I Homotopy fiber products of homotopy theories in quantum algebra By Julie Bergner (UC Riverside) May 27, 2009

Think of $(\infty, 1)$ -categories as models for homotopy theory! General principle: View complete Segal spaces as models for $(\infty, 1)$ -categories/homotopy theories. This allows us to generalize model category constructions.

Recall: A model category \mathcal{M} has 3 kinds of specified morphisms, namely weak equivalences, fibrations and cofibrations. Using this structure, we can define Ho(\mathcal{M}).

- $Ho(\mathcal{M})$ only depends on weak equivalences
- other kinds kinds of maps make $Ho(\mathcal{M})$ nicely behaved.

Quillen functors (left and right) preserve cofibrations.

II Homotopy fiber products of model categories

Consider $\mathcal{M}_1 \xrightarrow{F_1} \mathcal{M}_1 \xleftarrow{F_2} \mathcal{M}_2$ for F_1 and F_2 left Quillen functors. Define $\mathcal{M} : \mathcal{M}_1 \times^h_{\mathcal{M}_3} \mathcal{M}_2$ to have

• objects (x_1, x_2, x_3, u, v) with x_i an object of \mathcal{M}_i and

$$F_1(x_1) \xrightarrow{u} x_3 \xleftarrow{v} F_2(x_2).$$

• morphisms $(f_i : x_i \to y_i)$ such that

$$F_1(x_1) \xrightarrow{u} x_3 \xleftarrow{v} F_2(x_2)$$

$$f_1 \downarrow \qquad f_3 \downarrow \qquad f_2 \downarrow$$

$$F_1(x_1) \xrightarrow{u} x_3 \xleftarrow{v} F_2(x_2)$$

commutes.

Note: This carries a (levelwise) homotopy structure, but this is not the correct one. Hope would be to localize this model structure (via left Bousfield localization instead of a right one). Look at compete Segal Spaces to determine whether this is the "correct" definition!

III Complete Segal spaces

Let W be a simplicial space, so $W : \Delta^{\mathrm{op}} \to \mathrm{sSet}$.

Definition III.1. W is a Segal space if $W_n \to W_1 \times_{W_0} \ldots \times_{W_0} W_1$ (n-times) is a weak equivalence for $n \ge 2$.

Objects of $W: W_{0,0}$, mapping spaces $\operatorname{map}_W(x, y) = \text{fiber over } (x, y) \text{ of } W_1 \xrightarrow{d_1, d_0} W_{0 \times W_0}$, composition, identities, homotopy equivalences, homotopy category...

Definition III.2. W is a complete Segal space if $W_0 \to W_h$ is a weak equivalence.

Theorem III.3 (Rezk). There is a model structure CSS on the category of simplicail spaces s.th. the fibrant-cofibrant onjects are complete Segal space. The weak equivalences between complete Segal spaces are level-wise.

Connection with model categories: There is a functor L_C , taking a model category to complete Segal spaces.

$$\mathcal{M} \rightsquigarrow L_C(\mathcal{M}) = \operatorname{nerve}(\operatorname{we} \mathcal{M}^{[n]})$$

where objects in $\mathcal{M}^{[n]}$ are sequences of n composable morphisms in \mathcal{M} .

Theorem III.4. $L_C \mathcal{M}$ looks like $\coprod_{\langle \alpha: x \to y \rangle} B \operatorname{Aut}^h(\alpha) \Rightarrow \coprod_{\langle x \rangle} B \operatorname{Aut}^h(x)$

Question: Does taking L_c and taking the homotopy fibre product commute (when using only the weak equivalences in order to define $L_C \mathcal{M}$ (for $\mathcal{M} = \mathcal{M}_1 \times_{\mathcal{M}_3}^h \mathcal{M}_2$)?

Theorem III.5. $L_C(\mathcal{M}_1 \times^h_{\mathcal{M}_3} \mathcal{M}_2)$ is weakly equivalent to $L_C\mathcal{M}_1 \times^h_{L_C\mathcal{M}_3} L_C\mathcal{M}_2!$

IV Derived Hall algebras

Definition IV.1. Let \mathcal{A} be an abelian category with fin. many iso. classes of objects. Its *Hall algebra* $\mathcal{H}(\mathcal{A})$ is:

- the vector space with basis the isom. classes of objects
- endowed with the multiplication by $A \cdot B = \sum_{C} g_{AB}^{C} C$, where C_{AB}^{C} is the Hall number:

$$g_{AB}^{C} = \frac{|0 \to A \to B \to C \to 0|}{|\operatorname{Aut}(A)||\operatorname{Aut}(B)|}$$

Motivation: Let \mathfrak{g} be a Lie algebra of Type A, D, E and let Q be a quiver on its Dynkin diagram. Set $\operatorname{Rep}(Q)$ be the abelian category of \mathbb{F}_q -representations $\rightsquigarrow \mathcal{H}(\operatorname{Rep}(Q))$.

 $\mathcal{H}(\operatorname{Rep}(Q))$ is closely related to one part of $\mathcal{U}_q(\mathfrak{g})$. Question: is there a way to enlarge $\mathcal{H}(\operatorname{Rep}(Q))$ so we can recover all of $\mathcal{U}_q(\mathfrak{g})$?

Conjecture: Want "Hall algebra" associated to $D^b(\operatorname{Rep}(Q))$, which is triangulated, but *not* abelian.

Need: "Derived" Hall algebras for triangulated categories. Toën's construction:

Definition IV.2. Let \mathcal{M} be a model category which is stable (i.e., Ho(\mathcal{M}) is triangulated), having certain finiteness conditions. Then the derived Hall algebra $\mathcal{DH}(\mathcal{M})$ has

- vector space with basis weak equivalence classes of "nice" objects of \mathcal{M}
- multiplication: $x \cdot y := \sum_{z} g_{x,y}^{z} z$, where $g_{x,y}^{y}$ is the "derived" Hall number

$$g_{x,y}^{z} = \frac{|[x,z]_{y}| \prod_{1 \ge n} |\operatorname{Ext}^{-i}(x,z)|^{(-1)^{i}}}{|\operatorname{Aut}(x)| \prod_{i \ge 0} |\operatorname{Ext}^{-i}(x,x)|^{(-1)^{i}}}$$

where $\operatorname{Ext}^{i}(x, y) = [x, y[i]]$

(the upshot of this definition should be that it is somewhat a generalization of the definition of the Hall number from above and that we have an *explicit* formula!)

Connection to homotopy fiber products: They are used to prove that $\mathcal{DH}(\mathcal{M})$ is associative. Moreover, $\mathcal{DH}(\mathcal{M})$ only depends on $Ho(\mathcal{M})$ and the formula works for any "finitely" triangulated category.

Problem: $D^b(\operatorname{Rep}(Q))$ is not finitely triangulated! A remedy could be to generalize the definition of $\mathcal{DH}(\mathcal{M})$ away from model categories Complete Segal spaces look like a promising place to do this!

 \rightsquigarrow Want to work in the more general CSS setting.

Theorem IV.3 (work in progress). Translating Toën's construction into CSS and using homotopy pullbacks gives a derived Hall algebra $\mathcal{DH}(W)$ for any "finitary" stable complete Segal space.