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Introduction
Mathematicians tend to think of the notion of
symmetry as being virtually synonymous with
the theory of groups and their actions, perhaps
largely because of the well-known Erlanger pro-
gram of F. Klein and the related work of S. Lie,
which virtually defined geometric structures by
their groups of automorphisms. (See, for exam-
ple, Yaglom’s account in [27].) In fact, though
groups are indeed sufficient to characterize ho-
mogeneous structures, there are plenty of objects
which exhibit what we clearly recognize as sym-
metry, but which admit few or no nontrivial au-
tomorphisms. It turns out that the symmetry,
and hence much of the structure, of such objects
can be characterized algebraically if we use
groupoids and not just groups.

The aim of this paper is to explain, mostly
through examples, what groupoids are and how
they describe symmetry. We will begin with el-
ementary examples, with discrete symmetry,
and end with examples in the differentiable set-
ting which involve Lie groupoids and their cor-
responding infinitesimal objects, Lie algebroids.
These objects play a role in the study of general
differentiable manifolds and partial differential
equations, which is, in a sense, an extension of
the role which Lie groups play in the geometry
and analysis of highly symmetric manifolds.

Some History
The following historical remarks are not in-
tended to be complete but merely to indicate the
breadth of areas where groupoids have been
used. An extensive survey of groupoids as of
1986 can be found in R. Brown’s article [2].
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Groupoids were introduced
(and named) by H. Brandt [1] in
a 1926 paper on the composi-
tion of quadratic forms in four
variables. C. Ehresmann [6]
added further structures (topo-
logical and differentiable as well
as algebraic) to groupoids,
thereby introducing them as a
tool in differentiable topology
and geometry.

In algebraic geometry, A.
Grothendieck used groupoids
extensively and, in particular,
showed how they could be used
to tame the unruly equivalence
relations which arise in the con-
struction of moduli spaces. (See
[8], with further details in [7].) As the role of mod-
uli spaces expands in physics as well as math-
ematics, groupoids continue to play an essential
role.

In analysis, G. Mackey [16] used groupoids
under the name of virtual groups to allow the
treatment of ergodic actions of groups, “as if’’
they were transitive, while it was observed that
the convolution operation, extended from groups
to groupoids, made possible the construction of
a multitude of interesting noncommutative al-
gebras. (See [21] for a survey.) In this context, the
use of groupoid convolution algebras as a sub-
stitute for the algebras of functions on badly be-
haved quotient spaces is a central theme in the
noncommutative geometry of A. Connes [4]. The
book just cited also shows the extent to which
groupoids provide a framework for a unified
study of operator algebras, foliations, and index
theory.

In algebraic topology, the fundamental
groupoid of a topological space has been ex-
ploited by P. Higgins, R. Brown, and others (see
Brown’s textbook [3], or Higgins’ book [9], which
is a good general introduction to groupoids as
well) in situations where the use of a fixed base
point as imposed by the usual fundamental
group would be too restrictive. Groupoid meth-
ods are thus well adapted to disconnected spaces
(which arise frequently when connected spaces
are cut into pieces, as in the van Kampen theo-
rem) and to spaces with fixed-point-free group
actions.

The extension of Lie theory from differen-
tiable groups to groupoids was carried out for
the most part by J. Pradines, as described in a
series of notes ending with [20]. An exposition
of this work, together with a detailed study of
the role of groupoids and Lie algebroids in dif-
ferential geometry, can be found in the book of
K. Mackenzie [13].1 There is also a close relation
between Lie algebroids and Lie groupoids and the

better-known pseudogroups of differentiable
transformations. (See the brief remark at the
end of the following section or [8] for more de-
tails.)

Finally, the author’s own interest in groupoids
arose from the discovery [24, 25], made inde-
pendently at around the same time by Karasev
[10] and Zakrzewski [28], that a groupoid with
compatible symplectic structure is the appro-
priate geometric model for a family of non-
commutative algebras obtained by deformation
from the algebra of functions on a manifold
with a Poisson bracket structure.

Global and Local Symmetry Groupoids
We begin our exposition with a simple example
which will lead to the definition of a groupoid.
Consider a tiling of the euclidean plane R2 by
identical 2× 1 rectangles, specified by the set
X (idealized as 1-dimensional) where the grout
between the tiles lies: X = H ∪ V ,  where
H = R× Z and V = 2Z× R . (See Figure 1.) We
will call each connected component of R2 \X a
tile.

