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We give a brief survey of our work (joint with Youliang Tian) on the theme of

“quantization commutes with reduction”

as well as the recent generalization (joint with V. Mathai) on the noncompact setting

of proper cocompact actions of non-compact groups on non-compact spaces.

§1. Quantization on compact symplectic manifolds

Let (M, ω) be a closed symplectic manifold. Let J be an almost complex

structure on TM such that

gTM(v, w) = ω(v, Jw)

defines a Riemmannian metric on TM .

Let E be a Hermitian vector bundle over M admitting a Hermitian connection

∇E .

Then one can construct a (twisted) spinc Dirac operator

DE : Γ
(

Λ0,∗(T ∗M) ⊗ E
)

→ Γ
(

Λ0,∗(T ∗M) ⊗ E
)

.

Remark. When (M, ω, J) is Kähler and E is a holomorphic vector bundle

over M , one has

DE =
√

2
(

∂
E

+
(

∂
E
)∗)

.

Let DE± be the restriction of DE:

DE± : Γ
(

Λ0, even
odd (T ∗M) ⊗ E

)

→
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Γ
(

Λ0, odd

even (T ∗M) ⊗ E
)

.

Then

DE = DE + +DE−,
(

DE+
)∗

= DE − .

Define the quantization space of E to be the formal difference

Q(E) =
(

ker DE+
)

−
(

coker DE+
)

=
(

ker DE+
)

−
(

ker DE−
)

.

It can be viewed as an element in K(·) (point view due to Bott), and does not

depend on the choice of J and the metric and connection on E.

Atiyah-Singer index theorem.

dim Q(E) = ind DE+ = 〈Td(TM)ch(E), [M ]〉

=

∫

Mdet

(

e
√

−1RTM

2π

1 − e
−
√

−1RTM

2π

)

Tr

[

exp

(
√
−1RE

2π

)]

,

where RTM is the curvature of the Levi-Civita connection associated to gTM , RE =

(∇E)2 is the curvature of ∇E.

Remark. When (M, ω, J) is Kähler and E is holomorphic, then

Q(E) = H0,even(M, E) − H0,odd(M, E).

§2. Hamiltonian action and symplectic reduction

Let G be a compact connected Lie group. Let g be the Lie algebra of G.

Assume G acts on (M, ω) in a Hamiltonian way, and preserves J .

Then there exists a G-equivariant moment map

µ : M → g∗

such that for any V ∈ g, one has

iV Mω = d〈µ, V 〉,

where V M ∈ Γ(TM) denote the vector field on M generated by V ∈ g.

Clearly, G preserves µ−1(0).

Definition. The Marsden-Weinstein

symplectic reduction space MG is defined to be

MG = µ−1(0)/G.
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Basic assumption: 0 ∈ g∗ is a regular value of the moment map µ : M → g∗.

Then µ−1(0) is a closed manifold.

For simplicity, also assume that G acts on µ−1(0) freely, then MG is a closed

manifold and carries an induced symplectic form ωG.

Moreover, J induces an almost complex

structure JG on TMG such that ωG(v, JGw) determines a Riemannian metric gTMG

on TMG.

Remark. If (M, ω, J) is Kähler, then

(MG, ωG, JG) is also Kähler.

§3. Pre-quantization and symplectic

reduction

Let L be an Hermitian line bundle over M carrying an Hermitian connection

∇L such that
√
−1

2π

(

∇L
)2

= ω.

When such an L exists, we call (M, ω) pre-quantizable, and call L the pre-

quantized line bundle.

We assume the existence of L now.

We make the assumption that the Hamiltonian G action lifts to an action

on L, which preserves the Hermitian metric and Hermitian connection on L.

Then L descends to a pre-quantized line bundle LG over MG carrying a canon-

ically

induced Hermitian metric and Hermitian

connection ∇LG.

Remark. When (M, ω, J) is Kähler and L is a holomorphic line bundle over

M , then LG is also holomorphic over MG.

§4. Geometric quantization commutes with symplectic reduction

Continue the discussion above.

Then the canonical spinc Dirac operator DL commutes with the induced G-

action on

Γ(Λ(0,∗)(T ∗M)). Thus, G preserves ker D±L.

Let (ker D±L)G denote the G-invariant part in ker D±L.

Define the reduction of the quantization space Q(L) of L to be

Q(L)G =
(

ker D+L
)G −

(

ker D−L
)G

.
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Also recall that the quantization of LG on MG is defined by

Q (LG) =
(

ker D+LG
)

−
(

ker D−LG
)

.

The Guillemin-Sternberg conjecture (1982):

dim Q(L)G = dim Q (LG) . (∗)

Remark. Tautologically, the above means “Geometric quantization commutes

with

symplectic reduction”.

Remark. Guillemin-Sternberg first proved in 1982 that when (M, ω, J) is

Kähler and L is holomorphic,

dim H(0,0)(M, L)G = dim H(0,0) (MG, LG)

and made the conjecture of generalization. The above formulation (*) of the con-

jecture was inspired by an observation of Bott.

When G is abelian, (*) was first proved by Guillemin (1995) in a special case,

and later in general by Meinrenken (JAMS 1996) and Vergne (DMJ 1996) indepen-

dently.

The remaining non-abelian case was proved by Meinrenken (Adv. in Math.

1998) by

using the technique of symplectic cut of

Lerman.

There are also approaches of Duistermaart-Guillemin-Meinrenken-Wu (for cir-

cle actions) and Jeffrey-Kirwan (for non-abelian group actions with certain extra

conditions).

Remark. All of the above use the Atiyah-Bott-Segal-Singer equivariant index

theorem in an essential way: first relate dim Q(L)G to quantities on the fixed point

set of the G-action, and then try to relate the later to quantities on the symplectic

quotient (through symplectic cut or through the Jeffrey-Kirwan-Witten non-abelian

localization formulas).

Natural question. Whether there is an

approach relating dim Q(L)G directly to

dim Q(LG)?
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§5. A direct analytic approach

(with Youliang Tian)

We try to put the problem into the framework of an analytic Morse theory,

analogous to what Witten did in the usual (real) case.

Let g∗ be equipped with an AdG-invariant metric. Set

H = |µ|2.

Let XH be the associated Hamiltonian

vector field, i.e.,

iXHω = dH.

Definition (Tian-Zhang, 1998) For any T ∈ R, set

DLT = DL +

√
−1T

2
c
(

XH
)

:

Γ
(

Λ0,∗(T ∗M) ⊗ L
)

→ Γ
(

Λ0,∗(T ∗M) ⊗ L
)

.

Remark. If (M, ω, J) is Kähler and L is holomorphic, then one has

DLT =
√

2
(

e
−TH

2 ∂
L
e

TH
2 + e

TH
2

(

∂
L
)∗

e
−TH

2

)

.

This is an analogue of the Witten deformation in Morse theory, but now in a

non-abelian context.

By using this deformation, one can then apply the analytic localization tech-

nique of Bismut-Lebeau to complete the proof of the Guillemin-Sternberg conjecture.

There are also many immediate generalizations arising from this analytic ap-

proach.

§6. Main idea of proof

Since µ is G-equivariant and the metric on g∗ is AdG-invariant, H = |µ|2 is

a G-invariant function on M . Thus the associated Hamilton vector field XH is a

G-invariant vector field on M .

(*) For any T ∈ R,

DTL = DL +

√
−1T

2
c
(

XH
)

commutes with the G-action and preserves Ω(M, L)G, the G-invariant subspace of

Ω(M, L) = Γ
(

Λ0,∗ (T ∗M) ⊗ L
)

.
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The main point is that when restricted to Ω(M, L)G, one has

(

DTL
)2

=
(

DL
)2

+ TA + 4πTH +
T 2

4

∣

∣XH
∣

∣ ,

where A is a bounded operator.

For simplicity, replace L by Lp, the p-th

tensor power of L. Then one has, when restricted on Ω(M, Lp)G,

(

DTLp)2
=
(

DTLp)2
+ TA + 4πpTH +

T 2

4

∣

∣XH
∣

∣ ,

where A is now bounded and not involve p.

Simple observation: If H(x) 6= 0, then when p > 0 is large enough,

TA + 4πpTH > 0.

Proposition. Take any open neighborhood U of µ−1(0). Then there exists

T0 > 0, p0 > 0, C > 0 such that for any T ≥ T0, p ≥ p0, s ∈ Ω(M, Lp)G with

Supp(s) ⊂ M \ U , one has

∥

∥DTLp

s
∥

∥

2 ≥ C
(

‖s‖12 + T‖s‖02
)

.

This shows that outside U , the restriction of DTLp

on Ω(M, Lp)G is “highly

invertible”. Thus in order to study the kernel of it, one can reduce the problem to

U which can be made sufficiently small around µ−1(0).

One can then apply the Bismut-Lebeau technique in U to prove the quantization

formula (at least when p > 0 is large enough).

Remark. More refined analysis on M \ U works for p = 1 in this (compact

group action) case.

§7. The non-compact group action case

The original Guillemin-Sternberg conjecture was stated and proved for the case

where a compact Lie group acts on a compact manifold.

It is natural to ask the possibility of generalizations to non-compact cases.

Paradan studied the case where G is compact and M is non-compact,

and proved a quantization formula under some extra condition and studied the

relations with representation theory of semi-simple groups. A general conjecture in

this direction, under the condition that the moment map is proper, was proposed

by Vergne in her

ICM2006 plenary lecture.

6



In a recent joint work with Xiaonan Ma, we solved this conjecture of Vergne in

full generality.

However, in this talk I will present another kind of generalization of the Guillemin-

Sternberg conjecture in the noncompact setting.

This is the setting proposed by Hochs and Landsman, where both G and M

are non-compact but M/G is compact.

In what follows, we will outline a generalization of the Guillemin-Sternberg

conjecture in the framework of Hochs-Landsman.

This is a joint work with Varghese Mathai.

Let G be a locally compact Lie group, and M a locally compact symplectic

manifold.

We assume that G acts on M properly and cocompactly, that is M/G is compact

and the map

G × M → M × M,

(g, x) 7→ (x, gx)

is proper (i.e. the inverse image of a compact subset is compact).

We make the other assumptions as in the compact case (line bundle L, moment

map µ, regularity of µ at 0 ∈ g, G acts on µ−1(0) freely, etc).

Recall that in the compact case, the quantization formula takes the form

dim Q(L)G = dim Q(LG)

with

Q(L) = ker D +L − ker D −L .

Here since M/G is compact, MG = µ−1(0)/G is also compact so the right hand

side Q(LG) is well defined.

However, since M is now noncompact, ker D±L might be of infinite dimension.

In their approach, Hochs and Landsman proposed an interpretation of a possible

candidate of the left-hand side in the noncompact case by using analytic K-homology

in noncommutative geometry.

Our first observation: using the fact that M/G is compact, we can show that

even though, ker D±L might be of infinite dimension, their G-invariant subspaces

are of finite dimensions. That is

dim
(

ker D±L
)G

< +∞.
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Moreover, one can still define naturally a G-invariant index indG(DL+), such

that for following quantization formula holds in this noncompact setting.

Theorem. (Mathai-Zhang, 2008) There exists p0 > 0 such that for any p ≥ p0,

indG
(

DLp

+
)

= dim Q (LGp) .

Moreover, if g∗ admits an AdG-invariant

metric, then one can take p0 = 1.

Also, when G is unimodular, then indeed,

indG
(

DL+
)

= dim
(

ker D+L
)G − dim

(

ker D−L
)G

,

which makes the above quantization

formula an explicit extension of the original formulation of the Guillemin-Sternberg

conjecture.

§8. The definition of the G-invariant index

Consider the restriction of DL to the G-invariant subspace

DL : Ω(M, L)G → Ω(M, L)G.

Since G acts on M properly and the quotient space M/G is compact, their is

a compact subset Y of M such that M = G(Y ).

It is clear that any section in Ω0,∗(M, L)G is determined by its restriction on Y .

This allows us to reduce the analysis on Ω(M, L)G to the analysis near Y .

To be more precise, let U ⊂ U ′ be two open neighborhoods of Y in M such

that the

closure U is compact in U ′, while the closure U
′

of U ′ is compact in M .

Let f : M → [0, 1] be a smooth function such that f |U = 1, Supp(f) ⊂ U ′.

The existence of f is clear.

Let ‖ · ‖0 be the standard L2-norm on Ω0,∗(M, L).

We also fix a (G-invariant) first Sobolev norm ‖ · ‖1 on Ω0,∗(M, L).

Let Hif(M, L)G, i = 0, 1, be the completions of

{

fs : s ∈ Ω0,∗(M, L)G
}

under the norms ‖ · ‖i respectively.

Let Pf : L2(Ω0,∗(M, L)) → H0f(M, L)G denote the obvious orthogonal projec-

tion.
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Theorem (Mathai-Zhang 2008). For any G-equivariant first order elliptic

differential operator D acting on Ω0,∗(M, L), the

induced operator

PfD : H1f(M, L)G → H0f(M, L)G

is Fredholm. Moreover,

indG
(

D+L
)

:= ind
(

PfD+L
)

does not depend on the choice of f .

Proof. One has

PfD(fs) = fDs + Pf ([D, f ]s) .

Then fD induces a Fredholm operator, while Pf [D, f ] induces a compact operator.

Q.E.D.

Remark. It is interesting to note that by the above formula, PfD is not a

differential operator.

Example If G = Γ is discrete and acts on M freely, then one identifies

Ω(M, L)Γ = Ω (MΓ, LΓ)

trivially. So the analysis on the left reduces to the analysis on the right. The key

point here is that in the left we do not impose any (global on M) L2-condition.

Remark. If G is unimodular, one can further prove that

indG
(

DL+
)

= dim
(

ker D+L
)G − dim

(

ker D−L
)G

.

Remark. Bunke showed us that indeed, our G-invariant index indG(D) admits

a noncommutative KK-theory interpretation.

§9. Proof of the quantization formula

Now in order to study indG(D+L) by our analytic method, another difficulty

arises:

Since for noncompact G, g∗ might not

admit an AdG-invariant metric, thus the function H = |µ|2 (and then the associated

Hamiltonian vector field XH) need not be a G-invariant function (vector) on M .

Consequently,

DTL = DL +

√
−1T

2
c
(

XH
)
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might not commute with G.

To solve this difficulty: take “average” to get a G-equivariant one.

Since G acts properly on M with compact quotient, there exists a smooth,

non-negative, compactly supported cut-off function c on X such that

∫

Gc(gx)2dg = 1

for any x ∈ X.

Let

XGH =

∫

Gc(gx)2XgHdg

denote the averaged G-invariant vector field on M , where XgH denotes the pullback

of XH by g.

For any T ≥ 0, set

DLp

T = DLp

+

√
−1T

2
c
(

XGH
)

,

where for later convenience we replace L by Lp.

Then it is G-equivariant (i.e. commutes with the G-action).

One then has, for any T ≥ 0,

indG
(

DLp

+
)

= indG
(

DLp

+, T
)

.

Key formula: when restricting on Ω(M, Lp)G, one has

(

DLp

T
)2

=
(

DLp)2
+ TB + 4pπTHG +

T 2

4

∣

∣XGH
∣

∣

2
,

where HG is defined by

HG(x) =

∫

Gc(gx)2H(gx)dg

and B is bounded and does not involve p.

Key point: If µ(x) 6= 0, then HG(x) > 0.

When restricted to neighborhoods near Y (recall that Y is compact and G(Y ) =

M), one sees that the techniques in the compact group action case applies, and one

can take p > 0 large enough to get

indG
(

DLp

+
)

= ind
(

D+LGp)
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which is the quantization formula.

Technical remark. Here XHG might not be the Hamiltonian vector field

associated to HG, thus the refined estimate in the compact group action case does

not apply. This explains partly that our quantization formula in the noncompact

case need to assume that p > 0 is large enough. This fits with a remark of Hochs

and Landsman that the quantization formula (for p = 1) might not hold for non-

unimodular groups.

In particular, if g∗ admits an AdG-invariant metric, then one can take p = 1.

Summary: We have two kinds of generalizations of the original Guillemin-

Sternberg geometry quantization conjecture to the non-compact settings:

1. The Vergne conjecture for the case where the group is compact and the space

is non-compact, with the condition that the moment map is proper: recently solved

together with Xiaonan Ma (arXiv:0812.3989);

2. The Hochs-Landsman conjecture for the case where both the group and the

space are non-compact, while the action is proper and cocompact: solved up to a

power of line bundle together with Mathai (arXiv:0806.3138).

Potential applications: Representation

theory for noncompact groups (e.g. semi-simple Lie groups).

Thanks!
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