
LECTURE 11: CARTAN’S CLOSED SUBGROUP THEOREM

1. Cartan’s closed subgroup theorem

Suppose G is a Lie group and H a closed subgroup of G, i.e. H is subgroup of G
which is also a closed subset of G. Let

h = {X ∈ g | exp(tX) ∈ H for all t ∈ R}.
In what follows we will prove the closed subgroup theorem due to E. Cartan. We will
need the following lemmas:

Lemma 1.1. h is a linear subspace of g.

Proof. Clearly h is closed under scalar multiplication. It is closed under vector addition
because for any t ∈ R,
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Lemma 1.2. Suppose X1, X2, · · · be a sequence of nonzero elements in g so that

(1) Xi → 0 as i→∞.
(2) exp(Xi) ∈ H for all i.
(3) limi→∞

Xi

|Xi| = X ∈ g.

Then X ∈ h.

Proof. For any fixed t 6= 0, we take ni = [ t
|Xi| ] be the integer part of t

|Xi| . Then

exp(tX) = lim
i→∞

exp(niXi) = lim
i→∞

exp(Xi)
ni ∈ H.

�

Lemma 1.3. The exponential map exp : g → G maps a neighborhood of 0 in h bijec-
tively to a neighborhood of e in H.

Proof. Take a vector subspace h′ of g so that g = h ⊕ h′. Let Φ : g = h ⊕ h′ → G be
the map

Φ(X + Y ) = exp(X) exp(Y ).

Then as we have seen, dΦ0(X + Y ) = X + Y . So Φ is a local diffeomorphism from
g to G. Since exp |h = Φ|h, to prove the lemma, it is enough to prove that Φ maps a
neighborhood of 0 in h bijectively to a neighborhood of e in H.
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Suppose the lemma is false, then we can find a sequence of vectors Xi +Yi ∈ h⊕ h′

with Yi 6= 0 so that Xi + Yi → 0 and Φ(Xi + Yi) ∈ H. Since exp(Xi) ∈ H, we must

have exp(Yi) ∈ H for all i. We let Y be a limit point of Yi
|Yi|
′
s. Then according to the

previous lemma, Y ∈ h. Since h′ is a subspace and thus a closed subset, Y ∈ h′. So we
must have Y = 0, which is a contradiction since by construction, |Y | = 1. �

Now we are ready to prove

Theorem 1.4 (E. Cartan’s closed subgroup theorem). Any closed subgroup H of a Lie
group G is a Lie subgroup (and thus a submanifold) of G.

Proof. According to the previous lemma, one can find a neighborhood U of e in G and
a neighborhood V of 0 in g so that exp−1 : U → V is a diffeomorphism, and so that
exp−1(U ∩H) = V ∩ h. It follows that (exp−1, U, V ) is a chart on G which makes H a
submanifold near e. For any other point h ∈ H, we can use left translation to get such
a chart. �

As an immediate consequence, we get

Corollary 1.5. If ϕ : G→ H is Lie group homomorphism, then ker(ϕ) is a closed Lie
subgroup of G whose Lie algebra is ker(dϕ).

Proof. It is easy to see that ker(ϕ) is a subgroup of G which is also a closed subset.
So according to Cartan’s theorem, ker(ϕ) is a Lie subgroup. It follows that the Lie
algebra of ker(ϕ) is given by

Lie(ker(ϕ)) = {X ∈ g | exp(tX) ∈ ker(ϕ),∀t}.

The theorem follows since

exp(tX) ∈ ker(ϕ),∀t⇐⇒ ϕ(exp(tX)) = e, ∀t
⇐⇒ exp(tdϕ(X)) = e, ∀t
⇐⇒ dϕ(X) = 0.

�

As an application, we have

Theorem 1.6. Any connect abelian Lie group is of the form Tr × Rk.

Proof. Let G be a connect abelian Lie group. Then we have seen that exp : g → G is
a surjective Lie group homomorphism, so G is isomorphic to g/ker(exp).

On the other hand side, ker(exp) is a Lie subgroup of (g,+), and it is discrete since
exp is a local diffeomorphism near e. By using induction one can show that ker(exp) is
a lattice in (g,+), i.e. there exists linearly independent vectors v1, · · · , vr ∈ g so that

ker(exp) = {n1v1 + · · ·+ nrvr | ni ∈ Z}.
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Let V1 = span(v1, · · · , vr) and V2 be a linear subspace of g so that g = V1 × V2. Then

G ' g/ker(exp) = V1/ker(exp)× V2 ' T r × Rk.

