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Introduction. I have for a long entertained a smouldering interest in the quantum
threory of measurement, and—more particularly—in how the established
principles of quantum dynamics (as embodied in, for example, the quantum
theory of open systems) might be used to illuminate the physical basis of the
idealized propositions in terms of which that theory is conventionally phrased.
I have had many occasions to write accounts of the standard (von Neumann)
formalism for the benefit of students,1 but have always been disturbed by the
circumstance that the von Neumann formalism achieves its elegant simplicity by
neglect of some inescapable aspects of the physical procedures it attempts into
address. Thus was I motivated in 1999 to devise a simple theory of “Quantum
measurement with imperfect devices.”2

I have happened recently upon a splendid text3 in which the author devotes
his Chapter 4 (“Generalized measurements”) to a richly detailed but very
readable survey of the modern essentials of the subject to which I have alluded,
and which I am inspired now to revisit. Notational obscurities and some
confusing errors (?) in Barnett’s text have led me to consult also other sources,
particularly some lecture notes by John Preskill4 and notes from a talk entitled
“POVMs and superoperators” by one Mario Flory to fellow students in a
Foundations of Quantum Mechanics course at the Arnold Sommerfeld Center
for Theoretical Physics, Ludwig-Maximilians-Universität München (2010).

1 See, for example, “Rudiments of the quantum theory of measurement,”
pages 8–12 in Chapter 0 of Advanced Quantum Topics (2009).

2 See the notes from the Reed College Physics Seminar of that title that was
presented on 16 February 2000.

3 Stephen M. Barnett, Quantum Information (Oxford UP, 2009).
4 John Preskill is the Feynman Professor of Theoretical Physics at Caltech.

His “Lecture Notes for Physics 229: Quantum Information & Computation”—
prepared in 1997-98 and available at http://www.theory.caltech.edu/people/
preskill/ph229—are a widely quoted source. The present topic is developed in
Preskill’s Chapter 3.
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Here, after review of some introductory material, it is Flory’s elegant essay
that will serve as one of my primary sources.

States of systems vs states of ensembles of systems. We work within the
standard formulation of orthodox (non-relativistic) quantum mechanics,5
wherein the states of a quantum system S are identified with (described by)
complex unit vectors |ψ) that live in a complex inner-product space (Hilbert
space) HS. For expository convenience, I restrict my explicit attention to
n-state systems—systems with n-dimensional state spaces,6 and will often write
Hn (or simply H )in place of HS.

The physical action of quantum measurement devices (“perfect meters”)
can—in the idealized world contemplated by von Neumann—be represented by
the mathematical action of self-adjoint linear operators A , which in reference
to an orthonormal basis becomes the action of hermitian matrices A. Such
matrices—in non-degenerate cases—can be developed

A =
n∑

k=1

akPk where Pk = |ak)(ak|

projects onto the 1-dimensional kth eigenspace of A. In degenerate cases we
have

A =
∑

κ

aκPκ

where the aκ are distinct, aκ has multiplicity νκ (
∑

κ νκ = n) and Pκ projects
onto the νκ-dimensional κth eigenspace of A. In either case7 the P-matrices are
• hermitian
• positive: (α|Pi|α) ≥ 0 (all |α))
• complete:

∑
i Pi = I

• orthogonal: PiPj = δijPi

Meters are, according to von Neumann, state-preparation devices endowed
with the special property that they are equipped to announce the identity of the
state (or at last of the eigenspace that contains the state) they have prepared .
But quantum theory permits one to speak only probabilistically about how the
meter will respond in any specific instance. The claim—the essential upshot
of the von Neumann projection hypothesis—is that, in non-degenerate cases,

5 “Standard” entails exclusion of (for example) the phase-space formalism of
Wigner, Weyl and Moyal, while “orthodox” entails exclusion of (for example)
Robert Griffiths’ “consistent quantum theory” (erected on the premise that
measurement should be denied a fundamental role), the Bohm formalism, the
“many worlds interpretation,” etc.

6 Such systems S are too impoverished to support the commutation relation
x p − p x = i! I that underlies much of applied quantum mechanics.

7 In what follows I will usually restrict my explicit remarks and notation to
the non-degenerate case.
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repeated presentation of |ψ) to an ideal A -meter results—so long as the meter
remains unread— in the serial production of a weighted assortment—briefly: a
“mixture”—of states

|ψ) −−−−−−−−−−−−→
A -measurement






|a1) with probability |(a1|ψ)|2 = (ψ|P1|ψ)
|a2) with probability |(a2|ψ)|2 = (ψ|P2|ψ)
...
|ak) with probability |(ak|ψ)|2 = (ψ|Pk|ψ)
...

|an) with probability |(an|ψ)|2 = (ψ|Pn|ψ)

(1.1)

If the meter is read (and ak is non-degenerate) one has

|ψ) −−−−−−−−−−−−→
A -meter reads ak

|ak)

But if ak is degenerate one is again left with a mixture

|ψ) −−−−−−−−−−−−→
A -meter reads ak






|ak,1) with probability |(ak,1|ψ)|2 = (ψ|Pk,1|ψ)
|ak,2) with probability |(ak,2|ψ)|2 = (ψ|Pk,2|ψ)
...

|ak,ν) with probability |(ak,ν |ψ)|2 = (ψ|Pk,ν |ψ)

(1.2)

where {Pk,1, Pk,2, . . . , Pk,ν} project onto some/any orthonormal basis within the
ν-dimensional kth eigenspace of A.8

Note that

(1.1) =⇒
∑

probabilities = (ψ|
(∑

k Pk

)
|ψ) = (ψ|ψ) = 1

(1.2) =⇒
∑

probabilities = (ψ|
(∑

j Pk,j

)
|ψ) = (ψ|Pk|ψ)

While quantum theory speaks only probabilistically about the outcome of
individual measurements, it speaks with certitude about the mean of many
such measurements : we have

expected mean 〈A〉ψ =
∑

k

ak(ψ|Pk|ψ) = (ψ|A|ψ)

irrespective of whether the spectrum is non-degenerate or degenerate.

But to perform many such measurements we must possess an ensemble
E(Sψ) of systems S, each of which has—by preselection—been placed in state
|ψ). Preselection (or “state preparation”) is accomplished by a measurement

8 It is tempting but would be incorrect to say that (1.1) and (1.2) describe
mixtures of A eigenstates, for—as will emerge—quantum mixtures, unlike
classical mixtures of (say) colored balls, do not admit of unambiguous resolution
into constituent parts.
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from which the output states are sometimes |ψ) (as announced by the G -meter)
but are more typically states |ψ)undesired that a filter or gate serves to discard.
Schematic illustration of the preselection process is provided by the following
diagram:

|unknown state) −−−−−−−−−−−−−−−→
G -meter pre -selection






|ψ) −−−−−−−−−−−−−−−−→
prompt A -measurement






|a1)
|a2)
...

|ψ)undesired : discarded

Such ensembles E(Sψ) are said to be “pure.”

But if either the preparatory G -meter or its associated output filter/gate
function imperfectly, or if the systems S are drawn from (say) a thermalized
population, then the ensemble can be expected to present a variety of states to
the A -meter:

E(S{ψ1,ψ2,...}) presents






|ψ1) with probability p1

|ψ2) with probability p2
...

A -measurement (performed with a perfect A -meter) can be expected in such a
cirvcumstance to announce ak with probability

∑
j pj(ψj |Pk|ψj). The sum of

those probabilities is
∑

k

∑

j

pj(ψj |Pk|ψj) =
∑

j

pj(ψj |ψj) =
∑

j

pj = 1

while the expected mean of many such measurements (by nature the ordinary
mean of a set of quantum means) becomes

〈A〉E =
∑

ν

pν〈A〉ψν

=
∑

ν

pν(ψν |A|ψν)

=
∑

j

∑

ν

pν(ψν |A|ej)(ej |ψν)

=
∑

j

∑

ν

(ej |ψν)pν(ψν |A|ej)

= tr(ρ••ρE A) with ρ••ρE =
∑

ν

|ψν)pν(ψν |

It will be appreciated that the density matrix ρ••ρE refers not to the state of a
system S but to the observationally relevant features of an ensemble E (in
the present instance an “impure” or “mixed” ensemble) of such systems.
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Ensembles become unmixed or “pure” when one of the pν is unity and the
others vanish.9 In such cases one has

〈A〉ψ = tr(Aρ••ρψ) with ρ••ρψ = |ψ)(ψ|

It would be misleadingly redundant to say of a quantum system S that
“it is in a pure state” (as opposed to what? all individual quantum systems are
in “pure”—if possibly unknown—states |ψ)). And it would—however tempting
—be a potentially misleading use of a preempted word to speak of the “state”
of an ensemble. But—awkwardly—it would, as previously remarked, be equally
misleading to speak of the “composition” of an ensemble. . .which may account
for the fact that both of the fussy points just mentioned are commonly ignored
in relaxed quantum discourse.

Properties of density matrices. It must be emphasized at the outset that the
states |ψν) that enter into the construction

ρ••ρ =
∑

ν

|ψν)pν(ψν | (2)

are not required to be orthogonal, or the eigenvectors of anything (though at
(1.1) they happened to be). From (2) it follows immediately that all density
matrices are
• hermitian
• positive: (α|ρ••ρ|α) ≥ 0 (all |α))
• have unit trace: trρ••ρ =

∑
ν pν = 1

Conversely, every marix ρ••ρ with those properties admits of interpretation as a
density matrix.

Hermiticity entails the possibility of spectral decomposition10

ρ••ρ =
∑

k

|rk)rk(rk| =
∑

κ

rκPκ

where the rκ are distinct eigenvalues of ρ••ρ and the Pκ project onto the associated
eigenspaces. Positivity implies that all eigenvalues rκ are non-negative, while
the unit trace condition asserts that they sum to unity. The twice-mentioned
non-uniqueness of quantum mixtures is illustrated by the observation that

ρ••ρ =






∑
ν |ψν)pν(ψν | displays ρ••ρ as the pν-weighted mixture of |ψν)-states

∑
k |rk)rk(rk| displays ρ••ρ as the rk-weighted mixture of eigenstates |rk)

9 The pν are positive reals that sum to unity, so this is equivalent to the
condition

∑
p2

ν = 1.
10 Of which we encountered an instance already at (1.1):

ρ••ρ =
∑

k

|ak)rk(ak| with rk = (ψ|Pk|ψ)
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By easy argument we have

trρ••ρ2 =
∑

kp2
ν =

∑
kr2

k ≤ 1, with equalty iff ρ••ρ is pure

Relatedly, a density matrix ρ••ρ is projective

ρ••ρ2 = ρ••ρ iff ρ••ρ is pure

Let ρ••ρ1 and ρ••ρ2 be density matrices, and look to

ρ••ρ(x) = xρ••ρ1 + (1 − x)ρ••ρ2 : 0 ≤ x ≤ 1

which interpolates linearly between them. It is immediately evident that ρ••ρ(x)
possesses all of the properties (hermiticity, positivity, unit trace) characterisitic
of density matrices. We conclude that the set {ρ••ρ} of all n×n density matrices
is convex , and that so also therefore is the set {E} of ensembles to which they
refer. Moreover,

trρ••ρ2(x) = x2 trρ••ρ2
1 + 2x(1 − x)trρ••ρ1ρ••ρ2 + (1 − x)2 trρ••ρ2

2

in which connection we write

ρ••ρ1 =
n∑

k=1

|rk)rk(rk|, ρ••ρ2 =
n∑

k=1

|sk)sk(sk|

and observe that

1
n ≤ trρ••ρ2

1 =
∑

r2
k (≤ 1), with equality iff all rk are equal

1
n ≤ trρ••ρ2

2 =
∑

s2
k (≤ 1), with equality iff all sk are equal

trρ••ρ1ρ••ρ2 =
∑

j,k

rjsk(rj |sk)(sk|rj) ≤
∑

j,k

rjsk(rj |rj)(sk|sk) by Cauchy-Schwarz

=
∑

j,k

rjsk = 1

I am satisfied on the basis of numerical experimentation (but don’t know how
to prove) that in fact

trρ••ρ1ρ••ρ2 ≤ max
{
trρ••ρ2

1, trρ••ρ
2
2

}
with equality iff ρ••ρ1 = ρ••ρ2

and am brought to the conclusion (supported again by experimental evidence)
that

ρ••ρ(x) is pure iff ρ••ρ1 = ρ••ρ2 is pure

which is to say: pure density matrices live on the boundary of {ρ••ρ}.
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It is obvious/trivial that every pure density matrix, since (hermitian and)
projective, can be factored

ρ••ρpure = P+P with P = ρ••ρpure

but not quite so obvious that every density matrix—whether pure or impure—
can be factored. I discuss how this comes about. The Schur decomposition
theorem asserts that any real or complex square matrix M can be rendered

M = U T U –1

where U is unitary and T—the “Schur form” of M—is upper triangular:

T =





• • • · · · •
0 • • · · · •
0 0 • · · · •
...

...
...

. . .
...

0 0 0 · · · •





Since M and T are similar they have identical spectra, and since T is triangular
its eigenvalues are precisely the numbers that appear on its principal diagonal.
When M is hermitian the off-diagonal elements of T vanish, and the Schur
decomposition of M assumes the form

M =




e1 e2 . . . en





︸ ︷︷ ︸





λ1 0 0 · · · 0
0 λ2 0 · · · 0
0 0 λ3 · · · 0
...

...
...

. . .
...

0 0 0 · · · λn





︸ ︷︷ ︸





e1
+

e2
+

...
en

+





︸ ︷︷ ︸
U D U+

where M e i = λi e i serves to establish our notation. The orthonormality
statements e i

+e j = δij can be rendered U+U = I . It is less obvious—but
follows from the circumstance that in the present context left inverses are also
right inverses—that

U U+ = I

We conclude that if M is hermitian then it is always possible to write

Mp = U





λp
1 0 0 · · · 0
0 λp

2 0 · · · 0
0 0 λp

3 · · · 0
...

...
...

. . .
...

0 0 0 · · · λp
n




U+ : all λk real

which in the case p = 0 gives back the preceding equation. It is by now evident
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that the Schur decomposition of hermitian matrices amounts simply to a
reformulation of the spectral decomposition.11 If M is positive hermitian then
it makes sense to write D = (

√
D)2

√
D =





√
λ1 0 0 · · · 0
0

√
λ2 0 · · · 0

0 0
√

λ3 · · · 0
...

...
...

. . .
...

0 0 0 · · ·
√

λn





which becomes also positive hermitian if we adopt the convention that all
√

λk

are non-negative (which is to dismiss 2n − 1 of the possible sign allocations).
We conclude that every positive hermitian M can be written

M = W+ W with W =
√

D U+

Notice that the preceding factorization of such matrices M is not unique, for it
is invariant under

W −→ W ′ = VW : V arbitrary unitary

Density matrices ρ••ρ are distinguished from the generality of positive hermitian
matrices only by the circumstance that they satisfy the unit-trace condition:

√
D =





√
r1 0 0 · · · 0
0

√
r2 0 · · · 0

0 0
√

r3 · · · 0
...

...
...

. . .
...

0 0 0 · · · √
rn




with

∑
k rk = 1

DIGRESSION: Wishart matrices

Let W be an m × n complex matrix. Then

M1 = W W+

M2 = W+ W

are manifestly square hermitian, of dimensions m and n respectively. Such
matrices are called “Wishart matrices,” after John Wishart (1898 –1956), who
in 1928 was motivated to introduce such matrices into the biometric statistical
literature. We note in passing that M1 = M2 (which requires m = n) is precisely
the condition that the square matrix W be “normal.”12

11 In Mathematica -based numerical work the command SchurDecomposition
provides an efficient way to construct the spectral decomposition. For positive
hermitian matrices the Schur decomposition becomes identical to the SVD.

12 We note also that “supersymmetric quantum mechanics” arises from the
interplay of systems with hamiltonians of the specialized forms H1 = A A+ and
H1 = A+A .
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Wishart matrices possess a number of notable spectral properties. The
eigenvalues of M1 (similarly M2) are, by hermiticity, necessarily real. From

(α|M1|α) = ‖W+|α)‖2 ≥ 0 : all |α)

we discover that W1 (similarly W2) is positive semi-definite (all eigenvalues
non-negative). From

trM1 = trWW+ = trW+W = trM2

trM2
1 = trWW+WW+ = trW+WW+W = trM2

2
...

we learn that trMp
1 = trMp

2 (p = 0, 1, 2, . . .). Since the coefficients that
appear in the characteristic polynomial of a matrix can be assembled from
powers of traces of powers of the matrix, and the formulæ that accomplish
that assembly are universal, the matrices M1 and M2 must have identical
(reduced) characteristic polynomials. Assume m < n and let the spectrum
of M1 be denoted {µ1, µ2, . . . , µm}. The spectrum of M2 has then the structure
{µ1, µ2, . . . , µm, 0, . . . , 0} with n−m dangling zeros. The intimate relationship
between the spectra of M1 and M2 is reflected in a similarly intimate relationship
between their eigenvectors, though the eigenvectors {|α1), |α2), . . . , |αm)} of M1

are m-dimensional, while those {|β1), |β2), . . . . . . |βn)} of M2 are n-dimensional:

M1|α) = µ|α) =⇒ M2|β) = µ|β) with |β) = W+|α)
M2|β) = µ|β) =⇒ M1|α) = µ|α) with |α) = W |β)

Those associations (which, by the way, play a central role in supersymmetric
quantum mechanics) fail, however, for eigenvectors that lie in the null-spaces
of either M-matrix, so the pattern becomes complete only if both M-matrices
are strictly positive.

Wishart matrices have been an unremarked familiar part of our quantum
mechanical lives. If, for example, we identify |ψ) with its matrix representation
then

(ψ|ψ) is the 1 × 1 unit Wishart matrix
|ψ)(ψ| is the n × n Wishart projector onto |ψ)

Matrices of the n × n Wishart form

ρ••ρ = R+R with R = W√
tr(W+W)

, W m×n complex (3)

possess all of the properties required of a density matrix, and indeed: every
density matrix can be written (in many ways) as such a product of factors. We
can—as has been demonstrated—always arrange for the factors to be square;
that done, they are determined only to within “gauge transformations”
R−→ R ′ = VR (V unitary).The preceding equation provides a convenient way
to generate random density matrices for use in computational experiments such
as the one to which I referred on page 6.

end of digression
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First steps toward a theory of imperfect meters. In “Quantum measurement
with imperfect devices”2—which was written in shameful ignorance of the
relevant literature (classic texts provided no hint that such a literature even
existed), as a hasty supplement to some class notes1—I use the simplest of
means to trace out some of the implications of the elementary notion which I
will sketch in a moment. I worked there on the assumption that perfect meters
can be represented by self-adjoint operators A with continuous non-degenerate
spectra—assumptions which I now relax: the prevailing assumption that the
state space HS is finite dimensional entails replacement of operators A by
finite -dimensional hermitian matrices A with discrete spectra. While it proves
convenient to assume initially that the A-spectrum is non-degenerate, I will be
at pains later (and find it easy) to relax that assumption.

The action of an ideal A -meter can be diagramed (see again (1.1))

ρ••ρ in = |ψ)(ψ| −−−−−−−−−−−−→
A -meter reads ak

ρ••ρout,k = Pk ≡ |ak)(ak|

Here I emphasize that the important thing about A is the complete set
{P1, P2, . . . , Pn} of orthogonal projectors to (by spectral decomposition) it gives
rise; the associated “meter marks” {a1, a2, . . . , an} could be replaced by any
other set {ã1, ã2, . . . , ãn} of distinct real numbers without affecting the essential
physics of the meter.

If, on the other hand, the meter is “imperfect” (or “non-ideal”) we have
(or so I asserted)

ρ••ρ in = |ψ)(ψ| −−−−−−−−−−−−→
A -meter reads ak






...
Pk−1 but reads ak with cp wk−1|k
Pk but reads ak with cp wk|k
Pk+1 but reads ak with cp wk+1|k
...

where “cp wj|k” signifies “conditional probability of j, given k.” In short: ideal
meters—upon announcement of the meter reading—produce pure ensembles,
while imperfect meters produce mixtures:

ρ••ρout,k =
∑

j

wj|kPj :
∑

j

wj|k = 1 (all k) (4)

Observe that
trρ••ρout,k =

∑

j

wk|jtrPj = 1

while
trρ••ρ2

out,k =
∑

j

w 2
k|j ≤ 1

with equality if and only if the meter is in fact ideal. We expect “good imperfect
meters” to be “fuzzy” but not to be flagrant liers; i.e., we expect to have

max(wj|k) = wk|k ; all k
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Note finally that—by (4)—when ρ••ρ in is presented to an imperfect A -meter the
probability that the meter will register ak is

prob(ρ••ρ in, ak) =
∑

j

wj|ktr
(
ρ••ρ inPj

)

= tr
(
ρ••ρ inP̃k

)
where P̃k =

∑

j

wj|kPj (5.1)

where ∑

k

prob(ρ••ρ in, ak) = 1 =⇒
∑

k

P̃k = I (5.2)

In my seminar2 I used von Neumann entropy in an attempt to quantify
the information gained by imperfect measurement. I defer discussion of that
aspect of our subject.

Sophisticated reformulation& ramifications: POVMs. It is to Barnett,3 Preskill,4
Flory and other modern authors that I owe the realization that my seminar
would have been more valuable had I recognized and traced out the implications
of (5), which I now undertake to do.

Just as {P1, P2, . . . , Pn} provides—as previously remarked—a complete
description of the essential features of an ideal meter, so do {P̃1, P̃2, . . .} provide
a complete characterization of a non-ideal meter. But while the P-matrices are
hermitian, positive, complete and orthogonal, the P̃-matrices are seen to be
• hermitian
• positive: (α|P̃i|α) ≥ 0 (all |α))
• complete:

∑
i P̃i = I

• typically non-projective and non-orthogonal: P̃iP̃j ,= δijP̃i

Note also that while on the dials of ideal meters the number of “meter marks”
ak is constrained to be ν ≤ n (with equality in non-degenerate cases), the dials
of non-ideal meters are subject to no such constraint

Sets {P̃1, P̃2, . . .} of n×n matrices endowed with the properties listed above
are called “positive operator-valued measures,” or POVMs, and the generalized
measurements to which they give rise are called “POVM measurements.”13

The idealized von Neumann measurements that proceed from specification
of {P1, P2, . . . , Pν} are within this enlarged context called “projection-valued
measurements,” or PVMs. Every element P̃k, by positive hermiticity, admits
of spectral development P̃k =

∑
j pj,kPj,k, where {P1,k, P2,k, . . . , Pν≤n,k} is a

complete set of orthogonal projectors and the pj,k are non-negative reals. If
every P̃k gives rise to the same set of projectors then we have P̃k =

∑
j pj,kPj

which when
∑

j pj,k = 1 (all k) becomes an instance of (5). Evidently the
theory of imperfect devices2 that I sketched in 2000 is a special case of the
POVM-based theory of generalized quantum measurement.

