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This is an expository talk given at the Oberwolfach workshop on the topology of arrangements and rep-
resentation stability. The first half of the talk aims to give some background on the field of representation
stability, and the second half a demonstration of a particular proof technique for proving representation
stability in certain applications.

The talk comes with the disclaimer that my description of the history of representation stability
is heavily biased by my own background: I was a graduate student of Benson Farb working in low-
dimensional topology, and witnessed the field develop from that perspective. Other authors have come
to the area from backgrounds in commutative algebra and algebraic geometry, from algebraic combina-
torics, or from category theory and homological algebra – and they would likely give different motivation
and a different origin story for the field.

With that disclaimer, here is one story about the advent of representation stability.

1 A brief and biased history of representation stability

Multiplicity stability (following Church–Farb [CF13])

This story starts in about 2010, when Church and Farb observed (both through computer experimentation
and direct hands-on computation) patterns in the (co)homology of certain families of groups and spaces.

Notation 1. Let Sn denote the symmetric group on n letters. Recall that the group ring Q[Sn] is semisim-
ple, that is, all rational Sn–representations decompose as a direct sum of irreducible representations.
Recall moreover that there is a canonical bijection

{irreducible Sn–representations} ←→ {partitions λ of n}

We will use the notation Vλ to denote the irreducible representation associated to a Young diagram λ, eg,
V is the irreducible S3–representation associated to the partition (2, 1).

A motivating example: the pure braid groups

The prototypical family of groups studied by Church and Farb were the pure braid groups PBn. If Bn

is Artin’s braid group, then recall that the pure braid group is defined by the short exact sequence

1 −→ PBn −→ Bn −→ Sn −→ 1,

that is, it is the subgroup of braids where each strand returns to its own starting position.
The group Bn acts on PBn by conjugation, and the induced action of Bn on the cohomology groups

Hq(PBn;Q) factors through an action of the symmetric group

Sn � Hq(PBn;Q).

Moreover, using the “forget the (n + 1)st strand” projection maps PBn+1 → PBn we can construct an
Sn–equivariant sequence of representations

· · · −→ Hq(PBn;Q) −→ Hq(PBn+1;Q) −→ · · ·

We will illustrate the patterns that appear in these cohomology groups in the case q = 1.

Example 2 (H1(PBn;Q)). In cohomological degree q = 1, these Sn–representations decompose as fol-
lows.

H1(PB2;Q) ∼= V

H1(PB3;Q) ∼= V ⊕ V

H1(PB4;Q) ∼= V ⊕ V ⊕ V

H1(PB5;Q) ∼= V ⊕ V ⊕ V

H1(PB6;Q) ∼= V ⊕ V ⊕ V

H1(PB7;Q) ∼= V ⊕ V ⊕ V

· · ·
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For all n ≥ 4, this pattern continues: we can obtain one row of the decomposition from the previous by
adding a single box to the top row of each of the Young diagrams.

Church and Farb called this “add a box to the top row” pattern multiplicity stability, and showed that
it holds for all cohomology groups of PBn.

Proposition 3 (Church–Farb [CF13]). For each q ≥ 0, the sequence of Sn–representations {Hq(PBn;Q)}n is
multiplicity stable, stabilizing for n ≥ 4q.

The decomposition of these cohomology groups into irreducible representations is not known explic-
itly except for some small values of q. Church and Farb’s first proof of this result was combinatorial,
using an orbit-stabilizer argument to realize the cohomology groups as a sum of certain induced repre-
sentations, and then using the Littlewood-Richardson rules to analyze these induced representations.

Further examples

Church and Farb continued to dig, and they found variations on the same phenomenon in many other
places. They wrote a paper [CF13] compiling some examples.

Theorem 4 (Church–Farb [CF13]). There are mutliplicity stability patterns in the (co)homology of

• pure braid groups and certain generalized pure braid groups

• certain flag varieties

• certain Lie algebras and their homology

• · · ·

At the time it was becoming clear that these patterns were prevalent across numerous mathematical
areas, and perhaps that they were somehow connected to the Littlewood-Richardson rules. These reults
raised the question,

Question 5. What underlying structure is driving these stability patterns?

In the case that the groups acting were the symmetric groups Sn, Church and Farb gave an answer
to this question in joint work with Ellenberg: the sequences of Sn–representations are finitely generated
FI–modules.

FI–modules (following Church, Ellenberg, Farb, and Nagpal [CEF15, CEFN14])

Definition 6. Church, Ellenberg, and Farb use the notation FI to denote the category of finite sets and in-
jective maps. Up to equivalence, this is the category with one object for each integer n ≥ 0 corresponding
to the sets [n] = {1, 2, . . . , n}, with endomorphisms End([n]) = Sn.

Given a commutative unital ring R, an FI–module (over R) is a functor

V : FI→ R–Mod

to the category R–Mod of R–modules. We use the notation VS to denote the image of V on a set S, or Vn
when S = {1, 2, . . . , n}.

The data of an FI–module is a sequence of Sn–representations with equivariant maps.
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Examples and non-examples of FI–modules

A good first exercise is to verify the following.

Example 7 (Examples of FI–modules). The following sequences of Sn–representations, along with the
obvious inclusions, assemble to form rational FI–modules.

• Vn = Q (trivial Sn–representation)

• Vn = Qn (canonical permutation representation)

• Vn =
∧5 Qn

• Vn = Q[x1, . . . , xn] (diagonal action of Sn on monomials by permuting indices)

Example 8 (Non-examples of FI–modules). The following equivariant sequences of Sn–representations
do not have the structure of an FI–module.

• Vn = Q (alternating Sn–representation), with isomorphisms

• Vn = Q[Sn] (group ring), with maps induced by the inclusions Sn ↪→ Sn+1 of groups1

For fixedR, the category of FI–modules overR comes with natural and well-behaved notions of maps
of FI–modules, submodules, quotients, kernels, cokernels, direct sums, tensor products, . . . . In particular,
it is an abelian category.

The pure braid group, continued

In our main example of the pure braid group, observe that for each q the sequence of cohomology groups
{Hq(PBn;Q)}n forms an FI–module. And, for each q, this FI–module is finitely generated under the
action of the category FI. To see this concretely when (for example) q = 2, we can use a 1969 result of
Arnold that gives an explicit description of the algebraH∗(PBn;Q) (and, in fact, the integral cohomology
H∗(PBn;Z)).

Theorem 9 (Arnold [Arn69]). The cohomology algebra H∗(PBn;Q) can be described as a certain quotient of
the exterior algebra on the symbols αi,j ,

H∗(PBn;Q) ∼=
∗∧
〈αi,j〉/ ∼ αi,j = αj,i, i 6= j, i, j ∈ [n]

So for q = 2, the groups H2(PBn;Q) are spanned by monomials of the form αi,j ∧ αj,k and αi,j ∧ αk,`.
Thus, the FI–module Vn = H2(PBn;Q) is generated by the finite set of elements

α1,2 ∧ α2,3 ∈ V3
α1,2 ∧ α3,4 ∈ V4

in the sense that, if we hit these two elements with all our FI morphisms, we will recover a spanning set
for Vn for all n. Since the generators appear in degrees n = 3, 4, we say that V is finitely generated in degree
≤ 4. And, Church–Ellenberg–Farb showed that this finite generation implies the multiplicity stability
patterns we observed earlier.

The structure that drives multiplicity stability

Theorem 10 (Church–Ellenberg–Farb [CEF15]). Let V be a finitely generated FI–module over Q. Then the
sequence {Vn} of Sn–representations is multiplicity stable.

The proof is harder than this, but (morally speaking) this theorem is a consequence of the following
facts.

1Bonus exercise: Find an alternate action of FI that gives the sequence of rational group rings the structure of an FI–module.
Note that this FI–module is necessarily not finitely generated.
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1. We know that every finitely generated R–module is a quotient of a finite-rank free module. For
the same reason, every finitely generated FI–module is a quotient of a finite sum of representatble
FI–modules, functors of the form

[n] 7−→ Q [HomFI([m], [n])] ∼= Q [Sn/Sn−m] (m fixed).

These coset representations Q [Sn/Sn−m] are governed by the Littlewood–Richardson rules, and it
is not difficult to check that for fixed m they are multiplicity stable as n grows.

2. FI–modules are Noetherian in the sense that submodules of finitely generated FI–modules are them-
selves finitely generated.

Remark 11. Given a finitely generated FI–module V ,

• the generation degree of V constrains which irreducible Sn–representations can occur in Vn for n ≥ 0,

• the presentation degree of V controls the stable range for its multiplicity stability. 2

The FI–module perspective

This re-framing of the sequences studied by Church–Farb as FI–modules was a breakthrough for several
reasons.

1. It gives a conceptual explanation and an easy-to-check criterion for multiplicity stability.

For example, in the case of the pure braid group PBn, verifying that {Hq(PBn;Q)}n is finitely
generated is much easier than the original direct combinatorial verification of multiplicty stability
– and the pure braid group was the warm-up case.

2. The definition of a finitely generated FI–module makes sense for representations over the integers
or other coefficients. It can be generalized to other groups or to maps with additional data. In gen-
eral it makes sense even in situations where we multiplicity stability is not well-defined because, for
example, the representations are not semisimple or the irreducible representations are not known.

Perhaps most importantly:

3. Benson and we his students learned what the algebraists had known all along: the power of work-
ing in an abelian category. In this framework we can draw on the tools of commutative or homo-
logical algebra to study our sequences of representations.

At this point, it became increasingly evident that there are close connections between the work of
Church, Ellenberg, Farb, and Nagpal; the work of Djament, Pirashvili, Vespa, and others studying ho-
mological algebra and category theory; and work of Sam, Snowden, and others working in algebraic
geometry and commutative algebra.

Current directions

Over the next 5 years, the field has taken several directions. Some goals of the field are:

• Exhibit representation stability phenomena in particular families of groups or spaces.

Some applications that have been studied:

– Congruence subgroups of linear groups. See (for example) work of Church, Ellenberg, Farb,
Gan, Li, Miller, Nagpal, Patzt, Putman, Reinhold, Sam, and Wilson [Put15, CEFN14, CE17,
PS17, GL17b, MPW17, CMNR17, MW17].

2Specifically, if we construct a resolution of V by “free” FI–modules (say, by FI]–modules)

P 1 −→ P 0 −→ V −→ 0

then the generators of P 0 bound the generation degree of V and the generators of P 1 bound the relation degree of V . If P0 is
generated in degree ≤ g and P1 is generated in degree ≤ r, then Vn has weight ≤ g, and the decomposition of Vn into irreducible
representations stabilizes once n ≥ max(g, r) + g.
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– Complements of arrangements. See (for example) work of Berget, Bibby, Church, Casto, El-
lenberg, Farb, Gadish, Rapp, and Wilson [CF13, CEF15, Wil14, Wil15, Bib16, Cas16, Ber16,
Gad17b, Rap17].

– Configuration spaces. See (for example) work of Arabia, Bahran, Church, Ellenberg, Farb,
Hersh, Kupers, Lütgehetmann, Moseley, Nagpal, Palmer, Petersen, Proudfoot, Ramos, Reiner,
Schiessl, Tosteson, Wilson, Wiltshire-Gordon, and Young [Chu12, CEF15, CEFN14, Pal13, KM15,
EWG15, HR16, Ram16, Tos16, MW16, Ara16, Pet17, Ram17b, Lüt17, MPY17, CMNR17, Kra17,
Bah18, Sch18].

– Mapping class groups and moduli space. See (for example) work of Duque, Jiménez Rolland,
and Tosteson [JR11, JR15, JRD15, Tos18].

– Torelli groups. See (for example) work of Boldsen, Church, Day, Hauge Dollerup, Miller, Patzt,
Putman, and Wilson [BD12, DP17, Pat16, CP15, MPW17].

– Variations on the pure braid groups and related automorphisms groups, structures related to
the combinatorics of graphs, and other examples. See (for example) work of Lee, Liu, Ramos,
Saied, Szymik, Wilson, and White [Wil12, Lee13, Szy14, Sai15, Liu16, Ram17a, RW17]

• Develop analogous categories for actions by families of groups other than the symmetric group, or
for sequences of symmetric group representations with additional structure.

Some examples that have been studied are representations of wreath groups, classical Weyl groups,
various linear groups, and products or decorated variants on FI. See (for example) work of Gan,
Gadish, Miller, Patzt, Putman, Sam, Watterlond, Wilson, and Wu [Wil14, Wil15, SS14, PW16, GW16a,
GW16b, Wat16, PS17, Gad17a, PSS17].

A related generalization of FI–modules is via the theory of twisted commutative algebras. See for
example work of Nagpal, Sam, and Snowden [SS12, SS16a, SS17a, SS17c, SS17d, NSS16b, NSS16a].

• Advance the algebraic theory of the category of FI–modules and its analogues.

This may involve, for example, studying algebraic invariants of FI–modules.

See (for example) work of Church, Ellenberg, Farb, Gan, Li, Miller, Nagpal, Patzt, Putman, Ramos,
Reinhold, Sam, Snowden, Wilson, Wiltshire-Gordon, Xi, Yu [CF13, CEF15, CEFN14, WG14, GL14,
WG15, GL15a, GL15b, GL15c, Li15, Ram15, Gan16, GL16, WG16, LR16, SS17b, CE17, LR17, GL17a,
GLX17, Li17, LY17a, LY17b, Ram17c, Ram17d, NSS17, Pat17, CMNR17, MW17].

• Further develop the theory of polynomial functors.

This area developed independently of the work of Church and Farb, and only later did the au-
thors understand the connections between the work. See (for example) work of Collinet, Djament,
Griffin, Pirashvili, Soulié, Vespa [DV10, Dja12, DV12, CDG12, DV13, HPV13, DPV16, Dja16, Sou17].

• Import tools from algebraic combinatorics or from the modular representation theory of the sym-
metric groups.

See for example the work of Ashraf, Azam, Barter, Berceanu, Entova, Harman, Nagpal, Sam, and
Snowden [AAB15, Har15, Nag15, SS16b, Har16, Har17, SS17e, BEAH17].

• Explore connections between representation stability results and objects in number theory.

For instance, there is a relationship between stability results for the characters of finitely generated
FI–modules, and point-counts on related varieties over finite fields.

See (for example) the work of Casto, Chen, Church, Ellenberg, Farb, Fulman, Gadish, Howe, Hyde,
Jiménez Rolland, Matei, Wilson, and Wolfson [CEF14, FW15, Ful16, Che16, How16a, How16b,
Che17, JRW17a, FJRW17, JRW17b, Cas17a, Gad17c, Cas17b, Mat17, Hyd17].

What should “representation stability” mean?

The meaning of “representation stability” has evolved since the early work where it was a statement
about patterns in the multiplicities of irreducible representations occuring in sequences of Sn–representations.

Arguably, the term should now refer to some sort of algebraic finiteness result for a module V over
a suitable category – finiteness results like finite generation or relation degree, or the vanishing of some
algebraic invariant like an associated functor homology group.
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2 Quillen’s methods in representation stability

For the second half of the talk I will change gears and describe a proof technique that has been useful in
some representation stability applications.

This technique was first used in a representation stability context in work of Putman [Put15] to study
congruence subgroups of GLn(A), and has since been used by Church–Ellenberg [CE17], Putman–Sam
[PS17], Miller–Patzt–Wilson [MPW17] and others to study families like congruence subgroups or Torelli
groups.

For simplicity, I will describe the argument in the case of the pure braid group. I want to stress that
this is not an efficient way to prove stability for the pure braid group, but merely intended to illustrate
the argument – an argument which has the advantage that it adapts well to other categories and more
complicated applications. The following theorem follows (for example) from work of Church–Ellenberg–
Farb.

Theorem 12 (eg, Church–Ellenberg–Farb [CEF15]). For each homological degree q, the sequence {Hq(PBn;Q)}n
of Sn–representations is representation stable: it is finitely generated as an FI–module with generators in degree
≤ q and no relations.

Proof. Straight-forward from Arnold’s computation [Arn69].

The following method would allow us to prove a finite presentation result for {Hq(PBn;Q)} even if
we did not have an explicit computation of the cohomology groups. The proof can be used to give an
explicit stable range, but for simplicity here I will not keep track of the bounds. We will prove:

Theorem 13. For each homological degree q, the sequence of Sn–representations {Hq(PBn;Q)} forms a finitely
presented FI–module (with bounds on generation and relation degree that can be made explicit).

Remark 14. The same proof should also hold when we replace PBn with the pure mapping class group
of a manifold with boundary and n marked points, or if we replace PBn with the surface braid group
of a surface with nonempty boundary. These results are due to Jiménez Rolland [JR15] or (eg) Church–
Ellenberg–Farb [CEF15].

A key tool to the proof are the following functor homology groups.