�

Another important consequence of Cartan’s theorem is

Corollary 1.7. Every continuous homomorphism of Lie groups is smooth.

Proof. Let φ : G→ H be a continuous homomorphism, then

Γφ = {(g, φ(g)) | g ∈ G}

is a closed subgroup, and thus a Lie subgroup of G×H. The projection

p : Γφ
i→ G×H pr1→ G

is bijective, smooth and is a Lie group homomorphism. It follows that dp is a constant
rank map, and thus has to be bijective at each point.So p is local diffeomorphism
everywhere. Since it is globally invertible, p is also a global diffeomorphism. Thus
φ = pr2 ◦ p−1 is smooth. �

As a consequence, for any topological group G, there is at most one smooth struc-
ture on G to make it a Lie group. (However, it is possible that one group admits two
different topologies and thus have different Lie group structures.)

2. Simply Connected Lie Groups

Recall that a path in M is a continuous map f : [0, 1] → M . It is closed if
f(0) = f(1).

Definition 2.1. Let M be a connected Hausdorff topological space.

(1) Two paths f, g : [0, 1]→M with the same end points (i.e. f(0) = g(0), f(1) =
g(1)) are homotopic if there is a continuous map h : [0, 1] × [0, 1] → M such
that

h(s, 0) = f(s), h(s, 1) = g(s)

for all s, and

h(0, t) = f(0), h(1, t) = f(1)

for all t.
(2) M is simply connected if any two paths with the same ends are homotopic.
(3) A continuous surjection π : X → M is called a covering if each p ∈ M has a

neighborhood V whose inverse image under π is a disjoint union of open sets
in X each homeomorphic with V under π.

(4) A simply connected covering space is called the universal cover.



4 LECTURE 11: CARTAN’S CLOSED SUBGROUP THEOREM

For example, Rn is simply connected, Tn is not simply connected. The map

Rn → Tn = Rn/Zn, x 7→ x+ Zn

is a covering map. The following results are well known:

Facts from topology:

• Let π : X →M is a covering, Z a simply connected space. Suppose α : Z →M
be a continuous map, such that α(z0) = m0. Then for any x0 ∈ π−1(m0), there
is a unique “lifting” α̃ : Z → X such that π ◦ α̃ = α and α̃(z0) = x0.
• Any connected manifold has a simply connected covering space.
• If M is simply connected, any covering map π : X →M is a homeomorphism.

Theorem 2.2. The universal covering space of a connected Lie group admits a Lie
group structure such that the covering map is a Lie group homomorphism.

Proof. Since G is connected, it has a universal covering π : G̃ → G. One can use the

charts on G and the lifting map to define charts on G̃ so that G̃ becomes a smooth
manifold. Moreover, one can check that under this smooth structure, the lifting of a
smooth map is also smooth.

To define a group structure on G̃, and show π is a Lie group homomorphism, we
consider the map

α : G̃× G̃→ G, (g̃1, g̃2) 7→ π(g̃1)π(g̃2)
−1.

Choose any ẽ ∈ π−1(e). Since G̃ × G̃ is simply connected, there is a lifting map

α̃ : G̃× G̃→ G̃ such that π ◦ α̃ = α and such that α̃(ẽ, ẽ) = ẽ. Now for any g̃1, g̃2 ∈ G̃
we define

g̃−1 := α̃(ẽ, g̃), g̃1 · g̃2 = α̃(g̃1, g̃
−1
2 ).

By uniqueness of lifting, we have g̃ẽ = ẽg̃ = g̃ for all g̃ ∈ G̃, since the maps

g̃ 7→ g̃ẽ, g̃ 7→ ẽg̃, g̃ 7→ g̃

are all lifting of the map g̃ 7→ π(g̃). Similarly g̃g̃−1 = g̃−1g̃ = ẽ, and (g̃1g̃2)g̃3 = g̃1(g̃2g̃3).

So G̃ is a group. One can check that the group operations are smooth under the smooth

structure chosen above. So G̃ is actually a Lie group.

Finally by definition π(g̃−1) = π(g̃)−1 and π(g̃1g̃2) = π(g̃1)π(g̃2). So π is a contin-
uous group homomorphism between Lie groups, and thus a Lie group homomorphis-
m. �


