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Introduction

Let X be a smooth projective complex variety.

Intermediate Jacobians are complex tori defined in terms of the Hodge
structure of X .

Abel-Jacobi Maps are maps from the groups of cycles of X to its
Intermediate Jacobians.

The result is that questions about cycles can be translated into
questions about complex tori . . .
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Hodge Decomposition

Let X be a smooth projective complex variety of dimension n. The
Hodge decomposition is a direct sum decomposition of the complex
cohomology groups

Hk(X ,C) =
⊕

p+q=k

Hp,q(X ) , 0 ≤ k ≤ 2n .

The subspaces Hp,q(X ) consist of classes [α] of differential forms that
are representable by a closed form α of type (p, q) meaning that locally

α =
∑

I , J ⊆ {1, . . . , n}
|I | = p , |J | = q

fI ,J dzI ∧ dzJ

for some choice of local holomorphic coordinates z1, . . . , zn.
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Hodge Decomposition (Continued)

The subspaces Hp,q(X ) satisfy the Hodge symmetry

Hp,q(X ) = Hq,p(X )

where α 7→ α is the natural action of complex conjugation on

Hk(X ,C) = Hk(X ,R)⊗R C .

Since real forms are conjugate invariant, we may write [α] ∈ H2k(X ,R)
in terms of the Hodge decomposition

α = α2k ,0 + · · · + αk+1,k−1 + αk ,k + αk+1,k−1 + · · · + α2k ,0

and for [β] ∈ H2k−1(X ,R) in odd degree

β = β2k+1,0 + β2k ,1 + · · · + βk+1,k + βk+1,k + · · · + β2k ,1 + β2k+1,0 .
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Hodge Decomposition (Continued)

The Hodge decomposition defines a filtration

0 ⊆ F kHk(X ) ⊆ F k−1Hk(X ) ⊆ · · · ⊆ F 0Hk(X ) = Hk(X ,C)

where
F rHk(X ) =

⊕
p≥r

Hp,k−p(X ) , 0 ≤ r ≤ k .

The cohomology groups of odd degree satisfy

H2k−1(X ,C) = F kH2k−1(X )⊕ F kH2k−1(X )

and the natural map

H2k−1(X ,R) −→ H2k−1(X ,C)/F kH2k−1(X )

is an isomorphism of real vector spaces.
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Intermediate Jacobians

The rank of H2k−1(X ,Z) is the dimension of H2k−1(X ,R) therefore
H2k−1(X ,Z) defines a full lattice

Lk = im
(

H2k−1(X ,Z)→ H2k−1(X ,C)/F kH2k−1(X )
)

in the complex vector space

Vk = H2k−1(X ,C)/F kH2k−1(X ) .

Definition

The kth intermediate Jacobian of X is the complex torus

Jk(X ) = Vk/Lk = H2k−1(X ,C)/(F kH2k−1(X )⊕ H2k−1(X ,Z)) .
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Intermediate Jacobians (Continued)

Poincaré duality asserts

H2n−2k+1(X ,C)∨ = H2k−1(X ,C)

and so

F n−k+1H2n−2k+1(X )∨ = H2k−1(X ,C)/F n−k+1H2n−2k+1(X )⊥ .

We see that
F n−k+1H2n−2k+1(X )⊥ = F kH2k−1(X )

since a form of type (p, 2n − 2k + 1− p) with p ≥ n − k + 1 wedged
with a form of type (p′, 2k − 1− p′) with p′ ≥ k is a form of type
(p′′, 2n− p′′) with p′′ ≥ n + 1 which must be zero since X has complex
dimension n.



Intermediate Jacobians (Continued)
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Intermediate Jacobians (Continued)

Poincaré duality further states that
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Definition

The kth intermediate Jacobian of X is the complex torus

Jk(X ) = F n−k+1H2n−2k+1(X )∨/H2n−2k+1(X ,Z) .

We abuse notation here as Voisin does when we do not distinguish
between H2k−1(X ,Z) and its image in H2k−1(X ,C) and similarly for
H2n−2k−1(X ,Z) and its image in H2n−2k−1(X ,C)∨.
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Cycle Classes

We can attach an integral cohomology class [Z ] ∈ H2k(X ,Z) to a
cycle Z of codimension k in X and extending by Z-linearity defines a
homomorphism

Zk(X ) −→ H2k(X ,Z) : Z 7→ [Z ]

called the cycle class map.

The image of [Z ] in H2k(X ,R) is described by Poincaré duality

H2k(X ,R) ∼= H2n−2k(X ,R)∨ .

The class [Z ] is the form of degree 2k such that

〈[Z ], α〉X =

∫
Zsm

α , for all α ∈ H2n−2k(X ,R) ,

where Zsm is the smooth locus of Z .
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Constructing the Abel-Jacobi Map

The kernel of the cycle class map is the group of null-homologous cycles

Zk(X )hom = ker
(
Zk(X ) −→ H2k(X ,Z)

)
.

In other words, if Z ∈ Zk(X )hom there exists some chain CZ of
dimension 2n − 2k + 1 such that ∂CZ = Z .

Integrating over CZ defines a functional on forms of degree 2n− 2k + 1(
ω 7→

∫
CZ

ω

)
∈ A2n−2k+1(X )∨

therefore we would like to attach to Z a cohomology class in degree
2k − 1 modulo the ambiguity in choosing the chain CZ .