The symmetry of this tiling is traditionally de-
scribed by the group Γ consisting of those rigid
motions of R2 which leave X invariant. It con-
sists of the normal subgroup of translations by
elements of the lattice Λ = H ∩ V = 2Z× Z (cor-
responding to corner points of the tiles), to-
gether with reflections through each of the points
in 1

2Λ = Z× 1
2Z and across the horizontal and

vertical lines through those points.
Now consider what is lost when we pass from

X to Γ.
• The same symmetry group would arise if we

had replaced X by the lattice Λ of corner
points, even though Λ looks quite different

1We note that, before the appearance of [5], Lie
groupoids were called differentiable groupoids, the
term “Lie” being reserved for those satisfying a certain
transitivity property.

Figure 1. Tiling of the plane by 2 x1 rectangles.
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from X. (Of course, there are reasons why
this loss of detail in passing from X to Γ is
welcome, as is the case for many math-
ematical abstractions, but read on.)

• The group Γ retains no information about
the local structure of the tiled plane, such
as the fact that neighborhoods of all the
points inside the tiles look identical if the
tiles are uniform, while they may look dif-
ferent if the tiles are painted with a design
(which could still be invariant under Γ).

• If, as is the case on real bathroom floors, the
tiling is restricted to a finite part of the
plane, such as B = [0,2m]× [0, n], the sym-
metry group shrinks drastically. The sub-
group of Γ leaving X ∩ B invariant contains
just 4 elements, even though a repetitive pat-
tern on the bathroom floor is clearly visible.

Our first groupoid will enable us to describe
the symmetry of the finite tiled rectangle. We
first define the transformation groupoid of the
action of Γ on R2 to be the set2

G(Γ ,R2) ={(x,γ, y)|x ∈ R2, y ∈ R2, γ ∈ Γ ,
and x = γy}

with the partially defined binary operation

(x,γ, y)(y, ν, z) = (x,γν, z).

This operation on G = G(Γ ,R2) has the follow-
ing properties.
1. It is defined only for certain pairs of ele-

ments: gh is defined only when β(g) = α(h)
for certain maps α and β from G onto R2;
here α : (x,γ, y) 7→ x and β : (x,γ, y) 7→ y .

2. It is associative: if either of the products
(gh)k or g(hk) is defined, then so is the
other, and they are equal.

3. For each g in G, there are left and right iden-
tity elements λg and ρg such that
λgg = g = gρg.

4. Each g in G has an inverse g−1 for which
gg−1 = λg and g−1g = ρg.

More generally, a groupoid with base B is a
set G with mappings α and β from G onto B
and a partially defined binary operation

(g, h) 7→ gh satisfying the conditions 1–4
above. We may think of each element g of
G as an arrow pointing from β(g) to α(g)
in B; arrows are multiplied by placing them
head to tail, as in Figure 2.

Many properties of groupoids suggested
by this picture are easily proven. For in-
stance, α(g−1) = β(g) (since gg−1 is de-
fined), and α(gh) = α(g) (since
(λgg)h = λg(gh) implies that λg(gh) is de-

fined). One also shows easily that α(g) and λg
(or β(g) and ρg) determine one another, thus
producing a bijective mapping ι from the base
B to the subset G(0) ⊆ G consisting of the iden-
tity elements. The reader familiar with cate-
gories will probably have realized by now that
a groupoid is just a category in which every mor-
phism has an inverse.3

Now we return to our transformation
groupoid G(Γ ,R2) and form its restriction to
B = [0,2m]× [0, n] (or any other subset B of R2)
by defining 

G(Γ ,R2)|B ={g ∈ G(Γ ,R2)|α(g)

and β(g) belong to B}.
The following concepts from groupoid theory,
applied to this example, now show that
G(Γ ,R2)|B indeed captures the symmetry which
we see in the tiled floor.

• An orbit of the groupoid G over B is an
equivalence class for the relation

x ∼G y if and only if there is a groupoid

element g with α(g) = x and β(g) = y.

In the example, two points are in the same
orbit if they are similarly placed within their
tiles or within the grout pattern. (We are al-
lowed to turn the tiles over, as well as to
translate them or rotate them by 180◦.)

• The isotropy group of x ∈ B consists of
those g in G with α(g) = x = β(g). In the ex-
ample, the isotropy group is trivial for every
point except those in 12Λ∩ B, for which it is
Z2 × Z2.

We can describe local symmetries of our tiling
by introducing another groupoid. Consider the
plane R2 as the disjoint union of P1 = B ∩X (the
grout), P2 = B \ P1 (the tiles), and P3 = R2 \ B
(the exterior of the tiled room). Let E be the
group of all euclidean motions of the plane, and
define the local symmetry groupoid Gloc as the
set of triples (x,γ, y) in B × E × B for which
x = γy, and for which y has a neighborhood U

2As a set, G(Γ ,R2) is isomorphic to Γ × R2, but we pre-
fer the following more symmetric description, which
makes the composition law more transparent.

Figure 2. Multiplication in a groupoid.

3Actually, not quite. The elements of a category can con-
stitute a class rather than a set, so a groupoid is a small
category with every morphism invertible. This is just
a question of terminology, though; many authors allow
their groupoids to be classes.
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in R2 such that γ(U∩ Pi) ⊆ Pi for i = 1,2,3. The
composition is given by the same formula as for
G(Γ ,R2).

For this groupoid, there are only a finite num-
ber of orbits (see Figure 3).
O1 = interior points of tiles
O2 = interior edge points
O3 = interior crossing points
O4 = boundary edge points
O5 = boundary “T” points
O6 = boundary corner points
The isotropy group of a point in O1 is now

isomorphic to the entire rotation group O(2); it
is Z2 × Z2 for O2, the 8-element dihedral group
D4 for O3, and Z2 for O4, O5, and O6.
Gloc|L now has just three orbits, with isotropy

groups isomorphic to D4, Z2, and Z2 as before.
(See Figure 4.) At this point, we have something
like the smile which remains after the Cheshire
Cat has disappeared. The set L has no structure
at all except for that provided by the groupoid
Gloc|L, which is a sort of relic of the symmetry
structure which was given by the original de-
composition into grout, tiles, and exterior. We
could say that the points of L have “internal sym-
metry” specified by the isotropy groups of Gloc|L
and that the “types” of these points are classi-
fied by the orbit structure of the groupoid. This
internal symmetry and type classification can be
viewed either as a relic of the original tiling or
simply as a “geometric structure” on L.

The situation here is similar to that in gauge
theory, where the points of space-time are
equipped with internal symmetry groups whose
representations correspond to physical parti-
cles. But gauge groups and gauge transforma-
tions are applicable only because all the points
of space-time look alike. To describe nonhomo-
geneous structures like the tiled floor requires
groupoids rather than groups.4

To close this section, we mention that an-
other approach to local symmetry is through
the theory of pseudogroups, whose elements
typically consist of selected homeomorphisms
between open subsets of a space of interest,
with the composition of two transformations
defined on the largest possible domain. The
“germs” of elements of a pseudogroup form a
groupoid, while in the other direction certain sub-
sets of a groupoid admit a multiplication which
makes them the abstract counterpart of a
pseudogroup (in the same sense that a group is
the abstract counterpart of a set of invertible
mappings closed under composition) called an
inverse semigroup. We refer to [21] for an ex-
position of inverse semigroups and their relation
to groupoids.

Groupoids and Equivalence Relations
If B is any set, the product B × B is a groupoid
over B with α(x, y) = x ,  β(x, y) = y ,  and
(x, y)(y, z) = (x, z). The identities are the (x, x),
and (x, y)−1 = (y, x) .  We call this the pair
groupoid of B.5 Note that a subgroupoid of B × B ,
i.e., a subset closed under product and inversion
and containing all the identity elements,6 is noth-
ing but an equivalence relation on B. The orbits
are the equivalence classes, and the isotropy
subgroups are all trivial.

If G is any groupoid over B , the map
(α,β) : G → B × B is a morphism from G to the
pair groupoid of B. (A groupoid morphism from
G over B to G′ over B′ is a pair of maps G → G′
and B → B′ compatible with the multiplication,
“head,” and “tail” maps of the two groupoids.)
The image of (α,β) is the orbit equivalence re-
lation ∼G, and the kernel is the union of the
isotropy groups.

The morphism (α,β) suggests another way of
looking at groupoids. Until now, we have been
describing them as generalized groups, but now

4Actually, groupoids are useful even in the realm of
gauge theory. (See [14].)

Figure 3. The point labelled by j belongs to the orbit Oj of the
groupoid G(Γ ,R2)|B .

Figure 4. Orbit decomposition of the finite groupoid Gloc|L .

5Other authors use the terms coarse groupoid or banal
groupoid for this object.
6One often omits this last condition from the definition
of a subgroupoid. To emphasize it, we can refer to a
wide subgroupoid.
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we want to think of groupoids as generalized
equivalence relations as well. From this point of
view, a groupoid over B tells us not only which
elements of B are equivalent to one another (or
“isomorphic”), but it also parametrizes the dif-
ferent ways (“isomorphisms”) in which two ele-
ments can be equivalent. This leads us to the fol-
lowing guiding principle of Grothendieck,
Mackey, Connes, Deligne,…

Almost every interesting equivalence
relation on a space B arises in a nat-
ural way as the orbit equivalence re-
lation of some groupoid G over B. In-
stead of dealing directly with the
orbit space B/G as an object in the
category Smap of sets and mappings,
one should consider instead the
groupoid G itself as an object in the
category Ghtp of groupoids and ho-
motopy classes of morphisms.

are morphisms of groupoids for i = 1,2, a ho-
motopy (or natural transformation in the lan-
guage of categories) from f 1 to f 2 is a map
h : B → G′ with the following properties.

• For each x ∈ B ,  α′(h(x)) = f 1
B (x) and

β′(h(x)) = f2
B (x) .

• For each g ∈ G , h(α(g))f2
G(g) = f 1

G(g)h(β(g)).
An isomorphism in Ghtp between the

groupoids G and G′ (sometimes called an equiv-
alence of groupoids) gives a bijection between the
orbit spaces B/G and B/G′ , as well as group iso-
morphisms between corresponding isotropy sub-
groups in G and G′ . In the absence of further
structure on the groupoids, an equivalence is es-
sentially no more than this, but when the
groupoids (and their bases) have measurable,
topological, differentiable, algebraic, or sym-
plectic (and Poisson) structures, the quotient
spaces can be rather nasty objects, outside the
category originally under consideration, and it
is essential to focus attention on the groupoids
themselves. One tool which makes this focus
effective is an algebra associated to the groupoid
G over B which is a useful substitute for the
space of functions on B/G when the quotient is
a “bad” space. We begin to describe this algebra
in the next section.

Groupoid Convolution and Matrices
The convolution of two complex valued func-
tions on a group G is defined as the sum 

(a∗ b)(g) =
∑
k∈G

a(k)b(k−1g),

at least when the support of each function (i.e.,
the set where it is not zero) is finite. When the
supports are infinite, the sum may still be de-
fined if the functions are absolutely summable.
One obtains in this way, for instance, the rules
for multiplying Fourier series as functions on the
additive group Z .

To extend the definition of convolution from
groups to groupoids, one replaces the range of
summation G by the α-fibre Gg = α−1(α(g)) .
Alternatively, one may use the more symmetric
formula for convolution: 

(a∗ b)(g) =
∑

{(k,`)|k`=g}
a(k)b(`).

For instance, if G = B × B is the pair groupoid
over B = {1,2, . . . , n} , the convolution opera-
tion (defined on all functions) is 

(a∗ b)(k, j) =
∑

(i,k)(k,j)=(i,j)
a(i, k)b(i, j);

and if we write aij for a(i, j) , we get 

(a∗ b)ij =
n∑
k=1

aikbkj ,

which exhibits F ({1,2, . . . , n} × {1,2, . . . , n})
as the algebra of n× n matrices.

This may look like a peculiar way of viewing
the algebra of matrices, but Connes ([4], pp.
33–39, and elsewhere) has made the point that
it was precisely as a groupoid algebra that
Heisenberg constructed his original formula-
tion of quantum mechanics. (The elements of the
groupoid were transitions between excited states
of an atom. Only later were the elements of the
groupoid algebra identified as matrices.) The
noncommutativity of the algebra of observables
in quantum mechanics is then seen to be a di-
rect consequence of the noncommutativity of the
pair groupoid B × B , as compared with the com-
mutativity of the group Z underlying the Fourier
series representation of oscillatory motion in
classical mechanics.

Topological Groupoids and Groupoid
Algebras
For many interesting groupoids, such as the pair
groupoid of the real numbers, the functions
with finite or even countable support are rather
unnatural objects, and it is more common to con-
sider continuous functions. To define the con-

Here is the definition of homotopy. If
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volution of such functions, it is necessary to re-
place the sum in the definition by an integral.
An appropriate general setting for this extended
notion of convolution is that of topological
groupoids.

A groupoid G is a topological groupoid over
B if G and B are topological spaces and α, β ,
and multiplication are continuous maps. It turns
out that this notion is useful for many purposes
beyond the definition of convolution. A criti-
cism sometimes applied to the theory of
groupoids is that their classification up to iso-
morphism is nothing other than the classifica-
tion of equivalence relations (via the orbit equiv-
alence relation) and groups (via the isotropy
groups). The imposition of a compatible topo-
logical structure produces a nontrivial interac-
tion between the two structures. (The theory of
principal bundles is just a special case of this.7)

For instance, the groupoid Gloc|L of local
symmetries introduced in the section entitled
“Global and Local Symmetry Groupoids” can be
entirely decomposed into its restrictions to the
orbits O3, O5, and O6. In other words, the
groupoid contains no information about the re-
lation of the orbits to one another. This relation
can be encoded, however, in a suitable topology
on the groupoid.

To return to our discussion of convolution on
groupoids, we consider an example. If
G = Rn × Rn, we can define a convolution oper-
ation on the space Cc (G) of continuous functions
with proper support (i.e., for each compact sub-
set K of Rn , the intersections of K × Rn and
Rn ×K with {(x, y)|a(x, y) 6= 0} have compact
closure). Multiplication in Cc (G) is given by the
integral formula 

(1) (a∗ b)(x, y) =
∫

Rn
a(x, z)b(z, y) dz,

where dz is Lebesgue measure.8

This “continuous matrix multiplication” is pre-
cisely the composition law which we obtain by
thinking of each a ∈ Cc (G) as the “kernel” (here
the term is used in the sense of Schwartz [23])
of an operator ã on L2(Rn): 

(ãψ)(x) =
∫

Rn
a(x, y)ψ(y)dy.

Not every operator (not even the identity) is re-
alized by a continuous kernel, but all operators

(including unbounded ones) satisfying reason-
able continuity properties can be realized by
kernels which are distributions, or generalized
functions on Rn × Rn. (See [23].)

To define convolution operations on func-
tions on a general locally compact topological
groupoid, we need to start with a family {µx} of
measures along the α-fibres, which will fill the
role played by the measure dz in (1) above. Con-
volution is then defined9 by 

(a∗ b)(g) =
∫
Gg
a(k)b(k−1g)dµg(k).

This operation is associative if the measures µg
satisfy a suitable left-invariance property.

From continuous functions on G , one can
pass by various processes of completion and lo-
calization to larger groupoid algebras, which
play the role of continuous functions, measur-
able functions, or even distributions on the orbit
space of G . We refer to the books [4, 19], and
[21] for more details.

A more intrinsic construction of groupoid al-
gebras, free of the choice of measures, can also
be given. It includes as special cases the convo-
lution of measures on a group G and the mul-
tiplication of kernels of operators on Mackey’s
“intrinsic Hilbert spaces” [15]. The definition
can be found on p. 101 of [4] for the case of Lie
groupoids (see next section “Lie Groupoids and
Lie Algebroids” below). A construction modeled
on the definition of the intrinsic Hilbert spaces
should extend this idea to a general locally com-
pact groupoid with a prescribed left-invariant
family of measure classes along the α-fibres.

Lie Groupoids and Lie Algebroids
A groupoid G over B is a Lie groupoid if G and
B are differentiable manifolds, and α, β , and
multiplication are differentiable maps.10 For ex-
ample, the pair groupoid M ×M over any dif-
ferentiable manifold M is a Lie groupoid, and any
Lie group is a Lie groupoid over a single point.

The infinitesimal object associated with a Lie
groupoid is a Lie algebroid. A Lie algebroid over
a manifold B is defined to be a vector bundle A
over B with a Lie algebra structure [ , ] on its
space of smooth sections, together with a bun-
dle map ρ (called the anchor of the Lie algebroid)
from A to the tangent bundle TB satisfying the
conditions:
1. [ρ(X), ρ(Y )] = ρ([X,Y ]) ;
2. [X,ϕY ] =ϕ[X,Y ] + (ρ(X) ·ϕ)Y.

7Of course, a completely different retort could be made
to the criticism above. By the same criterion, finite-di-
mensional vector spaces should be completely unin-
teresting, but the study of their morphisms is a very rich
subject.
8Dirac’s notation 〈x|a|y〉 for a(x, y) emphasizes the
idea that the values of a are “transition amplitudes”
between “states” and so fits nicely with the groupoid
interpretation of (1).

9This definition seems to be due to J. Westman [26].
10A further technical condition is included in the def-
inition to insure that the domain of multiplication is a
smooth submanifold of G×G; the derivatives of α and
β are required to have maximal rank everywhere.
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Here, X and Y are smooth sections of A , ϕ is
a smooth function on B, and the bracket on the
left-hand side of the first condition is the usual
Jacobi-Lie bracket of vector fields. For example,
the tangent bundle TB with the usual bracket,
and the identity map as anchor, is a Lie algebroid
over B, while any Lie algebra is a Lie algebroid
over a single point.

The Lie algebroid of a Lie groupoid is defined
via left-invariant vector fields, just as it is in the
case of Lie groups. Since the left translation by
a groupoid element g maps only from Gβ(g) to
Gα(g), we must first restrict the values of our vec-
tor fields to lie in the subbundle TαG = ker(Tα)
of TG consisting of vectors tangent to the α-fi-
bres. (Here, Tα is the derivative of α.) For every
x in B and every g in the β-fibre β−1(x), the fibre
Tαg G can be identified with Tαι(x)G via left trans-
lation by g. Thus, the space of left-invariant sec-
tions of TαG along β−1(x) can be identified with
the single space AxG = Tαι(x)G, and Tβ gives a
well-defined map ρx : AxG → TxB. The (disjoint)
union of these objects for all x in B forms a vec-
tor bundle AG over B with a bundle map
ρ : AG → TB. (See Figure 5.) Identifying the sec-
tions of AG with left-invariant sections of
TαG ⊆ TG and using the usual bracket on sec-
tions of TG defines a bracket of sections on AG
making it into a Lie algebroid with anchor ρ.

For instance, the Lie algebroid of B × B is TB,
and by extension of a well-known idea from Lie
group theory, one may think of the Jacobi-Lie
bracket on sections of TB as being the infini-
tesimal remnant of the noncommutativity of the
composition law (x, y)(y, z) = (x, z).

The local versions of Lie’s three fundamental
theorems all extend from groups to groupoids,
but there are some interesting differences at
the global level. Although every subalgebroid
A′ of AG is indeed AG′ for a Lie groupoid G′ ,

there may be no such G′ for
which the induced morphism
G′ → G is globally one-to-one.
More seriously (and contrary to
an incorrect assertion in [20]),
there exist Lie algebroids which
are “nonintegrable” in the sense
that they are not the Lie alge-
broid of any global Lie groupoid
at all. (There is a local Lie
groupoid corresponding to any
Lie algebroid, though.) We refer
to Chapter V of [13] for a dis-
cussion of all this, together with
further references.

Boundary Lie Algebroids
In this section we will explain
how Lie algebroids provide a nat-
ural setting for understanding

some recent work by R. Melrose [17, 18] on the
analysis of (pseudo)differential operators on
manifolds with boundary. (Some prior knowledge
about such operators on manifolds without
boundary will be assumed here.)

The space X(M,∂M) of vector fields which are
tangent to the boundary ∂M of a manifold M
forms a Lie algebra over R and a module over
C∞(M) ,  and the condition [X,ϕY ] =
ϕ[X,Y ] + (X ·ϕ)Y is satisfied (since it is satis-
fied for all vector fields and functions). Re-
markably, there is a vector bundle bTM over M
whose sections are in one-to-one correspon-
dence with the elements of X(M,∂M) via a bun-
dle map ρ : bTM → TM which is an isomor-
phism over the interior of M and whose image
over a boundary point is the tangent space to ∂M
at that point. These structures make bTM into
a Lie algebroid. We refer to [17] for a precise de-
finition of bTM , mentioning here only that,
when (y1, . . . , yn−1, x) are local coordinates for
M defined on an open subset of the half space
x ≥ 0, a local basis over C∞(M) for the sections
of bTM is given by ( ∂

∂y1
, . . . , ∂

∂yn−1
, x ∂∂x ) .

