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Abstract

Research in dependent type theories [M-L71a] has, in the past, concentrated on its use
in the presentation of theorems and theorem-proving. This thesis is concerned mainly
with the exploitation of the computational aspects of type theory for programming, in
a context where the properties of programs may readily be specified and established.
In particular, it develops technology for programming with dependent inductive fami-
lies of datatypes and proving those programs correct. It demonstrates the considerable
advantage to be gained by indexing data structures with pertinent characteristic infor-

mation whose soundness is ensured by typechecking, rather than human effort.

Type theory traditionally presents safe and terminating computation on inductive
datatypes by means of elimination rules which serve as induction principles and, via
their associated reduction behaviour, recursion operators [Dyb91]. In the programming
language arena, these appear somewhat cumbersome and give rise to unappealing code,
complicated by the inevitable interaction between case analysis on dependent types
and equational reasoning on their indices which must appear explicitly in the terms.
Thierry Coquand’s proposal [Coq92] to equip type theory directly with the kind of
pattern matching notation to which functional programmers have become used over
the past three decades [Bur69, McB70] offers a remedy to many of these difficulties.
However, the status of pattern matching relative to the traditional elimination rules has
until now been in doubt. Pattern matching implies the uniqueness of identity proofs,
which Martin Hofmann showed underivable from the conventional definition of equal-
ity [Hof95]. This thesis shows that the adoption of this uniqueness as axiomatic is

sufficient to make pattern matching admissible.

A datatype’s elimination rule allows abstraction only over the whole inductively de-
fined family. In order to support pattern matching, the application of such rules to spe-
cific instances of dependent families has been systematised. The underlying analysis
extends beyond datatypes to other rules of a similar second order character, suggesting
they may have other roles to play in the specification, verification and, perhaps, deriva-
tion of programs. The technique developed shifts the specificity from the instantiation
of the type’s indices into equational constraints on indices freely chosen, allowing the

elimination rule to be applied.



Elimination by this means leaves equational hypotheses in the resulting subgoals,
which must be solved if further progress is to be made. The first-order unification
algorithm for constructor forms in simple types presented in [McB96] has been ex-
tended to cover dependent datatypes as well, yielding completely automated solution

to a class of problems which can be syntactically defined.

The justification and operation of these techniques requires the machine to construct
and exploit a standardised collection of auxiliary lemmas for each datatype. This is

greatly facilitated by two technical developments of interest in their own right:

e amore convenient definition of equality, with a relaxed formulation rule allowing
elements of different types to be compared, but nonetheless equivalent to the

usual equality plus the axiom of uniqueness;

e atype theory, OLEG, which incorporates incomplete objects, accounting for their
‘holes’ entirely within the typing judgments and, novelly, not requiring any no-

tion of explicit substitution to manage their scopes.

A substantial prototype has been implemented, extending the proof assistant LEGO
[LP92]. A number of programs are developed by way of example. Chiefly, the in-
creased expressivity of dependent datatypes is shown to capture a standard first-order
unification algorithm within the class of structurally recursive programs, removing any
need for a termination argument. Furthermore, the use of elimination rules in specify-

ing the components of the program simplifies significantly its correctness proof.
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Chapter 1

Introduction

‘The philosophers have merely interpreted the world in various ways. The
point, however, is to change it.” (Marx and Engels)

Computer programs are not expected to make sense. In fact, they are seldom expected
to work, which is as much as to say that computer programmers are not expected to
make sense either. This is understandable—programming is primarily a form of giving

orders.

Nonetheless, there are grounds for optimism. This is because programmers do not
really want genuinely stupid orders to be obeyed, and we understand that the more
sense we are able to make, the shorter our orders need be. The benefit comes by taking

the sense within the programmer’s mind and manifesting it explicitly in the program.

From named variables and looping constructs through to functional abstraction and
method encapsulation, the evolution of programming languages has greatly facilitated
the programmer who actively seeks to make sense. In particular, type systems now
allow so much sense to be made that they are even becoming compulsory in some
industrial programming languages. Where the purpose of typing in C is to indicate the
number of bits left an array subscript should be shifted, strongly typed languages like
Java genuinely reduce the gullibility with which machine faces human.

It is with the objective of promoting sense in programs that I have pursued the research
documented in this thesis. Its main purpose is to show the advantage a dependent type

system lends to the cause of principled programming.

Briefly, the principal contributions are these:

e OLEG, a type theory with ‘holes’ (or ‘metavariables’) standing for the missing



parts of constructions explained entirely within the judgments of the calculus—

the state of a theorem prover may thus be represented as a valid judgment

e the identification of what must be added to conventional type theories (such as
those underlying LEGO or COQ) to facilitate pattern matching for dependent
types (as implemented in ALF)

e a systematic view of elimination rules, leading to the use of derived elimination
rules to characterise and indeed specify programs in a compact and powerful

way

1.1 overview

This thesis records my development of technology to support functional programming
over dependent datatypes by pattern matching and structural recursion in an intensional
type theory. This technology also suggests novel tools and techniques for reasoning

about such programs. Let me give an overview, identifying the innovations.

I open with an account of a theorem proving in a type theory, OLEG,! which is based
on Luo’s ECC [Lu094], but includes an account of ‘holes’? in terms. There is a lot of
theorem proving in this thesis. Some of it is done by hand. Much of it is done by ma-
chines, manufacturing and exploiting standard equipment for working with datatypes
and equational problems. I therefore feel obliged to give a precise treatment not only

of theorems but also theorem proving.

The novelty is that holes are handled much as other variables and accounted for by
binding entirely within the judgments of the system. This system is workable because
the core calculus of terms is embedded in a ‘development calculus’, which is where
the hole-bindings are to be found—a core term in the scope of a hole may nonetheless
refer to that hole. The effect of the separation is to prevent troublesome interaction
between computation and holes. Consequently, terms (called ‘partial constructions’)
in the development calculus enjoy the property that one may safely be replaced by

another of the same type—remarkably good behaviour for a dependent type system.

