
11. Stable homotopy

Further reading for this section: [DL61]
We have spent some time studying Grassmannians. We know their cohomology (and thus their

homology), and we have mentioned that, in general, their homotopy groups are not known. How-
ever, it turns out that these spaces satisfy a nice stability condition which allows us to calculate
some of their homotopy groups. Recall that we proved earlier that Gn ' BO(n); thus to study
Grassmannians it suffices to fully understand O(n).

The group O(n) acts on Sn−1, with the stabilizer of a point isomorphic to O(n− 1). Since this
is entirely continuous, the orbit-stabilizer theorem applies and we get that Sn−1 ∼= O(n)/O(n− 1).
More importantly, we actually get a fiber sequence

O(n− 1) O(n) Sn−1.

Thus we can look at the long exact sequence of a fibration to get an exact sequence

· · · πi+1S
n−1 πiO(n− 1) πiO(n) πiS

n−1 · · ·

Since πiS
n−1 = 0 for i < n − 1, we see that for i < n − 2 we have πiO(n − 1) ∼= πiO(n). Thus

the low-dimensional homotopy groups do not depend on the dimension of the ambient space. We
might then guess that calculating the homotopy groups of O = colimO(n) might be simpler than
calculating the homotopy groups of O(n). In actuality this ends up being significantly simpler.

Theorem 11.1 (Bott Periodicity).

πkO ∼= πk+8O and πkU ∼= πk+2U.

Here U = colimU(n).
We will be following the proof from [DL61]. There are many different proofs of this theorem,

from Bott’s original proof using Morse Theory to a spectral sequence argument of Moore’s, to new
proofs using quasifibrations of Behrens and Aguilar–Prieto. The approach that we follow has the
advantage that it does not require a lot of theory, relying mostly on an understanding of algebra
and some topological techniques.

The two parts of the theorem are proved in similar ways. The idea of the proof is to construct
Bott maps

Φ:BU ΩSU

Φ1:BSp Ω(U/Sp) Φ2:BO Ω(U/O)

Φ3:U/Sp Ω(SO/U) Φ4:U/O Ω(Sp/U)

Φ5:SO/U ΩSO Φ6:Sp/U ΩSp.

Here, Sp is the infinite symplectic group, colimSp(n). Once these are constructed, the main meat of
the proof is showing that they are equivalences. At that point we are done, since we get equivalences

U ' ΩBU ΩΩ0U ' Ω2U

and

O ' ΩBO Ω2(U/O) Ω3(Sp/U) Ω4Sp ' Ω5BSp Ω6(U/Sp) Ω7(SO/U) Ω8SO ' Ω8O.

Since πnΩiX ∼= πn+iX it follows that the homomotopy groups of U and O are 2-periodic and
8-periodic, respectively, and it suffices to compute the low-dimensional homotopy groups to under-
stand them all. (Note that this proof also proves that the homotopy groups of Sp are shifts of the
homotopy groups of O.)

We will not prove real Bott periodicity. This is the harder case, and requires some more theory
than the complex case, but is not much more illuminating. Thus we focus our attention on the
complex case and Φ0. This case is much simpler and more geometric, although a full discussion
would still take longer than we may want to take; thus we are going to set up the proof until the
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key step of homology computations, and then give a broad outline of how these computations are
to be done.

We now turn our attention to constructing the Bott map Φ. Let Ck,n = Ck × Cn be a k + n-
dimensional complex vector space. U(k+n) acts on Ck+n. We define a continuous familiy of linear
maps, αθ, given by

αθkn(z1, z2) = (z1e
iθ, z2e

−iθ) ∈ Ck × Cn.
Note that αθkn ∈ U(k + n), so we can think of α as a map S1 U(k + n), or in other words a
point in ΩU(k + n). Moreover, suppose that for k ≤ k′ and n ≤ n′ we have inclusions Ck Ck′

and Cn Cn′ which induce jk′−k,n′−n:Ck × Cn Ck′ × Cn′ ; then the diagram

Ck × Cn Ck × Cn

Ck′ × Cn′ Ck′ × Cn′

αθ

Ωjk′−k,n′−n

αθ

jk′−k,n′−n

commutes. Define Φ̃k,n:U(k + n) ΩU(k + n) by

T
(
θ TαθknT

−1α−1
θkn

)
.

Since Φ̃k,n takes any T ∈ U(k)× U(n) to the trivial loop, it induces a map Φk,n:U(k + n)/U(k)×
U(n) ΩU(k + n).

For k ≤ k′ and n ≤ n′ the diagram

U(k + n)/U(k)× U(n) ΩSU(k + n)

U(k′ + n′)/U(k′)× U(n′) ΩSU(k′ + n′)

Φk,n

Ωjk′−k,n′−n

Φk′,n′

jk′−k,n′−n

commutes. Note that

U(k + n)/U(k) ∼= Vn(Rk+n),

where Vn(Rk+n) is the Steifel manifold of n-frames in Rk+n. Thus

U(k + n)/U(k)× U(n) ∼= Vn(Rk+n)/U(n) ∼= Grn(Rk+n).

Thus colimk U(k+n)/U(k)×U(n) ∼= BU(n). As before, we know that BU ∼= colimnBU(n). Now,
in the above diagram, set n = 1 and k′ = k; we then get the diagram

CP k ΩSU(k + 1)

Grn′(R
k) ΩSU(k + n′)

Φk,1

Ωj0,n′−1

Φ0,n′

j0,n′−1

Taking k, n′ ∞ we get

CP∞ ΩSU

BU ΩSU

Φ

ΩJ

Φ

J

The map Φ is the Bott map.
We have the following theorem, which is a refinement of Whitehead’s theorem:
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Theorem 11.2 ([DL61, Theorem 1.6]). Let f :X Y be a map of topological spaces which is

bijective on π0. If f is an H-map of H-spaces and f∗:Hi(X;Z) Hi(Y,Z) is an isomorphism for

all i then f∗:πi(X) πi(Y ) is an isomorphism for all i.

Thus in order to show that Φ induces an isomorphism on homotopy it suffices to show that it is
an H-map of H-spaces and that it induces an isomorphism on homology.

Lemma 11.3. Φ is an H-map of H-spaces.

Proof. Note that the following diagram commutes for all k, k′, n, n′:

U(k + n)× U(k′ + n′) ΩSU(k + n)× ΩSU(k′ + n′)

U(k + k′ + n+ n′) ΩSU(k + k′ + n+ n′)

Φ̃k,n × Φ̃k′,n′

Ωdiag

Φ̃k+k′,n+n′

diag

The map Ωdiag is homotopic to the loop concatenation map. The analogous diagram to the above

with Φk,n instead of Φ̃k,n also commutes; if we take the colimit as k, n go to infinity we get that
Φ is an H-map of H-spaces, where the H-space structure on ΩU is the loop concatentation map,
and the H-space structure on BU is the block diagonal map. �

Note that whenever we have a homotopy associative and homotopy unital H-space, the product
map endows the homology with a ring structure. To see this, first consider any two spaces X and
Y . We can define a cross product on the homologies:

Hi(X)×Hj(Y )
×

Hi+j(X × Y ).

This is done simply by defining the product directly on the cellular chain complex and noting that
the cells of X×Y are exactly products of the cells of X and the cells of Y . When X is an H-space,
we get a product by composing the cross product with the multiplication map:

Hi(X)×Hj(X)
×

Hi+j(X ×X)
µ∗

Hi+j(X).

This structure is called the Pontrjagin ring.
The Pontrjagin ring structure of the homology of classical Lie groups is well-known. It is par-

ticularly easy to study because there is a cell structure on these groups which allows for easy
computation.

Theorem 11.4 ([Yok57, Theorem 8.1(7)]). The Pontrjagin ring of U(n) is given by

H∗(U(n)) ∼= ΛZ[e1, e3, . . . , e2n−1].

The inclusion map U(n) U(n+ 1) takes ei to ei.

[Yok57, Theorem 8.1] is a long list of such isomorphisms. This tells us that H∗U ∼= ΛZ[e2i−1 | i ≥
1]. We are not going to prove the whole theorem, but we will show how the cell structure is
constructed, as it will be useful for the rest of the section.

Sketch of cellular structure. We follow the proof in [Yok56, Section 7], as it is somewhat easier to
follow.

First, note that U(n) ∼= S1×SU(n), since we can scale the first column of any n×n unitary matrix
by the inverse of the determinant. By the Kunneth theorem for homology (and by tracing through
the Pontrjagin ring structure) we see that H∗(U(n)) ∼= H∗(S

1)⊗H∗(SU(n)) ∼= ΛZ[e1]⊗H∗(SU(n)).
Thus we focus our attention on SU(n).
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We think of points of ΣCPn−1 as pairs of points (θ, x) with θ ∈ [−π/2, π/2] and x ∈ CPn−1; we
assume that x is represented as (x1, . . . , xn) with |x1|2+· · ·+|xn|2 = 1. We define fn: ΣCPn−1 SU(n)
by

fn(θ, x) =
(
In − 2exp(−iθ) cos θ (xixj)

n
i,j=1

)( − exp(−2iθ)
In−1

)
.

Each of the two matrices in the product is unitary, and their product has determinant 1; when
θ = ±π/2 it is equal to In, so this is a well-defined map. In addition, when x = (1, 0, . . . , 0),
this is also equal to In. Note that if we think of CP k−1 as sitting inside CPn−1 as the first
k coordinates, then we have a map fk: ΣCP k−1 SU(n) which factors through the inclusion
SU(k) SU(n). We call the maps f1, . . . , fn characteristic maps. It is not difficult to check that
fk maps ΣCP k−1\ΣCP k−2 homeomorphically into SU(k) ⊆ SU(n).

For n ≥ k1 > k2 > · · · > kj ≥ 2 we define a map

fk1,...,kj : ΣCP k1−1 × · · · × ΣCP k2−1 SU(n)

by defining fk1,...,kj (z1, . . . , zj) = f(z1) · · · f(zj). In the top-level this gives a cell of SU(n). All of
these cells together give the cellular decomposition of SU(n). �

From the above analysis we can see where the Pontrjagin ring structure is coming from, since
cells are explicitly defined to come from products of odd-dimensional cells. In addition, from this
cell decomposition we can immediately see that J will be a homology isomorphism, since as a
map U(k + 1) U(k + n′) it is an isomorphism up to degree 2k. Moreover, directly from the
construction of this cell structure we get the following:

Proposition 11.5. The map ΣCP∞ SU adjoint to Φ maps the suspension of the 2k-dimensional
cell of CP∞ to the primitive cell fk+1. Thus the induced map on homology takes the generator in
degree 2k + 1 to the generator in degree 2k + 1.

We have the following theorem:

Theorem 11.6 ([DL61, Theorem 2.7]). Let X be an H-space such that H∗(X) is a transgressively
generated exterior algebra on odd generators of degree at least 3. Then H∗(ΩX) is a polynomial
algebra generated by the adjoints of the generators.

Note that this theorem applies to SU . Thus we know that H∗(ΩSU) ∼= H∗(ΩSU) is a poly-
nomial algebra generated by the adjoint maps to the generators of H∗(SU). Thus H∗(ΩSU)
is a polynomial algebra on generators of even degrees. In particular, this means that the map
H∗(CP

∞) H∗(ΩSU) induced by the adjoint map is a surjection on the generators of the Pon-
trjagin ring structure of H∗(ΩSU).

In order to show that Φ∗:H∗(BU) H∗(ΩSU) is an isomorphism of Pontrjagin rings, it suffices
to check H∗(BU) is a polynomial ring on generators z2i, and that each z2i maps to the generator
of degree 2i in the Pontrjagin ring H∗(ΩSU).

First, let us consider the H-space structure on BU . By analogy to our result about H∗(BO(k)),
we know that H∗BU ∼= Z[c2i | |c2i| = 2i]. The multiplication map is given by the map which takes
two matrices to their block diagonal sum. This map is exactly the map characterizing the Whitney
sum of two bundles; thus on cohomology it takes the generator c2i to

∑
j+k=i c2jc2k. This gives

us the complete Hopf algebra structure on H∗(BU); since the Hopf algebra structure on H∗(BU)
is given by the dual of this, we can conclude that H∗(BU) is also a polynomial algebra on even
generators z2i.

We now would like to show that z2i maps to the appropriate generator in H∗(ΩSU). However,
note that we know that b2i, the generator of H2i(CP

∞) maps to this generator in H∗(ΩSU); thus
it suffices to check that the image of b2i under J is z2i. Note that J is the inclusion CP∞ ∼=
BU(1) BU . By the general theory of Chern classes, J∗(c2i) = c2(CP 1) = b2 6= 0 if i = 1 and
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0 otherwise. Thus J∗(b2i) = z2i (since otherwise pushing forward, dualizing and then pulling back
would give the wrong result), and the proof is complete.

We now note that U ∼= S1 × SU . Since Ω is a right adjoint, we have

ΩU ∼= Ω(S1 × SU) ∼= ΩS1 × ΩSU ∼= Z× ΩSU.

We can therefore restate the Bott map as an equivalence

Z×BU ∼ ΩU

by simply mapping it appropriately on components.
The real case is similar, with similar definitions for the Bott maps. However, the homology

computations become somewhat more complicated, and the proof must be done in two stages: first
showing that the maps analogous to φ∗ and ι∗ are isomorphisms in mod p homology for all primes
p, and then lifting this to imply that they are isomorphisms in homology with Z coefficients. The
case when p = 2 ends up being more complicated than the general case. For the interested reader
these are explained in detail in [DL61].

We can use this to compute the homotopy groups of U . By the theorem, if we can compute π0

and π1 we would know all of the homotopy groups. Analogously to the observation about O(n) at
the beginning of this section, πiU(n− 1) ∼= πiU(n) for i < 2n− 2. Thus to find all of the homotopy
groups up to π1 it suffices to consider n = 2. But U(2) ∼= S1 × SU(2) ∼= S1 × S3, which has π0 = 0
and π1

∼= Z. Thus
πevenU ∼= 0 and πoddU ∼= Z.

Alternately, we can look at BU and note that the result says that

BU ' ΩU ' Ω2BU.
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