13 John Preskill16 remarks that “The term ‘measure’ is a bit heavy-handed
in our finite -dimensional context; it becomes more apt [when the dimension
becomes infinite].”
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In density matrix language the PVM scheme (1.1) reads

ρ••ρ in = |ψ)(ψ|
7

ideal A -meter reads ak

ρ••ρout,k = Pk ≡ |ak)(ak| with probability tr
(
Pk

+ρ••ρ inPk

)

from which it follows that if the state presented to the ideal meter is drawn
from a mixed ensemble

ρ••ρ in7
ideal A -meter reads ak

ρ••ρout,k = Pk
+ρ••ρ inPk

tr
(
Pk

+ρ••ρ inPk

) with probability tr
(
Pk

+ρ••ρ inPk

)
(6.1)

The probability of such an outcome can—by the hermitian projectivity of the
Pk-matrices—be described in several equivalent ways:

tr
(
Pk

+ρ••ρ inPk

)
= tr

(
ρ••ρ inPkPk

)
= tr

(
ρ••ρ inPk

)

If, however, the meter remains unread we have

ρ••ρ in7
ideal A -meter remains unread

ρ••ρout,k =
∑

k

tr
(
Pk

+ρ••ρ inPk

)
· Pk

+ρ••ρ inPk

tr
(
Pk

+ρ••ρ inPk

) =
∑

k

Pk
+ρ••ρ inPk

(6.2)

In either case,we have tr
(
ρ••ρout,k

)
=tr

(
ρ••ρ in

)
=1(in the latter casebycompleteness:∑

k Pk = I). From (6.1) if follows (by the orthogonality of the P-matrices) that
prompt repetition of such a measurement will yield aj with probability

tr
(
Pj

+ρ••ρout,k Pj

)
=

tr
(
Pj

+Pk
+ρ••ρ inPkPj

)

tr
(
Pk

+ρ••ρ inPk

) = δ ij

which is to say: prompt repetition serves to “verify” the preceding meter
reading. It is sometimes held that verifiability of this order (exact
reproducability) is essential to the very meaning of quantum measurement
—necessary if we are to claim that the measurement taught us something—
though that is a standard to which common laboratory measurements (of
length, mass, etc.) do not rise, and as will soon emerge it is violated when
quantum mesurements are performed with realistically imperfect devices. More
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significantly, prompt verifiability is the source of the troublesome notion —
central to the Copenhagen interpretation though it has been and remains—that
(projective) measurement “causes the wave function to ‘collapse’.”

It is plausible, in view of (6.1), that the result of a POVM measurement
might be described

ρ••ρ in7
imperfect A -meter reads ak

ρ••ρout,k = P̃k
+ρ••ρ inP̃k

tr
(
P̃k

+ρ••ρ inP̃k

) with probability tr
(
P̃k

+ρ••ρ inP̃k

)
())

but this would present a problem, for because the P̃-matrices are typically not
projective the conjectured probabilities do not sum to unity:

∑

k

tr
(
P̃k

+ρ••ρ inP̃k

)
=

∑

k

tr
(
P̃ 2

k ρ••ρ in

)
,= tr

((∑
kP̃k

)
ρ••ρ in

)
= trρ••ρ in = 1

To overcome this difficuty we look to the squre Wishart factors of P̃k, writing
P̃k = AjAj

+

and in place of ()) write
ρ••ρ in7

imperfect A -meter reads ak

ρ••ρout,k = Ak
+ρ••ρ inAk

tr
(
Ak

+ρ••ρ inAk

) with probability tr
(
Ak

+ρ••ρ inAk

)
(7.1)

whence
ρ••ρ in7

imperfect A -meter remains unread

ρ••ρout,k =
∑

k

tr
(
Ak

+ρ••ρ inAk

)
· Ak

+ρ••ρ inAk

tr
(
Ak

+ρ••ρ inAk

) =
∑

k

Ak
+ρ••ρ inAk

(7.2)

The probabilities now (by the postulated completeness of the P̃-matrices) do
sum to unity :

∑

k

tr
(
Ak

+ρ••ρ inAk

)
=

∑

k

tr
(
Ak Ak

+ρ••ρ in

)
= tr

((∑
kP̃k

)
ρ••ρ in

)
= trρ••ρ in = 1

Moreover, for ideal meters P̃k −→ Pk = P 2
k = AjAj

+ with Aj = Pj and (7) give
back (6). Note, however, that

tr
(
Aj

+ρ••ρout,k Aj

)
=

tr
(
Aj

+Ak
+ρ••ρ inAkAj

)

tr
(
Ak

+ρ••ρ inAk

) ,= δ ij

since typically AkAj ,= δjkAk. Prompt repetition with an imperfect meter does
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not serve to “verify” the preceding meter reading. With this development the
already-murky notion that “measurement causes the wave function to collapse”
becomes even more murky.14

The POVM schemes (7) indicate that from a procedural standpoint it is not
{P̃1, P̃2, . . .} but the set of Wishart factors {A1, A2, . . .} that most properly
serves to describe the action of an imperfect A -meter. Gauge transformations

{A1, A2, . . .} −→ {A1V1, A2V2, . . .} : all V-matrices unitary

leave unaltered both {P̃1, P̃2, . . .} and the probability that the imperfect meter
announces ak

tr
(
Ak

+ρ••ρ inAk

)
= tr

(
Vk

+Ak
+ρ••ρ inAkVk

)

but subjects the output ensemble to a unitary similarity transformation:

ρ••ρout,k −→ Vk
+ρ••ρout,kVk

The PVM-POVM relationship is in several respects deeper and more
interesting than is suggested by the fact—noted above—that POVM-theory
gives back PVM-theory as a special case, for there are important contexts within
which PVM measurements give rise spontaneously to PVOM measurements in
spaces of reduced dimension, while Neumark’s theorem (of which more later)
asserts that every PVOM measurement can be realized as a PVM measurement
in a space of augmented dimension. I explore those claims in the order stated.

Model of the quantum measurement process.15 The quantum system S under
study is initially in the unknown state |ψ) ∈ HS. The meter—also a quantum
system M (traditionally called the “ancilla” by writers in this field) is initially
in the known state |α) ∈ HM. The initial state |ψ) ⊗ |α) of the composite
system lives in H = HS ⊗ HM, wherein

{|ei) ⊗ |fj)} :
{

i = 1, 2, . . . , n
j = 1, 2, . . . , m

comprises an orthonormal basis. Brief dynamical system-meter interaction
(generated in time τ by an mn × mn Hamiltonian Hinteraction) sends

[
|ψ) ⊗ |α)

]
unentangled

−→ U
[
|ψ) ⊗ |α)

]
entangled

where U is a presumably known mn×mn unitary matrix. The probability that

14 The question arises (discussion of which I will defer): How nearly can
repeated measurements with the same POVM device be expected to agree?
Relatedly, what becomes of the “quantum Zeno effect” (Alan Turing (1954),
George Sudarshan (1974)) if the rapidly-repeated measurements are performed
not (as commonly assumed) with an ideal PVM device but (more realistically)
with a non-ideal POVM device? Sudarshan himself drew attention to this
question in the last sentence of his original paper.

15 My primary source here has been Barnett’s §4.3. Closely related material
can be found in Preskill’s §3.1.2, Flory’s §3.1 and §2.2.8 of M. A. Nielson &
I. I. Chuang’s Quantum Computation & Quantum Information (2000).



Model of the quantum measurement process 15

PVM measurement will show the composite system to be in state |ei) ⊗ |fj) is

Prob ij =
∣∣∣
[
(ei|⊗ (fj |

]
U
[
|ψ) ⊗ |α)

]∣∣∣
2

The situation is clarified by notational adjustment: write |ψ) =
∑

k |ek)ψk and
introduce mn -dimensional vectors

|Eij) = |ei) ⊗ |fj) and |Ak) = |ek) ⊗ |α)

Then
Prob ij =

∣∣∣
∑

k(Eij |U|Ak)ψk

∣∣∣
2

(8)

Now introduce the ij-indexed n -dimensional bra vectors

(πij | =
(
(Eij |U|A1) (Eij |U|A1) . . . (Eij |U|A1)

)

and obtain

Prob ij =
∣∣(πij |ψ)

∣∣2

= (ψ|P̃ij |ψ) with P̃ij = |πij)(πij | (9)

Compare this result with (8), which can be written

Prob ij = (A|Qij |A)

where |A) = |ψ) ⊗ |α) and the mn × mn matrix Qij = U+|Eij)(Eij |U projects
onto the entangled state U+|Eij). The n × n matrices P̃ij , which are nm in
number, are clearly positive hermitian. And from

∑

ij

|Eij)(Eij | =
(∑

i |ei)(ei|
)
⊗
(∑

j |fj)(fj |
)

= In⊗ Im = Imn

it follows (essentially from the completeness of the {|ei)} and {|fj)} bases) that
the P̃ij -matrices are complete:

[∑

ij

P̃ij

]

pq

=
[
(A|U+ImnU|A)

]

pq
= (ep|eq) ⊗ (α|α) = In

Equation (9) looks superficially like a description of the probability that an
A -meter—represented by the n × n hermitian matrix A =

∑
ij aijP̃ij—will

announce aij , in which case it would refer to the result of subjecting S to a
PVM measurement. But no PVM-meter can have so many marks on its dial
(mn > n), nor can so many projectors P̃ij appear in the spectral representation
of such an A. In fact the matrices P̃ij are not projective because the n-vectors
|πij) are not unit vectors: generally