As a result, theorem proving in OLEG consists exactly of editing OLEG judgments

in ways which are guaranteed to preserve their derivability. Although OLEG is more

IThe name ‘OLEG’ is a tribute to Randy Pollack’s proof assistant LEGO. The new treatment of
partial proofs required only a minor rearrangement.

Zalso known as ‘metavariables’, ‘existential variables’, ‘question marks’ and many other names be-
sides



restrictive than systems with explicit substitution, those restrictions will not hinder us

in the slightest.

The inductive datatypes we shall be concerned with are much like those of LEGO,
CoQ[Coq97] or ALF [Mag94]. Their elements are introduced by constructor symbols
whose recursive arguments satisfy a strict positivity condition. Recursive computation
and inductive proof are provided in the old-fashioned ‘elimination rule’ style. This
necessitated the innovation of principled tactical support for such rules, documented
in chapter three. However, the technology is not restricted to elimination rules arising

from datatypes.

The contribution from this thesis to the methodology of program verification lies in
the use of derived elimination rules to capture the leverage exerted by a given piece
of information on an arbitrary goal. The abstraction of the predicate in an induction
principle or the return type in a datatype fold operator point the way. Given a piece
of information, we have been indoctrinated to ask what we can deduce from it—we
should rather ask how we can deduce what we want from it. The tactics of chapter
three were developed to support datatype elimination rules, but they allow us to exploit
a wide class of rules which similarly abstract the type of their conclusions. 1 give
numerous examples capturing the behaviour of programs in this way, and I believe I

demonstrate the efficacy of the policy.

Once we understand elimination rules, we may give proper attention to inductive
datatypes. In particular, we may use chapter three’s technology to derive from each
‘conventional” eliminator a pair of alternative eliminators which usefully untangle the
treatment of case analysis and recursion on structurally smaller terms. This gives ef-
fectively the same presentation as the Case and Fix constructs which are primitive
notions in COQ. The equivalence was established by Eduardo Giménez [Gim94]—
only minor adaptations are required to mechanise his construction. Chapter four is

reassuringly unremarkable.

Case analysis on a restricted instance of an inductive family (henceforth a subfamily)
inevitably involves equational reasoning. For example, we may define the family of
lists indexed by their length—when analysing the instance constrained to contain only
nonempty lists, we rule out the ‘nil’ constructor because the list it generates does not
satisfy that constraint. More generally, for each constructor, we must represent at the
object-level the constraint that its return type unifies with the subfamily under analy-
sis. These constraints are similar to the unification problems which arise in ‘unfolding’
transformations for logic programs [TS83, GS91]. My MSc work involved a system-

atic solution for simply typed problems in constructor form, implemented in the form

8



of a tactic [McB96].

Chapter five extends the treatment to dependent types. Of necessity, this requires us
to compare sequences of terms where later elements may have propositionally equal
but computationally distinct types, an area which has always proved troublesome for
intensional type theory. I present a new, slightly more relaxed definition of equality
which scales up to sequences without significant attendant clumsiness. It turns out to
be equivalent to the more traditional inductive definition augmented by the axiom that
identity proofs are unique. So equipped, we may easily prove for each datatype its ‘no
confusion’ property—constructors are injective and disjoint—in the form of a single
elimination rule. I also give a systematic proof that each datatype contains no cycles.

It is these lemmas which justify the transitions of the unification tactic.

In [Coq92], Thierry Coquand characterises a class of ‘pattern matching’ programs over
dependent types which ensure that patterns cover all possibilities (deterministically)
and that recursion is structural. This is the class of programs made available (with
unrestricted recursion) in the ALF system [Mag94]. Chapter six contains the principal
metatheoretic result of this thesis, confirming that the same class of programs can be
constructed from traditional datatype elimination rules, given uniqueness of identity
proofs. The meta-level unification in Coquand’s presentation is performed at the object

level by the tactic developed in chapter five.

By way of illustration, if not celebration, the work of the thesis closes with two sub-

stantial examples of verified dependently typed programs. Both concern syntax:

e substitution for untyped A-terms, shown to have the properties of a monad

e a structurally recursive first-order unification algorithm, shown to compute most

general unifiers

It is well understood, at least in the type theory community, that we may only really
make sense of terms relative to a context which explains their free variables. Both
of these examples express that sense directly in their data structures, a gain which is

reflected in the correctness proofs.

Neither example is new to the literature of program synthesis and verification. Substi-
tution has been treated recently [BP99, AR99] via polymorphic recursion, and I include
it simply to show that dependent types easily offer the same functionality, without re-

course to counterfeiting index data at the type level.

The existing treatments of unification turn on the use of an externally imposed termi-

nation ordering. The novelty here is that by indexing terms with the number of vari-

9



ables which may occur in them, we gain access to computation over that index—this
is enough to capture the program for structural recursion. Witness the benefit from a

program which captures much more precisely the sense of the algorithm it implements.

Both developments adopt the methodology of characterising the behaviour of their sub-
programs by means of elimination rules. Establishing program correctness becomes
sufficiently easy that in presenting the proofs, I cut corners only where to do otherwise

would be monotonous in the extreme.

I would like to apologise for the length and linearity of this thesis. I hope it is not

nearly as much trouble to read as it was to write.

1.2 this thesis in context

‘I do press you still to give me an account of yourself, for you certainly
did not spring from a tree orarock . .. ’ (Penelope. Odyssey, Homer)

I sprang from a little-known Belfast pattern-matcher in 1973. I have spent my whole
life surrounded by pattern matching, I have implemented pattern matching almost ev-
ery year since 1988, and now I am doing a PhD about pattern matching with Rod

Burstall. Fortunately, my mother was not a computer scientist. Enough about me.

Martin-Lof’s type theory [M-L71a] is a well established and convenient arena in which
computational Christians are regularly fed to logical lions—until relatively recently,
much more emphasis has been placed on type theory as a basis for constructive logic
than for programming. Comparatively boring programs have been written; compara-
tively interesting theorems have been proven. This is a pity, as the expressiveness of

type theory promises much benefit for both. But things have changed.

Induction on the natural numbers was presented explicitly in different guises by Pascal
and Fermat in the seventeenth century, although it has been used implicitly for a lot
longer. Frege and Dedekind independently gave inductive definitions an explanation in
impredicative set theory. ‘Structural induction” had been widely used in mathematical
logic [CF58, MP67] by the time Burstall introduced the notion of inductive datatypes
to programming, with elements built from constructor functions and taken apart by

case analysis [Bur69].

Inductive datatypes have escaped from programming languages [McB70, BMS80]?
and arrived in type theory [M-L84, CPM90]. Since then, they have become more

3My father’s LISP-with-pattern-matching was a programming language which escaped from an in-
ductive datatype.

10



expressive, with the indexing power of dependent type theory giving a natural home to
inductive families of types [Dyb91]. For example, as hinted above, the polymorphic
datatype list A, with constructors

h:A t:listA
nil A : list A consht:listA

can be presented in a usefully indexed way as vectors—Ilists of a given length:

h:A t:vecCtan
vnily : vecta O  vconsht: vect, sn

Typing is strong enough to tell when a vector is empty, so potentially disastrous de-

structive operations like ‘head’ and ‘tail’ can be safely defused.

However, there are significant ways in which dependent datatypes are more
troublesome—the question is ‘what datatypes shall we have and how shall we com-
pute with them?’. The datatypes and families proposed by Thierry Coquand, Christine
Paulin-Mohring and Peter Dybjer have been integrated with type theory in a number

of variations.

Zhaohui Luo’s UTT [Luo094] is closest to the traditional presentation, equipping fam-
ilies based on safe ‘strictly positive’ schemata with elimination constants doubling as
induction principles and recursion operators. This is a conservative treatment for which
the appropriate forms of good behaviour were established by Healf Goguen [Gog94].
Unfortunately, recursion operators make somewhat unwieldy instruments for program-

ming, as anyone who has ever added natural numbers in LEGO[P0l194] will tell you.

Thierry Coquand’s 1992 presentation of pattern matching for dependent types [Coq92],
implemented in the ALF system by Lena Magnusson [Mag94], was shown to be non-
conservative over conventional type theory by Hofmann and Streicher, since it implies
uniqueness of identity proofs [HoS94]. Pattern matching for the full language of in-
ductive families is contingent on unification, which is needed to check whether a given
constructor can manufacture an element of a given family instance. Unification, once
it escapes from simple first-order syntaxes, becomes frightening to anyone with a well

developed instinct for survival, although some do survive.

Subsequent systems in the ALF family, such as Agda [Hal99], have been much more
cautious about what datatypes they will allow, in order to be much more generous with
facilities for working with them. In particular, the question of unification is avoided by

forbidding datatype constructors to restrict their return types to a portion of the family

11



(eg, empty vectors, nonempty vectors). Families are declared in a similar manner to

datatypes in functional programming languages:
datafamily x;...x, = conTy...Ty | ...

The indices x; . . . x,, are distinct variables, indicating that each constructor CONn, what-
ever its domain types T . .. T, its range is over the entire family Pattern matching over
an instantiated subfamily just instantiates the x’s in the types of the constructors, rather

than generating an arbitrarily complex unification problem.

This is a sensible restriction with a sound motivation. It is also a serious one, for-
bidding, for example, the formulation of the identity type—the reflexivity constructor
restricts its return type to the subfamily where the indices are equal. As we decompose
elements of these datatypes, their indices can only become more instantiated—Agda

datatype indices only ‘go up’.

Some of the power lost in this way is recaptured by computing types from data. For
example, the type of vectors, although not a datatype in Agda can be computed from

the length index:

vect, 0 = 1
vecty, sn = Ax(vectyn)

This kind of computed type is good for data which are in some way measured by the
indices—elements are finite, not because they contain only finitely many constructor
symbols per se, but because, as we decompose them, their indices recursively ‘go
down’ some well-founded ordering. There is no place, in this setting, for inductive

families whose indices, like those of the stock exchange, can go down as well as up.

The practical limitations of this system require further exploration. Certainly, the re-
moval of unification from the pattern matching process makes it considerably more
straightforward to implement attractively and to grasp. It has been even been im-
plemented outside the protective environment of the interactive proof assistant—in
Lennart Augustsson’s dependently typed programming language, Cayenne [Aug98].
Cayenne allows general recursion, hence its typechecker requires a boredom threshold
to prevent embarrassing nontermination. Of course, the programs which make sense

do typecheck, and some interesting examples are beginning to appear [AC99].

On the other hand, two recent examples—both implementations of first-order unifica-

tion, as it happens—cannot be expressed as they stand in this restricted system. Ana

12



Bove’s treatment [Bove99] shows that a standard Haskell implementation of the algo-
rithm can be imported almost systematically into type theory. However the general

recursion of the original is replaced by ‘petrol-powered recursion’*

over an inductively
defined accessibility predicate [Nor88] which can be expressed in ALF, but not its

SUCCESSOrs.