Melrose develops analysis on M by regarding
the b-tangent bundle bTM as the “correct” tan-
gent bundle for this manifold with boundary.
Thus, the algebra of b-differential operators is
the algebra of operators on C∞(M) generated by
the sections of bTM (acting on functions via ρ)
and C∞(M) (acting on itself by multiplication).11

The principal symbols of these operators are ho-
mogeneous functions on the dual, or b-cotan-
gent bundle bT∗M. Inverting (modulo smooth-
ing operators) elliptic b-differential operators
leads to the notion of b-pseudodifferential op-

Figure 5. The groupoid G with an element of A and its image under ρ.
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erators, whose symbols are again func-
tions on the b-cotangent bundle.

Since the b-pseudodifferential op-
erators act on C∞(M), their Schwartz
kernels are distributions on M ×M,
which is a manifold with corners. Analy-
sis of these kernels is facilitated,
though, by lifting them to a certain
manifold with boundary, b(M ×M), ob-
tained from M ×M by a blowing-up op-
eration along the corners. The case
where M is a half-open interval is il-
lustrated in Figure 6. The general case
is locally the product of this one with a mani-
fold without boundary.

It turns out that b(M ×M) is a groupoid whose
Lie algebroid is bTM and that the composition
law for b-kernels ([17], Equation (5.66)) is pre-
cisely the convolution operation in the groupoid
algebra of b(M ×M). Thus, we can think of the
groupoid b(M ×M) and its Lie algebroid bTM as
providing a new “internal symmetry structure”
appropriate to our manifold with boundary.

It is therefore interesting to understand the
structure of the groupoid b(M ×M). In fact, it de-
composes algebraically (though not topologi-
cally) as the disjoint union of the pair groupoid
over the interior of M and the groupoid G over
∂M for which (α,β)−1(x, y) consists of the ori-
entation-preserving linear isomorphisms be-
tween the normal lines TyM/Ty (∂M) and
TxM/Tx(∂M). Thus, with the “geometric struc-
ture” on M provided by the enlarged pair
groupoid b(M ×M), each point of the boundary
∂M which has the internal symmetries are those
of an oriented 1-dimensional vector space. We
should think of the vectors in this space as being
points “infinitesimally far” from the boundary,
so that the boundary of M becomes an “infini-
tesimal boundary layer”. The section x ∂∂x of bTM
can now be seen as pointing into this layer in a
nontrivial way along ∂M; that is why it is not zero
there.

At this point, our use of Lie algebroids and
Lie groupoids adds only a geometric picture to
Melrose’s analysis. It does, however, suggest the
possibility of extending the theory of pseudo-
differential operators to algebras of operators
associated with other Lie algebroids. In fact, the
theory of longitudinal operators on foliated man-
ifolds (see Section I.5.γ of [4]) is an example of
such an extension, but the class of Lie algebroids
which can be treated in this way remains to be
determined. An interesting test case should be
the Lie algebroids associated with the Bruhat-
Poisson structures on flag manifolds [12], since
the corresponding orbit decomposition on a flag
manifold is the Bruhat decomposition, which
plays a central role in representation theory.

Conclusion
This article has presented a small sample of the
applications of groupoids in analysis, algebra,
and topology. R. Brown has reported in [2] the
suggestion of F. W. Lawvere that groupoids
should perhaps be renamed “groups” and those
special groupoids with just one base point be
given a new name to reflect their singular nature.
Even if this is too far to go, I hope to have con-
vinced the reader that groupoids are worth know-
ing about and worth looking out for.12

References

[1] W. Brandt, Über eine Verallgemeinerung des
Gruppenbegriffes, Math. Ann. 96 (1926), 360–366.

[2] R. Brown, From groups to groupoids: A brief sur-
vey, Bull. London Math. Soc. 19 (1987), 113–134.

[3] ———, Topology: A geometric account of general
topology, homotopy types, and the fundamental
groupoid, Halsted Press, New York, 1988.

