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Manifolds

Definition
A n-dimensional manifold M is a second countable Hausdorff
space which is locally homeomorphic to Rn.

Preimages of regular values of smooth maps
f : Rn+m → Rm are manifolds.
In particular, Sn = {(x1, . . . , xn+1) ∈ Rn+1;

∑n+1
i=1 x2

i = 1} is
a manifold.
One can also construct manifolds by patching together
open subsets of Rn.
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Goal: Classify manifolds up to some equivalence relation.

Classification up to diffeomorphism or homeomorphism to
hard or even impossible.
Therefore classification up to bordism.
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Two closed n-manifolds M1, M2 are called bordant if there
is an compact n + 1-manifold W with boundary
∂W = M1 qM2.

Michael Wiemeler Equivariant bordism



Introduction – The non-equivariant case
Equivariant bordism

Invariant metrics of positive scalar curvature
Summary

Bordism
Metrics of positive scalar curvature

Two closed n-manifolds M1, M2 are called bordant if there
is an compact n + 1-manifold W with boundary
∂W = M1 qM2.

Michael Wiemeler Equivariant bordism



Introduction – The non-equivariant case
Equivariant bordism

Invariant metrics of positive scalar curvature
Summary

Bordism
Metrics of positive scalar curvature

Bordism is an equivalence relation – reflexivity and
symmetry

M × I
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The unoriented bordism ring

The set N∗ of all bordism classes of all manifolds forms a
graded ring with:

addition induced by disjoint union
multiplication induced by cartesian product
grading by dimension
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The oriented bordism ring

ΩSO
∗ ⊗Q ∼= Q[CP2i ; i ∈ N] (Thom 1954)

All non-trivial torsion elements in ΩSO
∗ are of order two.

(Milnor, Averbuh, Wall 1958/1959)
ΩSO
∗ is generated by

Milnor hypersurfaces
Dold manifolds
bundles with fibers products of Dold manifolds over tori
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Oriented bordism in low dimensions

n ΩSO
n generators

0 Z {pt}
1 0
2 0
3 0
4 Z CP2

5 Z/2 P(1,2)

6 0
7 0
8 Z2 CP2 × CP2, CP4
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Tea and Coffee

Assume you have a tea cup like this . . .

. . . but you want to drink coffee.

What can you do?
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Surgery

More formally, surgery is the following cutting and pasting
process:

Let Φ : Sk × Dn−k ↪→ Nn be an embedding.
Cut im (Φ) out of Nn and glue in Dk+1 × Sn−k−1 instead.
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Surgery and bordism

Theorem
Two manifolds M and N are bordant if and only if M can be
constructed by surgery from N.
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Outlook: Topological Quantum Field Theories

The bordism category Bn, is the category with objects
compact oriented n-dimensional manifolds, and
morphisms bordisms between these manifolds

A TQFT is a functor F : Bn → Vect such that
1 F (M1) ∼= F (M2) if M1 and M2 are orientation preserving

diffeomorphic
2 F (M1 qM2) ∼= F (M1)⊗ F (M2),

Physically
1 is related to relativistic invariance
2 is induced by the quantum nature of the theory

TQFT’s have applications in Seiberg–Witten theory,
topological string theory and knot theory.
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Scalar curvature

Let (M,g) be a Riemannian manifold.

The scalar curvature of M is a function scal : M → R
For small r > 0 and x ∈ M we have :

vol(Br (x)) = voleuclid (Br (0))(1− scal(x)

6(n + 2)
r2 + O(r4))
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scal(x) = 2, vol(Bπ/2(x)) = 2π

voleuclid (Bπ/2(0)) = π · π2/4
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What functions are the scalar curvature of a metric on
a manifold?

Theorem (Kazdan and Warner 1975)
Let M be a manifold with dim M ≥ 3. Then:

Every C∞-function on M which is somewhere negative is
the scalar curvature of some metric on M.

Every C∞-function on M is the scalar curvature of some
metric on M if and only if there is a metric of positive scalar
curvature on M.
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A basic question

Question
Let M be a closed connected manifold.
Does there exist a metric of positive scalar curvature on M?

Michael Wiemeler Equivariant bordism



Introduction – The non-equivariant case
Equivariant bordism

Invariant metrics of positive scalar curvature
Summary

Bordism
Metrics of positive scalar curvature

Dimension two

Theorem (Gauss–Bonnet)
For a two-dimensional orientable manifold M, we have∫

M
scal(x) dvol = 4πχ(M)

Hence, the only surfaces which admit metrics of positive
scalar curvature are S2 and RP2.
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Dimension three and four

Theorem (Perelman 2003)
If M is a manifold of dimension three, then M admits a metric of
positive scalar curvature if and only if M is diffeomorphic to a
connected sum of several copies of S1 × S2 and spherical
space forms.

Dimension four is open.
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Surgery and positive scalar curvature

Theorem (Gromov and Lawson / Schoen and Yau)
If M is constructed from N by a surgery of codimension at least
three and N admits a metric of positive scalar curvature, then
the same holds for M.

Corollary
A manifold M with dim M ≥ 5 admits a metric of positive scalar
curvature, if and only if its class in a certain bordism ring can be
represented by a manifold with such a metric.
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Bordism classes of manifolds of positive scalar
curvature

Lemma
Let Ω∗ be a bordism ring and I ⊂ Ω∗ the set of bordism classes
which can be represented by manifolds with positive scalar
curvature.
Then I is an ideal.

Let M be a compact manifold and N a compact manifold
with metric of positive scalar curvature.
We have: scalM×N(x , y) = scalM(x) + scalN(y).
By shrinking N we get scalN → +∞
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Theorem (Gromov and Lawson 1980)

Assume that π1(M) = 0, dim M ≥ 5 and M does not admit a
spin-structure.
Then M admits a metric of positive scalar curvature.

The relevant bordism group for M is ΩSO
n .

ΩSO
∗ is generated by fiber bundles with fibers manifolds

with positive scalar curvature.
The total spaces of these fiber bundles therefore admit
metrics of positive scalar curvature.
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psc-metrics and Spin-structures

If M is spin and admits a metric of positive scalar curvature,
then

the Dirac-operator D on M is invertible (Lichnerowicz
1963).

Hence its index vanishes.
ind D = Â(M) is an invariant of the spin-bordism type of M
(Atiyah-Singer 1968).
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Spin bordism

Main results on spin bordism rings are due to Anderson,
Brown, Peterson 1966/1967

ΩSpin
∗ ⊗Q ∼= ΩSO

∗ ⊗Q

All non-trivial torsion elements in ΩSpin
∗ are of order two
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Theorem (Stolz 1992)

Assume that π1(M) = 0, dim M ≥ 5 and M admits a spin
structure.
Then M admits a metric of positive scalar curvature if and only
if α(M) = 0.

The relevant bordism group for M is ΩSpin
n .

Stolz shows that kerα is generated by HP2-bundles over
spin manifolds.
As in the non-spin-case these admit psc-metrics.
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Outlook: Scalar curvature in General Relativity

The vacuum Einstein field equation

Ricg −
scalg

2
g

+ λg

= 0

is the Euler equation for the variational problem for the total
scalar curvature functional

g 7→
∫

M
scalg dvolg

positive scalar curvature corresponds to positive mass
density or positive cosmological constant λ.

Beginning in the 1990s, measurements suggest that λ is
small but positive.
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Generators of equivariant bordism rings

Let G be a compact Lie-group and M1 and M2 closed
G-manifolds. M1 and M2 are called G-equivariantly bordant
if there is a G-manifold with boundary W such that
∂W = M1 q−M2.
The set of all equivariant bordism classes ΩSO,G

∗ is an
algebra over ΩSO

∗ .
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Computations of equivariant bordism rings

Theorem (Uchida / Hattori and Taniguchi 1970-1972)

As a module over ΩSO
∗ , ΩSO,S1

∗ is generated by twisted
CPn-bundles.

Results on the module structure of the unitary
S1-equivariant bordism ring by Kosniowski and Yahia
(1982).
Sinha (2005) gives generators and relations for the
semi-free unitary S1-equivariant bordism ring.
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Computations of equivariant bordism rings II

Theorem (2015)

As a module over ΩSpin
∗ [1

2 ], ΩSpin,S1

∗ [1
2 ] is generated by:

semi-free S1-manifolds,
generalized Bott manifolds
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Generalized Bott manifolds

A 2n-dimensional manifold is called generalized Bott manifold if
there is a sequence of fibration

M = Nk → Nk−1 → · · · → N1 → N0 = {pt}

such that:
each Ni is the projectivization of a sum of ni + 1 complex
line bundles over Ni−1.

Then we have:
There is an effective action of a torus T of dimension
n =

∑
i ni on M.

This action is induced by multiplication on the line bundles
from above.
The S1-action on M is given by restriction of the T -action
to some circle subgroup.
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A basic question

Question
Assume that a compact connected Lie group G acts effectively
on a closed connected manifold M.
Does there exist an G-invariant metric of positive scalar
curvature on M?
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First existence theorem

Theorem (2013)

Let M be a connected (G × S1)-manifold such that
codim MS1

= 2.
Then M admits a (G × S1)-invariant metric of positive scalar
curvature.
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From now on assume that M is an S1-manifold such that:
codim MS1 ≥ 4
π1(Mmax ) = 0
All singular strata in M are orientable.
This is always satisfied if M is spin.
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The bordism principle for invariant metrics

Theorem
If dim M ≥ 6 and Mmax is not spin,
then M admits a normally symmetric metric of positive scalar
curvature
if and only if its class in ΩSO,S1

≥4,n can be represented by a
manifold which admits such a metric.

Theorem
If dim M ≥ 6 and M is spin,
then M admits a normally symmetric metric of positive scalar
curvature
if and only if its class in ΩSpin,S1

≥4,n can be represented by a
manifold which admits such a metric.
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Existence results

Theorem (2015)
If dim M ≥ 6 and

Mmax is not spin, or
M is spin and the S1-action of odd type,

then there is an ` ∈ N such that the equivariant connected sum
of 2` copies of M admits an invariant metric of positive scalar
curvature.

In the first case ` can be taken to be 1.
If the action is semi-free, ` can be taken to be 1.
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Existence results II

Theorem (2015)

If dim M ≥ 6, M is spin and the S1-action of even type,
then ÂS1(M/S1) = 0 if and only if there is an ` ∈ N such that
the equivariant connected sum of 2` copies of M admits an
invariant metric of positive scalar curvature.

ÂS1(M/S1) is a Z[1
2 ]-valued equivariant bordism invariant

of M.
For free actions it is the Â-genus of the orbit space.
For semi-free actions it was defined by Lott (2000).
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Â-genus and S1-actions

Theorem (Atiyah and Hirzebruch 1970)
Let M be a spin-manifold with dim M ≥ 6 which admits a
non-trivial S1-action.
Then Â(M) = 0.

The original proof uses the Lefschetz fixed point formula
and complex analysis.
From the original proof no relation to positive scalar
curvature follows.
Such a relation can be deduced from our existence results
for positive scalar curvature metrics on S1-manifolds.
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Â-genus and S1-actions

Theorem (Atiyah and Hirzebruch 1970)
Let M be a spin-manifold with dim M ≥ 6 which admits a
non-trivial S1-action.
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Theorem (Atiyah and Hirzebruch 1970)
Let M be a spin-manifold with dim M ≥ 6 which admits a
non-trivial S1-action.
Then Â(M) = 0.

We may assume that dim M = 4k . ⇒ ÂS1(M/S1) = 0.
Therefore 2`M is equivariantly spin-bordant to an
S1-manifold N with an invariant metric of positive scalar
curvature.
Hence, 2`Â(M) = Â(N) = 0. ⇒ Â(M) = 0.
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Genera

Let Λ be a Q-algebra. A Λ-genus is a ring homomorphism
ϕ : ΩSO

∗ → Λ.

Examples:
The Signature and the Â-genus are genera.
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Elliptic genera

A genus ϕ is called elliptic if there are δ, ε ∈ Λ such that

∑
i≥0

ϕ([CP2i ])

2i + 1
u2i+1 =

∫ u

0

1√
1− 2δt2 + εt4

dt

Theorem (Ochanine 1987)

A genus ϕ is elliptic if and only if ϕ(E) = 0 for all total spaces E
of fiber bundles with fiber CP2i+1, i ≥ 0, and simply connected
base manifold.
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Equivariant genera

For every Λ-genus ϕ : ΩSO
∗ → Λ there exists an S1-equivariant

version
ϕS1 : ΩSO,S1

∗ → H∗∗(BS1; Λ) = Λ[[u]].

Theorem (Bott and Taubes 1989)

A Λ-genus is elliptic if and only if for every spin S1-manifold M,
the power series ϕS1(M) is constant in u.

Michael Wiemeler Equivariant bordism



Introduction – The non-equivariant case
Equivariant bordism

Invariant metrics of positive scalar curvature
Summary

The first existence theorem
The second existence theorem
Elliptic genera

Equivariant genera

For every Λ-genus ϕ : ΩSO
∗ → Λ there exists an S1-equivariant

version
ϕS1 : ΩSO,S1

∗ → H∗∗(BS1; Λ) = Λ[[u]].

Theorem (Bott and Taubes 1989)

A Λ-genus is elliptic if and only if for every spin S1-manifold M,
the power series ϕS1(M) is constant in u.

Michael Wiemeler Equivariant bordism



Introduction – The non-equivariant case
Equivariant bordism

Invariant metrics of positive scalar curvature
Summary

Summary

We have generators of the S1-equivariant Spin-bordism
ring
These can be used to prove

the rigidity of elliptic genera
existence of S1-invariant metrics of positive scalar
curvature.
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