My implementation, in chapter seven of this thesis, is dependently typed, and exploits
the power of ‘constraining constructors’ to represent substitutions as association lists in
a way which captures the idea that each assignment gets rid of a variable. Variables are
from finite sets indexed by size, fin 11, and terms are trees over a number of variables,
free n. Association lists, Qlist m n, represent substitutions from  variables to terms

over mn.

x:finsm t:treem @g:alistmn
anil, : alistnn aconsxt g: alistsmn

Having said that, I am quite sure that ‘gravity-powered’ unification can be implemented
in Agda using the restricted type system. I only use association lists because my ap-
plication of substitutions is delayed and incremental. If you are happy to apply substi-
tutions straight away, a functional representation suffices. Nonetheless, the alist type
stands as a useful data structure—a ‘context extension’—which one might reasonably

hope to represent as a datatype.

The CoQ system [Coq97] has inductive families of types with strictly positive
schemata [P-M92, P-M96]. However, they have moved away from the traditional
‘one-step’ elimination operator, following a suggestion from Thierry Coquand: they
now divide elimination into a Case analysis operator and a constructor-guarded F i x-
point operator. Eduardo Giménez’s conservativity argument [Gim94] is bolstered by a
strong normalisation proof for the case of lists [Gim96]—he has recently proved strong
normalisation for the general case [Gim98]. Bruno Barras has formalised much of the

metathory for this system [Bar99], including the decidability of typechecking.

This Case-Fix separation is a sensible one, and it makes practical the technology
in this thesis—working in what is effectively Luo’s UTT [Luo94], I start from the
traditional ‘one-step’ rule, but I have mechanised the derivation of Case and Fix for

each datatype. Everything which then follows applies as much to COQ as to LEGO.

There is, though, a noticeable gap between programming by Case with Fix in COQ
and programming by pattern matching in ALF or Cayenne. This gap has been ad-
dressed by the work of Cristina Cornes [Cor97]. She identifies a decidable class of

“my phrase
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second-order unification problems which captures many pattern matching programs
viewed as collections of functional equations. Solving these problems mechanically,
she has extended COQ with substantial facilities for translating such programs in terms

of Case and Fix.

This takes the form of a macro Cases which allows pattern matching style decompo-
sition of multiple terms from unconstrained inductive families (eg vect n—vectors of
arbitrary length) and combines with Fix to yield recursive function definition in the
style of ML. Although the full gamut of dependent families can be defined, she has
adopted an Agda-like solution to the problem of computing with them.

The task of implementing pattern matching for constrained instances of inductive fam-
ilies (or ‘subfamilies’, eg VeCtsn—nonempty vectors) she leaves to the future. Where
she leaves is where I arrive. I have not attempted to duplicate her machinery for the
translation of equational programs. Rather, I have concentrated on the problem of case
analysis for subfamilies, the last gap between her work and dependent pattern matching
in ALE.

As I have already mentioned, we have known for some time that dependent pattern
matching is not conservative—it implies the uniqueness of identity proofs, which does

not hold in Hofmann’s groupoid model of type theory [HoS94, Hof95]:

ldUnique : VA:Type. Va:A.Ve:a=a. e=refla
ldUnique A a (refla) =refl (refla)

This points to a very real connection between pattern matching and the power of equal-
ity in type theory. Case analysis on inductive subfamilies (also known as ‘inversion’)
necessarily involves equational reasoning—for each constructor, we must check that its
return type unifies with the subfamily we are analysing. These unification problems re-
semble those which arise in unfold/fold program transformation [BD77, TS83, GS91].
They are treated at the meta-level in ALF [Coq92, Mag94].

Cristina Cornes made some progress in this area with her tactics for inverting induc-
tively defined relations over simply typed data in COQ[CT95]. My MSc project was to
import this technology for LEGO. I made explicit the separation between, on the one
hand, the splitting of the family into its constructors, with the subfamily constraints
becoming object-level equations, and on the other hand, the simplification of those
constraints. I implemented a complete first-order unification algorithm for object-level

equations over constructor forms in simple types [McB96].

The uniqueness of identity proofs contributes directly to the extension of this first-

order unification algorithm to dependent types, yielding explicit object-level solutions
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to the same class of unification problems which ALF handles implicitly.’ The last gap
between programming with datatypes in LEGO or COQ and pattern matching in ALF

has now been bridged.

Building that bridge has involved many engineering problems and the development of
some, I feel, fascinating technology. In particular, the tactic which I built for deploying
the elimination rules of inductive datatypes has a potential far beyond that purpose. I
have begun to explore the use of rules in that style for specifying and proving properties

of programs: this thesis contains several examples.

1.3 implementation

I have implemented a prototype version of the technology described in this thesis as an
extension to LEGO. It contributed to, rather than benefiting from the full analysis set
out here. Nonetheless, let me emphasise at this stage that although the prototype could

work better, it does work.

Enough technology has been implemented to support all the example programs and
proofs in this thesis. They have all been built with OLEG’s assistance and checked
with LEGO—core OLEG is a subset of LEGO’s type theory for which Randy Pollack’s
typechecker runs unchanged. Sometimes I have had to hand-crank techniques I have
subsequently shown how to mechanise, but the developments described in the thesis

are an honest account of real machine proofs.

3In fact, ALF rejects cyclic equations as unification problems which are ‘too hard’, while I disprove
them, so four years’ work has been good for something.
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Chapter 2

OLEG, a type theory with holes

Although you have just started reading this chapter, I have nearly finished writing it.
When I started, a long time ago, I intended it to be an unremarkable summary of a
familiar type theory, present largely out of the need to present the notational conven-
tions used in this thesis. However, despite my best intentions, this chapter does contain
original work—it describes a type theory, OLEG, which gives an account of incomplete

constructions quite different from those in existing use.

Let me say from the outset that I did not set out to invent such a thing. For some
years I have been writing programs which construct LEGO proofs of standard datatype
equipment—constructor injectivity and so forth—together with tactics to deploy them.
I began, in my MSc work, with direct synthesis of proof terms in the abstract syntax—
this was, frankly, rather painful. However, as time went on, the tools I was building
myself looked more and more like a theorem-prover. Eventually, the penny dropped—
synthetic programming and proof is only for clever people with nothing better to do;
busy people and stupid machines need an analytic framework with a sound treatment
of refinement. What had previously been ‘voodoo’, an ad hoc assortment of syntactic

trickery, became OLEG, a type theory for machines as well as people.

OLEG was thus manifest in code long before it was rationalised in this chapter. I
put it together with the help of many spare parts from Randy Pollack’s LEGO code.
LEGO’s treatment of ‘metavariables’ is remarkable in what it allows—too remarkable,
in fact. Scope is not quite managed properly, so that the reliability of LEGO still lies
in the final typecheck of the completed term. I did not consider it my business to
repair this problem—I was looking for a more convenient way to represent proofs-
with-holes for mechanical manipulation. I hit upon the idea of binding holes in the
context because it required very little alteration of the term syntax, and because it made

operations like refinement’s ‘turn the unknown premises into subgoals’ just a matter of
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turning Vs into 7s. This treatment of holes resonates strongly with Dale Miller’s explicit
binding of existential variables in the ‘mixed’ quantifier prefix of unification problems
[Mil91, Mil92].

At the time, explicit substitution was not even an issue. If I had wanted to main-
tain the scope of holes via such technology (as is found in the ALF family [Mag94]
and Typelab [VHLS98]), I should have had to re-engineer the whole LEGO syntax, re-
duction mechanism and typechecker. As it turned out, my adaptations were minimal.
There is a profound reason for this—where explicit substitution relies on ingenuity,
OLEG relies on cowardice. Instead of repairing the troublesome interactions between
holes and computation by propagating bits of stack through the term structure, OLEG
simply forbids them.

However, let me keep you in suspense no longer. OLEG consists of a computational
core—Luo’s ECC [Luo94] with local definition [SP94] but without Y.-types—wrapped
in a development calculus, in much the same way that Extended ML [KST94] wraps
core Standard ML [MTH90]. My reason for the separation is precisely the aforemen-

tioned cowardice with respect to holes and computation.

Extended ML’s treatment of holes profits from the fact that, in simple type systems, it
is always safe to replace a term (eg, the placeholder ‘?”) with another of the same type.
Although there is no way that core terms in a dependent type theory could ever hope to
have such a replacement property (for a counterexample see section 2.2), it does hold
for the terms (or ‘partial constructions’) of OLEG’s development layer. This single
metatheorem does most of the work in OLEG’s successful reconstruction of refinement

proof as we know it.

2.1 the OLEG core

DEFINITION: universes, identifiers, bindings, terms

universes U ::= Prop | Type,

where 7 is a natural number

identifiers 7:= x |y | ...

Let us allow ourselves countably many identifiers.

I define families of bindings and terms indexed by the finite set of variables

vV C I permitted to appear free in them. My motivation is to ensure that

17



identifiers are only used where they are meaningful.!

For any set 9/ of variables, and any x not in Vthe sets W’V of bindings of «

extending 7’ and 7, of terms over 7’ are defined inductively? as follows:

SG’I{V SG’I{V S,SG’I{V
VwiSe®, Jx:Se®, h=sSed,
yev  ueu  fs€ly  BEBy teTyy

yETfV UE‘T,V fSE‘T,V B.tE‘T,V

Binding is the means of attaching to an identifier properties such as ‘type’, ‘value’ and
any other behavioural attributes in which we may be interested. A structural linguist,
following Saussure [Saul6], might point out that identifiers, like words, have no intrin-
sic significance. Variables, on the other hand, are signs. Binding creates a sign, linking

signifier and signified.

Syntactically, a binding is a binding operator, followed by an identifier, followed by
a sequence of properties each introduced by a special piece of punctuation, eg ;" for
‘type’ or ‘=" for ‘value’. The binding operator determines the computational role of
the variable. I would encourage you to think of bindings as important syntactic entities

in their own right, and the ‘.’ as a combinator which attaches a binding to its scope

which, by convention, extends rightwards as far as possible.

OLEG’s core binding operators comprise the usual V (often written II) for universal
quantification and A for functional abstraction, together with ! (pronounced ‘let’) rep-
resenting local definition. I describe those bindings where the bound variable occurs
nowhere in its scope as fatuous.

As usual, application is indicated by juxtaposition and associates leftwards. I shall
denote by x € T that variable x occurs free in term T. When x ¢ T, I shall freely
abbreviate Vx : S. T by S — T. Further, otherwise identical consecutive bindings of
distinct variables may be abbreviated with commas, Ax : S. Ay : S. T, for example,

becoming Ax,y:S. T.

a-convertible terms are identified, with = representing the consequent notion of syn-
tactic identity. Let [S/x]T denote the result of substituting S for free occurrences of
x in T. Formally, we might prefer to live in a de Bruijn-indexed world [deB72]; infor-
mally, let us grant ourselves the luxury of names and the associated luxury of ignoring
the issue of variable capture.

"My ulterior motive is to prepare the ground for the application of dependently typed functional
programming to syntax in chapter seven.
Natural deduction is the best style I have found for presenting indexed inductive families.
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Having introduced all this syntax, let us abuse it wherever it suits us. We are not
machines, and we can suppress inferrable information which machines might demand.
To be sure, the machines are catching up, with work on implicit syntax from [Pol90]
and beyond. I do not propose to give any mechanistic account of the arguments I
shall omit, the parentheses I shall drop and the ad hoc notations I shall introduce—the

purpose is purely presentational.

DEFINITION: contexts and judgments

The set Ctxt of contexts is defined inductively:

() € Ctxt

Pectxt Ser x¢gTl ecixt s,Ser x¢gTl
Isx:S € Cat ['x=s5:S5€ Ctat

Note that we may treat a context ‘forgetfully’ as a set of variables, hence

Tr is the set of terms over I'.

If I' € Ctxt, then - is the set of I'-judgments. If J € 4., we may assert
that .J holds by writing

I'=J

Jr contains context validity and typing judgments:

tT e %
ValidEJF t:TGjp

In many presentations, a context is an assignment of types to identifiers. Here, value
assignments are also permitted. Let us also indulge in a slight abuse of notation and
write whole bindings in the context, effectively annotating entries with binding oper-
ators and perhaps additional properties.> Seen as a data structure, for example in the
implementation of LEGO, a context is a stack of bindings. We can recover the ‘formal’
contexts defined above simply by forgetting the extra annotations. We shall often need
to check whether a given variable has a particular property, whether or not it may have
others. Let us, for example, write I'; x: T; [” for a context where x has the property that

its type is T, regardless of other annotations.

As we explore a term, each variable we encounter is given its meaning by the stack of

bindings under which we have passed. A variable is not a name; it is a reference to a

31t is often useful to know what colour a variable is.
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binding. Names arise as a social phenomenon—just as in the story of Rumpelstiltskin,

naming things gives us power over them.

Let us now define computation with respect to a context. We should feel no apprehen-
sion at this. Quite the reverse, syntax only makes sense relative to the context which
explains its signs. Goguen’s typed operational semantics for type theory [Gog94] nec-
essarily and naturally involves the context, significantly reducing the cost of metathe-
ory. Although the contextual information he requires is active in typing and passive
in computation, this is more an accident of ECC than an inevitable restriction. Com-
pagnoni and Goguen’s more recent typed operational semantics for higher-order sub-
typing [CG99] exploits the potential to the full.

MANTRA:
' is with me, wherever I go.

L, too, feel strongly provoked to exploit the potential he reveals by increasing the activ-
ity of the context in computation. Real programming language implementations keep

values in stacks.

We may still employ the usual technique of supplying a number of contraction
schemes which indicate the actual computation steps, together with a notion of com-

patible closure which allows computation to occur anywhere within a term.

DEFINITION: contraction schemes
OLEG’s contraction schemes are shown in table 2.1.

Subterms susceptible to the 3, § or ! contraction schemes are, respectively, 3-, 0- and
I-redexes. Note that the property of being a d-redex is implicitly context-dependent. A

term is in normal form if it contains no redexes.

It is perhaps helpful to think of ~+* and ~+? as ‘work’, while ~+' is ‘waste disposal’.
As a fan of Fritz Lang’s 1926 classic silent film, ‘Metropolis’, I like to imagine what
computation sounds like: (-reduction sounds like paper-shuffling; §-reduction sounds

like filing cabinets and photocopiers; ! pops like sudden suction.

DEFINITION: compatible closure

If ~»" is a contraction scheme, its compatible closure, ~+., is given by 2.2
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I - (A\x:S.t)s ~Plx=5:5.t

Dix=s5:S;I" F x ~% s

|
' I Flx=5:5t ~' ¢t x ¢t
Table 2.1: contraction schemes
'Fs~ ¢
I'F s~ &
' s~ ¢ -t~
' - st ~. dt ' st ~. st
S ~. 8 S ~. 8
I - Vx:S.T ~. Vx:S'.T ' F \x:S.t ~. \x:S'.t
' s~ ¢ S~ §
L Flx=5:St ~. Ix=5":S.t L Flx=5:St ~.lx=5:5.t
['BE Ft~

T~ B3t ~. Bif

Table 2.2: compatible closure

P ST
TFS=<T
I'FR<S T'FS<T
FFR=T

j<k

I' = Prop =< Type; I - Type; = Type,

r-S~§ Iivx:S FT<T
- Vx:S.T<Vx:S. T

Table 2.3: cumlativity
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empty

declare

define

prop

type

var

imp

all

abs

app

let

cuml

() - valid

r+ S: ‘Iypej
['; Bx:S + valid

B e {¥,\}

r's: S
[lx =s:5 + valid

I' - valid
I' = Prop : ‘Iypeo

I' - valid
' - ‘Iypej : ‘Iypej+1

IsVx:S = P @ Prop
I' = Vx:S.P : Prop

= S: ‘Iypej Vx:SET: ‘Iypej

' Vx:5.T : Type,

F'Ff:vw:SST T'kFs:S
I'Ffs:Ix=s:5.T

IIx=s:SEHt:T
' Flx=s:5.f :\lx=5:5.T
I'-¢t:8S
rrr.T1 L FS=2T

Table 2.4: OLEG core inference rules
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METATHEOREM: Church-Rosser

'-s =t
implies existence of a common reduct 7 such that
'sor I'HEt>r
METATHEOREM: strengthening
Lyt T xg Ut T
implies
o=t T
METATHEOREM: subject reduction
'Fs: T I'kFsp>t
implies
re=t: T
METATHEOREM: strong normalisation

C'e¢t: T

ensures that ¢ is strongly normalising.
METATHEOREM: cut
Cilx=s:51"FHt: T
implies

L [s/x|]T" F [s/x]t : [s/x]T

Table 2.5: metatheoretic properties
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Henceforth, I shall elide the context in casual discussion. I write ~» for the union of the
labelled compatible closures, and > for its finite transitive closure. A term is strongly
normalising if admits only finite sequences of reductions. The smallest equivalence

relation closed under > is called conversion and denoted .

Observe that !-binding allows us to avoid meta-level substitution in describing compu-
tation. Explanations of identifiers are activated by putting them into the context, not by

propagating them through terms. The traditional 3-contraction
(Ax:S.t)s ~ [s/x]t
becomes a ‘noisier’ reduction sequence
(Ax:S.t)s ~F Ix=8:5.t ~s5-- Ix=35:S. [s/x]t ~' [s/x]t

Following Luo, I combine the notions of conversion and universe inclusion in a type

cumulativity preorder with respect to =:

DEFINITION: cumulativity
The cumulativity relation, <, is defined inductively in table 2.3.