Functor homology

Definition 15. Given an FI–module V , define an associated augmented chain complex of FI–modules by

C̃−1(V )n = Vn

C̃p(V )n =
⊕

f :[p+1]↪→[n]

V[n]\im(f)

∼= IndSn

Sn−(p+1)
Vn−(p+1)

with differential

d : C̃p(V )→ C̃p−1(V )n

d =

p+1∑
i=1

(−1)i+1di

where
di :

⊕
f :[p+1]↪→[n]

V[n]\im(f) −→
⊕

f=f |[p+1]\{i}

V[n]\im(f)

is defined by forgetting the element i from the domain of the injective map f , and using the maps

V[n]\im(f) −→ V[n]\im(f)

induced by the inclusion of sets(
[n]\im(f)

)
↪→
(
[n]\im(f)

)
=
(
[n]\im(f)

)
∪ {f(i)}.
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The utility of this chain complex comes from the significance of its homology groups in degrees −1
and 0.3 Consider the tail of the complex

· · · −→ C̃0(V )n −→ C̃−1(V )n −→ 0.

|| ||
IndSn

Sn−1
Vn−1 Vn−1

Hence,

H̃−1(V )n = 0 for n > N

⇐⇒ IndSn

Sn−1
Vn−1 −→ Vn−1 surjects for n > N

⇐⇒ V is generated in degree ≤ N

and thus the vanishing of H̃−1(V )n controls the generation degree of V . Similarly, it turns out that the
vanishing of H̃−1(V )n and H̃0(V )n control the relation degree of V .

Fact 16. H̃−1(V )n = H̃0(V )n = 0 for n >> 0 ⇐⇒ V has small presentation degree

We note that it is possible to bound the degree of generators and relators explicitly in terms of the
support of H̃−1(V )n and H̃0(V )n in n. Hence, to prove Theorem 13, it suffices to do the following.

Goal 17. Fix q, and let V be the FI–module {Hq(PBn;Q)}n. Show that H̃−1(V )n and H̃0(V )n vanish for
n >> q.

We will accomplish this goal as follows. From the short exact sequences

1 −→ PBn −→ Bn −→ Sn −→ 1

we can construct a double complex for each n. The two associated spectral sequences both converge to
the same limit. To prove that this limit vanishes in a range, we study the E1 pages of the first spectral
sequence. The statement that the groups E1

p,q vanish for small p + q reduces to showing that a certain
simplicial complex associated to the braid group is highly connected – and this result was proven by
Hatcher–Wahl as part of a special case of a homological stability proof for mapping class groups.

Proposition 18 (Hatcher–Wahl [HW10]). These spectral sequences converge to zero for n >> p+ q.

The second spectral sequence has E2 page

E2
p,q(n) = H̃p

(
Hq(PB•;Z)

)
n

In other words, the qth row of thisE2 page is the functor homology groups of the FI–moduleHq(PBn;Z).

3 H̃−1(H3(PB•))n H̃0(H3(PB•))n H̃1(H3(PB•))n H̃3(Hq(PB•))n

2 H̃−1(H2(PB•))n H̃0(H2(PB•))n H̃1(H2(PB•))n H̃2(H2(PB•))n

1 H̃−1(H1(PB•))n H̃0(H1(PB•))n H̃1(H1(PB•))n H̃2(H1(PB•))n

0 H̃−1(H0(PB•))n H̃0(H0(PB•))n H̃1(H0(PB•))n H̃2(H0(PB•))n

−1 0 1 2

3Confusingly, the homology groups H̃−1(V ) corresponds to the functor FI–Mod → FI–Mod denoted by H0(V ) by Church–
Ellenberg–Farb [CEF15]. The indexing convention used here is natural if we view our chain complex as arising from a semi-
simplicial object. Church–Ellenberg [CE17] and others study the derived functors of the functor H0(V ), which are closely related
but not the same as the homology groups H̃p(V ) defined here.

7



Since H0(PBn) = Z for all n, the functor homology groups H̃p(H0(PBn)) all vanish for n >> p;
this follows from a classical result of Farmer [Far79] proving that a certain semi-simplicial set called the
complex of injective words is highly connected.

Now, observe that once n is large enough, the first four terms in the bottom row q = 0 vanish, and
there is no opportunity for nonzero differentials to or from the groups

E2
−1,1 = H̃−1

(
H1(PB•)

)
n

or E2
0,1 = H̃0

(
H1(PB•)

)
n

3 H̃−1(H3(PB•))n H̃0(H3(PB•))n H̃1(H3(PB•))n H̃3(Hq(PB•))n

2 H̃−1(H2(PB•))n H̃0(H2(PB•))n H̃1(H2(PB•))n H̃2(H2(PB•))n

1 H̃−1(H1(PB•))n H̃0(H1(PB•))n H̃1(H1(PB•))n H̃2(H1(PB•))n

0 0 0 0 0

−1 0 1 2

Since (when n is large enough) the spectral sequence converges to zero at these two points E∗−1,1 and
E∗0,1, we conclude that the groups H̃−1(H1(PB•))n and H̃0(H1(PB•))n must vanish for large n.

This proves the desired result for the case q = 1. Now, to propogate the argument, we can invoke the
following fact.

Fact 19 (Variation on Putman [Put15] or Church–Ellenberg [CE17]; see (eg) Patzt [Pat17]). Let V be an
FI–module. If H̃−1(V )n = H̃0(V )n = 0 for n >> 0, then H̃p(V )n = 0 for n >> p.

Since we’ve deduced that H̃−1(H1(PB•))n and H̃0(H1(PB•))n vanish for n large, this fact implies
that the second row q = 1 of the E2 page must also vanish in a range4. We can therefore repeat the
argument to conclude the vanishing of the groups H̃−1

(
H2(PB•)

)
n

and H̃0

(
H2(PB•)

)
n

vanish for n
sufficiently large.

By induction on the row q, we can show that H̃−1
(
Hq(PB•)

)
n

and H̃0

(
Hq(PB•)

)
n

vanish for n >>
q, which accomplishes Goal 17 and proves the theorem.
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[Ara16] Alberto Arabia, Espaces de configuration généralisés. Espaces topologiques i-acycliques. Suites spectrales “basiques”, arXiv
preprint arXiv:1609.00522 (2016).

[Arn69] V. I. Arnol’d, The cohomology ring of the colored braid group, Mathematical Notes 5 (1969), no. 2, 138–140.

[Bah18] Cihan Bahran, An improvement in the linear stable ranges for ordered configuration spaces, arXiv preprint arXiv:1801.03302
(2018).

[BD12] Søren K Boldsen and Mia Hauge Dollerup, Towards representation stability for the second homology of the Torelli group,
Geometry & Topology 16 (2012), no. 3, 1725–1765.

[BEAH17] Daniel Barter, Inna Entova-Aizenbud, and Thorsten Heidersdorf, Deligne categories and representations of the infinite
symmetric group, arXiv preprint arXiv:1706.03645 (2017).

4Since the groups Vn = Hq(PBn) actually form FI]–modules, we have a stronger result that does not require Fact 19: the
groups H̃p(V ) vanish in a range determined by H̃−1(V ). Specifically,

if H̃−1(V )n = 0 for n > N then H̃p(V )n = 0 for n > p+ 1 +N.

To illustrate the general Quillen argument, however, we will pretend that we are not aware of this extra structure on the FI–module
Hq(PB•).

8



[Ber16] Andrew Berget, Internal zonotopal algebras and the monomial reflection groups, arXiv preprint arXiv:1611.06446 (2016).

[Bib16] Christin Bibby, Representation stability for the cohomology of arrangements associated to root systems, arXiv preprint
arXiv:1603.08131, to appear in the Journal of Algebraic Combinatorics (2016).

[Cas16] Kevin Casto, FIG–modules, orbit configuration spaces, and complex reflection groups, arXiv preprint arXiv:1608.06317 (2016).

[Cas17a] , FIG-modules and arithmetic statistics, arXiv preprint arXiv:1703.07295 (2017).

[Cas17b] , Representation stability and arithmetic statistics of spaces of 0-cycles, arXiv preprint arXiv:1710.06850 (2017).
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arXiv:1210.4030 (2012).

[DV13] , Foncteurs faiblement polynomiaux, International Mathematics Research Notices (2013).

[EWG15] Jordan S Ellenberg and John D Wiltshire-Gordon, Algebraic structures on cohomology of configuration spaces of manifolds
with flows, arXiv preprint arXiv:1508.02430 (2015).

[Far79] Frank D. Farmer, Cellular homology for posets, Math. Japon. 23 (1978/79), no. 6, 607–613. MR 529895 (82k:18013)
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