Constructing the Abel-Jacobi Map

The kernel of the cycle class map is the group of null-homologous cycles

Zk(X )hom = ker
(
Zk(X ) −→ H2k(X ,Z)

)
.

In other words, if Z ∈ Zk(X )hom there exists some chain CZ of
dimension 2n − 2k + 1 such that ∂CZ = Z .

Integrating over CZ defines a functional on forms of degree 2n− 2k + 1(
ω 7→

∫
CZ

ω

)
∈ A2n−2k+1(X )∨

therefore we would like to attach to Z a cohomology class in degree
2k − 1 modulo the ambiguity in choosing the chain CZ .



Constructing the Abel-Jacobi Map (Continued)

Integrating over CZ will only define a functional on cohomology if it is
zero on exact forms. If ω = dψ for some form ψ of degree 2n− 2k , we
have ∫

CZ

ω =

∫
Z

ψ

which vanishes if ψ is of type (p, q) 6= (n − k, n − k) since then
ψ|Z = 0 because Z has complex dimension n − k .

Therefore, integrating over CZ does not define a functional on the
whole space H2n−2k+1(X ,C) but we can choose a piece of the
cohomology on which it does.
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It can be shown that
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It remains to consider the ambiguity in the choice of the chain CZ

bounding the cycle Z .
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Constructing the Abel-Jacobi Map (Continued)

If C ′Z is another chain such that ∂C ′Z = Z then ∂(CZ − C ′Z) = 0
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Constructing the Abel-Jacobi Map (Continued)

Let dk = dimCF n−k+1H2n−2k+1(X ) and choose a basis
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The Abel-Jacobi map of degree k is then
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Example: The Albanese Variety (k = n)

In the case k = n, a cycle Z ∈ Zn(X ) is a point and the complex torus
Jn(X ) = AlbX is called the Albanese variety of X .

We may fix a point x0 ∈ X and consider the null-homologous 0-cycles
(x)− (x0) as x varies in X . The Abel-Jacobi Map on these cycles then
defines a holomorphic map

albX : X −→ AlbX : x 7→ Φn
X ((x)− (x0))

which satisfies the following universal property.

Theorem

If f : X −→ T is a holomorphic map from X to a complex torus T
such that f (x0) = 0, then there exists a unique morphism of complex
tori g : AlbX −→ T such that g ◦ albX = f .
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The Simplest Case (k=n=1)

The chain C(x)−(x0) varying in a curve X of genus 1 as x varies in X :

• •

◦

•
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Holomorphic Families of Cycles

The Albanese map is the simplest example of the Abel-Jacobi map
applied to a holomorphic family of cycles. More generally, we can
consider a holomorphic family (Zy)y∈Y of cycles of codimension k in X
parametrized by a connected complex manifold Y .

Theorem (Griffiths, 1968)

Let X be a complex Kähler manifold, let Y be a connected complex
manifold and let Z ⊂ Y × X be a cycle of codimension k and flat over
Y . The fibers Zy are all homologous in X and, given a reference point
y0 ∈ Y , the map

φ : Y −→ Jk(X ) : y 7→ Φk
X (Zy − Zy0)

is holomorphic.
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Rational Equivalence

Theorem

If Z ∈ Zk(X ) is rationally equivalent to 0 then Φk
X (Z ) = 0. In

particular, the Abel-Jacobi map factors through the (null-homologous)
Chow group

Φk
X : CHk(X )hom −→ Jk(X ) .

The idea is that if Z1 and Z2 are rationally equivalent then these cycles
lie in a family of cycles parametrized by P1 and the Abel-Jacobi map
then defines a holomorphic map Φk

X : P1 −→ Jk(X ). But such a
holomorphic map must be constant so Φk

X (Z1) = Φk
X (Z2).

We now have a tool with which to study the Chow groups CHk(X )hom

in terms of the simpler objects Jk(X ).
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Applications: The Work of Schoen

The recurring fantasy of Bloch conjectures the relationship

rank CHk(XF )hom = ords=kL(H2k−1(XF ), s)

for a smooth projective variety X defined over a number field F .

The rough idea of (a part of) Schoen’s work is to consider a specific

moduli space W̃ of elliptic curves and to construct a large class of
cycles over an imaginary quadratic field F and of codimension 2 in W̃
using of the theory of complex multiplication. Since proving rational
equivalence amongst these cycles is much too difficult, the idea is to
provide modest numerical evidence that the rank of the subgroup these
cycles generate, via the Abel-Jacobi map, in the intermediate Jacobian
J2(W̃ ) is 1 when the corresponding L-function is “known” to have a
simple zero at s=2.
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Applications: The Work of Schoen

The recurring fantasy of Bloch conjectures the relationship

rank CHk(XF )hom = ords=kL(H2k−1(XF ), s)

for a smooth projective variety X defined over a number field F .

The rough idea of (a part of) Schoen’s work is to consider a specific

moduli space W̃ of elliptic curves and to construct a large class of
cycles over an imaginary quadratic field F and of codimension 2 in W̃
using of the theory of complex multiplication. Since proving rational
equivalence amongst these cycles is much too difficult, the idea is to
provide modest numerical evidence that the rank of the subgroup these
cycles generate, via the Abel-Jacobi map, in the intermediate Jacobian
J2(W̃ ) is 1 when the corresponding L-function is “known” to have a
simple zero at s=2.
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