[4] A. Connes, Noncommutative geometry, Acade-
mic Press, San Diego, 1994.

[5] A. Coste, P. Dazord ,  and A. Weinstein ,
Groupoïdes symplectiques, Publications du Dé-
partement de Mathématiques, Université Claude
Bernard-Lyon I 2A (1987), 1–67.

[6] C. Ehresmann, Oeuvres complètes et commen-
tées, (A. C. Ehresmann, ed.) Suppl. Cahiers Top.
Géom. Diff., Amiens, 1980–1984.

[7] P. Gabriel, Construction de préschémas quotient,
Schémas en Groupes, Sém. Géométrie Algébrique,
Inst. Hautes Études Scientifiques, 1963/64, Fasc.
2a, Exposé 5.

[8] A. Grothendieck, Techniques de construction et
théorèmes d’existence en géométrie algébrique III:
préschemas quotients, Séminaire Bourbaki 13e
année 1960/61, no. 212 (1961).

[9] P. J. Higgins, Notes on categories and groupoids,
Van Nostrand Reinhold, London, 1971.

[10] M. V. Karasev, Analogues of objects of Lie group
theory for nonlinear Poisson brackets, Math. USSR
Izvestia 28 (1978) 497–527.

12Any reader stimulated to look further may wish to
consult the Groupoid Home Page, http://amath-
www.colorado.edu:80/math/department/
groupoids/groupoids.shtml (under construction in
May 1996).

Figure 6. The groupoids G =M ×M and bG =b (M ×M),where M = (0,1).



752 NOTICES OF THE AMS VOLUME 43, NUMBER 7

[11] A. Kumpera and D. Spencer, Lie equations, Prince-
ton University Press, Princeton, NJ, 1972.

[12] J.-H. Lu and A. Weinstein, Poisson Lie groups,
dressing transformations, and the Bruhat decom-
position, J. Differential Geom. 31 (1990), 501–526.

[13] K. Mackenzie, Lie groupoids and Lie algebroids in
differential geometry, LMS Lecture Note Ser., vol.
124, Cambridge Univ. Press, 1987.

[14] ———, Classification of principal bundles and Lie
groupoids with prescribed gauge group bundle,
J. Pure Appl. Algebra 58 (1989), 181–208.

[15] G. W. Mackey, The mathematical foundations of
quantum mechanics, W. A. Benjamin, New York,
1963.

[16] ———, Ergodic theory and virtual groups, Math.
Ann. 166 (1966), 187–207.

[17] R. B. Melrose, The Atiyah-Patodi-Singer index the-
orem, A. K. Peters, Wellesley, 1993.

[18] ———, Geometric scattering theory, Cambridge
Univ. Press, Cambridge, 1995.

[19] C. C. Moore and C. Schochet, Global analysis on
foliated spaces, MSRI Publications, vol. 9, Springer-
Verlag, New York, 1988.

[20] J. Pradines, Troisième théorème de Lie sur les
groupoïdes différentiables, C. R. Acad. Sci. Sér. I
Math. Paris 267 (1968), 21–23.

[21] J. Renault, A groupoid approach to C∗ algebras,
Lecture Notes in Math. 793 (1980).

[22] G. S. Rinehart, Differential forms on general com-
mutative algebras, Trans. Amer. Math. Soc. 108
(1963), 195–222.

[23] L. Schwartz, Théorie des distributions, Nouvelle
edition, Hermann, Paris, 1966.

[24] A. Weinstein, Symplectic groupoids and Poisson
manifolds, Bull. Amer. Math. Soc. (N.S.) 16 (1987),
101–104.

[25] ———, Noncommutative geometry and geometric
quantization, Symplectic Geometry and Math-
ematical Physics: Actes du Colloque en l’Honneur
de Jean-Marie Souriau (P. Donato et al. eds.),
Birkhäuser, Boston, 1991, pp. 446–461.

[26] J. Westman, Harmonic analysis on groupoids, Pa-
cific J. Math. 27 (1968), 621–632.

[27] I. M. Yaglom, Felix Klein and Sophus Lie: Evolution
of the idea of symmetry in the nineteenth century,
Birkhäuser, Boston, 1988.

[28] S. Zakrzewski ,  Quantum and classical
pseudogroups, I and II, Commun. Math. Phys. 134
(1990), 347–370, 371–395.


