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The Jones polynomial is a celebrated invariant of a knot (or link)
in ordinary three-dimensional space, originally discovered by V. F.
R. Jones around 1983 as an o↵shoot of his work on von Neumann
algebras.

Many descriptions and generalizations of the Jones
polynomial were discovered in the years immediately after Jones’s
work. They more or less all involved statistical mechanics or
two-dimensional mathematical physics in one way or another – for
example, Jones’s original work involved Temperley-Lieb algebras of
statistical mechanics. I do not want to assume that the Jones
polynomial is familiar to everyone, so I will explain one of the
original definitions.



The Jones polynomial is a celebrated invariant of a knot (or link)
in ordinary three-dimensional space, originally discovered by V. F.
R. Jones around 1983 as an o↵shoot of his work on von Neumann
algebras. Many descriptions and generalizations of the Jones
polynomial were discovered in the years immediately after Jones’s
work.

They more or less all involved statistical mechanics or
two-dimensional mathematical physics in one way or another – for
example, Jones’s original work involved Temperley-Lieb algebras of
statistical mechanics. I do not want to assume that the Jones
polynomial is familiar to everyone, so I will explain one of the
original definitions.



The Jones polynomial is a celebrated invariant of a knot (or link)
in ordinary three-dimensional space, originally discovered by V. F.
R. Jones around 1983 as an o↵shoot of his work on von Neumann
algebras. Many descriptions and generalizations of the Jones
polynomial were discovered in the years immediately after Jones’s
work. They more or less all involved statistical mechanics or
two-dimensional mathematical physics in one way or another – for
example, Jones’s original work involved Temperley-Lieb algebras of
statistical mechanics.

I do not want to assume that the Jones
polynomial is familiar to everyone, so I will explain one of the
original definitions.



The Jones polynomial is a celebrated invariant of a knot (or link)
in ordinary three-dimensional space, originally discovered by V. F.
R. Jones around 1983 as an o↵shoot of his work on von Neumann
algebras. Many descriptions and generalizations of the Jones
polynomial were discovered in the years immediately after Jones’s
work. They more or less all involved statistical mechanics or
two-dimensional mathematical physics in one way or another – for
example, Jones’s original work involved Temperley-Lieb algebras of
statistical mechanics. I do not want to assume that the Jones
polynomial is familiar to everyone, so I will explain one of the
original definitions.



For brevity, I will explain the “vertex model,” developed by L.
Kau↵man and others:

Given a projection of a knot to a
two-dimensional plane with only simple crossings and only simple
maxima and minima of the height
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one labels the intervals between crossings, maxima, and minima by
symbols + or �.

One sums over all such labelings with a suitable
factor for each crossing

(0 for labelings in which the number of + at the bottom doesn’t
equal the number at the top.)
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and for each creation or annihilation event
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The sum is a sort of finite version of the sums of statistical
mechanics,

and in this case it is clear that the sum is a Laurent
polynomial in q

1/2, known as the Jones polynomial. (A slightly
di↵erent normalization, in the case of a knot, gives a Laurent
polynomial in q.) The output of the finite sum does not depend on
the choice of how the knot was projected to the plane (modulo a
detail about a “framing” of the knot) and so the Jones polynomial
is a knot-invariant.
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Another relation of the Jones polynomial to two-dimensional
mathematical physics was found by A. Tsuchiya and Y. Kanie:
they showed that Jones’s representations of the braid group (which
can be used to give a di↵erent definition of the Jones polynomial)
were the ones that arise from “conformal blocks” of
two-dimensional conformal field theory and the associated
Knizhnik-Zamolodchikov equations.

Their work showed that in
general a knot polynomial somewhat similar to that of Jones could
be associated to the choice of a simple Lie group G and a labeling
of a knot (or each component of a link) by an irreducible
representation R of G . (There were also other related viewpoints
like a description by quantum groups, also showing that these
invariants are associated to Lie groups and representations.)
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With these clues and some advice from M. F. Atiyah, I found in
1988 a description of the Jones polynomial in terms of
three-dimensional gauge theory.

Here we start with a compact Lie
group G (to avoid minor details let us take G to be simple and
simply-connected) and a G -bundle E ! M, where here M is an
oriented three-manifold (either compact or with ends that look like
R3). The connection has a “Chern-Simons invariant”

CS(A) =
1

4⇡

Z

M
Tr

✓
A ^ dA+

2

3
A ^ A ^ A

◆
.

(This formula for CS(A) is a little naive and assumes that the
bundle E has been trivialized and the connection A can be regarded
as a 1-form valued in the Lie algebra g of G .) All we really need to
know for now about CS(A) is that it is gauge-invariant mod 2⇡Z.
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The Feynman path integral now is formally an integral over the
infinite-dimensional a�ne space U of connections:

Zk(M) =
1

vol

Z

U
DA exp(ikCS(A)).

This is a basic construction in quantum field theory, though
unfortunately still di�cult to understand from a mathematical
point of view. k has to be an integer since CS(A) is only
gauge-invariant mod 2⇡Z. Formally Zk(M) is an invariant of an
oriented three-manifold; actually, if one follows the logic of what
physicists call “renormalization theory,” one finds that M must be
a “framed” three-manifold (with a simple behavior under change of
framing).



The Feynman path integral now is formally an integral over the
infinite-dimensional a�ne space U of connections:

Zk(M) =
1

vol

Z

U
DA exp(ikCS(A)).

This is a basic construction in quantum field theory, though
unfortunately still di�cult to understand from a mathematical
point of view.

k has to be an integer since CS(A) is only
gauge-invariant mod 2⇡Z. Formally Zk(M) is an invariant of an
oriented three-manifold; actually, if one follows the logic of what
physicists call “renormalization theory,” one finds that M must be
a “framed” three-manifold (with a simple behavior under change of
framing).



The Feynman path integral now is formally an integral over the
infinite-dimensional a�ne space U of connections:

Zk(M) =
1

vol

Z

U
DA exp(ikCS(A)).

This is a basic construction in quantum field theory, though
unfortunately still di�cult to understand from a mathematical
point of view. k has to be an integer since CS(A) is only
gauge-invariant mod 2⇡Z.

Formally Zk(M) is an invariant of an
oriented three-manifold; actually, if one follows the logic of what
physicists call “renormalization theory,” one finds that M must be
a “framed” three-manifold (with a simple behavior under change of
framing).



The Feynman path integral now is formally an integral over the
infinite-dimensional a�ne space U of connections:

Zk(M) =
1

vol

Z

U
DA exp(ikCS(A)).

This is a basic construction in quantum field theory, though
unfortunately still di�cult to understand from a mathematical
point of view. k has to be an integer since CS(A) is only
gauge-invariant mod 2⇡Z. Formally Zk(M) is an invariant of an
oriented three-manifold; actually, if one follows the logic of what
physicists call “renormalization theory,” one finds that M must be
a “framed” three-manifold (with a simple behavior under change of
framing).



To include a knot – that is an embedded oriented circle K ⇢ M –
we make use of the holonomy of the connection A around K .

We
pick an irreducible representation R of K and define

WR(K ) = TrR Hol(A,K ) = TrR P exp

I

K
A.

In the context of quantum field theory, this is called the Wilson
loop operator. Then we define a natural invariant of the pair M,K :

Zk(M;K ,R) =
1

vol

Z

U
DA exp(ikCS(A)) ·WR(K ).

This gives an invariant of the pair (M,K ), except that if one looks
more closely, one learns that both M and K should be framed.
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If we specialize to the case that M = R3, and we take G = SU(2)
and R to be the two-dimensional representation, then Zk(M;K ,R)
becomes the Jones polynomial, evaluated at

q = exp(2⇡i/(k + 2)).

(The analog for an arbitrary simple Lie group G is
q = exp(2⇡i/(k + h)ng), where ng is the ratio of length squared of
long and short roots of G .)

This is only a discrete set of values of
q, but of course these values are enough to determine a Laurent
polynomial.
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The argument that the invariant obtained from the
three-dimensional gauge theory agrees with the Jones polynomial
and its usual generalizations involved making contact with the
work of Tsuchiya and Kanie, who as I remarked before had
interpreted the Jones polynomial in terms of “conformal blocks” of
two-dimensional conformal field theory.

The resulting link between
three-dimensional gauge theory and two-dimensional conformal
field theory has also been important in condensed matter physics,
in studies of the quantum Hall e↵ect and related phenomena.
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The three-dimensional gauge theory gives a definition of the Jones
polynomial of a knot with manifest three-dimensional symmetry –
not relying on a projection to the plane, for example –

but there
actually were at least two things that many knot theorists did not
like about it. The first issue was simply that the framework of
integration over function spaces – though quite familiar to
physicists – is unfamiliar, and also not yet rigorous, mathematically.
(A version of this is one of the Clay Millennium Problems. Let me
add that in this particular theory, although the path integral is not
rigorous, it can be completely evaluated – to the satisfaction of
physicists.) The second issue was that this approach does not give
a direct explanation of why the Jones polynomial is a polynomial.
Most other approaches to the Jones polynomial – such as the
vertex model that we started with or the approach of Tsuchiya and
Kanie – do not obviously give a topological invariant but do
obviously give a Laurent polynomial in q.
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Actually, for most three-manifolds, the answer that comes from the
gauge theory is the right one.

It is special to knots in R3 that the
natural variable is q = exp(2⇡i/(k + h)) rather than k . The
quantum knot invariants on a generic three-manifold M depend
only on the integer k and do not have natural continuations to
functions of q, without losing some of the three-dimensional
symmetry. (In algebraic treatments, such as that of Reshitikhin
and Turaev via quantum groups, one can replace exp(2⇡i/(k + h))
by a more general k + h

th root of unity. The three-manifold
invariants have the same content.)
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25 years ago, it seemed that this was the state of a↵airs: the
gauge theory gives directly a good picture on a general oriented
three-manifold M, but if one wants to understand from
three-dimensional gauge theory the special things that happen for
knots in R3, one has to proceed by first relating the
three-dimensional gauge theory to some other approach (such as
that of Tsuchiya and Kanie using two-dimensional conformal field
theory).

However, around 2000, two developments gave clues that
there should be another explanation.
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One development was Khovanov homology, but there won’t be
time for it today; what I will say about Khovanov homology will be
tomorrow morning at the workshop.

The other development, which
began at roughly the same time, was the “volume conjecture,”
developed by R. Kashaev, H. Murakami and J. Murakami, S.
Gukov, and many others. What I will explain today started by
trying to understand the volume conjecture. I should stress that I
haven’t succeeded in finding a quantum field theory reason for the
volume conjecture (and I am not even entirely convinced it is
true), but as a result of understanding just a few preliminaries
concerning the volume conjecture, I stumbled on a new point of
view on the Jones polynomial. That is what I am really aiming to
tell you about. Given this, I will actually just give a hint or two
about what the volume conjecture says.
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true), but as a result of understanding just a few preliminaries
concerning the volume conjecture, I stumbled on a new point of
view on the Jones polynomial. That is what I am really aiming to
tell you about. Given this, I will actually just give a hint or two
about what the volume conjecture says.
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To orient ourselves, let us just ask how the basic integral

Zk(M) =
1

vol

Z

U
DA exp(ikCS(A))

behaves for large k .

It is an infinite-dimensional version of an
ordinary oscillatory integral such as the one that defines the Airy
function

F (k ; t) =

Z 1

�1
dx exp(ik(x3 + tx))

where we assume that k and t are real. Taking k ! 1 for fixed t,
F (k ; t) vanishes exponentially due to rapid oscillations if the
exponent has no real critical points (t > 0) and is asymptotically a
sum of oscillatory contributions from real critical points if there are
any (t < 0). The same logic applies to the infinite-dimensional
integral for Zk(M). The critical points of CS(A) are flat
connections, corresponding to homomorphisms ⇢ : ⇡1(M) ! G , so
the asymptotic behavior of Zk(M) for large k is given by a sum of
oscillatory contributions associated to such homomorphisms. (This
has been shown explicitly in examples by D. Freed and R. Gompf,
and by L. Je↵rey.).
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The volume conjecture arises if we specialize to the case of knots
in R3, so that k does not have to be an integer. Usually the case
G = SU(2) is assumed and we let R be the n-dimensional
representation of SU(2). (The corresponding knot invariant is
called the colored Jones polynomial.) Then we take k ! 1
through non-integer values, with fixed k/n.

A typical choice is

k = k0 + n

where k0 is a fixed complex number (while n ! 1). The large n

behavior is now a sum of contributions of complex critical points.
By a complex critical point, I mean simply a critical point of the
analytic continuation of the function CS(A).
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We make this analytic continuation by replacing the gauge group
G with its complexification, which I will call GC, replacing the
G -bundle E ! M by its complexification, which is a GC-bundle
EC ! M, and replacing the connection A on E by a connection A
on EC, which one can think of as a complex-valued connection.

Once we do this, the function CS(A) on the space U of
connections on E can be analytically continued to a holomorphic
function CS(A) on U , the space of connections on EC. This
function is defined by the “same formula” with A replaced by A:

CS(A) =
1

4⇡

Z

M
Tr

✓
AdA+

2

3
A ^A ^A

◆
.

On a general three-manifold M, a critical point of CS(A) is simply
a complex-valued flat connection, corresponding to a
homomorphism ⇢ : ⇡1(M) ! GC.
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In the case of the volume conjecture with M = R3, the
fundamental group is trivial, but we are supposed to also include a
holonomy or Wilson loop operator WR(K ) = TrR HolK (A) where
R is the n-dimensional representation of SU(2).

When we take
k ! 1 with k ⇠ n, this loop operator a↵ects what we should
mean by a “critical point.” To understand this properly, we should
use the description of a representation of a simple Lie group given
by the Borel-Weil-Bott theorem, and its interpretation in terms of
Feynman integrals. This would take us too far afield, and I will just
say the answer: the right notion of complex critical point for the
colored Jones polynomial is a homomorphism ⇡1(R3\K ) ! GC

with a conjugacy class for the monodromy around K that depends
on the ratio n/k . What is found in work on the “volume
conjecture” is that typically the colored Jones polynomial for
n ! 1 with k = k0 + n is governed by such a complex critical
point.
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Physicists know about various situations (involving “tunneling”
problems) in which a path integral is dominated by a complex
critical point, but usually this is a complex critical point that
makes an exponentially small contribution.

What really surprised
me about the volume conjecture is that, for many knots, the
dominant complex critical point makes an exponentially large

contribution. In other words, the colored Jones polynomial has
oscillatory behavior for n ! 1, k = k0 = n if k0 is an integer, but
it grows exponentially in this limit as soon as k0 is not an integer.
(Concretely, that is because kCS(A) has a negative imaginary
part, so exp(ikCS(A)) grows exponentially for large k .)
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This puzzled me for a while, but it turns out that one can find an
ordinary integral that does the same thing:

I (k , n) =

Z 2⇡

0

d✓

2⇡
e

ik✓
e

2in sin ✓.

This integral solves Bessel’s equation (as a function of n) for any
integer k . We want to think of k as an analog of the
integer-valued parameter in the Chern-Simons gauge theory that
we called by the same name. (The analogy between this toy
integral and the problem studied in the volume conjecture is
imperfect because in the toy problem, there is no reason for n to
be an integer.) If one take k , n to infinity with a fixed (real) ratio,
the integral has an oscillatory behavior, dominated by the critical
points of the exponent f = k✓ + 2n sin ✓, if k/n is such that there
are real critical points on the circle; if there are no such critical
points, the integral vanishes exponentially fast for large k .
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Now to imitate the situation considered in the volume conjecture,
we want to analytically continue away from integer values of k .

For our toy problem, this was done in the 19th century. We first
set z = e

i✓ so our integral becomes

I (k , n) =

I
dz

2⇡i
z

k�1 exp(n(z � z

�1).

Here the integral is over the unit circle. At this point, k is still an
integer. We want to get away from integer values while still
obeying Bessel’s equation. If Re n > 0, this can be done by
switching to the following integration contour:
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The integral on the new contour converges and it agrees with the
integral on the contour if k is an integer, since the extra parts of
the contour cancel. But the new contour gives a continuation away
from k 2 Z, still obeying Bessel’s equation.

But what is its
behavior for k , n ! 1 for fixed k/n? If k is an integer and n is
real, the large k behavior is oscillatory or exponentially damped,
depending on the ratio k/n, as I said before. But as soon as k is
not an integer (even if k and n remain real) the large k behavior
with fixed k/n can grow exponentially (for a certain range of k/n),
rather as one finds for the colored Jones polynomial. Unfortunately,
even though it is elementary, to fully explain this statement would
be a little too long. Instead I will just explain the technique one
can use to make this analysis, because this will show the technique
we will follow in taking a new look at the Jones polynomial.
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we will follow in taking a new look at the Jones polynomial.



We are trying to do an integral of the general form
Z

�

dz

2⇡iz
exp(kF (z))

where F (z) is a holomorphic function and � is a cycle, possibly not
compact, on which the integral converges.

In our case,

F (z) = log z + �(z � z

�1), � = n/k .

We note that because of the logarithm, F (z) is multi-valued. To
make the analysis properly, we should work on a cover of the
punctured z-plane parametrized by w = log z on which F is
single-valued:

F (w) = w + �(ew � e

�w ).

The next step is to find a useful description of all possible cycles
on which the desired integral, which now is

Z

�

dw

2⇡i
e

kF (w),

converges.
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Morse theory gives an answer to this question. We consider the
function h(w ,w) = Re(kF (w)) as a Morse function.

Its critical
points are simply the critical points of the holomorphic function F

and so in our example they obey

0 = 1 + �(ew + e

�w ).

The key step is now the following: To every critical point p of h,
we can define an integration cycle �p, called a Lefschetz thimble,
on which the integral we are trying to do converges.
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The Lefschetz thimble is defined via the gradient flow equation of
Morse theory.

We could use any complete metric on the w -plane in
defining this equation. If we use the obvious flat Kahler metric
ds2 = |dw |2, then the gradient flow equation is

dw

dt
= � @h

@w
,

where t is a new “time” coordinate. The Lefschetz thimble �p is
defined as the space of all values at t = 0 of solutions of the
gradient flow equation on the semi-infinite interval (�1, 0] that
start at p at t = �1.
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�p is not compact, but h = Re (kF (w)) goes to �1 at 1 along
�p.

So the integral

Ip =

Z

�p

dw

2⇡
exp(kF (w))

converges. Moreover the large k asymptotics of Ip is
straightforward:

Ip ⇠ exp(kF (p)) · (c0k�1/2 + . . . ),

because along �p, the real part of the exponent kF (w) has a
unique maximum at the point p.
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Any other cycle � along which the integral converges can be
expanded in terms of the Lefschetz thimbles:

� =
X

p

ap�p, ap 2 Z.

After computing the integers ap, it is straightforward to determine
the large k asymptotics of the integral over �, since the
asymptotics of the integrals over �p are known. Applying this
procedure to our integral

Z

�

dw

2⇡i
e

kF (w),

we learn what I said before: this integral has a qualitative behavior
similar to that of the colored Jones polynomial. The limit n ! 1,
k = k0 + n has very di↵erent behavior depending on whether k0 is
an integer. (If k0 is not an integer, the large k asymptotics is
dominated by two Lefschetz thimbles whose contributions cancel if
k0 is an integer.)
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At this stage, I hope it is fairly clear what we should do to
understand the analytic continuation to non-integer k of the
quantum invariants of knots in R3, and also to understand the
asymptotic behavior of the colored Jones polynomial that is
studied in the volume conjecture.

We should define Letschetz
thimbles in the space U of complex-valued connections, and in the
gauge theory definition of the Jones polynomial, we should replace
the integral over the space U of real connections with a sum of
integrals over Lefschetz thimbles.

However, it probably is not clear that this will actually lead to a
useful new understanding of the Jones polynomial. That was
certainly not clear to me at this stage.
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To define the Lefschetz thimbles we want, we need to consider a
gradient flow equation on the infinite-dimensional space U of
complex-valued connections, with Re(ikCS(A)) as a Morse
function.

Actually, I want to first practice with the case of gradient
flow on the infinite-dimensional space U of real connections (on a
G -bundle E ! M, M being a three-manifold), with the Morse
function CS(A). This case is actually familiar to researchers on
Donaldson and Floer theories and hence will be familiar to some of
you. A Riemannian metric on M induces a Riemannian metric on
U by

|�A|2 = �
Z

M
Tr �A ^ ?�A

where ? = ?3 is the Hodge star operator on the three-manifold M.
We will use this metric on U to define a gradient flow equation.
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The flow equation will be a di↵erential equation on the
four-manifold X = M ⇥ R, where R is parametrized by the “time”;
one can think of the flow equation as evolving a three-dimensional
connection in “time.”

Concretely, the flow equation is

@A

@t
= ��CS(A)

�A
= � ?3 F ,

where F = dA+ A ^ A is the curvature. Now a couple of miracles
happen: This equation a priori has no reason to be elliptic or to
have four-dimensional symmetry. But it turns out that the
equation is actually a gauge-fixed version of the instanton equation
F

+ = 0, which is elliptic modulo the gauge group and has full
four-dimensional symmetry (that is, it is naturally defined on any
oriented four-manifold X , not necessarily M ⇥ R for some M).
These miracles are very well known to resarchers on Donaldson and
Floer theory, where they play an important role.
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It turns out that the same miracles happen when we do gradient
flow on U , with the Morse function Re(ikCS(A)) and the obvious
Kahler metric on U

|�A|2 = �
Z

M
Tr �A ^ ?�A.

The gradient flow equation is a gauge-fixed version of an elliptic
di↵erential equation that has full four-dimensional symmetry. This
equation can be seen as a four-dimensional cousin of N. Hitchin’s
celebrated two-dimension equation. It is an equation for a pair
A,�, where A is a connection on a G -bundle E ! X , X being an
oriented four-manifold, and � 2 ⌦1(X , ad(E )) is a one-form on X

valued in ad(E ). The equations (for simplicity I take k real) read

F � � ^ �+ ?dA� = 0, dA ? � = 0.

They are flow equations for the three-dimensional connection
A = A+ i�.
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di↵erential equation that has full four-dimensional symmetry. This
equation can be seen as a four-dimensional cousin of N. Hitchin’s
celebrated two-dimension equation. It is an equation for a pair
A,�, where A is a connection on a G -bundle E ! X , X being an
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Something unexpected happens, though it took a while for the
implications to sink in.

I actually had studied these equations
before, in my work with A. Kapustin on gauge theory and
geometric Langlands. In a moment we will discuss why this
connection is relevant. (These equations – sometimes called the
KW equations – have been studied recently in a series of papers by
C. Taubes and also by M. Gagliardo and K. Uhlenbeck.)
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Now we can define a Lefschetz thimble for any choice of a complex
flat connection A⇢ on M, associated to ⇢ : ⇡1(M) ! GC.

We work
on the four-manifold X = M ⇥ R+

and define the thimble �⇢ to consist of all complex connections
A = A+ i� on M ⇥ {0} ⇢ M ⇥ R+ that are boundary values of
solutions of the KW equations on M ⇥ R+ that approach A⇢ at
infinity.
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For a general M, there are various choices of ⇢. To understand the
usual quantum knot invariants in this way, we would need to
express the integration cycle U ⇢ U as a linear combination of the
thimbles �⇢. This is technically tricky and also the sort of answer it
leads to is not so simple as there will be “Stokes phenomena.” (I
think it is likely that some things studied in the literature can be
understood in this way and I did some very special cases in my
paper on “Analytic Continuation Of Chern-Simons Theory.”)

However, now we can see what is special about knots in R3 (or S3,
but in a moment R3 will be better). Since the fundamental group
of R3 is trivial, any flat connection on R3 is gauge-equivalent to
the trivial one A = 0. There is only one Lefschetz thimble �0, and
hence instead of integration over U to define the Jones polynomial,
we can define the Jones polynomial by integration over �0.
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So the Jones polynomial is
Z

�0

DA exp(ikCS(A)) · TrR Hol(A,K )

where �0 is the space of solutions of the KW equations on
R3 ⇥ R+ that vanish on M ⇥ {1} and A is the restriction of
A+ i� to M ⇥ {0}:



My work with Kapustin involved a twisted version of N = 4 super
Yang-Mills theory in four dimensions.

The twisted theory
“localizes” on the space of solutions of the KW equations. This
space (if we require our connections to vanish on R3 ⇥ {1}) is the
Lefschetz thimble that we have to integrate over to get the Jones
polynomial. The upshot is that the Jones polynomial for a knot in
R3 can be computed from a path integral of N = 4 super
Yang-Mills theory on X = R3 ⇥ R+, with a slightly unusual
boundary condition on R3 ⇥ {0}.
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Unfortunately, until quantum field theory is more familiar, this is
going to be a hard answer for mathematicians to understand – just
like the formula for the Jones polynomial by integration over the
space U of real connections – because infinite-dimensional
integration is unfamiliar.

(But the conclusion we just reached
could be verified mathematically, in an asymptotic expansion near
k = 1 or q = 1. Here one would run into an expansion in
Feynman diagrams as in the work of Kontsevich and others on
knot invariants related to the gauge theory.)
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However, one more step brings us into a world that is accessible
mathematically, and also gives a new explanation of why the Jones
polynomial is a Laurent polynomial in q.

The step in question was
also a key step in my work with Kapustin, and, more generally, in
much of the work of physicists on the supersymmetric gauge
theory in question. This is electric-magnetic duality, the
four-dimensional analog of mirror symmetry in two dimensions.
N = 4 super Yang-Mills theory with gauge group G and “coupling
parameter” ⌧ is equivalent to the same theory with gauge group
G

_ – the Langlands or GNO dual of G – and coupling parameter
⌧_ = �1/ng⌧ (ng is as before the ratio of length squared of long
and short roots).
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To learn anything about our problem, we need to know what
happens to the boundary condition at R3 ⇥ {0} under
electric-magnetic duality. (This question is the analog of asking –
in mirror symmetry – what is the object in the Fukaya category
that is mirror to a given coherent sheaf.)

For the boundary
condition that appeared in the derivation we have just given, the
dual boundary condition was described by D. Gaiotto and me a
number of years ago. It is a somewhat unusual elliptic boundary
condition that is related to the work of W. Nahm on monopoles; I
will describe it at the workshop tomorrow.For now, just let me say
that this boundary condition is similar to a standard local elliptic
boundary condition and has the e↵ect of reducing to
finite-dimensional spaces of solutions of the KW equations.
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In this situation

after making the duality transformation,

the moduli space of
solutions has expected dimension 0 and we just have to “count”
(with signs, as in Donaldson theory) the number bn of solutions for
a given value n of the second Chern class. The boundary conditions
depend on the knot K and the choice of the representation R by
which it is labeled (some details at the workshop tomorrow).
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The path integral gives

Zq(K ;R) =
X

n

bnq
n

where q = exp(2⇡i/ngk) and bn is the “number” of solutions for
given second Chern class n. This exhibits the Jones polynomial
and the related quantum invariants of knots in three dimensions as
“Laurent polynomials” in q with integer coe�cients.

I put
“Laurent polynomials” in quotes because the powers of q are
shifted from integers in a way that depends only on the
representations, so for instance the Jones polynomial of a knot
with this normalization is q1/2 times a Laurent series in q.
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