(πij |πij) =
[
(ψ|⊗ (α|

]
U+

[
|ei) ⊗ |fj)

][
(ei|⊗ (fj |

]
U
[
|ψ) ⊗ |α)

]

where, as before, |ψ) =
∑

q |eq)ψq. To demonstrate that (πij |πij) ,= 1 it is
sufficient to look to the trivial case U = Imn, where we have

= ψ̄i(α|fj)(fj |α)ψi

which equals one only under circumstances so special that if satisfied for some
specified values of i and j it cannot be satisfied for any other values.
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The preceding discussion serves to demonstrate how it comes about that
PVM measurements on HS ⊗HM come to be realized as POVM measurements
on HS. John Preskill elects to “follow a somewhat different procedure that,
while not as well motivated physically, is simpler and more natural from a
mathematical point of view.” By working not in the mn-dimensional space
HS ⊗HM but in the (m + n)-dimensional space HS ⊕HM (with HS ⊥ HM) he
manages to avoid the notational and other complexities latent in the Kronecker
product. Barnett’s line of argument (rehearsed above) relates in a more natural
way to what one might mean by a “quantum dynamical theory of quantum
measurement,” but is—as it stands—very much less than such a theory, for
Barnett has nothing to say about the specific construction of the Hamiltonian
that generates the meter-system interaction U, nor has he anything to say
about how—physically—one is to perform a PVM on a composite system. The
relevant hermitian matrix

Asuper =
∑

ij

a ijQ ij

is structurally quite unlike the meters A⊗ In and Im⊗B traditionally employed
by Alice and Bob when they examine their respective components of an
entangled composite system.

From POVM to PVM: Neumark’s dilation theorem. Though Neumark’s paper16
is only three pages long, the Wikipedia article presumes command of a lot of
fairly abstruse mathematics, which, I suppose, is why several authors have been
content to dismiss the subject with an illustrative example. Preskill, however,
has managed to capture the essence of Neumark’s theorem quite simply:4 from
the unnormalized n-vectors

|φ1) =





φ11

φ12
...

φ1n



 , |φ2) =





φ21

φ22
...

φ2n



 , . . . , |φN ) =





φN1

φN2
...

φNn



 : N ≥ n

construct the N -element POVM

{P̃1, P̃2, . . . , P̃N} with P̃a = |φa)(φa|

that operates in Hn. When written out in component form the condition∑
a P̃a = I reads

∑

a

(P̃a)ij =
N∑

a=1

φaiφ̄aj = δij

16 A. Neumark, “On a representation of additive operator set functions,”
Acad.Sci. USRR 41, 359-361 (1943). The Neumark dilation theorem can be
obtained as a consequence of the “Stinespring dilation/factorization theorem”:
W. F. Stinespring, “Positive functions on C∗ algebras,” Proc. Amer. Math. Soc.
6, 211-216 (1955). A standard source for information about such matters is
V. Paulsen, Completely Bounded Maps and Operator Algebras (2003).
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Now interpret φai to be not the ith element of the ath member |φa) of a set of
n -vectors but to be the ath element of the ith member |Φi) of a set of N -vectors.
Then

N∑

a=1

φaiφ̄aj = δij reads
N∑

a=1

ΦiaΦ̄ja = δij

which is simply the statement that |Φi) and |Φj) are orthonormal. Complete
the |Φ)-basis in HN by adjoining to {|Φ1), |Φ2), . . . , |Φn)} orthogonal vectors
{|Φn+1), |Φn+2), . . . , |ΦN )}. Feed the elements of |Φi) into the ith row of an
N × N matrix

U =





Φ11 Φ12 · · · Φ1n Φ1,n+1 . . . Φ1N

Φ21 Φ22 · · · Φ2n Φ2,n+1 . . . Φ2N

...
...

...
...

...
Φn1 Φn2 · · · Φnn Φn,n+1 · · · ΦnN

Φn+1,1 Φn+1,2 · · · Φn+1,n Φn+1,n+1 · · · Φn+1,N

...
...

...
ΦN1 ΦN2 · · · ΦNn ΦN,n+1 · · · ΦNN





=





φ11 φ21 · · · φn1 φn+1,1 . . . φN1

φ12 φ22 · · · φn2 φn+1,2 . . . φN2

...
...

...
...

...
φ1n φ2n · · · φnn φn+1,n · · · φNn

Φn+1,1 Φn+1,2 · · · Φn,n+1 Φn+1,n+1 · · · Φn+1,N

...
...

...
ΦN1 ΦN2 · · · ΦNn ΦN,n+1 · · · ΦNN





Row-orthonormality ⇐⇒ U-unitarity ⇐⇒ column-orthonormality. Let

|Ea) = ath column in U

Then (Ea|Eb) = δab and |Ea)(Ea| assumes the form





φ
φ
φ
Φ
Φ




( φ̄ φ̄ φ̄ Φ̄ Φ̄ ) =





φφ̄ φφ̄ φφ̄ φΦ̄ φΦ̄
φφ̄ φφ̄ φφ̄ φΦ̄ φΦ̄
φφ̄ φφ̄ φφ̄ φΦ̄ φΦ̄
Φφ̄ Φφ̄ Φφ̄ ΦΦ̄ ΦΦ̄
Φφ̄ Φφ̄ Φφ̄ ΦΦ̄ ΦΦ̄




≡ Pa

When written out in detail




φφ̄ φφ̄ φφ̄
φφ̄ φφ̄ φφ̄
φφ̄ φφ̄ φφ̄



 =





φa1φ̄a1 φa1φ̄a2 · · · φa1φ̄an

φa2φ̄a1 φa2φ̄a2 · · · φa2φ̄an
...

...
. . .

...
φanφ̄a1 φanφ̄a2 · · · φanφ̄an



 = P̃a !
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The implication is that if we write

|ψ) =





ψ1

ψ2
...

ψm



 and |Ψ) =





ψ1

ψ2
...

ψm

0
...
0





then the results of N -element POVM measurements in Hn can be realized as
PVM measurements in HN (N > n), which is the upshot of Neumark’s theorem.

Preskill and Flory provide instructive simple illustrations of Neumark’s
theorem in action. I will discuss variants of both in the next two sections, but
preface that discussion with review of some general principles available for the
construction of POVMs on H2.

POVMs for generalized qubit measurements. It is well known17 that the most
general traceless 2 × 2 hermitian matrix can be described

H = h1σσ1 + h2σσ2 + h3σσ3 =
(

h3 h1 − ih2

h1 + ih2 −h3

)

The eigenvalues of such a matrix are ±
√

h2
1 + h2

2 + h2
3, and become ±1 if

h =




h1

h2

h3



 =




sin θ cos φ
sin θ sin φ
cos θ



 is a unit vector: h···h=1

The associated orthonormal eigenvectors

H |h±) = ±|h±)

can (to within uninteresting phase factors) be described

|h±) =





√
1±h3

2

±
√

1
2(1±h3)

(h1 + ih2)





|h+) =




cos 1

2θ

+ sin 1
2θ · eiφ



 , |h−) =




sin 1

2θ

− cos 1
2θ · eiφ





17 For detailed arguments see Advanced Quantum Topics (2000), Chapter 1,
pages 2–5.
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We have particular interest at the moment in the associated projectors, which
read

P+(h) = |h+)(h+| =




1
2 ( 1 + h3) + 1

2 (h1 − ih2)

+ 1
2 (h1 + ih2) 1

2 ( 1 − h3)



 = 1
2 ( I + h···σσ)

=




cos2 1

2θ + 1
2e−iφ sin θ

+ 1
2e+iφ sin θ sin2 1

2θ





P−(h) = |h−)(h−| =




1
2 ( 1 − h3) − 1

2 (h1 − ih2)

− 1
2 (h1 + ih2) 1

2 ( 1 + h3)



 = 1
2 ( I − h···σσ)

=




sin2 1

2θ − 1
2e−iφ sin θ

− 1
2e+iφ sin θ cos2 1

2θ





Both are manifestly positive hermitian (as is made obvious also from their
shared spectra: {1, 0}), and both have unit traces (as indeed they must, since
they project onto 1-spaces). Collectively they are orthogonal and manifestly
complete. And they are very simply related:

P−(h) = P+(−h)

The completeness relation can therefore be written

P+(h) + P+(−h) = I

which indicates that {P+(h), P+(−h)} might be considered to comprise a
2-element “qubit POVM.” But P+(±h) are projective, so {P+(h), P+(−h)} is
actually a 2-element “qubit PVM” (degenerate POVM).

We are led to ask “For what unit vectors a and b is {P+(a), P+(b)} a
(non-degenerate) POVM?” From

P+(a) + P+(b) =




1
2 ( 2 + [a3 + b3]) 1

2 ([a1 + b1] − i[a2 + b2])

1
2 ([a1 + b1] + i[a2 + b2]) 1

2 ( 2 − [a3 + b3])





= I iff a + b = 0

we conclude that all 2-element qubit POVMs are actually PVMs. How about
constructions of the form P+(a) + P+(b) + P+(c)? Arguing as before, we see
that

P+(a) + P+(b) + P+(c) = 3
2 I ⇐⇒ a + b + c = 0

so
{

2
3 P+(a), 2

3 P+(b), 2
3 P+(c)

}
—the elements of which are positive hermitian

but not projective—constitutes a 3-element qubit POVM, a qubit POVM with
the least possible number of elements. Similarly,

{
2
5 P+(a), 2

5 P+(b), 2
5 P+(c), 2

5 P+(d), 2
5 P+(e)

}
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—here {a , b , c , d , e} are unit 3-vectors subject to the constraint

a + b + c + d + e = 0

—consitutes a 5-element qubit POVM. It is interesting in this connection to
notice that
• a + b = 0 forces the vectors to be colinear;
• a + b + c = 0 forces the unit vectors to be coplanar, and to bound an

equilateral triangle (a rigid structure);
• a + b + c + d = 0 forces the unit vectors to bound a parallelogram, but

coplanarity and rigidity are both relaxed;
• a + b + c + d + · · ·+ z = 0 imposes a condition so relaxed that the vectors

can articulate space curves (knots) of arbitrary complexity.

On can—while retaining
n∑

i=1

a i = 0

—relax the requirement that the vectors a i be unit vectors and still have
n∑

i=1

2
n P+(a i) = I

But since the eigenvalues of P+(a) are λ± = 1
2 (1±

√
a···a) one must require that

all a i have length
√

a i···a i ≤ 1 to preserve the positivity of the POVM elements
P̃i = 2

n P+(a i).

Relatedly, let a be a unit vector and k a positive real number. Then the
“dilated projector”

K(a , k) = kP+(a) = 1
2 (k I + ka···σσ)

has eigenvalues λ± = 1
2 (k ± k), so is positive hermitian. Immediately

∑

i

K(a i, ki) = k
2 I +

(∑
iki a i

)
···σσ where k =

∑
i ki

so the matrices P̃i = 2
k K(a i, ki) become elements of a POVM when

∑
iki a i = 0 .

Relaxation of the unit length constraint permits an additional mode of
POVM construction. Introduce hermitian matrices

Qi = Q(a i, ai) = 1
2ai I + P+(a i)

where the assumption
∑

i a i = 0 remains in force and the ai are real numbers
of either sign. Then

n∑

i=1

Q i = 1
2 (a + n)I with a =

∑
iai

The eigenvalues of Q = 1
2aI + P+(a) are λ± = 1

2 (1 + a ±
√

a···a) so to ensure
positivity we must impose the constraints ai ≥

√
a i···a i − 1 (all i). That done,

we have an n-element qubit POVM
{

2
a+nQ1,

2
a+nQ2, . . . ,

2
a+nQn

}
.



POVMs for generalized qubit measurements & Neumark examples 21

Preskill’s Example

Preskill takes from his demo kit a 3-element qubit PVOM of the simplest
possible construction:

{
P̃1, P̃2, P̃3

}
=

{
2
3 P+(a), 2

3 P+(b), 2
3 P+(c)

}
where the

unit vectors a + b + c = 0 and therefore mark the vertices of an equilateral
triangle. Specifically, he works from




sin θ cos φ
sin θ sin φ
cos θ



 with θ = {0, 2π
3 , 4π

3 }, φ = 0

to obtain

a =




0
0
1



 , b =




+

√
3

2
0
− 1

2



 , c =




−

√
3

2
0
− 1

2





giving

P̃1 =




2
3 0

0 0



 , P̃2 =




1
6 + 1

2
√

3

+ 1
2
√

3
1
2



 , P̃2 =




1
6 − 1

2
√

3

− 1
2
√

3
1
2





which clearly sum to I. Those matrices (which are non-projective because of
the 2

3 -factors which entered into their definitions) can be developed

P̃1 = |a+)(a+| with |a+) =
√

2
3

( cos(0/2)
sin(0/2)

)
=

(√
2
3

0

)

P̃2 = |b+)(b+| with |b+) =
√

2
3

( cos( 2π
3 /2)

sin( 2π
3 /2)

)
=

(
+ 1√

6

1√
2

)

P̃3 = |c+)(c+| with |c+) =
√

2
3

( cos( 4π
3 /2)

sin( 4π
3 /2)

)
=

(− 1√
6

1√
2

)

Spreading the top elements of those 2-vectors along the top row of a 3 × 3
matrix, and the bottom elements along the second row, we obtain





√
2
3

1√
6

− 1√
6

0 1√
2

1√
2

x y z





The top rows are clearly orthonormal, and we fix the values of {x, y, z} by
Gram-Schmidt; i.e., by solving the system

√
2
3 x − 1√

6
y + 1√

6
z = 0

1√
2

y + 1√
2

z = 0

x2 + y2 + z2 = 1
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and obtain

U =





√
2
3

1√
6

− 1√
6

0 1√
2

1√
2

1√
3

− 1√
3

1√
3





Let the (automatically orthnormal) columns of U be denoted {|E1), |E2), |E3)}.
The projectors onto those vectors are

P1 = |E1)(E1| =





2
3 0

√
2

3

0 0 0√
2

3 0 1
3





P2 = |E2)(E2| =





1
6

1
2
√

3
1

3
√

2

1
2
√

3
1
2

1√
6

1
3
√

2
1√
6

1
3





P3 = |E3)(E3| =





1
6 − 1

2
√

3
− 1

3
√

2

− 1
2
√

3
1
2

1√
6

− 1
3
√

2
1√
6

1
3





where the red submatrices are seen to be precisely the elements {P̃1, P̃2, P̃3} of
the qubit POVM which provided Preskill with his point of departure. Writing

|ψ) =
(

ψ1

ψ2

)
and |Ψ) =




ψ1

ψ2

0





we have
(ψ|P̃i|ψ) = (Ψ|Pi|Ψ) : i = 1, 2, 3

We have, in Preskill’s phrase, realized POVM measurements on a qubit as PVM
measurements on a “tribit.”

Theory of qubit discrimination. Suppose Alice sends Bob one or the other of a
pair of non-orthogonal states {|α), |β)} in random sequence (the sequence may
convey an encoded message). Bob, by prearrangement, knows the identity of
the states Alice intends to employ for this purpose. His assignment is to “read
the message” as best he can. PVM measurement will not suffice, since |α) and
|β)—because of their non-orthogonality—cannot be simultaneous eigenvectors
of a hermitian matrix A.18 So Bob looks to see what might be accomplished by
POVM measurement. Some inspired tinkering leads him to to construct

E1 = I − |α)(α|, E2 = I − |β)(β|, E3 = I − E1 − E2

18 Barnett (page 99) provides an elegant formal proof (if proof be needed) of
this important fact.
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These matrices are manifestly hermitian, and the first pair—which might be
written E1 = |α⊥)(α⊥|, E2 = |β⊥)(β⊥|—are clearly positive. But E3 is not
positive; the eigenvalues of E3 are19 λ3± = ±|(α|β)|. Bob (after some more
inspired tinkering) is led thus to the constructions

F1 = kE1

F2 = kE2

F3 = I − F1 − F2

the spectra of which are {k, 0}, {k, 0} and {1−(1− |(α|β)|)k, 1−(1+ |(α|β)|)k}
respectively. To achieve the positivity required for {F1, F2, F3} to comprise a
POVM we are obliged to impose upon k the following constraints:

0 < k ≤ kmax = 1
1 + |(α|β)|

Each time |α) else |β) is presented to Bob’s meter one or another of its display
lights flashes, with probabilities provided by the following table:

state #1 #2 #3
|α) (α|F̃1|α) (α|F̃3|α) (α|F̃3|α)
|β) (β|F̃1|β) (β|F̃2|β) (β|F̃3|β)

So long as the multiplier k remains unspecified, we have

state #1 #2 #3
|α) 0 k(1 − x2) 1 − k(1 − x2)
|β) k(1 − x2) 0 1 − k(1 − x2)

with x = |(α|β)|. If Alice were sending orthogonal states to Bob (case x = 0)
then the probability table would assume the form

state #1 #2 #3
|α) 0 k 1 − k
|β) k 0 1 − k

with this consequence: when #1 flashes Bob knows he has received a |β), when
#2 flashes he knows he has received an |α), when #3 flashes he knows that he
might with equal probability have received either |α) or |β). This circumstance
introduces confusion/noise into Bob’s transcription of Alice’s message. If Bob
tweaks his meter, setting k = kmax = 1

1+x → 1 at x = 0 the table becomes

19 This I know only on the basis of numerical experimentation; I have not yet
managed to construct a formal demonstration.



24 Generalized quantum measurement

state #1 #2 #3
|α) 0 1 0
|β) 1 0 0

#3 now never flashes; Bob is able to read Alice’s message with perfect fidelity;
the PVOM meter has become a PVM meter.

If—more interestingly—Alice dispatches non-orthogonal states (0 < x) to
Bob then it remains the case that when #1 flashes Bob knows he has received
a |β), when #2 flashes he knows he has received an |α), when #3 flashes he
knows that he might with equal probability have received either |α) or |β). The
latter circumstance occurs with probability

Prob? = 1 − k(1 − x2)

Bob sets k → kmax = 1
1+x to minimize the likelihood of such uninformative

events, and obtains

Prob? = x

↓

=
{

1 as |α) and |β) become parallel (indistinguishable)
0 as |α) and |β) become orthogonal

This result was first obtained I. D. Ivanovic, D. Dieks and A. Peres, working
independently (1987 & 1988), and is known as the “IDP limit.”

The short of it: imperfect (PVOM) meters can be designed to exploit facts
known a priori (Bob’s knowledge of the states Alice has elected to employ) to
provide information that remains forever beyond the reach of perfect (PVM)
meters.

Suppose, to make matters more concrete, that Alice is shipping qubits to
Bob (we have here pulled back from Hn to H2), in states20

|α) =
(

cos u
sin u

)
, |β) =

(
cos v
sin v

)

Straightforward calculation then supplies

F1 =
(

k sin2 u −k cos u sin u
−k cos u sin u k cos2 u

)

F2 =
(

k sin2 v −k cos v sin v
−k cos v sin v k cos2 v

)

F3 = I − F1 − F2

20 To achieve complete generality we would have to set

|α) =
(

cos u
eiξ sin u

)
, |β) =

(
cos v

eiζ sin v

)

I have purchased some relative simplicity by setting ξ = ζ = 0.
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which by appeal to 1
2 trσσiσσj = δij : {i, j} ∈ {0, 1, 2, 3} assume the form

F1 = aI + a···σσ
F2 = b I + b···σσ
F3 = c I + c···σσ

with a = b = 1
2k, c = 1 − k and

a = 1
2k




− sin 2u

0
− cos 2u





b = 1
2k




− sin 2v

0
− cos 2v





c = 1
2k





sin 2u + sin 2v
0

cos 2u + cos 2v
0





Gratifyingly, we have
a + b + c = 1
a + b + c = 0

as required. The probability table has become

state #1 #2 #3
|α) 0 k sin2(u − v) 1 − k sin2(u − v)
|β) k sin2(u − v) 0 1 − k sin2(u − v)

which when optimized

k → kmax =
1

1 + x
with x = |(α|β)| = | cos(u − v)|

becomes

state #1 #2 #3
|α) 0 1 − | cos(u − v)| | cos(u − v)|
|β) 1 − | cos(u − v)| 0 | cos(u − v)|

giving Prob? = | cos(u − v)|, which obligingly vanishes when u − v = ±π/2.
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It is instructive to examine the Neumarkian implications of the preceding
material. The spectral decompostions of F1 and F2 can be written

F1 = |φ1)(φ1| with |φ1) =
(

+
√

k sin u
−
√

k cos u

)

F2 = |φ2)(φ2| with |φ2) =
(

+
√

k sin v
−
√

k cos v

)

but the decomposition of F3 is bipartite (and therefore inconsistent with an
assumption fundamental to the argument pursued on pages 16–18) unless we
set k = kmax, thus killing the lesser of F3’s eigenvalues. At this point the
argument bifurcates, partly because Mathematica’s FullSimplify command is
frustrated by the occurance of absolute value bars in expressions it is asked to
to process but mainly for a deeper reason. We adopt the following work-around

kmax = 1
1 + | cos(u − v)| −→






1
1 + cos(u − v)

: cos(u − v) > 0

1
1 − cos(u − v)

: cos(u − v) < 0

and will find that in some instances the two cases must be carefully distinguished,
which I will do by introducing subscripts p and m. It proves useful in this context
to notice that

1
1 + cos(u − v)

= 1
2 sec2 1

2 (u − v)

1
1 − cos(u − v)

= 1
2 csc2 1

2 (u − v)

Thus do we obtain the factorization statements

F1p = 1
2 sec2 1

2 (u − v)|α)(α| = |φ1p)(φ1p|
F1m = 1

2 csc2 1
2 (u − v)|α)(α| = |φ1m)(φ1m|

F2p = 1
2 sec2 1

2 (u − v)|β)(β| = |φ2p)(φ2p|
F2m = 1

2 csc2 1
2 (u − v)|β)(β| = |φ2m)(φ2m|

F3p = I − F1p − F2p = |φ3p)(φ3p|
F3m = I − F1m − F2m = |φ3p)(φ3p|

where
|φ1p) = 1√

2
sec 1

2 (u − v) · |α)

|φ1m) = 1√
2

csc 1
2 (u − v) · |α)

|φ2p) = 1√
2

sec 1
2 (u − v) · |β)

|φ2m) = 1√
2

csc 1
2 (u − v) · |β)
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are immediate, while some fairly heavy calculatinon supplies results

|φ3p) =
√

+ cos(u − v) sec 1
2 (u − v)

(
+ cos 1

2 (u + v)
+ sin 1

2 (u + v)

)

|φ3m) =
√
− cos(u − v) csc 1

2 (u − v)
(
− sin 1

2 (u + v)
+ cos 1

2 (u + v)

)

that are much more easily checked than derived. Feeding that data into

Up =




φ1p,1 φ2p,1 φ3p,1

φ1p,2 φ2p,2 φ3p,21

xp yp zp



 , Um =




φ1m,1 φ2m,1 φ3m,1

φ1m,2 φ2m,2 φ3m,21

xm ym zm





we discover that to complete the orthonormality of the rows we must (to within
a shared phase factor) set

xp = −yp = + 1√
2

√
+ cos(u − v) sec 1

2 (u − v)

zp = tan 1
2 (u − v)

xm = +ym = − 1√
2

√
− cos(u − v) csc 1

2 (u − v)

zm = cot 1
2 (u − v)

Orthonormal Neumark bases {|E1p), |E2p), |E3p)} and {|E1m), |E2m), |E3m)}
are read from the columns of the unitary matrices Up and Um. One needs
{xp, yp, zp} and {xm, ym, zm} to lend detailed substance to Neumark’s
POMV→PVM demonstration, but it is clear even in the absence of that
information that the associated projectors Pi = |Ei)(Ei| possess the structure

Pi =
(

F̃i •
• •

)
: • -terms are {x, y, z}-dependent

and that is all one needs to obtain

(ψ|F̃i|ψ) = (Ψ|Pi|Ψ) : |Ψ) =
(
|ψ)
0

)

In the preceding section I developed and illustrated a “general theory of
POVMs for qubit measurements” which proceeds from specification of 3-vectors
that satisfy the closure condition a + b + · · · + z = 0 . In the discussion just
concluded I have described an alternative formulation of that theory (at least
in so far as it relates to 3-element POVMs) which—more appropriately for
application to the state-discrimination problem—proceeds from specification
of non-orthogonal qubits |α) and |β).



28 Generalized quantum measurement

If we set u = π
2 + 2π

3 and v = π
2 (which entail cos(u − v) < 0) we obtain

matrices

F1m =

(
1
6 − 1

2
√

3

− 1
2
√

3
1
2

)
, F2m =

(
2
3 0
0 0

)
, F3m =

(
1
6

1
2
√

3
1

2
√

3
1
2

)

which were encountered already on page 21, and find that we can use our general
formulae to reproduce all the details of Preskill’s “equilateral” example.

If we set u = 3π
2 and v = 3π

2 + 3π
4 (which again entail cos(u − v) < 0) we

obtain
k = kmax = 1

1 − cos(u − v)
=

√
2

1 +
√

2

F1m =





√
2

1+
√

2
0

0 0



 = |φ1m)(φ1m| with |φ1m) =
√ √

2
1+

√
2

(
1
0

)

F2m =




1

2+
√

2
−1

2+
√

2

−1
2+

√
2

−1
2+

√
2



 = |φ2m)(φ2m| with |φ2m) =
√ √

2
2(1+

√
2)

(
1
−1

)

F3m =




3−2

√
2√

2

√
2−1√
2

√
2−1√
2

1√
2



 = |φ3m)(φ3m| with |φ3m) = 1√√
2

(√
2 − 1
1

)

and find the Pauli coordinates of the F-matrices to be given in this instance by

{a, b, c} =
{

1
2k, 1

2k, 1 − k
}
, {a , b , c} = 1

2k









0
0
1



 ,




−1
0
0



 ,




1
0
−1










Again, a+ b+ c = 1 and a + b + c = 0 . The vectors in this instance describe a
right isosceles triangle. We have here demonstrated that our general formulae
do efficiently reproduce the essentials of the example that Mario Flory details
in §2.4 of the essay previously cited.21It was, by the way, that example which
inspired the preceding discussion.

The question arises: How might Bob undertake to distinguish (optimally)
amongst three or more known qubits? This difficult question is addressed
(inconclusively) on Barnett’s page 103.22 The theory of optimal state
discrimination was pioneered by C. W. Helstrom (1976) and A. S. Holevo (1982).

General theory of density matrix transformations: Kraus operations. System-
meter interactions (except those involving prompt repetition with an ideal
meter) induce non-trivial state tansformations |ψ)before −→ |ψ)after, whence

21 It can be found at https://wiki.physik.uni-muenchen.de/TMP.images/8/87
/POVMs.pdf.

22 For more detailed (and exceptionally lucid)discussion see §3.2 in A. Chefles,
“Quantum state discrimination,” Contemporary Physics 41,401-424 (2000.)
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adjustments in the construction of ensembles of states

ρ••ρbefore −→ ρ••ρafter

So also (at least in the Schrödinger picture) does unobserved quantum motion,
which for isolated systems S is unitary

|ψ)0 −→ |ψ)t = U(t)|ψ)0
ρ••ρ0 −→ ρ••ρt = U(t)ρ••ρ0U+(t)

but for open/dissipative systems S ⊗ Senvironment turns out to be non-unitary.
One is led therefore to ask “What is the most general property-preserving
transformation to which a density matrix can be subjected?”23

Recognizing that quantum theory is an exercise in linear algebra, one looks
to ρ••ρ −→ Aρ••ρB. Hermiticity-preservation requires B = A+, and we have

ρ••ρ −→ Aρ••ρA+

Positivity-preservation is then automatic, since

(α|ρ••ρ|α) ! 0 all |α) =⇒ (β|ρ••ρ|β) ! 0 all |β) = A+|α)

Trace -preservation forces A to be unitary

trAρ••ρA+ = trA+Aρ••ρ = trρ••ρ (all ρ••ρ) =⇒ A+A = I

But hermiticity and positivity-preservation are undamaged if, more generally,
we write

ρ••ρ −→
∑

iAi ρ••ρAi
+ (10.1)

whereupon the former unitarity condition assumes the form
∑

iAi
+Ai = I (10.2)

Transformations of the form (10) were first called called “operations” by
Kraus24 and the matrices Ai have come to be called “Kraus matrices” (or
“Kraus operators”; Kraus himself called them “effects”). We have been led by
general considerations to precisely the material that was used to assemble the
theory of PVOM measurements.

To illustrate the dynamical utility of (10) Barnett borrows from quantum
dissipation theory the Kraus matrices

Aup =
(

e−Γ t 0
0 1

)
, Adn =

(
0 0√

1 − e−2Γ t 0

)
: t ≥ 0

23 My principal source here has been Barnett’s §4.5 and Appendix J.
24 K. Kraus, States, Effects and Operations (1983). The formalism developed

by Kraus was in fact first sketched by E. C. G. Sudarshan, P. M. Mathews and
Jayaseetha Rau, “Stochastic dynamics of quantum-mechanical systems,” Phys.
Rev. 121, 920–924 (1961).
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where Γ is a positive constant. From

Aup
+ Aup =

(
e−2Γ t 0
0 1

)

Adn
+ Adn =

(
1 − e−2Γ t 0

0 0

)

we see that indeed Aup
+ Aup + Adn

+ Adn = I , as required. Write

ρ••ρ(t) = Aupρ••ρ(0)Aup
+ + Adnρ••ρ(0)Adn

+

and assume that the ensemble of qubits is initially pure “up”:

ρ••ρ(0) =
(

1 0
0 0

)

Then
ρ••ρ(t) =

(
e−2Γ t 0

0 1 − e−2Γ t

)

↓

=
(

0 0
0 1

)
as t → ∞

Writing |up) =
(

1
0

)
and |dn) =

(
0
1

)
we have

“up” probability at time t ≥ 0 = (up|ρ••ρ(t)|up) = e−2Γ t

“dn” probability at time t ≥ 0 = (dn|ρ••ρ(t)|dn) = 1 − e−2Γ t

}
(11)

Note that the dissipative evolution described above is not unitary , for
Hamiltonian-generated unitary motion

U(t)ρ••ρ0U+(t) is oscillatory in all cases

Moreover, the probabilities (11) become meaningless when t < 0, for this deep
reason: time-reversal t → −t sends

Aup = Aup
+ −→

(
eΓ t 0
0 1

)

Adn −→
(

0 0
i
√

e2Γ t − 1 0

)
, Adn

+ −→
(

0 −i
√

e2Γ t − 1
0 0

)

whence
Aup

+ Aup + Adn
+ Adn −→

(
2e2Γ t − 1 0

0 1

)
.= I

So the reversed transformation cannot be trace-preserving: quantum dissipation
is irreversible (as also are quantum measurement processes), whereas unitary
quantum dynamical motion is invariably reversible.
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The claim is that transformations ρ••ρ −→ ρ••ρ′ are quantum-mechanically
conceivable if and only if they can be achieved by operations. To illustrate the
force of that principle, Barnett looks to what he calls “Chefles’ state separation
process.”25 Let |α) and |β) be unknown non-orthogonal states: |(α|β)| .= 0. A
“separation process” P is a state-transformation

P : {|α) → |α′), |β) → |β ′)} such that |(α′|β ′)| < |(α|β)|

Such processes are distinct from (but, as will emerge, related to) the “optimal
discrimination processes” considered previously. If it were possible by repeated
P-processes to achieve |(α′|β ′)| = 0 then Bob would be in position ultimately
to discriminate |α) from |β) by simple PVM measurement. There must exist
a least-possible value |(α′|β ′)|min > 0 of |(α′|β ′)|, which it has become our
business to calculate. To that end. . .

25 Anthony Chefles studies the optical applications of quantum information
theory, and during the 1990s co-authored many papers with Barnett (of whom
I suspect he was a student). They were, in fact, co-authors of the first papers
dealing with the process here in question. A detailed survey of the subject can
be found in §5.3 of the paper cited in Note [22].


