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ABSTRACT

We describe a paradigm for numerical computing, based on exact computation.
This emerging paradigm has many advantages compared to the standard paradigm
which is based on fixed-precision. We first survey the literature on multiprecision
number packages, a prerequisite for exact computation. Next we survey some recent
applications of this paradigm. Finally, we outline some basic theory and techniques
in this paradigm.

1This paper will appear as a chapter in the 2nd edition of Computing in Euclidean Geometry,
edited by D.-Z. Du and F.K. Hwang, published by World Scientific Press, 1994.



1. Two Numerical Computing Paradigms

Computation has always been intimately associated with numbers: computability
theory was early on formulated as a theory of computable numbers, the first com-
puters have been number crunchers and the original mass-produced computers were
pocket calculators. Although one’s first exposure to computers today is likely to be
some non-numerical application, numerical computation remains a major application
of computers. In particular, the emerging inter-disciplinary area of scientific com-
putation is predominantly numerical. A newly inaugurated magazine from IEEE,
Computational Science and Engineering, covers the spectrum of activities defining
the subject (see the lead article by Rice [67] and others). Some observers of science
are beginning to call “computation” as represented in scientific computing the “third
scientific method”, adding to the traditional methods of theory and experimentation
[31]. The bulk of scientific computation is based on the fixed precision paradigm
(f.p. paradigm) of computation. In the simplest form, this paradigm assumes that
some fixed precision (usually machine-dependent) is given for the representation of
numbers. Subject to this requirement, the user may use whatever devices suitable for
reducing the inevitable rounding errors. This leads to two basic activities: analysis
of the errors in f.p. computations and study of techniques to restructure f.p. com-
putations to minimize the errors. A mild form of fixed-precision allows the user to
specify a precision in advance of a computation; subsequent operations are carried
out to that precision and the algorithm does not adapt to the precision used. Many
multiprecision packages (for instance, Brent’s MP [16] or Bailey’s MPFUN [5], reviewed
in the next section) are designed to be used under this mild form of f.p. paradigm.

Today, the de facto standard of the fixed precision paradigm is some form of
floating-point representation. As such, the reader would not go far astray by read-
ing the abbreviation “f.p.” as “floating-point”. It turns out that the best way to
implement floating-point arithmetic is far from obvious. Consequently, with the pro-
liferation of computer architectures this gives rise to severe problems of portability
of numerical code. The widely accepted IEEE standard for f.p. arithmetic (see [65,
Appendix A]) is a big step towards containing this issue of portability. In effect,
it makes the errors in f.p. computation machine-independent. But the fundamental
source of error in f.p. computation remains intact.

There are other ways of using any given fixed amount of precision. In fact,
floating-point representation was originally considered and rejected by von Neumann
in favor of the fixed-point representation. It is generally attributed to the extensive
backward error analyses of Wilkinson that floating-point computation became under-
stood and widely accepted [43]. Specialized floating-point hardware has become a
standard in modern workstations. The “idea” of floating-point representation is to
decouple significance from magnitude: with a given precision, floating-point numbers
can represent both numbers of large magnitude with few bits of significance or con-
versely, small magnitude and many bits of significance. We can take its idea to a



logical limit – one version of this idea is the level index arithmetic [23] (or, a variant
called symmetric level-index arithmetic [24]). Usually, these systems are developed
within the fixed-precision framework; in this case, it must eventually face the same
problems of round-off error. Implementation of these arithmetics are expected to be
more complicated, but see [78].

Nonrobustness Issues. Even with the best designed standards, rather intractable
problems of rounding errors seems to haunt the f.p. paradigm. Notice that rounding
errors in individual arithmetic operations is generally not regarded as problematic
per se; what concerns us is the build-up of errors and their complicated interaction
within the logic of a computation that ultimately leading to catastrophic errors. We
can classify the approaches to “robust f.p. algorithms” under two broad categories.

(I) Arithmetic Level: A large variety of techniques such as the use of double
extended precision, guard-bits, gradual underflow, etc, can be introduced to more
effectively use the available precision. These can often be implemented in hardware.
See the survey [35] for a discussion of these techniques and the IEEE standard. An
interesting idea from Bohlender, et al [11]) is the exact floating point semantics in
which an arithmetic operation returns the lower order bits as well as the usual higher
order bits. Even here, rounding errors occur for the division and square-root opera-
tion. The use of level index arithmetic noted above seems to go a long way towards
delaying the inevitable catastrophic build-up of errors. Interval arithmetic is another
well-known approach.

(II) Geometric Level: Hoffmann [49] surveys several of the approaches here.
For instance, a fairly general paradigm is to classify the data (input as well as com-
puted) into combinatorial and numerical, and to give primacy to the former when
making decisions. One interpretation of this idea is that we are willing to perturb the
numerical data in order to preserve the combinatorial data, thereby avoiding “topo-
logical inconsistency”. This is possible in simple cases, but in general, reasoning about
the combinatorial structures seems intractable. Another approach is to invent some
kind of “approximate geometry” and map the original geometry into this approxima-
tion. Unfortunately, most proposed approximate geometries (even for a concept such
as a “line” [85]) have limited applicability and are invariably difficult to reason with.

In [85], we concluded that “robustness” for geometric algorithms (except in
limited contexts) is generally infeasible under the f.p. paradigm. This seems justifiable
in the face of the wide-spread failure to give a satisfactory solution to non-robustness
issues. In fact, even without asking for a general solution, robust solutions to specific
key problems are not forthcoming (e.g., Yu [87, abstract and conclusion] suggests
that the prospects for robust Boolean algorithms for polyhedral solids are still in the
distant future). Despite this negative conclusion, it is evident that f.p. computation
is extremely useful. This is especially true for many areas of scientific computation
where the data itself is inexact, and the phenomenon to be modeled is too complex
for exact answers. The role of computation in such applications is, to paraphrase a



dictum of the numerical analyst Hamming, “to produce insight, not numbers”. In
such situations, even the widespread but ad hoc practice2 of “epsilon tweaking” has
some value.

Alternative to f.p. paradigm. But what shall we do in the applications and
occasions when we really would need to know exact answers (bearing in mind that
practically no answers derived from a reasonably complex f.p. computation are guar-
anteed)? This brings us to what we believe to be the antidote to non-robustness: the
exact computation paradigm. In the simplest form, this paradigm guarantees that (a)
all numerical values are represented exactly and (b) all branching decisions are error-
free. It is immediate from (a) and (b) that multiprecision arithmetic is a prerequisite
for exact computation. But notice that the use of multiprecision arithmetic per se is
no guarantee that a computational method is exact.

There is naturally a price to be paid for using exact computation, notably a
slow-down in performance. This is unavoidable for some applications. Many prob-
lems in computer algebra and computational number theory falls under this category
because only exact answers make sense (e.g., testing irreducibility of a polynomial).
There are also applications for which we cannot afford any significant slow-down – we
say such applications are cycle-critical. Clearly, calling an application “cycle-critical”
is a matter of degree and depends on the computational resources available. With in-
creasing computing power, more and more applications will no longer be cycle-critical.
Other factors such as robustness, user-friendliness, reusability of code become more
important for non cycle-critical applications. Of course, our interest is in applications
where robustness is at issue. The simple form of the f.p. paradigm was developed in
the early days of computers for the good reason that most applications then appears
to be cycle-critical. To see how far we have advanced, there was a time when each
single-precision multiplication is considered a valuable resource! One early advocate
of exact computation is G.E. Collins who said in a slightly different context [25] that
using integers of arbitrary size is “natural since computers are now fast enough that
any restrictions imposed by the word length of the computer are artificial and un-
necessary”. Still, we must acknowledge that cycle-critical applications will always be
with us. Therefore it is important to target exact computation for those application
areas for which continued reliance on the f.p. paradigm no longer makes sense.

Weak form of exact computation. One could do exact computation in a weak
form: before the actual computation begins, one precomputes some precision t to
represent numbers and then one proceeds almost as in a f.p. computation. This weak
form suffices in many applications. For instance, to compute the determinant of an
n× n matrix, setting the precision t to nL + n lg n bits (assuming the input numbers

2We refer to the existence of small constants (epsilons) in f.p. codes that practitioner use to
decide when a number ought to be regarded as zero. These epsilons are determined empirically, and
clearly the situation cries out for some principled approach.



are L bit integers) is sufficient to give the exact answer, assuming the straightforward
method of evaluating a determinant as a polynomial in n! terms. This method is useful
when n is a small constant (n ≤ 5 for many problems in computational geometry).
But this begs the question: how is the previous “mild form” of f.p. paradigm different
from this “weak form” of exact paradigm? Sometimes there is no real difference. For
example, in the case of evaluating determinants, if n were fixed and we happen to pick
a precision large enough so that the result is exact, then it is pedantic to distinguish
the 2 forms. On the other hand, if n is variable, then the mild form can never choose
a precision that will give exact answers for all inputs. Ultimately, what makes a
computation fall under the exact paradigm is in the intent of the user. The intent of
the mild f.p. paradigm is best summed up as follows. Brent [16, p. 65], commenting
on what it means to compute to precision t using his package MP, says: “our aim was
not to provide routines which always gives t correctly rounded digits; there is no need
for this because t may easily be increased if necessary”. Presumably, most users pick
t by trial and error. In contrast, the user of the weak exact computation paradigm
must precede his algorithm design with an analysis of the value of t sufficient to ensure
exact results. Although it is not always obvious what an optimal t should be, the
theory of root bounds (section 6) can give safe choices.

We believe that the exact computation paradigm will grow3 in importance,
beyond its traditional domains such as computer algebra. In order to make the exact
paradigm take4 its “rightful place” next to the f.p. paradigm, many new computa-
tional techniques must be developed. Perhaps the first step is to disspell the naive
view that exact computation is “only” about building better multiprecision pack-
ages, although that is a prerequisite. Instead, we have to examine the support of
higher-level constructs. Indeed, the higher level constructs may lead to modified or-
ganization of traditional multiprecision packages. One may say that the fundamental
goal of exact computation research is that of controlling numerical precision: the term
precision-driven computation may be used to describe this goal. In section 6, we see
one manifestation of this idea.

In this article, we shall survey and explore the fundamental ideas of exact
computation. In section 2, we review the literature on arbitrary precision number
packages. Next we survey previous work that applies exact computation in section
3. This is mostly work in computational geometry although we noted some other
interesting areas. We outline a theoretical framework for exact computation in section
4. In sections 5 and 6, we describe some fundamental techniques of exact computation.
We conclude in section 7.

3Given that the present dominant position of the f.p. paradigm seems unassailable [65, Goldberg,
p. A-12], perhaps this remark cannot be proved wrong.

4Roughly speaking, the “rightful place” amounts to having both paradigms equally developed
so that given any application, and at any specified computational power/resource, one can evaluate
whether to use one or the other paradigm.



2. Arbitrary Precision Numbers

Since arbitrary precision numerical computation is the underpinning for exact compu-
tation, it behooves us to survey the literature on their implementation. This is mostly
implemented in software, perhaps embedded into a computer language. We will not
treat hardware implementations, which usually amount to specialized hardware for
very large (rather than arbitrary size) integers, often used in applications such as
cryptography. For instance, [20] describes a 256-bit ALU that can be dynamically
reconfigured by a program. Furthermore, we will only discuss the 4 basic arithmetic
operations, even if the packages have more advanced features such as algebraic num-
ber manipulations (e.g., [1]).

2.1. Number Representations

Depending on the application domain, numerical computing requires the manipula-
tion of integer, rational, real and complex numbers. Since the earliest days of FORTRAN,
computer programmers have been offered an option of two basic numeric data types:
the fixed-size integers and fixed-size floating-point values. These facilities correspond
roughly to the mathematical concepts of integers and reals (indeed, FORTRAN, Pascal
and others call these fixed-size representations Integer and Real). These representa-
tions are well-known, but we will mention a few points about them to illustrate some
issues which will arise later.

Fixed-Size Integers. The fixed size representation using m bits can only represent
2m different values. Since the integers are well ordered, it seems natural to represent
a set of contiguous values, typically the signed values −(2m−1) . . . (2m−1 − 1) or the
unsigned values 0 . . . (2m − 1). There are several different ways to represent signed
values using the available bits:

1. sign and magnitude

2. one’s complement

3. two’s complement

4. implicit subtraction

As long as the set of values are the same, and the results of the operations are the
same, these differences in representation are unimportant to the user of the fixed-
size integer type. But no finite subset of numbers (except the trivial set {0}) is
closed under addition and multiplication. In case of fixed-size integers, when an
operation results in a value that is not representable, we say that an integer overflow
has occurred. The system can

1. silently provide an incorrect value (perhaps the best possible),



2. provide an incorrect value, but warn the user by raising an exception or setting
a condition flag, or

3. warn the user, and make the correct answer available in an alternate representa-
tion (often as a pair of m-bit integers representing the high-order and low-order
bits).

As a minor concession to the need for different precisions in computation,
the user is often presented with a limited choice for the number m of bits. Usually
m ∈ {16, 32, 64}. If integer overflow occurs using a smaller size, the user can repeat
the calculation using larger fixed-size integers.

Fixed-Size Floating-Point Numbers. Floating-point numbers represent an at-
tempt to provide a larger range of numbers. Each system F of fixed-size floating-point
numbers is characterized by four integer parameters,

F = F (b, p, emin, emax)

where b is the base, p the precision or length of the significand, emin and emax are the
minimum and maximum exponent. A number x ∈ F (b, p, emin, emax) is represented
by a pair (e, f) of integers where emin ≤ e ≤ emax and f = ±(d−1d−2 · · ·d−p)b in
base b notation. The real number represented by (e, f) is ±(0.d−1d−2 · · · d−p)b · be.
Typically, b is 10 (for ease of human interface) or some power of 2 (for efficient
implementation). In a fixed-size representation using m bits, there is once again at
most 2m different values that can be represented. After choosing b, the choice of
the parameters p, emin, emax is principally one of trading off higher precision with
a larger range of numbers that can be approximated. Again, operations can result
in non-representable numbers. There are now two possibilities: as in the integer
case, we have overflow if the magnitude of the result is too large. We can also have
underflow if the value falls in between two consecutive representable numbers. For
instance, (0.12)10 and (0.0034)10 are representable numbers in F (10, 2,−2, 2), but
their sum (0.1234)10 is not representable. (Our examples normally assumes base
10, so the subscript 10 may be omitted.) We must then systematically pick one
of the two neighboring representable numbers, 0.12 or 0.13, as the rounded result.
The computation is generally not halted for underflows, except possibly when the
underflow occurs in the neighborhood of zero. In the excellent survey [42], Goldberg
describes this rounding as the “characteristic feature of floating-point computation”.

Rump ([69], cited in [2]) provides a good example of an expression which is
evaluated incorrectly using ordinary floating-point arithmetic. Let

f = 333.75b6 + a2(11a2b2 − b6 − 121b4 − 2) + 5.5b8 +
a

2b

with
a = 77617.0 and b = 33096.0.



Rump evaluated this expression using FORTRAN on an IBM System 370 mainframe
using single, double, and extended precision. In all three cases, the computed value
began with the digits:

f = 1.172603.

Unfortunately, this consensus valuation is incorrect. The correct value (to 40 decimal
digits) is

f = −0.827396059946821368141165095479816291999.

We duplicated this test using double-precision IEEE floating-point on a SPARC
workstation. It evaluated f as −1.18059e + 21. The sign is right, but the magnitude
is a little bit too large.

We conclude this section by noting that there are alternative representations
of real numbers. Usually, they amount to giving the set of representable numbers an
even greater dynamic range. The most notable of these is level-index arithmetic [23]
(or, a variant called symmetric level-index arithmetic [24]). Usually, these systems
are developed within the fixed-precision framework; in this case, it must eventually
face same problems of round-off error. Implementation of such arithmetic is expected
to be more complicated, but see [78].

2.2. Multiprecision integer and rational numbers

Multiprecision integers is the computer version of the mathematical concept: barring
storage limitations, every integer can be represented. In practice, the storage lim-
itation of a computer is often not the most critical in computations involving such
integers. Hence, implementors often find it convenient to put some upper limit on
the maximum size of these integers.

The representation of multiprecision integers naturally requires a sequence of
fixed-sized machine integers. There are two obvious ways to implement this in con-
ventional programming languages: as a linked list or as an array. The former is more
flexible but uses more storage and is slower because of the additional indirection
of pointers. It is possible to combine these two approaches at the expense of the
complexity of the algorithms. Traditionally, the library routines implementing mul-
tiprecision integers are called “BigNumber” or “BigInteger” packages. The extension
from multiprecision integers to rational numbers is usually straightforward, so we will
normally only focus on the integer case.

BigNumber packages can further be distinguished between those that fixes a
maximum length for the integers (such systems are likely to use arrays) versus those
that dynamically allocate storage for the integers as needed (linked lists is ideal for
this). The former seems to be useful when we want efficiency and exploit the special
nature of the computation. For instance, this is useful for bounded-depth geometric
algorithms [85, 40]

One of the earliest papers on BigNumber packages is the 1960 paper by Pope
and Stein [66]. Most computer systems provides at least one such package in their



library. Unix systems distributed from AT&T comes with a package called mp. A
carefully designed and exceptionally well-documented system [73] called BigNum was
jointly developed by INRIA and Digital Paris Research Laboratory. This system,
which is available via anonymous ftp, tries to balance the demands of efficiency and
portability: it is written in C with a small kernel in assembly.

There is another direction that is worth mentioning. Most BigNum packages
assumes the base b representation of integers, where b is a parameter usually chosen
to be a power of 10 or of 2. A number n is represented by a sequence of digits,
(dℓ, dℓ−1, . . . , d1, d0) where di ∈ {0, 1, . . . , b− 1}. For theoretical reasons (e.g., [81]) as
well as for efficiency (e.g., [40]), it is often desirable to use a redundant representation.

2.3. Multiple-Precision Floating-Point Arithmetic

Since the exponent and significand of floating-point numbers are integers, the idea
of multiple-precision floating-point numbers follows naturally from multiple-precision
integers. In fact, Pope and Stein [66] mentions the possibility of extending multiple-
precision numbers to floating-point.

Using more bits of precision allows one to compute results with greater accu-
racy, but it does not by itself offer any guarantee about how many digits of the result
are indeed accurate. One method of bounding the accumulated error in an expres-
sion is to use interval analysis, in which the actual value of an expression is bounded
between two values that form the end-points of the interval. Moore suggested in 1966
[61] that multiple precision floating-point values might be appropriate for use as the
interval end-points.

2.4. FORTRAN Based Multi-Precision Floating-Point Packages

2.4.1. Brent’s MP

For many years, the most widely used multi-precision floating-point package was
Brent’s MP [16, 15]. MP allows users to explicitly specify the base and the number of
words used in representing the significand of a floating-point number. Using more
bits allows one to represent more values. There is still the problem that operations
on t-bit numbers produce results which are not representable using t bits. However,
it is hoped that by starting with sufficiently many bits the final results will have
some validity. This mimics the improvement in accuracy which one gains by moving
from single to double precision, but it does not eliminate the fundamental problems of
floating-point numbers. Brent suggests that if one wants exact results then one should
use multi-precision rational numbers. The MP package provides a complete alternative
for machine floating-point numbers, including algorithms for trigonometric functions,
exponentials, logarithms, the gamma function, Bessel functions, etc. Although this
package is now 16 years old, it continues to be used today.



2.4.2. Smith’s FM

New FORTRAN-based big-float packages are still being written. One recent package FM

[75] is tuned for significands of moderate size. Smith acknowledges the fact that MP

uses asymptotically faster algorithms, but claim to outperform MP in some benchmark
tests. This system uses guard digits to assure that each binary operation results in the
nearest representable number. This helps to reduce the severity of round-off errors,
though the errors ars still allowed to accumulate unchecked. The FM system provides
special symbols for +OVERFLOW, -OVERFLOW and UNKNOWN to help aid recovery from
exceptions such as overflow and division by zero. The set of operations available in
this package once again covers all of the standard functions that one would expect
from a fixed precision floating-point replacement.

2.5. Bailey’s MPFUN

While FM is fine-tuned for numbers of moderate precision, MPFUN by Bailey [4, 5] is
a system designed for high-precision computations. One motivation for MPFUN was
to study the digits of some mathematical constants including Euler’s gamma, log π,
e + π, and the Feigenbaum delta. MPFUN represents floating-point numbers with a
base of either 222 or 224 depending on the system. Fast multiplication is implemented
using discrete Fourier transforms. Bailey reports that this gives the best performance
among the various multiplication algorithms which was tried, including Karatsuba-
Winograd. Division is implemented using Newton-Raphson iteration to find 1

b
. The

package includes functions for square root, cube root, exponentiation, polynomial
root finding, trig functions and logarithms. The MPFUN package also includes an
implementation of complex numbers.

Benchmark testing shows that MPFUN can significantly out-perform Mathe-
matica and MP. Bailey also compares his timing against machine double-precision,
and reports being 135 times slower for finding FFT to 40 digits. Since MPFUN is
currently being distributed with the popular unix implementation, Linux, MPFUN is
probably now the most widely distributed (if not most widely-used) multi-precision
floating-point library. To accompany MPFUN is a translator for converting FORTRAN-77

programs into programs that use the MPFUN library. With this translator, users need
not code all arithmetic operations as calls to library functions. Instead, they can
write more typical FORTRAN expressions and allow the translator to insert the neces-
sary library calls. To control the translation, the input programs may be interspersed
with directives which specify:

• the number of bits of precision in a variable,

• the number of bits to be used for output,

• whether expressions are evaluated using MPFUN or double precision (FAST op-
tion),



• the epsilon to be used when comparing two values for equality.

Bailey reports running several benchmark programs through the translator
and finding that the performance is not significantly different from “hand-coded”
MPFUN solutions to the same problems.

2.6. Multi-Precision Floating-Point in Programming Languages

MPFUN with the automatic translator represents one recent system which incorporates
multi-precision floating-point directly into a programming language. Making the
arithmetic package part of the language eases the use of multi-precision floating-
point numbers. It frees the users from the needed library calls, and allows them
to concentrate on the algorithms for solving the problems. This has long been the
case with multiple precision integers, which have been incorporated into languages
such as Lisp and Smalltalk. One of the first languages to include multi-precision
floating-point was IBM’s ACRITH scientific computation package. This included a
high-level language similar to FORTRAN for gaining access to the computation engine.
The ACRITH system was used as the basis for FORTRAN-SC [59, 83] which incorporated
the package directly into a dialect of FORTRAN.

Other programming languages were also modified to include multiple-precision
floating-point as a built-in data type. These include the dialects Pascal-SC [80, 12]
and Numerical Turing [51]. Numerical Turing makes use of CADAC arithmetic [52].
This arithmetic was designed to give the user a clean interface to control the multi-
precision arithmetic. CADAC uses an internal decimal representation so that constants
and input will be represented exactly. It also allow users to specify the precision of
variables, and provides functions to check the precision of a variable.

2.7. Multi-Precision Floating-Point in Symbolic Algebra Systems

There are quite a number of computer algebra systems today, all having their own
multi-precision number packages. Here we will review a few of the well-known sys-
tems.

2.7.1. Lisp-based systems

Big-Float packages are available in the popular computer algebra systems MACSYMA

and Reduce which are Lisp-based. Sasaski, the author of the Reduce package, reports
[70, 54] that these systems are only slightly slower than Brent’s FORTRAN implemen-
tation, and have the advantage of being much easier to use because Lisp handles the
memory management rather than leaving it up to the user. Sasaski’s system has
the additional property that the number of bits used to represent the result of an
operation need not be set a priori, but is chosen automatically by the system.



2.7.2. Maple

The computer algebra system Maple also includes a full implementation of a multi-
precision floating-point package. Maple will sometimes truncate the number of digits
printed in evaluating an expression, if it knows that they are not accurate, but this
is not always the case.

In the example from Rump, the expression is evaluated using 20, 30, and 40
digits of accuracy. Using 40 digits of accuracy, Maple prints 40 digits which are all
correct. Using 30 digits of accuracy, 30 digits are printed which are all wrong.

>f := (a,b) -> 1335/4*b^6+a^2*(11*a^2*b^2-b^6-121*b^4-2)+11/2*b^8+a/(2*b);

>a := 77617.0;

a := 77617.0

>b := 33096.0;

b := 33096.0

>Digits := 20;

Digits := 20

>f(a,b);

17

-.99999999999999998827*10

>Digits := 30;

Digits := 30

>f(a,b);

8

.1000000011726039400531786318588*10

>Digits := 40;

Digits := 40

>f(a,b);

-0.827396059946821368141165095479816291999

2.7.3. Mathematica

The multi-precision floating-point package in Mathematica maintains the number of
valid digits in an expression. Using Rump’s example again, Mathematica correctly
evaluates the number of valid digits in evaluating the expression.

In[1]:= f[a_,b_] := 1335/4b^6+a^2(11a^2b^2-b^6-121b^4-2)+11/2b^8+a/(2b)

In[2]:= g[d_] := f[SetPrecision[77617.0,d], SetPrecision[33096.0,d]]



In[3]:= g[20]

7

Out[3]= 0. 10

In[4]:= Precision[%]

Out[4]= 0

In[5]:= g[40]

Out[5]= -0.83

In[6]:= Precision[%]

Out[6]= 2

In[7]:= g[60]

Out[7]= -0.8273960599468213681412

In[8]:= Precision[%]

Out[8]= 22

2.8. Adaptable-Precision Computation

In extensible object-oriented languages such as Smalltalk or C++, it is possible to
add object classes to the language which then provide functionality within the frame-
work of the language, without the need for the user to make explicit function calls
and worry about details such as memory management. Because of this, C++ has
become a popular language for implementing some of the newer Real arithmetic
classes which go beyond multi-precision floating-point. A feature of these packages
is the ability to adapt the precision of the intermediate computations to produce the
required accuracy in the final result.

Aberth and Schaefer. One C++ package is the multi-precision range arithmetic
package of Aberth and Schaefer [2]. They represent ranges as a multi-precision
floating-point number with an explicit range width:

{(sign), M1M2 · · ·Mn ±R} · BE



The base B is a power of 10. Their package includes means for specifying the precision
of a computation and determining the precision of a result. This makes it possible
to write programs that can repeat parts of a computation if the desired precision
is not obtained. They demonstrate this capability with an example program which
successfully computes the value for Rump’s expression.

Schwartz. Schwarz describes his C++ Real class from the user’s point of view in [71],
and his implementation in [72]. The user can declare variables of type Real, and then
make use of ”infinite precision”. The package uses lazy evaluation in which the leading
bits are calculated and the remaining bits are represented by an expression tree.
Every time the number is re-evaluated to greater precision, the remaining expression
changes. A redundant balanced binary representation is used to avoid the problem of
changing the earlier bits. The precision class associated with this package allows the
user to specify the desired accuracy in relative and (simultaneously) in absolute terms.
The package (like many of the FORTRAN implementations) provides a full replacement
for standard floating-point including rounding directions, trig functions, exponentials
and logs, and the real constants π and e. Some of this is possible because Schwarz
also provides a class Series for representing evaluable exact representations for the
infinite series used for defining these values.

Programming with potential infinite objects. There are several papers on real
numbers viewed as (potential) infinite objects. These papers take the viewpoint of
programming methodology, or the application of lazy evaluation, or as case studies
in the semantics of computing with infinite objects. The papers [10, 84] are repre-
sentative of this literature. The work of Schwarz above is also in this tradition. At
present these implementations seems to have been tested only on individual opera-
tions rather than in the context of some non-trivial algorithm. A very interesting
paper of Vuillemin [81] (somewhat anticipated by Gosper [6]) describes the use of
continued fractions for exact real arithmetic. He also points out the essential role of
redundant representations for real numbers.

3. Applications of Exact Computation

We limit our scope to applications for which the concept of approximate result is
meaningful. Basically, these are problems that could have been meaningfully treated
under the f.p. paradigm. Most problems in the computational sciences and engi-
neering, and also in computational geometry, would fall under this scope; traditional
applications of computer algebra would not. Surprisingly, the documented instances
of exact computation that falls within our scope is rather sparse and mostly of re-
cent vintage. We can only conclude that exact computation is just as rarely used in
practice.



3.1. Computational Geometry

It is well-known that computing the sign of a determinant is a fundamental “prim-
itive operation” in geometric algorithms. Thus algorithms for convex hulls, Voronoi
diagrams, Delaunay triangulation can be reduced to this operation (e.g., [44]). More
generally, problems related to computing the arrangement (or subparts thereof) of a
set of hyperplanes can all be reduced such primitives. We note that Clarkson [22] has
shown that the sign of a determinant can be computed more efficiently than evaluating
the determinant: using ideas from lattice reduction, he transforms the determinant
into an “almost” orthogonal shape and then employs any standard evaluating method.
The practicality of this approach is unclear at present.

We should mention a word about experimental methodology. It seems to be a
standard practice to compare any exact algorithm against a “comparable” floating-
point implementation. Strictly speaking, this is comparing apples and oranges since
floating-point algorithms usually have no guaranteed correctness. Yet realistically,
this comparison makes sense since the default implementation by practitioners uses
floating-point arithmetic. The simplest notion of “comparable” is where the exact
algorithm is identical with the floating-point algorithm, except that each arithmetic
operation is done exactly. This is easy to achieve using operator overloading, a feature
that is available in modern languages such as C++. Note that in exact arithmetic,
we have the opportunity to use input numbers of arbitrary length but this has no
counterpart in f.p. computation, so the effects of growing input number lengths cannot
be compared.

Karasick, Lieber and Nackman. These authors described in [55] their experience
in implementing the Guibas-Stolfi algorithm for Delaunay triangulation for a set of
planar points [44]. The input points have coordinates that are rational numbers, and
in the course of the algorithm they must determine the signs of n × n determinants
where n ≤ 4. Assuming the rational numbers have 3 digits in the numerator and
denominator (a digit is 16-bits here), their initial implementation took 1200 seconds to
triangulate 10 random points near the unit circle. A comparable double-precision run
took only 0.1 seconds; this is 3 orders of magnitude faster. They proceeded to describe
a range of tactics to reduce the running time until eventually, the exact method is
able to triangulate a fairly large input (500 points randomly generated around the
unit circle) and achieve a speed comparable to the floating-point implementation (59
seconds versus 14 seconds). Their sign of determinant algorithm (“Sgauss”) replaces
the original matrix entries by bounding intervals of low precision and then computing
the determinant by a variant of Gaussian elimination using interval arithmetic. If the
determinant is contained in an interval that does not contain 0, we already have the
correct sign; otherwise, repeat the process with higher precision bounds for the matrix
entries. Among their conclusions are (1) both interval arithmetic and fixed-precision
arithmetic can be effective as filters to avoid expensive rational exact arithmetic;
(2) memory management can be a huge overhead in number packages; (3) object-



oriented programming tools were crucial for their experimentation. We remark that
although this paper is concerned with speeding-up one specific algorithm, many of
their techniques have wider applicability.

Fortune and van Wyk. A more general approach to exact geometric computation
is described by Fortune and van Wyk in [40]. They again tested Delaunay triangu-
lation algorithms (in 2 and 3 dimensions). But in contrast to Karasick et al, they
focused on exact integer arithmetic. They evaluated several determinant evaluation
methods, and two widely available multiprecision number packages (“mp” which is
available with many Unix installations and “BigNum” from INRIA). The authors
pointed out the useful distinction between the comparative speeds of the primitives
(i.e., determinant computation) versus the comparative speeds of the overall algo-
rithm. In the particular algorithms tested, the primitive operations use between 20%
and 50% of the overall runtime. Thus, if the primitives were re-implemented using
exact arithmetic and these now run x times slower, then we may estimate the total
runtime to be between (x + 4)/5 and (x + 1)/2 times slower. They found that x is
between 40 and 140, depending on the input bit-length and choice of arithmetic.

The basic ideas of Fortune and van Wyk’s approach are embodied in their
system LN, described in more detail in [41]. LN is an expression compiler (really, a
preprocessor to produce C++ code). Roughly speaking, given a polynomial expression
the compiler produces a straightline code that computes the value of the expression
exactly. It turns out that the (integer) variables in an expression are typed accord-
ing to its length, so that the code produced depends on this length, determined at
compile time of LN. The idea is to (i) avoid run-time memory allocation, overhead
for subroutine calls or loops, and (ii) to exploit a feature of geometric algorithms,
viz., all numerical computations in the algorithm can be reduced to a small number
of such expressions. The LN interpretation of these ideas actually has an intricate
interface to C++, and we refer to the original papers for details. We remark that there
is a tradeoff between (i) and (ii). More precisely, the efficiency demands of (i) forces
that the typing of variables by length, but this has led to a proliferation of compiled
expressions, in violation of (ii). In fact, this so severely limited the applicability of
LN (see below) that this strict typing is expected to be relaxed in future versions.

There are several other interesting ideas in LN. (a) Each multiprecision inte-
ger is represented by a sequence A = (a0, . . . , am) of double-precision floating point
variables, although the ai’s really represent integers up to 53 bits long. The integer
represented by A is

∑m
i=0 ai2

ri where r is the radix. The authors optimized the value
to be r = 23. Let us call A normalized if each ai is at most r bits long. Under the
IEEE floating-point standard, hardware arithmetic on the ai’s is guaranteed to give
exact answers if the result is an integer at most 53 bits long. Thus, in many cases,
we could add two or more such representations componentwise; a similar remark
holds for multiplication. Otherwise, we must “normalize” A before the operations.
(b) Floating-point filters are built into the compiled expressions. They are useful in



determining the signs of expressions; such knowledge is built into LN.
It is interesting to note that both (a) and (b) exploit the heavily optimized

hardware for floating-point computation in modern workstations. It is a slight para-
dox (and a testimony to the domination of the floating-point standard) that floating-
point multiplication is significantly faster than integer multiplication on many RISC
machines.

Milenkovic and Chang. These authors [19] reported on their experience with us-
ing the LN package for performing Boolean operations on 3-dimensional polyhedra.
Initially, the implementation uses 23 different types of points and 37 types of expres-
sions. This proliferation of types is a consequence of the strong typing by size in
LN: for instance, input points must be differently typed than the intersection of an
edge with a face. Only about 2/3 of the LN code could be compiled before compiler
resources were exceeded. Eventually, the number of types of points and expressions
were reduced to 13 and 21 respectively, and this could be compiled. The authors
concluded that dynamic error evaluation instead of the current static error bounds
would sacrifice some runtime efficiency for a more acceptable overall performance in
LN.

Benouamer, Jaillon, Michelucci and Moreau. These authors [8] constructed
a C/C++ package for lazy evaluation of expressions. Basically, each numerical value
(“LazyNumber”) is represented by its defining expression and an interval containing
the value. The current implementation uses rational expressions. The intervals are
narrowed as needed, but this is done from bottom up (i.e., by narrowing the intervals
at the leaves, this is propagated up in the natural way). This is in contrast to the
top-down approach of [32] for increasing precision. Applied to the Bentley-Ottmann
algorithm for reporting all pairwise intersections among a set of line segments [9],
they reported that the machine floating-point arithmetic is 4–10 times faster than
the lazy version. In turn the lazy version is (for example) 75 times faster than the
use of exact arithmetic arithmetic to relative precision 10−9.

Burnikel, Mehlhorn and Schirra. The authors reported in [18] their experience
in implementing an incremental randomized algorithm for the Voronoi diagram of
a set of line segments. Each closed line segments is decomposed into 3 objects: its
two endpoints and the open line segments. Initially, all the endpoints are randomly
inserted and their Voronoi diagram incrementally updated with each insertion. Then
the open line segments are randomly inserted and again the diagram is updated. The
fundamental test amounts to determining if a given feature of the current Voronoi
diagram “conflicts” with the object: for instance, if the feature is a Voronoi vertex
v and the object is an open line segment ℓ, we must compare the “clearance radius”
r of v (the distance from v to one of its defining objects) with the distance d from
v to ℓ. The r : d comparison is called an “incircle test”. The authors showed that



the distances r, d need only be computed to 48L-bits of precision (assuming input
coordinates are rational numbers with L bits in the numerator and denominator).
They tested two methods of performing the incircle test: by using exact integer
arithmetic with repeated squaring (this is possible by the special nature of the r : d
test) and by using bigFloats to evaluate the expressions r, d. Their use of bigFloats
amounts to evaluating the expressions to larger precision until a decision is definite.
They tested three classes of input data (“easy”, “realistic” and “difficulty”), with
L = 10, 20, 30. Their conclusions are that (1) the actual precision needed is much
less than the 48L upper bound, and (2) using exact integer seems to be slightly faster
than using bigFloats.

Dubé and Yap. In [32], we explored two ideas for exact computation: the use of
bigFloats and an expression evaluator. While bigFloats have been around almost as
long as bigIntegers (see section 2), their usefulness for exact computation seems novel.
The theoretical basis for their use in exact computation comes from the existence of
root separation bounds (see [60, 86] and next section). A bigFloat package based
on Gnu’s Integer was implemented in C++. Each bigFloat here has a dynamically
maintained error bound; whenever the error bound exceeds one digit, significance of
the bigFloat is reduced to improve efficiency. We converted the C implementation5

of Fortune’s Voronoi diagram algorithm [39] into a C++ program, and overloaded the
arithmetic operators with bigFloat operators. The basic comparisons in the algorithm
involve numbers of the form

a +
√

b

d

where a, b, d are essentially 3L, 6L, 2L bit numbers (inputs are L-bit integers). We
showed that comparing two such numbers by repeated squaring needs 20L bit in-
teger operations and involves a fairly large Boolean predicate, while computing the
numbers approximately to 25L+O(1) bits (using bigFloats) suffices to make a deter-
mination. An advantage that accrues with computing the numbers to 25L+O(1) bits
is that subsequent comparisons involving the same numbers do not require arithmetic
operations.

We also implemented an expression package bigExpression that is based on
bigFloat. The principles behind our design will be described in the next section. We
performed two sets of tests: (1) Using randomly generated point sets of size from 50
to 400, our bigFloat version of Fortune’s algorithm is about 10 times slower than the
f.p. version. Our bigExpression version is about 70 times slower. (2) In computing
the sign of 4 × 4 determinants, the relative speeds depended on the input bit-sizes.
With input numbers of about 200 bits, bigFloat was about 300 times slower than
f.p., but 8 times faster than bigInteger. The bigExpression version is about 12 times

5Fortune’s code is available from netlib@research.att.com using the command: send sweep2 from
voronoi.



slower than bigFloat. We have not optimized the packages, and profiling shows that
memory management is a significant part of the running times.

3.2. Miscellaneous

Not much has been written about exact computation in other domains. Moreover,
when exact computation is considered, authors often claim that it is infeasible. These
conclusions are usually prompted by the worse-case bounds necessary to compare two
numbers exactly. But there are ways to circumvent this (see the next section). We
prefer to conclude from this that it is unreasonable to do exact computation us-
ing general-purpose algebraic computing systems (such as Mathematica, Maple);
rather we must exploit special properties in each domains. We briefly look at some
domains that are natural targets for exact computation.

Geometric editing and modeling. Exact computation is relevant in geometric
editing and modeling since we normally want a design or model to have certain veri-
fiable properties ([48] is a general reference on geometric modeling). The properties
of interest are usually topological ones (e.g., [63]). Traditionally, a geometric model-
ing/editing system is seen as a drafting tool for building geometric scenes by explicit,
deterministic commands. A more powerful view is to see it as a constraint solver,
where geometric scenes are defined by constraints which must be solved. As a draft-
ing tool, we face two basic classes of algorithmic problems: Boolean operations on
geometric elements and “classification problems” (predicates about containment or
intersection of geometric elements). The thesis of Yu [87] studies the precision nec-
essary for the classification problems in polyhedral modeling, but is not optimistic
about exact algorithms. There is a large literature about constraint solving geometric
editing/modeling systems ([77, 13] are two early papers). Many of them are heuristic
and partial in their solution capabilities. Recent attempts at such systems aim at
more complete constraint solving abilities, by exploiting the appropriate algebraic
tools such as Gröbner bases, Wu-Ritt theory or elimination theory. For instance,
Ericson and Yap [36] described linetool, a planar geometric editing system based
on points, line segments and circular arcs. Their system was intended to be complete
in its constraint solving ability, but the computational bottlenecks severely limited its
applicability. More recently, a system proposed by [14] has many of the same features
as linetool. Their algorithmic approach is based on graph-reduction techniques and
have similarities to ideas of John Owen. This system seems more practical since it is
aimed at less than the full range of polynomial constraints.

Constraint Logic Programming Languages. Logic programming languages [30]
takes an extremely interesting twist when we endow them with knowledge of some
mathematical domain (typically real algebra). These Constraint Logic Programming
(CLP) languages were described in [53]. Clearly, this is closely related to the geomet-



ric editing/modeling applications above. The linguistic and logical properties of CLP
languages (e.g., [46, 58]) and their (potential) applications are well-treated in the liter-
ature (e.g., [47]). Of special relevance to us is the fact that any implementation of such
languages must understand much about the underlying mathematical domain, espe-
cially its computational properties; see some treatment of this in [29, 28, 74, 57, 33].
In practice, it seems that implementations of CLP languages use f.p. computation
although, evidently, any correct CLP compiler must use exact computation! Ulti-
mately, the CLP compiler must try to balance the opposing demands of correctness
and efficiency: some mixed-mode computational ability (f.p. and exact) is probably
appropriate and this constitutes a wide-open research area.

Computational metrology. There is considerable recent ferment in the dimen-
sional tolerancing and metrology (see [62, 79] and articles in that volume). In par-
ticular, the unreliable computational results from coordinate measuring machines
(CMMs) [82] precipitated a minor crisis. CMMs proliferated in the 80s and represent
the state of the art in dimensional metrology [76]. In response to the crisis, both
the EC community [38, 3] and the US [37] have propose to construct a “reference
software” to test vendor software. The systematic study of these issues has spawned
the subject of computational (dimensional) metrology [50]. There are many sources
of errors in the output of CMMs, but from our viewpoint, it is evident that compu-
tational errors arising from the use of (1) inexact algorithms (such as least-squares
fit algorithms) and (2) floating-point computation is avoidable. The replacement of
inexact algorithms by algorithms developed in computational geometry is not new
(e.g. [68]); but the deployment of exact methods brings a new level of sophistication
to the reference software. Since the basic computational problems in this area [3]
have “bounded depth” [85], there is also hope that exact solutions may even be used
directly in vendor software.

4. Theory of Exact Computation

A large class of problems for which exact computation is theoretically possible are the
semi-algebraic problems. This class will provide a suitable backdrop for most problems
of interest in exact computation. We define this class and state the fundamental result
here. Some basic knowledge of complexity theory and first-order logic is assumed in
this description.

Algebraic numbers. Ultimately, the claim that we can solve many geometric prob-
lems exactly is based on the fact that we can compute with algebraic numbers exactly.
An algebraic number is any complex root of a univariate polynomial with integer co-
efficients. Thus

√
2 is algebraic since it is a root of x2 − 2. Unless otherwise stated,

we implicitly assume the algebraic numbers here are real. Although algebraic num-
bers generally do not have finite representation in positional notations, they have



finite description. For instance, if α is a real root of the integer polynomial A(x), we
can represent α by the pair (A(x), I) where I is a interval with rational endpoints
containing α but no other real roots of A(x). This is called the isolating interval
representation of algebraic numbers. For instance,

√
2 can be represented as the pair

(x2−2, [1, 2]). Note that A(x) and I are both non-unique. We can make A(x) unique
by insisting it to be the minimal polynomial of α (i.e., smallest degree primitive poly-
nomial with positive leading coefficient), but that is too expensive to enforce. We can
effective perform the 4 arithmetic operations on such representations, compare two
such numbers, and so on. See [17, 86].

A semi-algebraic predicate Φ(x1, . . . , xn) is a Boolean combination of “atomic
predicates” of the form:

P (x1, . . . , xn) ρ 0, ρ ∈ {=, >, <,≥,≤},

where P (x1, . . . , xn) is an rational polynomial in real variables x1, . . . , xn. Such a
predicate Φ(x1, . . . , xn) defines a semi-algebraic set given by

{(a1, . . . , an) ∈ E
n : Φ(a1, . . . , an) holds}.

For instance,
Φ0(x, y) : (x2 + y2 − 1 < 0) ∨ (x + y − 5 = 0)

is a semi-algebraic predicate in variables x, y and it defines a semi-algebraic that is
the union of an open disc and a straight line. A Tarski formula is a first-order formula
based on semi-algebraic predicates. With Φ0 as defined above, it is not hard to see
that

(∀x)(∃y)Φ0(x, y)

is a true Tarski sentence (a sentence is a formula without free variables). A funda-
mental result of Tarski is that sets definable by Tarski formulas are semi-algebraic
(the converse is trivial).

Informally, a computational problem Π is semi-algebraic if it can be “reduced”
to Tarski formulas. Let us define a computational problem Π as a map

Π : X 7→ Π(X),

where X ranges over all input instances and Π(X) ⊆ E
n (here n = n(X) depends

on the input instance). We assume that input instances X are suitably encoded for
Turing machine computation. An algorithm for Π is a Turing machine that on input X
produces an element of Π(X) (again, suitably encoded). Finally, we say a problem Π
is semi-algebraic if there is a Turing machine M that, on input X, computes a Tarski
formula M(X) in polynomial-time such that the semi-algebraic set SM(X) defined
by M(X) is contained in Π(X). Moreover, SM(X) is empty iff Π(X) is empty. We
call M a reduction machine for Π in this case.



Example: Minimum width cylindrical shell problem. This is a typical prob-
lem of dimensional metrology. Consider the problem of computing a minimum width
cylindrical shell C that contains a given finite set X ⊆ E

3 of points. The shell C is the
region that lies between two concentric cylinders of radii r and R (with 0 ≤ r ≤ R)
and its width R − r is minimum. Containment of X by C means this: if L is the
axis of the cylindrical shell C, then x ∈ X implies r ≤ d(x, L) ≤ R, where d(x, L)
is the distance between x and a closest point on L. We assume that points in X
have rational coordinates. Although it is not immediately obvious how to solve this
problem, let us show that this is a semi-algebraic problem. We represent a shell C
by the parameters (L, r, R), where L is in turn represented (non-uniquely) by two
distinct points p, q ∈ L, Then a minimum width shell is precisely captured by the
conjunction of the following two formulas:

1. (∀x ∈ X)[r ≤ d(x, L) ≤ R]

2. (∀L′, r′, R′)(∃x ∈ X)[¬(R′ − r′ < R − r) ∨ ¬(r′ ≤ d(x, L′) ≤ R′)].

It is easy to turn this conjunction into a Tarski formula, ΦX(L, r, R), using the fact
that X is a finite set of rational points. It is also clear that we can construct a Turing
machine M that, on input X, computes M(X) :=ΦX(L, r, R) in polynomial-time.
Since ΦX(L, r, R) defines precisely the set Π(X) of minimum width cylindrical shells
containing X, we conclude that the problem is semi-algebraic.

A fundamental result of Collins [26, 17] says that, given a Tarski-formula
Φ, we can decide if it defines a non-empty semi-algebraic set, and in case of non-
emptiness, to compute a sample point in the semi-algebraic set. Moreover, all this
can be accomplished in double-exponential time by a Turing machine. Using this
result, we can solve any semi-algebraic problem Π as follows: on input X, compute
the Tarski formula M(X) using a reduction machine M for Π. Then invoke Collins’
algorithm to compute a sample point Y in the set defined by M(X). This proves:

Theorem 1 A semi-algebraic problem can be solved in double-exponential time on a
Turing-machine.

Discussion. This result is fundamental in exact computation because, as noted in
[85], practically all computational problems in contemporary Computational Geom-
etry are semi-algebraic. There has been considerable theoretical advances since the
original work of Tarski and Collins. For this literature, see for instance [45] and
the references contained therein. Collins’ original result retains much usefulness for
us despite these new results. There are several reasons: one is that it is relatively
simple and it has been implemented [17, p. 79]. In some sense, algorithms of ex-
ponential complexity are mainly of theoretical interest. However, such algorithms
may have practical use if the exponential complexity (being a worst case bound)
is not attained by every input instance: we may be lucky enough to be interested
in some instances that can be computed quickly. Collin’s algorithm turns out to



have this useful property, while some of the newer algorithms (being based on the
BKR algorithm [7]) do not. Buchberger’s algorithm [17] is another exponential al-
gorithm of this nature. In terms of complexity, the newer algorithms derive their
improvements by replacing double-exponential time by single-exponential space (or,
equivalently, single-exponential parallel time). But at the present state of knowledge,
this must be classified as a “theoretical” improvement since it is not known if single-
exponential space is properly contained in double-exponential time. Nevertheless,
these new bounds can exploit implicit parameters (like the dimension of the solution
space), in which case the improvements have practical significance. Finally, Collins
represents the sample points using isolating intervals. Algorithms based on the BKR
algorithm often do not compute sample points; but when they do (e.g., [56]), the
representation of the real algebraic numbers are such that the order properties of
real numbers are mostly implicit in the representation. Another popular encoding of
real algebraic numbers in which order properties are implicit is the so-called Thom
encoding [27, 86]. In practice, such representations are inconvenient when we have to
compare two real algebraic numbers.

5. Some Techniques in Exact Computation

We describe some basic techniques that are useful in exact computation. Some of
these have been mentioned in the applications section. Also, many of these details
are elaborations on [32].

5.1. Expression Packages

Geometric algorithms do not call basic arithmetic operations on individual numbers
in a “random” fashion; rather one can usually group the individual operations into
evaluations of a small number of expressions. For instance, we had already noted
that many subproblems of hyperplane arrangement [34] can be reduced to evaluating
one determinantal expression. The opportunity for optimization is much greater at
the level of expressions than at the level of bigNumber packages. In this sense, the
most important package for exact geometric computation is an expression package
that supports “exact computation”.

Such packages are based on some underlying class of “numerical expressions”.
A numerical expression E is recursively built from the (numerical) variables and
constants using a fixed set of (numerical) operator symbols, in the usual way. The
most important class of expressions are the polynomials, defined over the operator
symbols are +,−, ∗. In [32], we extended the polynomials to include the ÷ and√· operations – let us refer to these as radical rational expressions. This family
captures most of the expressions in practice. Structurally, we can view E as a labeled
directed acyclic graph (dag) with one source node (called the root) such that each
sink node is labeled by a numerical variable (called the parameter), and each internal
node (non-sink) is labeled by an operator. The successors of an internal node u



are ordered so that there is a bijection between the successors and the arguments
of the operator labeling u. E.g., if u is labeled by a binary operator, it must have
two successors. When the parameters in E are instantiated with explicit numerical
values, we can evaluate E in the obvious “bottom-up” fashion, by propagating values
to all the internal nodes. In particular, the value of the root is called the value of the
expression. Depending on the application and assumptions, any software realization
of “expression” will accrue additional constructs and properties over and above the
underlying numerical expressions. Let us explore such assumptions.

(I) The fundamental premise of expression packages is that each constructed
expression will be repeatedly evaluated in the course of the algorithm, each time
for different values of its parameters. Therefore it may pay off to preprocess such
expressions to improve their evaluation process. Fortune and Vanwyk [40] explored
the compilation of expressions prior to their evaluation – their approach introduces
a strong typing of expressions by the “bit-sizes” of parameters. Yap [85] suggests
the restructuring and identification of common subexpressions, and more generally,
compiler optimization techniques. For instance, taking advantage of associativity of
“+”, we may restructure a subtree of binary additions into a “summation” operator
that which takes any number of arguments. Furthermore, if the signs of summands
can be estimated at compile-time, we should divide the summands into two groups,
comprising respectively the positive and the negative arguments, so that they are
added among themselves first. (This avoids unnecessary precision in our computation,
see next.)

(II) The precision premises say that the precision of intermediate values can
often be limited without compromising the goal of exact computation. Perhaps the
simplest precision premise is this: that it suffices to know the sign of the expression.
This premise is actually quite common. The papers [55, 40] exploited this premise
by introducing floating-point filters that try to get a quick decision on the sign of
determinants. In [32], we attach a precision-bound and an approximate value to
each node of an expression. We guarantee that the approximate value satisfies the
precision-bound. This means that changing the precision-bounds may force us to
recompute approximate values at each node. Users can use this mechanism to exploit
any known precision premises in their application.

5.2. Error-bounds versus precision-bounds

In some sense, these two terms reflect the difference between a pessimist and an
optimist, whether a cup is half-empty or half-full. But we can distinguish these two
concepts in the context of expressions: once we have computed approximate values
for the parameters of an expression, the approximate values of the internal nodes
can be automatically evaluated from bottom-up. Any error-bounds in the parameters
propagate upwards in a completely deterministic manner. For instance, if the express
is c = a+b and both a and b have an absolute error of at most ±0.1 then we can place
an error-bound of ±0.2 on c. On the other hand, a precision-bound is a user-specified



quantity, usually imposed only at the root of an expression. E.g., the user can specify
that the expression c = a + b must be computed to within a precision-bound of ±0.2
in absolute terms. The system then propagates this precision top-down all the way
to the parameters. Note that this propagation is not deterministic: we could specify
that a, b must each be computed to within absolute precision ±0.1, but clearly there
are many other choices. For instance, if we know that |a| < 0.01, then we can ignore
a and simply require b to be computed to absolute precision ±0.19, and output the
approximated value of b as the approximation to c. We have used only absolute
bounds in this illustration, but in general, these concepts extend to relative bounds
as well.

5.3. Error bounds in bigFloat

In our design [32], we use bigFloats as approximate values of nodes in expressions.
Note that bigFloats are useful even for approximating rational numbers. Thus, it
may be sufficient to approximate the rational value

1212/343434 (1)

by the bigFloat value 0.35×10−2 (as usual, our examples use base 10). Since we expect
our bigFloats to be used as approximations, we decided that it would be useful to
build into our bigFloat numbers the notion of an error bound. This error bound is
automatically propagated in arithmetic operations; it is said to be a dynamic error
bound since it is maintained at run-time.

Back to example (1), we would actually use the bigFloat number with error-
bound (or, bigFloat range)

b̃ = (0.35± 0.01)× 10−2

as the approximate value. Explicitly, this bigFloat range would be represented as the
triple b̃ ∼= (35,−2, 1). In general, the triple (f, e, d) of integers represents the range

〈f ± d〉 ×Be

where B is the base of the radix system and 〈n〉 applied to any integer n means that
we place the radix point just before the base B representation of n. We call the
bigFloat number (f, e, d) exact when d = 0. To illustrate the issue of propagating
error bounds, suppose we square the range b̃. How should we represent the result,
(b̃)2? One solution is to square the number 0.35 × 10−2 yielding 0.1225 × 10−4 and
recompute the error bound. Thus

(b̃)2 = (0.1225± 0.0071)× 10−4

or (b̃)2 ∼= (1225,−4, 71). A slightly more accurate procedure is to square the upper
and lower bounds of the bigFloat range, and take their midpoint as the representative



un-normalized value range normalized
(1000,0,10) 0.0990-0.1010 (100,0,1)
(1000,0,11) 0.0989-0.1011 (100,0,2)
(1001,0,10) 0.0991-0.1011 (100,0,2)
(1004,0,19) 0.0985-0.1023 (100,0,3)

Figure 1: Normalising values to one error digit

value, with appropriate error bound. [This procedure would yields (b̃)2 = (0.1226±
0.0070) × 10−4.] This propagation of error bounds is seen to be cumbersome: as d
grows arbitrarily large in (f, e, d), more and more lower order digits in f would be
unreliable. It seems a waste of time and space to compute and store f to this many
insignificant digits. We decided (like [2]) to impose the following inequality:

0 ≤ d < B (2)

Since B = 10 in our example, this means that 0 ≤ d < 10. Back to our example,
we must therefore truncate the triple (1225,−4, 71) to (123,−4, 8), representing the
range (0.123± 0.008)× 10−4.

When a bigFloat number is represented as above with the radix before the
first non-zero digit, and a single digit of error, then we say that it is in normalized
form. During the course of a computation, we may produce numbers which are not
normalized. (To improve accuracy, we can delay normalization until the end of an
expression evaluation.) Returning these values to normalized form is quite easy. The
radix can be shifted to the proper location by altering the exponent, and the error
can be safely truncated to a single digit as illustrated in figure 1.

Clearly this is a compromise between the accuracy of our bounds and avoidance
of unnecessary precision. Simple experiments show that keeping this limited range
information (2) is already quite effective.

5.4. Composite precision bounds.

It seems that a flexible general-purpose expression package ought to support both
relative as well as absolute precision bounds. Let a, r be real numbers. Let us say that
a number x̂ approximates another number x to absolute precision a if |x̂− x| ≤ 2−a;
and the approximation is to relative precision r if |x̂ − x| ≤ |x|2−r. Combining
the two concepts, let [a, r] denote a (composite) precision bound. But what shall
an approximation to precision [a, r] mean? Schwarz [71] takes this to mean the
conjunction of the absolute precision a and relative precision r. We prefer to take the
disjunction of the two separate bounds. We say the number x̂ is an approximation of
x to precision [a, r] if

|x̂− x| ≤ max{2−a, 2−r|x|}, (3)

written,
x̂ ∼= x[a, r]. (4)



The triple x[a, r] occurs so often in this combination that it is convenient to write
X for x[a, r] and call it an approximate number. Thus equation (4) becomes x̂ ∼= X.
Note that we can have absolute (resp., relative) bounds by choosing r = ∞ (resp.,
a =∞).

Motivation: Our original idea is that x̂ ∼= x[a, r] should mean that

x̂ = x(1 + ǫ · 2−r) + δ · 2−a

for some 0 ≤ |ǫ|, |δ| < 1. But this seems difficult to handle directly. So we simplify it
to mean

x̂ = x + max{x · ǫ · 2−r, δ · 2−a},
that is, by replacing the sum of two error terms by the “maximum” of the error terms.
The “maximum” here (denoted max) of two real values a, b is just the value whose
absolute value is largest. E.g., max{−3, 2} = −3. Clearly replacing a sum by such a
maximum at most increases the possible error by a factor of 2, so it is an acceptable
replacement. But notice that the modified concept amounts to equation (3).

5.5. Algorithms for Maintaining bigFloat Ranges

The maintenance of valid intervals using bigFloat range arithmetic is illustrated in this
section using the examples of addition, multiplication and the square root operation.

The system will usually attempt to provide the most accurate result possible in
performing the operation in the given inputs. There may be some situations in which
this behavior is not desirable. Consider adding the integer 1 to the bigFloat value
(100,−10000, 1). It is possible to evaluate this sum with 10,000 digits of accuracy,
but this may be far more than is actually needed. To aid in these situations, a global
composite precision bound is specified in our bigFloat package. (The user would
normally accept the default bound provided by the package but can modify this
default if desired.) When performing an operation ĉ = â ⊕ b̂, the system produces
(roughly speaking) the most accurate range ĉ possible without exceeding the global
precision bound. Notice that this use of precision bounds is different than their use
in the expression package.

Addition The algorithm for addition is simple, but points out some of the issues
involved. A safe algorithm would be to:

1. align the least significant digits by shifting

2. add the digits and the error values

3. normalize.



For example, to add (123,0,1) and (246,−2, 3), we may first align the least significant
digit to produce

(12300, 0, 100) + (246,−2, 3) = (12546, 0, 103).

The normalized answer is then (125, 0, 2).
While this is a safe algorithm, it may involve computing far more digits then

will appear in the normalized form. Instead, we wish to first estimate the magnitude
of the least significant digit of the sum. To do this we must consider the global
precision bounds and the magnitude of the least significant digits of the summands.

To determine if the relative precision bound allows a coarser approximation
of the sum, we must locate the leading digit of the sum. If the summands have
similar signs, this is easy; otherwise, this involves comparing the numbers from the
leading digits down toward the less significant digits. Of course, we may terminate
this comparison as soon as we determine that meeting the relative precision exceeds
the global precision bound. Once the magnitude of the least significant digit of the
sum is determined, the digits below this may be truncated (being careful to keep
the ranges safe), and then the values can be added. In the above example, we could
truncate the representation of the second summand to (2,−2, 1) and add

(123, 0, 1) + (2,−2, 1) = (125, 0, 2).

Multiplication A safe algorithm for multiplication is to form the product of (f1, e1, d1)
and (f2, e2, d2) as (f1f2, e1 + e2, f1d2 + f2d1 + e1e2), assuming that f1, f2 are positive.
If 〈f1〉 · 〈f2〉 < 0.1, then the exponent must be adjusted to the proper value.

In most situations, multiplying two n digit numbers results in a 2n digit prod-
uct. But, if both of the bigFloat numbers are not exact, then we expect at most n
valid digits in the product. To avoid the computation of digits which do not appear
in the normalized product, we must once again estimate the magnitude of the least
significant digit of the normalized product. To do this we must consider the composite
precision bounds for the operation and the magnitude of the terms in the error value
f1d2 + f2d1 + e1e2. Once the magnitude of the least significant digit of the product is
determined, then we can carry out only the needed portion of the multiplication.

Square Root To compute the square root β of a number α, we use the Newton
iteration βi+1 = 1

2
(βi + α

βi
). The sequence of values β1, β2, . . . converges toward the

desired root. At the start of an iteration, we regard βi as an exact value (i.e. the
error d = 0). This is because we can regard βi as a true element of the converging
sequence. If α were exact, and we could perform all of the operation exactly, then we
would produce a next approximation βi+1 such that the root β lies between βi and
βi+1. Instead, due to inaccuracies we can only find an approximation β̂i+1, But, we
are still assured that the root β lies between βi and a value in the range described by
β̂i+1. We may continue the iteration until the accuracies of the βi fail to increase, or
until the default composite precision bounds are met.



6. Precision-Driven Computation

The papers [32] and [8] may appear to be similar in their use of run-time techniques.
But on closer examination, there is a crucial difference. In [8], the authors repeatedly
increase the precision of values in the leaves of an expression until it reaches an
acceptable precision at the root. In contrast to their “lazy approach”, we like to view
our approach in a more active way. The user specifies a precision-bound at the root;
we propagate this bound to all the other nodes in a top-down fashion. At the leaves,
we assume that there are primitives to compute approximations to the any numerical
constant to any specified precision. We then propagate these values back up the tree.
We call this approach the precision-driven approach.

6.1. Algorithms for precision-driven arithmetic

We need the concept of the most significant bit (MSB) of a real number. For each
real number x, we would like determine the value

µx := ⌊lg |x|⌋ .

Note that lg(·) is logarithm to base 2. Informally, µx tells us the position of the MSB
in the binary representation of x, assuming that the binary places are indexed by the
integers as follows

· · · , 3, 2, 1, 0, •,−1,−2,−3, · · ·
In particular, the zero-th bit is just to the left of the binary point (indicated by
•). Thus |x| ≥ 1 iff µx ≥ 0. In practice, it is difficult to determine µx exactly by
looking at a finite number of bits of x. This is because of the phenomenon of carry
propagation. So we introduce the “approximate version” of µx. For any approximate
number X = x[a, r], define

µx[a,r] = µX

to be equal to the least integer e that satisfies

2e ≤ |x| < 21+e + max{2e−r, 2−a}. (5)

For instance, let x = (1000.001)2 (in binary notation). Depending on the precision
[a, r], we can see that µx[a,r] is either 2 or 3. If a = 2, r = 5 then we have µx[2,5] = 2
since (100.00)2 ≤ x < (1000.01)2. Notice that without the stipulation that the e
must be the “least integer” in our definition, we could have defined µx[2,5] to be
3 since e = 3 would satisfy equation (5) as well. The reader can also check that
µx[3,6] = 3. In general, it is not hard to see that for all [a, r],

µx[a,r] ∈ {µx, µx − 1}.

Hence, an integer of the form µx and µx − 1 will be called an approximate MSB of x.
Usually, we write “Mx” for an approximate MSB of x.



In the following, it will be convenient if µX is known for each approximate
number X = x[a, r]. This means that we compute at least the most significant bit of
an approximation x̂ to X. This may be undesirable for 2 reasons:
(a) This requirement on x̂ may sometimes exceed the requirements of the given com-
posite precision bound [a, r].
(b) This may force us to determine the sign of the exact value, which may be very ex-
pensive. Hence, instead of obtaining µX , we may sometimes only have a lower bound
on µX (which is in turn a lower bound on µx). We shall see that this is sufficient,
provided we henceforth assume that the relative precision r in a precision-bound [a, r]
is always non-negative:

r ≥ 0.

Addition Algorithm. Suppose we are given expressions x, y, z where z = x + y,
and we are given [az, rz]. The goal is to compute ẑ ∼= z[az , rz]. We divide this task
into two steps: first we want to compute [ax, rx] and [ay, ry] such that for any x̂ and
ŷ, if

x̂ ∼= X := x[ax, rx],
ŷ ∼= Y := y[ay, ry],

}
(6)

then
x̂ + ŷ ∼= Z := z[az , rz]. (7)

The second step is to compute such an approximation x̂, ŷ and choosing ẑ = x̂ + ŷ.
Since this second step is simply a bigFloat addition, we only focus on the first step.
Consider the following two inequalities:

max{µz − rz,−az} − 1 ≥ max{µx − rx,−ax},
max{µz − rz,−az} − 1 ≥ max{µy − ry,−ay}.

It is not hard to verify that these two inequalities are sufficient to ensure equation (7).
In general, the value of µz is unavailable and so we may substitute a lower bound µ∗

z

on µz and use the inequalities

max{µ∗

z − rz,−az} − 1 ≥ max{µx − rx,−ax}, (8)

max{µ∗

z − rz,−az} − 1 ≥ max{µy − ry,−ay}. (9)

By symmetry, it is enough to see how to achieve one of the two inequalities, say,
equation (8). Once we know µ∗

z, we can choose ax, rx as small as possible so as to
make equation (8) into an equality:

rx = µx −max{µ∗

z − rz,−az}+ 1, ax = −max{µ∗

z − rz,−az}+ 1. (10)

(Note: actually we must set rx :=max{0, µx−max{µ∗

z−rz ,−az}+1} since we assume
all relative precisions are non-negative.)



We now turn to the problem of computing µ∗

z. While computing µz it is useful
to determine the sign of z simultaneously. Suppose that recursively, we can compute
Mx, My where Mx and My are approximate MSB’s of x and y, respectively. Moreover,
assume we also computed the signs of x and y. There are two cases for deriving µz.
(CASE A) Suppose x, y have the same sign. This is the easy case. The MSB of Z
can be only one greater than the MSB’s of X and Y , so

µz = max{Mx, My}+ δ

where δ = 0, 1, 2 or 3.
We could perform the addition using coarse approximations of x and y to

determine δ more precisely, but usually it suffices to use the lower bound

µ∗

z :=max{Mx, My}.

(CASE B) Suppose x, y have opposite signs. We give an iterative procedure to find a
lower bound on µz. We will iteratively assign

µ∗

z ← max{Mx, My} − h,

for various values of h. Initially, h = 0, and then h = 1. If h is “too small”, we double
h for the next iteration. What does it mean to be “too small”? Well, it means that
when we use the guessed value of µz to compute [ax, rx], etc, as before, the resulting
value of x̂+ ŷ is 0. Otherwise, we have a fairly good approximation for µz. One more
round of computation can yield a suitable lower bound µ∗

z.

Multiplication Algorithm Suppose that we are given the expression z = x ·y and
precision bound [az, rz], and we want to compute ẑ ∼= z[az , rz].

We need to determine the precision bounds [ax, rx] and [ay, ry] for evaluating
x and y. Once we have these precision bounds, we can compute x̂ and ŷ where

ǫx = |x− x̂|, ǫy = |y − ŷ|

and

ǫx ≤ max{|x|2−rx, 2−ax},
ǫy ≤ max{|y|2−ry, 2−ay}.

Multiplying the values x̂ and ŷ yields

x̂ · ŷ = (x− ǫx)(y − ǫy)

= xy − (xǫy + yǫx − ǫxǫy).

This will therefore be a valid approximation of z if

|xǫy + yǫx + ǫxǫy| ≤ max{|z|2−rz , 2−az}.



This inequality is satisfied if we have:

|xǫy| ≤
1

3
max{|z|2−rz , 2−az},

|yǫx| ≤
1

3
max{|z|2−rz , 2−az},

|ǫxǫy| ≤
1

3
max{|z|2−rz , 2−az}.

This in turn can be replaced by

1 + µx + log2(ǫy) ≤ max{µz − rz,−az} − 2,

1 + µy + log2(ǫx) ≤ max{µz − rz,−az} − 2,

log2(ǫx) + log2(ǫy) ≤ max{µz − rz,−az} − 2.

The last inequality in this set is redundant because of our assumption that rx ≥
0 (since this implies ǫx ≤ |x|). The ǫ’s will be sufficiently small to satisfy these
inequalities if we choose

ax = µy −max{µz − rz,−az}+ 3,

ay = µx −max{µz − rz,−az}+ 3,

rx = ry = µx + µy −max{µz − rz,−az}+ 3.

With multiplication, we do not have any difficulties estimating µz since µz = µx+µy+δ
where δ is either 0 or 1. Therefore, we have the following algorithm.

1. perform coarse evaluations of x and y to determine µx and µy.

2. use these values to determine ax, ay, rx and ry.

3. compute x̂ = x[ax, rx] and ŷ = y[ay, ry].

4. use bigFloat multiplication to compute z[az , rz] = x̂ · ŷ.

Remarks: We can apply this “precision-driven paradigm” much more widely. For
instance, take any optimization problem and convert it to an “approximation” algo-
rithm just by specifying an addition parameter 1 > ε ≥ 0. This means that the answer
is guaranteed to give an answer that is (say we are minimizing) at most V ∗(1 + ε);
here V ∗ is the actual minimum value attained by the problem instance. A classic
example is the problem of Euclidean shortest paths [64, 21]. We consider this ap-
proach as falling within the exact computation paradigm: thus an “exact approximate
algorithm” is not an oxymoron.



6.2. Incremental Computation

Another important technique arising from the use of variable precision-bounds is
the concept of “incremental computation”. If we have computed the sum a + b to
some precision, and we want to increase the precision, how much additional work
is required? We illustrate the ideas by explaining only the incremental addition
algorithm.

We may now assume the situation of equation (6), and moreover, some lower
bounds on µx, µy, µz are known. Now let αz, ρz be given, meaning that we want to
compute the incremental improvement,

̂̂z = z[az + αz, rz + ρz]

for some αz, ρz ≥ 0. We can determine the necessary values for αx, ρx, αy, ρy as above.
So recursively, we assume that ̂̂x, ̂̂y are been computed:

̂̂x = x[ax + αx, rx + ρx], ̂̂y = y[ay + αy, ry + ρy].

Now let δx = ̂̂x− x̂ and δy = ̂̂y − ŷ. Then we can compute

̂̂z = ẑ + δx + δy.

There is a savings here since we do not need to really modify the higher order bits of
̂̂z (except through bit propagation). There are other quantifiable gains: if δℓ is the
incremental number of bits in ̂̂z then δx + δy takes only O(δℓ) time to compute. So

ẑ + δx + δy

takes O(δℓ) plus possibly the propagation of a carry bit of length ℓ. Note that
we can avoid the unpredictable cost of carry propagation if we resort to redundant
representation.

At present, incremental computation is not implemented in our system (our
bigFloat package would have to be modified to take advantage of this).

6.3. Theory of Root Bounds

A basic operation on expressions is to compare their values. Assuming that expres-
sions are closed under differences (if α, β are expressions, then so is α− β), it suffices
to compare an expression to zero, i.e., determine its sign. To determine the sign of
expression α, we can increase the precision-bound of α until we have a definite answer.
The catch is to know how to conclude that α is really 0 without looking at infinitely
many bits! The theory behind this comes from root separation bounds (e.g., [86]).
Notice that without such a theory, we have no basis for doing “exact” computation;
traditionally, implementors would just rely on some heuristic cut-off epsilon value.

We illustrate this for the family of radical rational expressions (defined above),
assuming that the constants and parameters in expressions are rational numbers.



Thus all values are real algebraic numbers. A classic bound from Cauchy [86] says
that if α is non-zero then

|α| > 1

1 + h

where h is a height bound on α. (The height of an algebraic number is the maximum
absolute value of the coefficients in its minimal polynomial.) Thus, we only need to
evaluate α to an absolute precision of 1 + log2(1 + h) to determine its sign.

It turns out that to maintain bounds on heights of algebraic numbers, we must
also maintain bounds on their degrees. We now show the recursive rule for maintaining
these bounds. Suppose the algebraic value β is derived from two expressions whose
values are α1 and α2. Inductively, assume that we have upper bounds on their degrees
and heights: (d1, h1) and (d2, h2). Let Ai(X) be the polynomial with degree ≤ di and
height ≤ hi such that Ai(αi) = 0, i = 1, 2. We will describe a polynomial B(X) such
that B(β) = 0 of height at most h and deg B ≤ d. We have the following cases:

• (BASIS CASE) β = p/q is a rational number, where p, q ∈ Z. Let B(X) =
qX − p, d = 1 and h = max{|p|, |q|}.

• (RECIPROCAL) β = 1/α1, α1 6= 0: let B(X) = Xd1A1(1/X), d = d1 and
h = h1.

• (SQUARE ROOT) β =
√

α1: let B(X) = A1(X
2), d = 2d1 and h = h1.

• (PRODUCT) β = α1α2: let B(X) = resY (A1(Y ), Y d2A2(X/Y )), d = d1d2 and

h = (h1

√
1 + d1)

d2(h2

√
1 + d2)

d1 .

• (SUM/DIFFERENCE) β = α2 ± α1: let B(X) = resY (A1(Y ), A2(X ∓ Y )),
d = d1d2 and

h = (h12
1+d1)d2(h2

√
1 + d2)

d1 .

Here resY (A, B) refers to the Sylvester resultant of A and B, viewed as poly-
nomials in the variable Y . The above choices of d, h are justified in [86], using a
generalized Hadamard bound. Note that in practice, we will take the ceiling of the
indicated height bounds, to avoid non-integer bounds.

7. Conclusion

We see the rise of exact computation as an emerging numerical computation paradigm.
One of its main uses is as antidote to nonrobustness problems. It is not a panacea
here because of computational bottlenecks. Still, we believe it can very effective for
a large class of problems. While f.p. computation will continue to be very important,
the development of exact computation is still crucial for several other reasons:



1. First of all, it is probably the computational method of choice whenever it is
practicably feasible. This is because an exact algorithm will be simpler than any
corresponding “robust” f.p. algorithm.
2. The intellectual challenge of doing exact computation is much deeper than ap-
pears at first sight. We expect that many more theoretical and practical tools will
be developed. Until recently, attempts to use exact computation often amounts to
computing each numerical value exactly. This is a very limited view of the paradigm.
3. Practically all the algorithms developed in algorithmics (computational geometry,
in particular) assume exact computation. It is unthinkable to re-develop “robust sub-
stitutes” for all these algorithms under the f.p. paradigm. (Current, the number of
such substitutes are embarassingly small.)
4. There are many uses of exact computation that complements the f.p. computa-
tions: for instance, to validate a f.p. algorithm, it is probably best to compare its
results against the exact answer. David Bailey has noted that exact algorithms are
very useful in debugging software and hardware.
5. Finally, we believe that this paradigm will shed light on f.p. computations. For
instance, we mentioned in the introduction the widespread practice of “epsilon-
tweaking” in f.p. algorithms. It is evident that the exact computation paradigm
forces us to study precisely these epsilons! In fact, if we allow ourselves enough pre-
cision, the correct choice of an epsilon may lead to algorithms that are “exact” in a
suitable sense. Even for applications where f.p. computation is the method of choice,
we cannot really appreciate the deeper reasons for this choice until we understand
the true cost of the exact solution alternative.
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