a strict �call�by�value� or lazy �call�by�name� order of
evaluation� The state�transformer comprehensions make clear exactly the order in which
the assignments take e�ect� regardless of the order of evaluation used�

Reasoning about programs in impure functional languages is problematic �although
not impossible � see �MT��� for one approach�� In contrast� programs written using
monads� like all pure programs� can be reasoned about in the usual way� substituting
equals for equals� They also satisfy additional laws� such as the following laws on quali�ers�

x � fetch� y � fetch � x � fetch� y � �x �ST �
��� assign u� y � fetch � ��� assign u� y � �u�ST �

��� assign u� ��� assign v � ��� assign v �

and on terms�
init u � t �ST � t �

init u � t j ��� assign v � q �ST � init v � t j q �ST �
init u � t j q� ��� assign v �ST � init u � t j q �ST �

These� together with the comprehension laws �
 �� �� �� and �I �� � ��III ��� allow one to
use equational reasoning to prove properties of programs that manipulate state�

	�

��� Array update

Let Arr be the type of arrays taking indexes of type Ix and yielding values of type Val �
The key operations on this type are

newarray �� Val � Arr �
index �� Ix � Arr � Val �
update �� Ix � Val � Arr � Arr �

Here newarray v returns an array with all entries set to v � and index i a returns the value
at index i in array a� and update i v a returns an array where index i has value v and the
remainder is identical to a� In equations�

index i �newarray v� � v �
index i �update i v a� � v �
index i �update i � v a� � index i a� if i �� i ��

The e�cient way to implement the update operation is to overwrite the speci�ed entry of
the array� but in a pure functional language this is only safe if there are no other pointers
to the array extant when the update operation is performed�

Now consider the monad of state transformers taking the state type S � Arr � so that

type ST x � Arr � �x �Arr��

Variants of the fetch and assign operations can be de�ned to act on an array entry speci�ed
by a given index� and a variant of init can be de�ned to initialise all entries in an array
to a given value�

fetch �� Ix � ST Val
fetch i � �a � � �v � a� j v � index i a �Str

assign �� Ix � Val � ST ��
assign i v � �a � ���� update i v a�

init �� Val � ST x � x
init v x � � x j �x � a�� x �newarray v� �Id �

A Str �comprehension is used in fetch to force the entry from a to be fetched before a is
made available for further access� this is essential in order for it to be safe to update a by
overwriting�

Now� say we make ST into an abstract data type such that the only operations on
values of type ST are mapST � unitST � joinST � fetch� assign� and init � It is straightforward
to show that each of these operations� when passed the sole pointer to an array� returns
as its second component the sole pointer to an array� Since these are the only operations
that may be used to build a term of type ST � this guarantees that it is safe to implement
the assign operation by overwriting the speci�ed array entry�

The key idea here is the use of the abstract data type� Monad comprehensions are not
essential for this to work� they merely provide a desirable syntax�

	�

��� Example� Interpreter

Consider building an interpreter for a simple imperative language� The store of this
language will be modelled by a state of type Arr � so we will take Ix to be the type of
variable names� and Val to be the type of values stored in variables� The abstract syntax
for this language is represented by the following data types�

data Exp � Var Ix j Const Val j Plus Exp Exp
data Com � Asgn Ix Exp j Seq Com Com j If Exp Com Com
data Prog � Prog Com Exp�

An expression is a variable� a constant� or the sum of two expressions� a command is an
assignment� a sequence of two commands� or a conditional� and a program consists of a
command followed by an expression�

A version of the interpreter in a pure functional language is shown in Figure �� The
interpreter can be read as a denotational semantics for the language� with three semantic
functions�

exp �� Exp � Arr � Val �
com �� Com � Arr � Arr �
prog �� Prog � Val �

The semantics of an expression takes a store into a value� the semantics of a command
takes a store into a store� and the semantics of a program is a value� A program consists of
a command followed by an expression� its value is determined by applying the command
to an initial store where all variables have the value � � and then evaluating the expression
in the context of the resulting store�

The interpreter uses the array operations newarray� index � and update� As it happens�
it is safe to perform the updates in place for this program� but to discover this requires
using one of the special analysis techniques cited in the introduction�

The same interpreter has been rewritten in Figure
 using state transformers� The
semantic functions now have the types�

exp �� Exp � ST Val �
com �� Com � ST ���
prog �� Prog � Val �

The semantics of an expression depends on the state and returns a value� the semantics
of a command transforms the state only� the semantics of a program� as before� is just
a value� According to the types� the semantics of an expression might alter the state�
although in fact expressions depend the state but do not change it � we will return to this
problem shortly�

The abstract data type for ST guarantees that it is safe to perform updates �indicated
by assign� in place � no special analysis technique is required� It is easy to see how
the monad interpreter can be derived from the original� and �using the de�nitions given
earlier� the proof of their equivalence is straightforward�

	�

The program written using state transformers has a simple imperative reading� For
instance� the line

com �Seq c� c� � � � �� j ��� com c� � ��� com c� �
ST

can be read �to evaluate the command Seq c� c� � �rst evaluate c� and then evaluate
c��� The types and the use of the ST comprehension make clear that these operations
transform the state� further� that the values returned are of type �� makes it clear that
only the e�ect on the state is of interest here�

One drawback of this program is that it introduces too much sequencing� The line

exp �Plus e� e� � � � v� � v� j v� � exp e� � v� � exp e� �
ST

can be read �to evaluate Plus e� e� � �rst evaluate e� yielding the value v� � then evaluate
e� yielding the value v� � then add v� and v��� This is unfortunate� it imposes a spurious
ordering on the evaluation of e� and e� �the original program implies no such ordering��
The order does not matter because although exp depends on the state� it does not change
it� But� as already noted� there is no way to express this using just the monad of state
transformers� To remedy this we will introduce a second monad� that of state readers�

��� State readers

Recall that the monad of state transformers� for a �xed type S of states� is given by

type ST x � S � �x �S ��

The monad of state readers� for the same type S of states� is given by

type SR x � S � x
mapSR f bx � �s � � f x j x � bx s �Id
unitSR x � �s � x

joinSR bbx � �s � � x j bx � bbx s� x � bx s �Id �

Here bx is a variable of type SR x � just as x is a variable of type ST x � A state reader of
type x takes a state and returns a value �of type x �� but no new state� The unit takes
the value x into the state transformer �s � x that ignores the state and returns x � We
have that

� �x � y� j x � bx � y � by �SR � �s � � �x � y� j x � bx s� y � by s �Id �

This applies the state readers bx and by to the state s� yielding the values x and y� which
are returned in a pair�

It is easy to see that

� �x � y� j x � bx � y � by �SR � � �x � y� j y � by� x � bx �SR�

	

so that the order in which bx and by are computed is irrelevant� A monad with this property
is called commutative� since it follows that

� t j p� q �SR � � t j q� p �SR

for any term t � and any quali�ers p and q such that p binds no free variables of q and
vice�versa� Thus state readers capture the notion of order independence that we desire
for expression evaluation in the interpreter example�

Two useful operations in this monad are

fetch �� SR S
fetch � �s � s

ro �� SR x � ST x
ro bx � �s � � �x � s� j x � bx s �Id �

The �rst is the equivalent of the previous fetch� but now expressed as a state reader rather
than a state transformer� The second converts a state reader into the corresponding state
transformer� one that returns the same value as the state reader� and leaves the state
unchanged� �The name ro abbreviates �read only���

In the speci�c case where S is the array type Arr � we de�ne

fetch �� Ix � SRVal
fetch i � �a � index i a�

In order to guarantee the safety of update by overwriting� it is necessary to modify two
of the other de�nitions to use Str �comprehensions rather than Id �comprehensions�

mapSR f bx � �a � � f x j x � bx a �Str
ro bx � �a � � �x � a� j x � bx a �Str

These correspond to the use of an Str �comprehension in the ST version of fetch�
Thus� for arrays� the complete collection of operations on state transformers and state

readers consists of
fetch �� Ix � SRVal �
assign �� Ix � Val � ST ���
ro �� SR x � ST x �
init �� Val � ST x � x �

together with mapSR� unitSR� joinSR and mapST � unitST � joinST � These ten operations
should be de�ned together and constitute all the ways of manipulating the two mutually
de�ned abstract data types SR x and ST x � It is straightforward to show that each
operation of type SR� when passed an array� returns a value that contains no pointer to
that array once it has been reduced to weak head normal form �WHNF�� and that each
operations of type ST � when passed the sole pointer to an array� returns as its second
component the sole pointer to an array� Since these are the only operations that may be

	�

used to build values of types SR and ST � this guarantees that it is safe to implement the
assign operation by overwriting the speci�ed array entry� �The reader may check that the
Str �comprehensions in mapSR and ro are essential to guarantee this property��

Returning to the interpreter example� we get the new version shown in Figure �� The
only di�erence from the previous version is that some occurrences of ST have changed to
SR and that ro has been inserted in a few places� The new typing

exp �� Exp � SR Val

makes it clear that exp depends on the state but does not alter it� A proof that the two
versions are equivalent appears in Section ��

The excessive sequencing of the previous version has been eliminated� The line

exp �Plus e� e� � � � v� � v� j v� � exp e� � v� � exp e� �SR

can now be read �to evaluate Plus e� e� � evaluate e� yielding the value v� and evaluate e�
yielding the value v� � then add v� and v��� The order of quali�ers in an SR�comprehension
is irrelevant� and so it is perfectly permissible to evaluate e� and e� in any order� or even
concurrently�

The interpreter derived here is similar in structure to one in �Wad���� which uses a type
system based on linear logic to guarantee safe destructive update of arrays� �Related type
systems are discussed in �GH��� Wad�	��� However� the linear type system uses a �let��
construct that su�ers from some unnatural restrictions� it requires hyperstrict evaluation�
and it prohibits certain types involving functions� By contrast� the monad approach
requires only strict evaluation� and it places no restriction on the types� This suggests
that a careful study of the monad approach may lead to an improved understanding of
linear types and the �let�� construct�

� Filters

So far� we have ignored another form of quali�er found in list comprehensions� the 	lter�
For list comprehensions� we can de�ne �lters by

� t j b � � if b then �t � else � ��

where b is a boolean�valued term� For example�

� x j x � �� � � � � �� odd x �
� join � � x j odd x � j x � �� � � � � � �
� join � � � j odd � �� � � j odd � �� � � j odd � � �
� join � �� �� � �� �� � �
� �� � � ��

Can we de�ne �lters in general for comprehensions in an arbitrary monadM � The answer
is yes� if we can de�ne � � for M � Not all monads admit a useful de�nition of � �� but many
do�

	�

Recall that comprehensions of the form �t � are de�ned in terms of the quali�er �� by
taking � t � � � t j � �� and that � is a unit for quali�er composition�

� t j �� q � � � t j q � � � t j q� � ��

Similarly� we will de�ne comprehensions of the form � � in terms of a new quali�er� �� by
taking � � � � t j � �� and we will require that � is a zero for quali�er composition�

� t j �� q � � � t j � � � � t j q� � ��

Unlike with �t j��� the value of �t j�� is independent of t �
Recall that for � we introduced a function unit �� x � M x satisfying the laws

�iii� map f � unit � unit � f �
�I � join � unit � id �
�II � join �map unit � id �

and then de�ned � t j � � � unit t �
Similarly� for � we introduce a function

zero �� y � M x �

satisfying the laws
�v� map f � zero � zero � g�
�IV � join � zero � zero�
�V � join �map zero � zero�

and de�ne
�� � � t j � � � zero t �

Law �v� speci�es that the result of zero is independent of its argument� and can be derived
from the type of zero �again� see �Rey��� Wad����� In the case of lists� setting zero y � � �
makes laws �IV � and �V � hold� since join � � � � � and join � � �� � � � � � � � � � �� �This ignores
what happens when zero is applied to �� which will be considered below��

Now� for a monad with zero we can extend comprehensions to contain a new form of
quali�er� the �lter� de�ned by

�� � � t j b � � if b then �t � else � ��

where b is any boolean�valued term� Recall that laws �� � and �� � were proved by induction
on the form of quali�ers� we can show that for the new forms of quali�ers� de�ned by �� �
and �� �� they still hold� We also have new laws

�� � � t j b� c � � � t j �b � c� ��
��� � � t j q� b � � � t j b� q ��

where b and c are boolean�valued terms� and where q is any quali�er not binding variables
free in b�

	�

When dealing with � as a potential value� more care is required� In a strict language�
where all functions �including zero� are strict� there is no problem� But in a lazy language�
in the case of lists� laws �v� and �IV � hold� but law �V � is an inequality� join �map zero v
zero� since join �map zero�� � � but zero� � � �� In this case� laws �� ���� � are still
valid� but law ��� � holds only if � t j q � �� �� In the case that � t j q � � �� law ��� �
becomes an inequality� � t j q� b � v � t j b� q ��

As a second example of a monad with a zero� consider the strictness monad Str de�ned
in Section ���� For this monad� a zero may be de�ned by zeroStr y � �� It is easy to verify
that the required laws hold� unlike with lists� the laws hold even when zero is applied to ��
For example� � x � � j x 	 � �Str returns one less than x if x is positive� and � otherwise�

� Monad morphisms

If M and N are two monads� then h ��M x � N x is a monad morphism from M to N if
it preserves the monad operations�

h �mapM f � mapN f � h�
h � unitM � unitN �
h � joinM � joinN � h� �

where h� � h �mapM h � mapN h �h �the two composites are equal by the �rst equation��
De�ne the e�ect of a monad morphism on quali�ers as follows�

h ��� � ��
h �x � u� � x � �h u��
h �p� q� � �h p�� �h q��

It follows that if h is a monad morphism from M to N then

��� � h � t j q �M � � t j �h q� �N

for all terms t and quali�ers q� The proof is a simple induction on the form of quali�ers�
As an example� it is easy to check that unitM �� x � M x is a monad morphism from

Id to M � It follows that

� � t j x � u �Id �M � � t j x � � u �M �M �

This explains a trick occasionally used by functional programmers� where one writes the
quali�er x � � u � inside a list comprehension to bind x to the value of u� that is� to achieve
the same e�ect as the quali�er x � u in an Id comprehension�

As a second example� the function ro from Section ��
 is a monad morphism from SR
to ST � This can be used to prove the equivalence of the two interpreters in Figures

and �� Write expST �� Exp � ST Val and expSR �� Exp � SR Val for the versions in the
two �gures� The equivalence of the two versions is clear if we can show that

ro � expSR � expST �

	�

The proof is a simple induction on the structure of expressions� If the expression has the
form �Plus e� e� �� we have that

ro �expSR �Plus e� e� ��
� funfolding expSRg

ro � v� � v� j v� � expSR e� � v� � expSR e� �SR

� fby ��� �g
� v� � v� j v� � ro �expSR e� �� v� � ro �expSR e� � �ST

� fhypothesisg
� v� � v� j v� � expST e� � v� � expST e� �ST

� ffolding expSTg
expST �Plus e� e� ��

The other two cases are equally simple�
All of this extends straightforwardly to monads with zero� In this case we also require

that h �zeroM � zeroN � de�ne the action of a morphism on a �lter by h b � b� and observe
that ��� � holds even when q contains �lters�

� More monads

This section describes four more monads� parsers� expressions� input�output� and contin�
uations� The basic techniques are not new �parsers are discussed in �Wad�
� Fai��� FL����
and exceptions are discussed in �Wad�
� Spi����� but monads and monad comprehensions
provide a convenient framework for their expression�

��� Parsers

The monad of parsers is given by

type Parse x � String � List �x �String�
mapParse f x � �i � � �f x � i �� j �x � i ��� x i �List

unitParse x � �i � � �x � i� �List

joinParse x � �i � � �x � i ��� j �x � i ��� x i � �x � i ���� x i � �List �

Here String is the type of lists of Char � Thus� a parser accepts an input string and returns
a list of pairs� The list contains one pair for each successful parse� consisting of the value
parsed and the remaining unparsed input� An empty list denotes a failure to parse the
input� We have that

� �x � y� j x � x � y � y �Parse � �i � � ��x � y�� i ��� j �x � i ��� x i � �y� i ���� y i � �List �

This applies the �rst parser to the input� binds x to the value parsed� then applies the
second parser to the remaining input� binds y to the value parsed� then returns the pair
�x � y� as the value together with input yet to be parsed� If either x or y fails to parse its
input �returning an empty list� then the combined parser will fail as well�

��

There is also a suitable zero for this monad� given by

zeroParse y � �i � � �List �

Thus� � �Parse is the parser that always fails to parse the input� It follows that we may use
�lters in Parse�comprehensions as well as in List �comprehensions�

The alternation operator combines two parsers�

���� �� Parse x � Parse x � Parse x
x �� y � �i � �x i� �� �y i��

�Here �� is the operator that concatenates two lists�� It returns all parses found by the
�rst argument followed by all parses found by the second�

The simplest parser is one that parses a single character�

next �� Parse Char
next � �i � � �head i � tail i� j not �null i� �List�

Here we have a List �comprehension with a �lter� The parser next succeeds only if the
input is non�empty� in which case it returns the next character� Using this� we may de�ne
a parser to recognise a literal�

lit �� Char � Parse ��
lit c � � �� j c� � next � c �� c� �Parse�

Now we have a Parse�comprehension with a �lter� The parser lit c succeeds only if the
next character in the input is c�

As an example� a parser for fully parenthesised lambda terms� yielding values of the
type Term described previously� can be written as follows�

term �� Parse Term
term � �Var x j x � name �Parse

�� �Lam x t j ��� lit ��� ��� lit ��� x � name� ��� lit ���
t � term� ��� lit �� �Parse

�� �App t u j ��� lit ��� t � term� u � term� ��� lit �� �Parse

name �� Parse Name
name � � c j c � next � �a
 c� c
 �z �Parse �

Here� for simplicity� it has been assumed that names consist of a single lower�case letter�
so Name � Char � and that � and � are both characters�

��� Exceptions

The type Maybe x consists of either a value of type x � written Just x � or an exceptional
value� written Nothing�

data Maybe x � Just x j Nothing�

�	

�The names are due to Spivey �Spi����� The following operations yield a monad�

mapMaybe f �Just x � � Just �f x �
mapMaybe f Nothing � Nothing

unitMaybe x � Just x

joinMaybe �Just �Just x �� � Just x
joinMaybe �Just Nothing� � Nothing
joinMaybe Nothing � Nothing�

We have that
� �x � y� j x � x � y � y �Maybe

returns Just �x � y� if x is Just x and y is Just y� and otherwise returns Nothing�
There is also a suitable zero for this monad� given by

zeroMaybe y � Nothing�

Hence � �Maybe � Nothing and � x �Maybe � Just x � For example� � x � � j x 	 � �Maybe

returns one less than x if x is positive� and Nothing otherwise�
Two useful operations test whether an argument corresponds to a value and� if so�

return that value�
exists �� Maybe x � Bool
exists �Just x � � True
exists Nothing � False

the �� Maybe x � x
the �Just x � � x �

Observe that
� the x j exists x �Maybe � x

for all x ��Maybe x � If we assume that �the Nothing� � �� it is easily checked that the is
a monad morphism from Maybe to Str � We have that

the � x � � j x 	 � �Maybe � � x � � j x 	 � �Str

as an immediate consequence of the monad morphism law� This mapping embodies the
common simpli�cation of considering error values and � to be identical�

The biased�choice operator chooses the �rst of two possible values that is well de�ned�

��� �� Maybe x � Maybe x �Maybe x
x � y � if exists x then x else y�

The � operation is associative and has Nothing as a unit� It appeared in early versions
of ML �GMW���� and similar operators appear in other languages� As an example of its
use� the term

the �� x � � j x 	 � �Maybe � � � �Maybe�

��

returns the predecessor of x if it is non�negative� and zero otherwise�
In �Wad�
� it was proposed to use lists to represent exceptions� encoding a value x by

the unit list� and an exception by the empty list� This corresponds to the mapping

list �� Maybe x � List x
list �Just x � � � x �List

list Nothing � � �List

which is a monad morphism from Maybe to List � We have that

list �x � y� � �list x � �� �list y��

where � is the sublist relation� Thus� exception comprehensions can be represented by list
comprehensions� and biased choice can be represented by list concatenation� The argu�
ment in �Wad�
� that list comprehensions provide a convenient notation for manipulating
exceptions can be mapped� via this morphism� into an argument in favour of exception
comprehensions�

��� Input and output

Fix the input and output of a program to be strings �e�g�� the input is a sequence of
characters from a keyboard� and the output is a sequence of characters to appear on a
screen�� The input and output monads are given by�

type In x � String � �x �String�
type Out x � �x �String � String��

The input monad is a function from a string �the input to the program� and to a pair of
a value and a string �the input to the rest of the program�� The output monad is a pair
of a value and a function from a string �the output of the rest of the program� to a string
�the output of the program��

The input monad is identical to the monad of state transformers� �xing the state to
be a string� and the operations map� unit � and join are identical to those in the state�
transformer monad� Two useful operations in the input monad are

eof �� In Bool
eof � �i � �null i � i�

read �� In Char
read � �i � �head i � tail i��

The �rst returns true if there is more input to be read� the second reads the next input
character�

The output monad is given by

mapOut f bx � � �f x � ot� j �x � ot�� bx �Id
unitOut x � �x � �o � o�

joinOut bbx � � �x � ot � ot �� j �bx � ot�� bbx � �x � ot ��� bx �Id �

��

The second component of the pair is an output transformer� which given the output of
the rest of the program produces the output of this part� The unit produces no output of
its own� so its output transformer is the identity function� The join operation composes
two output transformers� A useful operation in the output monad is

write �� Char � Out ��
write c � ���� �o � c � o��

This adds the character to be written onto the head of the output list�
Alternative de�nitions of the output monad are possible� but these do not behave as

well as the formulation given above� One alternative treats output as a state transformer�

type Out � x � String � �x �String��

taking map� unit � and join as in the state transformer monad� The write operation is
now

write �� Char � Out � ��
write c � �o � ���� c � o��

This formulation is not so good� because it is too strict� output will not appear until the
program terminates� Another alternative is

type Out �� x � �x �String�
mapOut

��

f bx � � �f x � o� j �x � o�� bx �Id
unitOut

��

x � �x � � ��

joinOut
�� bbx � � �x � o �� o�� j �bx � o�� bbx � �x � o��� bx �Id

write c � ���� �c���

This formulation is also not so good� because the time to perform the concatenation ����
operations is quadratic in the size of the output in the worst case�

Finally� the output and input monads can be combined into a single monad�

type InOut x � String � �x �String�String � String��

Suitable de�nitions of map� unit � and join are left to the reader� Useful operations on
this monad are�

in �� In x � InOut x
in x � �i � � �x � i �� �o � o� j �x � i ��� x i �Id

out �� Out x � InOut x
out bx � �i � � �x � i � ot� j �x � ot�� bx �Id

fun �� InOut ��� �String � String�
fun x � �i � � ot � � j ���� i �� ot�� x i �Id �

The �rst two are monad morphisms from In and Out to InOut � they take input�only
and output�only operations into the input�output monad� The last takes a value into the
input�output monad into a function from the input to the output�

��

��� Continuations

Fix a type R of results� The monad of continuations is given by

type Cont x � �x � R�� R
mapCont f x � �k � x ��x � k �f x ��
unitCont x � �k � k x
joinCont x � �k � x ��x � x ��x � k x ���

A continuation of type x takes a continuation function k �� x � R� which speci�es how
to take a value of type x into a result of type R� and returns a result of type R� The unit
takes a value x into the continuation �k � k x that applies the continuation function to
the given value� We have that

� �x � y� j x � x � y � y �Cont � �k � x ��x � y ��y � k �x � y����

This can be read as follows� evaluate x � bind x to the result� then evaluate y� bind y to
the result� then return the pair �x � y��

A useful operation in this monad is

callcc �� ��x � Cont y�� Cont x �� Cont x
callcc g � �k � g ��x � �k � � k x � k �

This mimics the �call with current continuation� �or call�cc� operation popular from
Scheme �RC���� For example� the Scheme program

�call�cc �lambda �esc��� x �if �� y � � �esc �� � y����

translates to the equivalent program

callcc ��esc � � x�z j z � if y �� � then esc �� else � y �Cont �Cont��

Both of these programs bind esc to an escape function that returns its argument as the
value of the entire callcc expression� They then return the value of x divided by y� or
return �� if y is zero�

� Translation

In Section �� we saw that a function of type U � V in an impure functional language
that manipulates state corresponds to a function of type U � ST V in a pure functional
language� The correspondence was drawn in an informal way� so we might ask� what
assurance is there that every program can be translated in a similar way� This section
provides that assurance� in the form of a translation of ��calculus into an arbitrary monad�
This allows us to translate not only programs that manipulate state� but also programs
that raise exceptions� call continuations� and so on� Indeed� we shall see that there are

�

two translations� one call�by�value and one call�by�name� The target language of both
translations is a pure� non�strict ��calculus� augmented with M �comprehensions�

We will perform our translations on a simple typed lambda calculus� We will use T �
U � V to range over types� and K to range over base types� A type is either a base type�
function type� or product type�

T �U �V ��� K j �U � V � j �U �V ��

We will use t � u� v to range over terms� and x to range over variables� A term is either a
variable� an abstraction� an application� a pair� or a selection�

t � u� v ��� x j ��x � v� j �t u� j �u� v� j �fst t� j �snd t��

In the following� we usually give the case for �fst t� but omit that for �snd t�� since the two
are nearly identical� We will use A to range over assumptions� which are lists associating
variables with types�

A ��� x� �� T� � � � � � xn �� Tn �

We write the typing A � t �� T to indicate that under assumption A the term t has type
T � The inference rules for well�typings in this calculus are well known� and can be seen
on the left hand sides of Figures � and 	��

The call�by�value translation of lambda�calculus into a monad M is given in Figure ��
The translation of the type T is written T � and the translation of the term t is written
t�� The rule for translating function types�

�U � V �� � U � �M V ��

can be read �a call�by�value function takes as its argument a value of type U and returns
a computation of type V �� This corresponds to the translation in Section �� where a
function of type U � V in the �impure� source language is translated to a function of
type U � M V in the �pure� target language� Each of the rules for translating terms has
a straightforward computational reading� For example� the rule for applications�

�t u�� � � y j f � t�� x � u�� y � �f x � �M �

can be read �to apply t to u� �rst evaluate t �call the result f �� then evaluate u �call
the result x �� then apply f to x �call the result y� and return y�� This is what one
would expect in a call�by�value language � the argument is evaluated before the function
is applied� If

x� �� T� � � � � � xn �� Tn � t �� T

is a well�typing in the source language� then its translation

x� �� T �
� � � � � � xn �� T �

n � t� ��M T �

is a well�typing in the target language� Like the arguments of a function� the free variables
correspond to values� while� like the result of a function� the term corresponds to a com�
putation� Figure � demonstrates that the call�by�value translation preserves well�typings�

��

a term that is well�typed in the source language translates to one that is well�typed in
the target language�

The call�by�name translation of ��calculus into a monad M is given in Figure �� Now
the translation of the type T is written T y and the translation of the term t is written
ty� The rule for translating function types�

�U � V �y � M U y �M V y�

can be read �a call�by�name function takes as its argument a computation of type U and
returns a computation of type V �� The rule for applications�

�t u�y � � y j f � ty� y � �f uy� �M �

can be read �to apply t to u� �rst evaluate t �call the result f �� then apply f to the term
u �call the result y� and return y�� This is what one would expect in a call�by�name
language � the argument u is passed unevaluated� and is evaluated each time it is used�
The well�typing in the source language given previously now translates to

x� ��M T y
� � � � � � xn ��M T y

n � ty ��M T y�

which is again a well�typing in the target language� This time both the free variables and
the term correspond to computations� re ecting that in a call�by�name language the free
variables correspond to computations �or closures� that must be evaluated each time they
are used� Figure 	� demonstrates that the call�by�name translation preserves well�typings�

In particular� the call�by�value intrepretation in the strictness monad Str of Section ���
yields the usual strict semantics of ��calculus� whereas the call�by�name interpretation in
the same monad yields the usual lazy semantics�

If we use the monad of� say� state transformers� then the call�by�value interpretation
yields the usual semantics of a ��calculus with assignment� The call�by�name interpreta�
tion yields a semantics where the state transformation speci�ed by a variable occurs each
time the variable is accessed� This explains why the second translation is titled call�by�
name rather than call�by�need� Of course� since the target of both the call�by�value and
call�by�name translations is a pure� non�strict ��calculus� there is no problem with exe�
cuting programs translated by either scheme in a lazy �i�e�� call�by�need� implementation�

��� Example� Non	determinism

As a more detailed example of the application of the translation schemes� consider a
small non�deterministic language� This consists of the ��calculus as de�ned above with its
syntax extended to include a non�deterministic choice operator �t� and simple arithmetic�

t � u� v ��� � � � j �u t v� j n j �u � v��

where n ranges over integer constants� This language is typed just as for lambda calculus�
We assume a base type Int � and that the additional constructs typed as follows� for any

��

type T � if u �� T and v �� T then �u t v� �� T � and n �� Int � and if u �� Int and v �� Int
then �u � v� �� Int � For example� the term

���a � a � a� �� t � ��

has the type Int � Under a call�by�value interpretation we would expect this to return
either � or � �i�e�� � �� or � �� �� whereas under a call�by�name interpretation we would
expect this to return � or � or � �i�e�� � � � or � � � or � � � or � � � ��

We will give the semantics of this language by interpreting the ��calculus in the set
monad� as speci�ed in Section ���� In what follows we will write f t j q g in preference to
the more cumbersome � t j q �Set �

The call�by�value interpretation for this language is provided by the rules in Figure ��
choosing M to be the monad Set � together with the rules�

�u t v�� � u� v�

n� � fng
�u � v�� � f x � y j x � u�� y � v� g�

These rules translate a term of type T in the non�deterministic language into a term
of type Set T in a pure functional language augmented with set comprehensions� For
example� the term above translates to

f y j f � f ��a � f x � � y � j x � � fag� y � � fag g� g�
x � f�g f�g�
y � �f x � g

which has the value f� � �g� as expected�
The call�by�name translation of the same language is provided by the rules in Figure ��

The rules for �u t v�� n� and �u � v� are the same as the call�by�value rules� replacing
���� with ���y� Now the same term translates to

f y j f � f ��a � f x � � y � j x � � a� y � � a g� g�
y � f �f�g f�g� g

which has the value f� � � � �g� as expected�
A similar approach to non�deteminism is taken by Hughes and ODonnell �HO����

They suggest adding a set type to a lazy functional language where a set is actually
represented by a non�deterministic choice of one of the elements of the set� The primitive
operations they provide on sets are just map� unit � and join of the set monad� plus set
union �� to represent non�deterministic choice� They address the issue of how such sets
should behave with respect to �� and present an elegant derivation of a non�deterministic�
parallel� tree search algorithm� However� they provide no argument that all programs in
a traditional� non�deterministic functional language can be encoded in their approach�
Such an argument is provided by the translation scheme above�

��

��� Example� Continuations

As a �nal example� consider the call�by�value interpretation under the monad of contin�
uations� Cont � given in Section ���� Applying straightforward calculation to simplify the
Cont �comprehensions yields the translation scheme given in Figure 		� which is simply
the continuation�passing style transformation beloved by many theorists and compiler
writers �Plo�
� AJ����

Each of the rules retains its straightforward operational reading� For example� the
rule for applications�

�t u�� � �k � t� ��f � u� ��x � f x k���

can still be read �to apply t to u� �rst evaluate t �call the result f �� then evaluate u �call
the result x �� then apply f to x �call the result y� and return y��

A similar calculation on the other translation scheme yields a call�by�name version of
continuation�passing style� This is less well known� but can be found in �Rey��� Plo�
��

Acknowledgements

I thank Eugenio Moggi for his ideas� and for the time he took to explain them to me� I
thank John Launchbury for his enthusiasm and suggestions� And for helpful comments
I thank Arvind� Stephen Bevan� Olivier Danvy� Kevin Hammond� John Hughes� Karsten
Kehler Holst� Michael Johnson� Austin Melton� Nikhil� Simon Peyton Jones� Andy Pitts�
Andre Scedrov� Carolyn Talcott� Phil Trinder� attenders of the 	��� Glasgow Summer
School on Category Theory and Constructive Logic� and an anonymous referee�

References

�AJ��� A� Appel and T� Jim� Contiuation�passing� closure�passing style� In ���th ACM
Symposium on Principles of Programming Languages� Austin� Texas� January
	����

�Blo��� A� Bloss� Update analysis and the e�cient implementation of functional aggre�
gates� In ��th Symposium on Functional Programming Languages and Computer
Architecture� ACM� London� September 	����

�BW�
� M� Barr and C� Wells� Toposes� Triples� and Theories� Springer Verlag� 	��
�

�BW��� R� Bird and P� Wadler� Introduction to Functional Programming� Prentice Hall�
	����

�Fai��� J� Fairbairn� Form follows function� Software � Practice and Experience�
�������������� June 	����

��

�FL��� R� Frost and J� Launchbury� Constructing natural language interpreters in a
lazy functional language� The Computer Journal� ������	���	�	� April 	����

�Gog��� J� A� Goguen� Higher order functions considered unnecessary for higher or�
der programming� Technical report SRI�CSL����	� SRI International� January
	����

�GL��� D� K� Gi�ord and J� M� Lucassen� Integrating functional and imperative pro�
gramming� In ACM Conference on Lisp and Functional Programming� pp� ���
��� Cambridge� Massachusetts� August 	����

�GH��� J� Guzm!an and P� Hudak� Single�threaded polymorphic lambda calculus� In
IEEE Symposium on Logic in Computer Science� Philadelphia� June 	����

�GMW��� M� Gordon� R� Milner� and C� Wadsworth� Edinburgh LCF� LNCS ��� Springer�
Verlag� 	����

�Hol��� S� Holmstr"om� A simple and e�cient way to handle large data structures in
applicative languges� In Proceedings SERC�Chalmers Workshop on Declarative
Programming� University College London� 	����

�Hud��a� P� Hudak� A semantic model of reference counting and its abstraction �detailed
summary�� In ACM Conference on Lisp and Functional Programming� pp� �
	�
���� Cambridge� Massachusetts� August 	����

�HMT��� R� Harper� R� Milner� and M� Tofte� The de�nition of Standard ML� version
�� Report ECS�LFCS������� Edinburgh University� Computer Science Dept��
	����

�Hud��b� P� Hudak� Arrays� non�determinism� side�e�ects� and parallelism� a functional
perspective� In J� H� Fasel and R� M� Keller� editors� Workshop on Graph Re�
duction� Santa Fe� NewMexico� September�October 	���� LNCS ���� Springer�
Verlag� 	����

�Hug��� J� Hughes� Why functional programming matters� The Computer Journal�
���������	��� April 	����

�HO��� J� Hughes and J� ODonnell� Expressing and reasoning about non�deterministic
functional programs� In K� Davis and J� Hughes� editors� Functional Program�
ming� Glasgow ���� �Glasgow workshop� Fraserburgh� August 	����� Work�
shops in Computing� Springer Verlag� 	����

�HPW�	� P� Hudak� S� Peyton Jones and P� Wadler� editors� Report on the Programming
Language Haskell� Version ���� Technical report� Yale University and Glasgow
University� August 	��	�

��

�LS��� J� Lambek and P� Scott� Introduction to Higher Order Categorical Logic� Cam�
bridge University Press� 	����

�Mac�	� S� Mac Lane� Categories for the Working Mathematician� Springer�Verlag�
	��	�

�Mil��� R� Milner� A proposal for Standard ML� In ACM Symposium on Lisp and
Functional Programming� Austin� Texas� August 	����

�MT��� I� Mason and C� Talcott� Axiomatising operational equivalence in the presence
of side e�ects� In IEEE Symposium on Logic in Computer Science� Asilomar�
California� June 	����

�Mog��a� E� Moggi� Computational lambda�calculus and monads� In IEEE Symposium on
Logic in Computer Science� Asilomar� California� June 	���� �A longer version
is available as a technical report from the University of Edinburgh��

�Mog��b� E� Moggi� An abstract view of programming languges� Course notes� University
of Edinburgh�

�Plo�
� G� Plotkin� Call�by�name� call�by�value� and the ��calculus� Theoretical Com�
puter Science� 	�	�
�	
�� 	��
�

�RC��� J� Rees and W� Clinger �eds��� The revised� report on the algorithmic language
Scheme� ACM SIGPLAN Notices� ���	�������� �	�����

�Rey��� J� C� Reynolds� On the relation between direct and continuation semantics�
In Colloquium on Automata� Languages and Programming� Saarbr"ucken� July�
August 	���� LNCS 	�� Springer�Verlag� 	����

�Rey��� J� C� Reynolds� Types� abstraction� and parametric polymorphism� In R� E�
A� Mason� editor� Information Processing ���
	��
��� North�Holland� Ams�
terdam�

�Sch�
� D� A� Schmidt� Detecting global variables in denotational speci�cations� ACM
Transactions on Programming Languages and Systems� �������	�� 	��
�

�Spi��� M� Spivey� A functional theory of exceptions� Science of Computer Program�
ming� ���	���
���� June 	����

�Tur��� D� A� Turner� Recursion equations as a programming language� In J� Darling�
ton� P� Henderson� and D� A� Turner� editors� Functional Programming and its
Applications� Cambridge University Press� 	����

�Tur�
� D� A� Turner� Miranda� A non�strict functional language with polymorphic
types� In Proceedings of the ��nd International Conference on Functional Pro�
gramming Languages and Computer Architecture� Nancy� France� September
	��
� LNCS ��	� Springer Verlag� 	��
�

�	

�Wad�
� P� Wadler� How to replace failure by a list of successes� In ��nd Symposium
on Functional Programming Languages and Computer Architecture� Nancy�
September 	��
� LNCS ���� Springer�Verlag� 	��
�

�Wad��� P� Wadler� List comprehensions� In S� L� Peyton Jones� The Implementation of
Functional Programming Languages� Prentice Hall� 	����

�Wad��� P� Wadler� Theorems for free� In ��th Symposium on Functional Programming
Languages and Computer Architecture� ACM� London� September 	����

�Wad��� P� Wadler� Linear types can change the world� In M� Broy and C� Jones�
editors� Programming Concepts and Methods �IFIP Working Conference� Sea
of Gallilee� Israel� April 	����� North Holland� 	����

�Wad�	� P� Wadler� Is there a use for linear logic� In Conference on Partial Evalua�
tion and Semantics�Based Program Manipulation �PEPM�� ACM� New Haven�
Connecticut� June 	��	�

��

datatype Term 	 Var of Name j Lam of Name � Term j App of Term � Term

fun rename t 	 let val N 	 ref �

fun newname �� 	 let val n 	 N

val �� 	 �N �	 n � � �

in mkname n

end

fun renamer �Var x� 	 Var x

j renamer �Lam �x � t�� 	 let val x � 	 newname ��

in Lam �x �

� subst x � x �renamer t��
end

j renamer �App �t � u�� 	 App �renamer t � renamer u�

in renamer t

end

Figure 	� Renaming in an impure functional language �Standard ML�

data Term 	 Var Name j Lam Name Term j App Term Term

newname �� Int � �Name� Int�
newname n 	 �mkname n� n � � �

renamer �� Term � Int � �Term� Int�
renamer �Var x� n 	 �Var x � n�
renamer �Lam x t� n 	 let �x �

� n �� 	 newname n

�t �
� n��� 	 renamer t n�

in �Lam x � �subst x � x t ��� n ���
renamer �App t u� n 	 let �t �

� n�� 	 renamer t n

�u�
� n��� 	 renamer u n�

in �App t � u�
� n���

rename �� Term � Term

rename t 	 let �t �
� n�� 	 renamer t � in t �

Figure �� Renaming in a pure functional language �Haskell�

��

data Term 	 Var Name j Lam Name Term j App Term Term

newname �� ST Name

newname 	 �mkname n j n � fetch� ��� assign �n � � � �ST

renamer �� Term � ST Term

renamer �Var x� 	 �Var x �ST

renamer �Lam x t� 	 �Lam x � �subst x � x t ��� j x � � newname� t � � renamer t �ST

renamer �App t u� 	 �App t � u� j t � � renamer t � u� � renamer u �ST

rename �� Term � Term

rename t 	 init � �renamer t�

Figure �� Renaming with the monad of state transformers

exp �� Exp � Arr � Val

exp �Var i� a 	 index i a

exp �Const v� a 	 v

exp �Plus e� e�� a 	 exp e� a � exp e� a

com �� Com � Arr � Arr

com �Asgn i e� a 	 update i �exp e a� a
com �Seq c� c�� a 	 com c� �com c� a�
com �If e c� c�� a 	 if exp e a 		 � then com c� a else com c� a

prog �� Prog � Val

prog �Prog c e� 	 exp e �com c �newarray � ��

Figure �� Interpreter in a pure functional language

��

exp �� Exp � ST Val

exp �Var i� 	 � v j v � fetch i �ST

exp �Const v� 	 � v �ST

exp �Plus e� e�� 	 � v� � v� j v� � exp e� � v� � exp e� �
ST

com �� Com � ST ��
com �Asgn i e� 	 � �� j v � exp e� ��� assign i v �ST

com �Seq c� c� � 	 � �� j ��� com c� � ��� com c� �ST

com �If e c� c�� 	 � �� j v � exp e� ��� if v 		 � then com c� else com c� �ST

prog �� Prog � Val

prog �Prog c e� 	 init � � v j ��� com c� v � exp e �ST

Figure
� Interpreter with state transformers

exp �� Exp � SRVal

exp �Var i� 	 � v j v � fetch i �SR

exp �Const v� 	 � v �ST

exp �Plus e� e�� 	 � v� � v� j v� � exp e� � v� � exp e� �
SR

com �� Com � ST ��
com �Asgn i e� 	 � �� j v � ro �exp e�� ��� assign i v �ST

com �Seq c� c� � 	 � �� j ��� com c� � ��� com c� �
ST

com �If e c� c� � 	 � �� j v � ro �exp e�� ��� if v 		 � then com c� else com c� �
ST

prog �� Prog � Val

prog �Prog c e� 	 init � � v j ��� com c� v � ro �exp e� �ST

Figure �� Interpreter with state transformers and readers

�

Types

K � � K

�U � V �� � �U � �M V ��

�U �V �� � �U ��V ��

Terms

x � � � x �M

��x � v�� � � ��x � v�� �M

�t u�� � � y j f � t�� x � u�� y � �f x � �M

�u� v�� � � �x � y� j x � u�� y � v� �M

�fst t�� � � �fst z � j z � t� �M

Assumptions

�x� �� T� � � � � � xn �� Tn�� � x� �� T �
� � � � � � xn �� T �

n

Typings

�A � t �� T �� � A� � t� ��M T �

Figure �� Call�by�value translation�

�A� x �� T � x �� T �� � A�� x �� T � � � x �M ��M T �

�A� x �� U � v �� V �� � A�� x �� U � � v� ��M V �

�A � ��x � v� �� �U � V ��� � A� � � ��x � v�� �M ��M �U � �M V ��

�A � t �� �U � V ��� � A� � t� ��M �U � �M V ��
�A � u �� U �� � A� � u� ��M U �

�A � �t u� �� V �� � A� � � y j f � t�� x � u�� y � �f x � �M ��M V �

�A � u �� U �� � A� � u� ��M U �

�A � v �� V �� � A� � v� ��M V �

�A � �u� v� �� �U �V ��� � A� � � �x � y� j x � u�� y � v� �M ��M �U ��V ��

�A � t �� �U �V ��� � A� � t� ��M �U ��V ��
�A � �fst t� �� U �� � A� � � �fst z � j z � t� �M ��M U �

Figure �� The call�by�value translation preserves well�typing�
��

Types

K y � K

�U � V �y � �M U y � M V y�

�U �V �y � �M U y� M V y�

Terms

x y � x

��x � v�y � � ��x � vy� �M

�t u�y � � y j f � ty� y � �f uy� �M

�u� v�y � � �uy� vy� �M

�fst t�y � � x j z � ty� x � �fst z � �M

Assumptions

�x� �� T� � � � � � xn �� Tn�y � x� ��M T y
� � � � � � xn ��M T y

n

Typings

�A � t �� T �y � Ay � ty ��M T y

Figure �� Call�by�name translation�

�A� x �� T � x �� T �y � Ay� x ��M T y � x ��M T y

�A� x �� U � v �� V �y � Ay� x ��M U y � vy ��M V y

�A � ��x � v� �� �U � V ��y � Ay � � ��x � vy� �M ��M �M U y �M V y�

�A � t �� �U � V ��y � Ay � ty ��M �M U y �M V y�
�A � u �� U �y � Ay � uy ��M U y

�A � �t u� �� V �y � Ay � � y j f � ty� y � �f uy� �M ��M V y

�A � u �� U �y � Ay � uy ��M U y

�A � v �� V �y � Ay � vy ��M V y

�A � �u� v� �� �U �V ��y � Ay � � �uy� vy� �M ��M �M U y�M V y�

�A � t �� �U �V ��y � Ay � ty ��M �M U y�M V y�
�A � �fst t� �� U �y � Ay � � x j z � ty� x � �fst z � �M ��M U y

Figure 	�� The call�by�name translation preserves well�typing�
��

x � � �k � k x

��x � v�� � �k � k ��x � v��

�t u�� � �k � t� ��f � u� ��x � f x k��

�u� v�� � �k � u� ��x � v� ��y � k �x � y���

�fst t�� � �k � t� ��z � k �fst z ��

Figure 		� Call�by�value continuation�passing style transformation

x y � x

��x � v�y � �k � k ��x � vy�

�t u�y � �k � ty ��f � f uy k�

�u� v�y � �k � k �uy� vy�

�fst t�y � �k � ty ��z � fst z k�

Figure 	�� Call�by�name continuation�passing style transformation

��

