
A MODIFIED BERNOULLI NUMBER

D. Zagier

The classical Bernoulli numbers Bn, defined by the generating function

x

ex − 1
=

∞∑

n=0

Bn
xn

n!
, (1)

have many famous and beautiful properties, including the following three:

(i) Bn = 0 for odd n > 1.
(ii) The fractional part of Bn is given by

Bn ≡ −
∑

(p−1)|n
p prime

1

p
(mod 1) (n > 0, n even) .

(iii) Bn is given asymptotically for large even n by the formula

Bn ∼ (−1)n/2−1 n!

2n−1πn
(n → ∞, n even).

In this note we show that the rational numbers defined by

B∗
n =

n∑

r=0

(
n+ r

2r

)
Br

n+ r
(n > 0) (2)

satisfy the following amusing variants of the above three properties:

(I) The value of B∗
n for n odd is periodic; more precisely, it is given by

n (mod 12) 1 3 5 7 9 11

B∗
n 3/4 −1/4 −1/4 1/4 1/4 −3/4

(II) The fractional part of the number B̃n := 2nB∗
n−Bn is given by

B̃n ≡
∑

(p+1)|n
p prime

1

p
(mod 1) (n > 0, n even) .

(III) B∗
n is asymptotically equal to (−1)n/2−1 (n− 1)!

(2π)n
for n large and even, and is

given much more precisely by the approximation

B∗
n ≈ (−1)n/2 π Yn(4π) (n → ∞, n even),

where Yn(x) denotes the nth Bessel function of the second kind.
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The proofs of (I)–(III) will be given in the next three sections, after which we will
give the statement and proof of a fourth property, an exact formula for B∗

n refining
the asymptotic formula (III). The proofs, especially those of (I) and (II), are quite
fun and the reader is invited to try to find them him/herself before proceeding.

We end the introduction with a small table of the numbers B∗
n and B̃n.

n 2 4 6 8 10 12 14 16 18 20

B∗
n

1
24 − 27

80 − 29
1260

451
1120 − 65

264 − 6571
12012

571
312 − 181613

38080
23663513
1220940 − 10188203

83600

B̃n 0 − 8
3 − 3

10
136
21 −5 − 4249

330
651
13 − 3056

21
109269
170 − 247700

57

Proof of (I). Instead of using the familiar generating function (1), we represent
the Bernoulli numbers by the generating function

F (x) =

∞∑

r=1

Br

r
xr ∈ Q[[x]] .

This formal power series does not converge anywhere, but occurs in the asymptotic
formula

Γ′(X)

Γ(X)
∼ logX − 1

X
− F

( 1

X

)
(X → ∞)

for the logarithmic derivative of the gamma function, and the functional equation
Γ(X + 1) = XΓ(X) of the gamma function implies the functional equation

F
( x

1− x

)
= F (x) + x+ log(1− x) ∈ Q[[x]] (3)

of the power series F . An elementary proof of (3), or of the equivalent but simpler

functional equation G
( x

1− x

)
= G(x) − x2 for the simpler power series G(x) =

∑∞
r=0 Brx

r+1 = x + x2F ′(x), can be obtained by noting that either one of these
functional equations is equivalent to the standard recursion formula

n−1∑

k=0

(
n

k

)
Bk = 0 (n > 1) (4)

for the Bernoulli numbers, which is in turn an easy restatement of the definition (1).
Now introduce a new power series Fλ(x), depending on a parameter λ, by

Fλ(x) = F
( x

1− λx+ x2

)
− log(1− λx+ x2) ∈ Q[[x]] .

For λ = 2 this specializes to

F2(x) =
∞∑

r=1

Br

r

xr

(1− x)2r
− 2 log(1− x) = 2

∞∑

n=1

B∗
nx

n . (5)
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On the other hand, the functional equation (3) together with the symmetry property
F (−x) = F (x) + x, which is a restatement of (i), give the functional equations

Fλ+1(x) = Fλ(x) +
x

1− λx+ x2
= F−λ(−x)

for the power series Fλ. We deduce

F2(x)− F2(−x) =
(
F2(x)− F1(x)

)
+

(
F1(x)− F0(x)

)
+

(
F0(x)− F−1(x)

)

=
x

1− x+ x2
+

x

1 + x2
+

x

1 + x+ x2
=

3x− x3 − x5 + x7 + x9 − 3x11

1− x12
.

Statement (I) follows.

Proof of (II). Rather surprisingly, this property is a consequence of the analogous
property (ii) for the usual Bernoulli numbers, the divisibility by p− 1 being meta-
morphosed into the divisibility by p + 1 by the magic of generating functions. We

begin by rewriting the definition of B̃n as

B̃n =
n−1∑

r=0

(n+ r) + (n− r)

n+ r

(
n+ r

2r

)
Br = βn + βn−1 −Bn , (6)

where

βn =

n∑

r=0

(
n+ r

2r

)
Br (n ≥ 0) .

Fix a prime p. We want to show that pB̃n is p-integral for all n and is congruent
to 1 mod p if p + 1 divides n and to 0 otherwise. We suppose that p > 2. (The
case p = 2 is similar but easier.) By (ii) we know that pBr is p-integral and is
congruent to −1 mod p if p− 1 divides r > 0 and to 0 otherwise. Equation (6) then

immediately gives the p-integrality of pB̃n and the congruence

pB̃n ≡ −γn − γn−1 +

{
1 if (p− 1)|n
0 otherwise

(7)

(here and from now on all congruences are modulo p), where

γn =
∑

r>0, (p−1)|r

(
n+ r

2r

)
.

As usual, we use generating functions. From the definition of γn we have

∞∑

n=0

γn x
n =

∑

r>0, (p−1)|r

xr

(1− x)2r+1
=

xp−1

(1− x)2p−1 − xp−1(1− x)
.
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Hence (7) gives

∑

n>0

pB̃n x
n ≡ −(1 + x)

∞∑

n=0

γn x
n +

xp−1

1− xp−1

≡ −(1 + x)
xp−1(1− x)

(1− xp)2 − xp−1(1− x)2
+

xp−1

1− xp−1
.

The expression on the right simplifies to
xp+1

1− xp+1
, completing the proof.

Proof of (III). As in the proofs of (I) and (II), we deduce property (III) from its
classical Bernoulli analogue. Suppose n is even and large. Then for r = n− k with
k fixed (and even) we have

(
2n+ r

2r

)
Br

2n+ r
=

(−1)n/2−1(n− 1)!

(2π)n

(
(−1)k/2(4π)k

k!
+ O

( 1
n

))
,

and since
∑ (−1)k/2(4π)k

k!
= cos(4π) = 1 this gives the asymptotic formula in (III).

The same argument in conjunction with the binomial coefficient identity
(
2n+ r

2r

)
1

2n+ r
=

1

2r!

∑

0≤h≤k/2

(−1)h2k−2h(n− h− 1)!

h!(k − 2h)!
(r = n− k)

(which holds because both sides express the coefficient of xk in (1− 2x+x2)−r/2r)
lets us replace the asymptotic formula for B∗

n by the full asymptotic expansion

(−1)n/2−1B∗
n ∼

∑

h≥0

(n− h− 1)!

h!
(2π)−n+2h .

Consulting standard reference works, we discover that the expression on the right
is also the asymptotic development of −πYn(4π), since Yn is defined by

−π Yn(2x) =
n−1∑

h=0

(n− h− 1)!

h!
x−n+2h +

∞∑

h=0

(ch + cn+h − 2 log x)
(−1)hx2h+n

h!(n+ h)!

with ch = 1+ 1
2 + · · ·+ 1

h − γ = O(log h). (Cf. [1], 7.2(32).) This proves the second
assertion in (III), though without any estimate of the error.

Here are a few numerical values to illustrate the accuracy of the two approxima-
tions for B∗

n in (III) :

n 20 30 50

(n− 1)! (2π)−n 13.228 10026347.89 0.75008667460769577× 1023

−π Yn(4π) 122.319 40532569.11 1.69052138468088825× 1023

(−1)n/2−1B∗
n 121.868 40532573.81 1.69052138468090709× 1023

The poorness of the approximations in the first row is explained by the above
asymptotic expansion, which shows that the ratio of |B∗

n| to (n − 1)!(2π)−n is
1 + Cn−1 +O(n−2) with C = 4π2 ≈ 40.
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An exact formula. In the case of the usual Bernoulli numbers, the rough asymp-
totic formula (iii) can be replaced by the exact formula

Bn =
(−1)n/2−1 n!

2n−1 πn

(
1 +

1

2n
+

1

3n
+ · · ·

)
(n > 0, n even) (8)

due to Euler. It is reasonable to look for a corresponding exact formula for B∗
n.

We start with numerical data. From the table above we have B∗
50 + πY50(4π) ≈

1, 884 × 109, the exact value being 1884415006.56 . . . . Guessing that this differ-
ence might be related to the value −πY50(8π), we compute this latter number,
which turns out to be 1884414704.76 . . . , suggesting that we are on the right track.
Going one step further, we find that the difference B∗

50 + πY50(4π) + πY50(8π)
equals 301.79 . . . , rather close to the value −πY50(12π) = 300.89 . . . . This sug-
gests that B∗

n might be very well approximated by, or even equal to, the number
Un =

∑∞
ℓ=1(−1)n/2πYn(4πℓ). However, this sum diverges, since (−1)n/2πYn(4πℓ)

behaves like − 1
2ℓ

−1/2 for ℓ large, so we must renormalize it, setting

Un :=
∞∑

ℓ=1

(
(−1)n/2πYn(4πℓ) +

1

2
√
ℓ

)
− 1

2
ζ
(1
2

)
. (9)

The series converges only like
∑

ℓ−3/2, but can be replaced by the expression

Un =
∞∑

ℓ=1

(
(−1)n/2πYn(4πℓ) +

K∑

k=0

cn,k
ℓk+1/2

)
−

K∑

k=0

cn,k ζ
(
k +

1

2

)
,

cn,k =
(−1)[

k+1

2
]

2(8π)k k!
(n+ k − 1

2 )(n+ k − 3
2 ) · · · (n− k + 1

2 )

for any K ≥ 0, where the ℓth term is O(ℓ−K−3/2), so the numerical value of Un can
be computed easily. Comparing it with B∗

n, we find the following table:

n B∗
n − Un

2 −0.886968175 . . .
4 −1.988273972 . . .
10 −4.999969846 . . .
30 −15 + 1.292 . . .× 10−13

50 −25 + 5.646 . . .× 10−22

suggesting a formula of the form

B∗
n +

n

2
= Un + εn (n > 0, n even), (10)

where εn is positive and goes to 0 rapidly as n tends to infinity. (Notice that the
quantity B∗

n + n/2 occurring on the left is given by the same expression as in (2),
but with Br replaced by (−1)rBr.) We now prove this and give an exact formula
for the error term εn.

(IV) Define B∗
n by (2) and Un by (9). Then equation (10) holds with

εn =

∞∑

k=1

1√
k(k + 4)

(√
k +

√
k + 4

2

)−2n

∼ 1√
5

(
3 +

√
5

2

)−n

. (11)
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Proof of (IV). Using the relation (8) between Bernoulli numbers and zeta values,
we find

B∗
n =

1

n
− n

4
−

∑

2≤r≤n
r even

(
n+ r − 1

2r − 1

)
(r − 1)!

(2πi)r
ζ(r)

and hence

B∗
n − Un =

1

n
− n

4
+

1

2
ζ
(1
2

)
+

∞∑

ℓ=1

bn,ℓ , (12)

where

bn,ℓ := (−1)n/2−1 π Yn(4πℓ)−
∑

2≤r≤n
r even

(
n+ r − 1

2r − 1

)
(r − 1)!

(2πiℓ)r
− 1

2
√
ℓ
.

On the other hand, standard formulas for Bessel functions (cf. [1], 7.2(15) and
7.3(16)) give

(−1)n/2−1π Yn(x) = 2ℜ
(
Kn(ix)

)

=

√
π/2

Γ(n+ 1
2 )

∫ ∞

0

e−ix(t/2 + ix)n−
1
2 + eix(t/2− ix)n−

1
2

(ix)n
e−t tn−

1
2 dt

for n even and positive, and hence, after some simple manipulations, the formula

bn,ℓ =
2Γ( 12 )

Γ(n+ 1
2 )

∫ ∞

0

tn−1 e−t

(
fn

(8πℓ
t

)
− 1

4

√
t

πℓ

)
dt (13)

where fn(x) is defined for x > 0 by

fn(x) =
(1 + ix)n−

1
2 + (1− ix)n−

1
2

2 (ix)n
−

∑

2≤r≤n
r even

(
n− 1

2

n− r

)
(ix)−r .

Note that f(x) = (2x)−1/2 + O(x−3/2) as x → ∞, so that bn,ℓ = O(ℓ−3/2), as we
already know. Clearly fn(x) extends to C0 := C r (−i∞,−i] r [i, i∞) as an even
holomorphic function, and the binomial theorem gives the Taylor expansion

fn(x) =
∑

r≥0

(−1)r
(
n− 1

2

n+ 2r

)
x2r (|x| < 1) .

The beta integral identity

(
n− 1

2

n+ 2r

)
=

1

π

Γ(n+ 1
2 )Γ(2r +

1
2 )

Γ(n+ 2r + 1)
=

1

π

∫ 1

0

u2r− 1
2 (1− u)n−

1
2 du
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now gives the integral representation

fn(x) =
1

π

∫ 1

0

u− 1
2 (1− u)n−

1
2

1 + x2u2
du

for |x| < 1, and by analytic continuation this holds for all x ∈ C0. Consider the
more general integral

fn(x, s) =
1

π

∫ 1

0

us−1 (1− u)n−
1
2

1 + x2u2
du (x ∈ C0, s ∈ C, 0 < ℜ(s) < 2) ,

so that fn(x) = fn(x,
1
2 ). It can be estimated for large x by

fn(x, s) =
1

π

∫ ∞

0

us−1 du

1 + x2u2
+ O(x−s−1) =

x−s

2 sin(πs/2)
+ O(x−s−1) .

In particular,
∑

ℓ fn(ℓx, s) converges for ℜ(s) > 1 and all x > 0, and using the
Poisson summation identity

∞∑

ℓ=−∞

1

1 + ℓ2 t2
=

π/t

tanhπ/t
=

π

t

(
1 + 2

∞∑

k=1

e−2πk/t

)
(t > 0)

we find
∞∑

ℓ=−∞

fn(ℓx, s) =
1

x

(
Γ(s− 1)Γ(n+ 1

2 )

Γ(s+ n− 1
2 )

+ 2

∞∑

k=1

∫ 1

0

us−2 (1− u)n−
1
2 e−2πk/xu du

)

for ℜ(s) > 1. Writing the left-hand side of this identity as

fn(0, s) +

∞∑

ℓ=1

(
2fn(ℓx, s)−

(ℓx)−s

sin(πs/2)

)
+

ζ(s)x−s

sin(πs/2)

gives its analytic continuation to ℜ(s) > 0, and setting s =
1

2
, x =

8π

t
we obtain

∞∑

ℓ=1

(
fn

(8πℓ
t

)
− 1

4

√
t

πℓ

)
=− Γ(n+ 1

2 )

8Γ( 12 )Γ(n)
t − ζ( 12 )

4
√
π
t
1
2 − Γ(n+ 1

2 )

2Γ( 12 )Γ(n+ 1)

+
t

8π

∞∑

k=1

∫ 1

0

u− 3
2 (1− u)n−

1
2 e−kt/4u du .

Combining this with (13) and performing the integrations over t we get

∞∑

ℓ=1

bn,ℓ = −n

4
− ζ( 12 )

2
− 1

n
+

Γ(n+ 1)

4Γ( 12 )Γ(n+ 1
2 )

∞∑

k=1

∫ 1

0

u− 3
2 (1− u)n−

1
2

(1 + k/4u)n+1
du .

The desired result now follows by inserting this into (12) and using the identity

Γ(n+ 1)

4Γ( 12 )Γ(n+ 1
2 )

∫ 1

0

u− 3
2 (1− u)n−

1
2

(1 + k/4u)n+1
du =

1√
k(k + 4)

(√
k +

√
k + 4

2

)−2n

,

which can be proved either from standard hypergeometric formulas or by expanding
both sides as power series in 1/k for k > 4 and then using analytic continuation.
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Remarks. We end this paper with a number of remarks.

1. The formula given in (i), which can be rewritten in the form

B∗
n =

1

2

(−3

n

)
+

1

4

(−4

n

)
(n odd) ,

occurred originally in [4] in the context of the Eichler-Selberg trace formula for the
traces of the Hecke operator Tℓ acting on modular forms on SL2(Z). The method of
proof there gave a formula for these traces which had a somewhat different form from
the classical one, and in particular involved Bernoulli numbers. The specialization
of the formula to the case ℓ = 1 gave the dimension ofMk(SL2(Z)) in terms of B∗

k−1,
and the equality of this expression with the standard dimension formula required
the periodicity property (I).

2. The same idea as was used to prove (I) leads to another simple expression for
the modified Bernoulli numbers B∗

n. Specifically, from

F2(x) = F0(x) +
x

1− x+ x2
+

x

1 + x2

and the binomial formula we get the identity

2B∗
2n =

(−3

n

)
+

n∑

r=0

(−1)n+r

(
n+ r

2r

)
B2r

n+ r
,

whose second term has a pleasing similarity to the original formula (2) defining B∗
n.

3. Next, we mention that the definition (2) can also be inverted to express the
ordinary Bernoulli numbers in terms of the modified ones, should we for any reason
wish to do so. Indeed, from (5) we have

∞∑

n=1

Bn

n
xn = 2 log

(√1 + 4x− 1

2x

)
+ 2

∞∑

r=1

B∗
r

(
1 + 2x−

√
1 + 4x

2x

)r

,

and comparing coefficients of Bn we get

Bn = (−1)n
(
2n

n

)
+ 2

n∑

r=1

(−1)n−r r

(
2n

n− r

)
B∗

r .

4. Finally, we mention that there are (at least) two ways of calculating Bernoulli
numbers which are faster than the standard recursion (4). The first is due to
M. Kaneko [3]. The second I noticed myself, but Kaneko has informed me that
it is in fact a classical identity going back to Kronecker. (See [2] for a historical
survey.) Nevertheless, these formulas are both pretty and useful, so for the sake of
popularization we reproduce them here.

8



a. One can replace (4) by a recursion of the same type, but with only half as many
terms, namely, setting bn = (n+ 1)Bn,

b2n = − 1

n+ 1

n−1∑

i=0

(
n+ 1

i

)
bn+i (14)

together with the conditions b1 = −1 and b2n+1 = 0 for n > 0. Equation (14)
can be seen as a special case of the following fact: Define an involution ∗ on
the set of sequences {a0, a1, a2, . . . } by A∗(x) = e−x A(−x), where A(x) :=∑∞

n=0 anx
n/(n + 1)!, or more explicitly by a∗n = (−1)n

∑n
i=0

(
n+1
i+1

)
ai. Then the

expression
∑n

i=0

(
n
i

)
an+i−1 (n ≥ 1) is anti-invariant under ∗ and hence vanishes if

A∗ = A. (Note that A(x) = x/(ex − 1) = A∗(x) for an=bn.)

b. The Bernoulli numbers can be calculated directly, rather than recursively, by
the closed formula

Bk =
k∑

n=0

(−1)n
(
k + 1

n+ 1

)
0k + · · ·+ nk

n+ 1
. (15)

To prove this, we apply Bernoulli’s famous formula for 1k + · · ·+ nk to get

0k + · · ·+ nk

n+ 1
=

Bk+1(n+ 1)−Bk+1

(k + 1)(n+ 1)
= (polynomial of degree k in n) +

Bk

n+ 1
,

where Br(x) denotes the rth Bernoulli polynomial; taking the (k + 1)st difference
of both sides kills the polynomial on the right, leaving only an easily computed
multiple of Bk. Formula (15) is much more convenient for numerical computations
than the recursion formula, at least if one wants to compute individual Bernoulli
numbers rather than a table up to some limit, since the number of steps needed to
compute Bk is O(k) rather than O(k2) (each term in the sum can be computed
from its predecessor in O(1) steps). Indeed, even for computing a table, (15) is
sometimes more useful than the recursion (4), since the time required is about the
same but the storage requirements are reduced from O(k) to O(1). Here is a
one-line PARI program implementing the formula (15) (for k > 0):

B(k)=h=0;s=1;c=k+1;for(n=2,k+1,c=c*(n-k-2)/n;h=h+c*s/n;s=s+n^k);h
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