In [Luo94], Luo shows that < is antisymmetric and hence a partial order with respect

to 2. In fact, every well-typed term ¢ (under ') has a principal type T in the sense that
Fr-t: T << T FT<XT.

Consequently it will be my habit to omit the index in Zype where uncontroversial—
this phenomenon is known as typical ambiguity [HP91]. In practice, the cumulativity
constraints required to ensure consistency of any development can be stored as a finite

directed graph and checked for offending cycles.

The system of inference rules for the validity of contexts and typing judgments in the
OLEG core calculus is given in table 2.4. The formulation is slightly unusual in that
it involves no meta-level substitution in types—the same job is done by the computa-

tional behaviour of local definition, as performed by the cuml rule.

All the usual metatheoretic properties (see table 2.5) hold as we might expect them to.
They contribute no insight unavailable from the Luo’s treatment of ECC in [Luo94].
Severi and Poll have shown how to extend dependent type systems with local defini-
tions [SP94]. The Church-Rosser property follows by the ‘parallel reduction’ argu-
ment of Tait and Martin-L6f, as modernised by Takahashi[Tak95]. Subject reduction,
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strengthening and cut follow by induction on typing derivations, differing only in mi-
nor details from the proofs for ECC. I have omitted weakening from the list because it

is a special case of the monotonicity property which I shall prove in section 2.2.2.

Strong normalisation for the OLEG core is a direct consequence of strong normalisation
for ECC. In the style of Severi and Poll, a type-preserving translation maps OLEG
terms to ECC terms adding apparently pointless 3-redexes*, so that each step in an
OLEG reduction sequence can then be simulated by a step in an ECC reduction of its
translation. Consequently, an infinite reduction sequence for a well-typed OLEG term
becomes an infinite reduction sequence for a well-typed ECC term, and we know that

no such thing exists.

The interesting aspect of OLEG is its development superstructure. Let us now give our

attention to that.

2.2 the OLEG development calculus

‘You can’t put a hole where a hole don’t belong.’ (Bernard Cribbins)

Holes stand for the parts of constructions we have not yet invented. Every hole should

tell us two things about the candidates which may fill it:

e their type, T

o the context, ', of variables they may employ

We may ascribe these properties to the hole itself, by way of convenient abbreviation.
The point is that it must be safe to fill such a hole with any f such that I' = ¢ : T.

Solutions must be locally checkable if working with holes is to be practicable.

As I have already mentioned, the treatment of holes for simple type systems is greatly
helped by the fact that terms do not ‘leak’ into types. Consequently, any subterm
may safely be replaced by another of the same type, without affecting the type of the
containing term—Iocal checkability of hole solutions is just one special case. Holes
may safely be represented by unlabelled ? symbols, as typing places no dependency

between them.

It may help to think of the translation to ECC as tying old tin cans onto terms to make the ECC
reduction as noisy as the OLEG reduction.
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However, the application of a dependently typed function smuggles the argument term
into the result type—this is why the replacement property fails. Consider the following

example, in a context defining an equality symbol for natural numbers:

A=y N—- N — Prop
Arefly :Vn:N. n=yn
Asym . Vm,n:N.m=yn — n=ym

It may be reasonable to infer that
sym,, ? ? (refly ?) :7=y7
but we may not instantiate any of the ?s and retain this typing unless we instantiate

them all—sym s first two arguments appear in the required type of (refly 7).

Somehow we must represent the information that the three ?s in sym,, ? ? (refly ?)
signify the same, and what more natural way could we choose than to give them a

single sign?

Hence, let us invent a new binding operator ‘?’ (pronounced ‘hole’) to introduce vari-
ables standing for holes in a proof which must be instantiated by a common candidate

of an appropriate type. We may now add to the context
7x: N

and infer
sym,, x x (refly x) : x=yx

When we think of a suitable candidate, we may ‘solve the hole’ by changing the 7-
binding to, say, !x = 0: N, and the typing will stand.

However, the danger has not gone away. We could quite reasonably infer
symy (?n:N.n) (?7n:N.n) (refly 7n:N.n) :7n:N.n=x5 7n:N.n

since one binding 77 : N. n is syntactically identical to another, even if we regard the
bound variables as distinct (indeed, not in the same scope). We are not free to solve

one without the others, so we must avoid this situation.

The point is that although there is nothing wrong with holes leaking into types, disas-
ter strikes if we permit 7-bindings to do so. The OLEG development calculus ensures
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that 7-bindings are always in safe places—ie, that they may always be solved indepen-
dently. Indeed, this arises as a corollary of a more general replacement property, just
like in the simply typed case.

By introducing an explicit binding operator for holes, OLEG follows Dale Miller’s lead
[Mil91, Mil92] in representing the state of the system as a judgment whose context or

‘mixed prefix’ explains the variously quantified variables involved.

The OLEG development calculus represents the store of a theorem prover directly at

the judgment level. Theorem provers tend to contain four kinds of information:

e assumptions
e proved theorems
e unproved claims

e partial proofs of claims

These four components are each represented by a form of binding—respectively, the
four given in the definition below. A state is a context of such bindings. The terms of

the development calculus are called partial constructions.

DEFINITION: states, components and partial constructions

states State

A€ State C ey,
() € State A;C € State

components C”,V forxe 1— vV

SET,V S,SE‘T,V
)\x:SGCfV !x:s:SEC‘”,V
S€ Ty qE€E Py SETy

?x:SEC”fV ?x%q:SECfV

partial constructions 7,

t € Py C.p€ Py
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Observe that partial proofs, or ‘guesses’ are attached to holes with a ‘~’ symbol, indi-
cating that they have not the computational force of !-bound values attached with ‘=".

2

Indeed, we may view any state A as a core context by forgetting all but the ‘:” and ‘=’
properties of each variable. This, in particular, means that guesses are invisible to the

core.

States A in the development calculus are equipped with A-judgment forms Devia
corresponding to those of the core. If J € Devjn, we may assert that J holds by
writing A |- J.

DevJx is given by

p € Pa T € Ia
valid € Devin p:Ia € Devip

Even the abstract form of the typing judgment contains an important piece of
information—the development calculus does not extend the type system, only the lan-
guage of terms. Holes are never bound to the right of the ‘:>. This only serves to
emphasise the analytic view that types come before terms—we do not explain terms

with types, we search for terms inside types.

Table 2.6 shows the new inference rules. Note that core judgments A F .J only validate
A viewed forgetfully as a core context—any guesses in A will not be checked. This

accounts for the extra A | valid premises appearing in some rules.

The analogous metatheoretic properties from table 2.5 continue to hold for this ex-
tended system. The parallel reduction treatment for Church-Rosser and the derivation
inductions for subject reduction, strengthening and cut can easily be adapted. Strong
normalisation for the development calculus reduces to strong normalisation for the
core by a translation argument which adds the assumption Imagine : VA : Type. A at the
root of the context and turning 7-bindings into !-bindings: every hole without a guess,

?x : S, becomes ?x ~ ImagineS:S, then the translated guesses become !-bound values.

The core terms are embedded in the partial constructions. The forgetful interpretation
of states as core contexts allows variables to appear in partial constructions via the
term rule. The effect of the core/development separation is thus to restrict where holes
may be bound. A partial construction containing no 7-bindings is said to be pure, that
is, expressible as a core term. Pure terms may, of course, refer to variables 7-bound in

their context.

In particular, 7-bindings cannot occur inside applications or !-bound values. This is

enough to ensure that they have no interaction whatever with computation. ?-bindings
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state validity

empty VT valid
AlFvalid AFS: ‘Iypej ”
declare A;Cx:S TF valid ceirt}
AlFvalid AFs:S
I ATx =55 I valid
AlFp:S
construct A 7x~p:S IF valid
typing partial constructions
AlFvalid AF¢t:T
term AFF:T
b AXx:SIFp: T
abs ATF Ax:S.p:Vx:S. T
let Ajlx=s:SIFp: T
¢ AlFlx=s:Sp :Ix=5:5T
AN?x:SlEp: T
hole AFaSp T Y%7
A;?2x=qg:SIFp: T
guess Arrsasy T YT
cuml ﬁ:tigf; AFS<T

Table 2.6: development calculus inference rules
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are allowed to appear in ‘guesses’—partial constructions attached to holes as potential
solutions. However, unlike !-bindings, guesses are merely typechecked annotations—

they have no computational behaviour and hence no effect on subsequent typing.

In fact, the only contraction scheme at the partial construction level is !-contraction

removing spent value bindings.

Alrlx=s:S.p~'p x7p

All the other computations occur within embedded terms via the closure rules given

below. Of course d-reduction in terms can exploit [-components in the context.

ARt~ F
ATt~
AE S~ § AES~. &

AlF Ax:S.p ~. Ax:S'p A lF?x:S.p ~. 7x:S.p
AbFs~. ¢ AFS~. §
AlFlx=s:S.p ~Ix=5:Sp AlFlx=s:S.p ~.Ix=s:Sp
AlFg~. g AFS~ &

AlF?x=~q:S.p ~ x=q:S.p AlF?7x=q:S.p ~. Tx~q:S.p

A;CR IEp ~o pf
AlFCX.p ~. CR.P

A crucial role is played by the side-conditions in the hole and guess rules. These insist
that although the term under a 7-binding may exploit the bound variable, its type may
not. Without them, we should have to allow ?7-bindings in types. Furthermore, these
restrictions simply reflect the natural ways in which holes arise—in a refinement style
proof, we only make claims motivated by the need to construct an inhabitant of a type

which we already know.

The inability to leak into types is something partial constructions share with terms in
simply typed systems. We should expect the replacement property to follow easily,
and in exactly the same manner—replacing the typing subderivation for the replaced

term.

2.2.1 positions and replacement

The positions Pos;,are formed from the partial constructions 2, by deleting one sub-

partial construction. A position P € Posp ‘forgetfully’ induces a context extension
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P which collects the components under which the deletion point lies. If p € Pn.p>
then P[p| denotes the partial construction obtained by inserting p at P’s deletion point.

Positions are defined inductively as follows

DEFINITION: positions

Forxe 1—- v
P e Posq), Pe®osqy S€Ty g€ Pyl
© € Posgy CfV.P € Posq) ‘x =~ P:S.q € Posqy
olp] =p Ajo=A
(CA-P)[p] = CA. Plp] A;CR-P=A; G5 P
(?x~ P:S.q)[p]="x = P[p]:S.q A;?x=~P:S.q=A;P
Crucially, any derivation of A |- P[p] : T follows from a subderivation of some
A;PIFp: S

We may compose positions, writing P; P’ for the position obtained by replacing the o
in P by P'. Clearly (P; P')[p] = P[P'[p]] and P; P’ = P;P.

METATHEOREM: replacement

If Al Pp : T

follows from A;P IF p R

and A, P |- p': R

then AFPp|:T
PROOF

The proof is by induction over the derivation of A |- P[p] : T, then case analysis on

the position.

In all cases where the position is o, ie P[p] = p, the typing derivations for P[p] and p
must be the same, yielding that R is T—the conclusion is exactly the typing of p'.

We only need the strength of the induction when the position is nontrivial.

e term—o is the only position

e abs
We have A IF Ax:S.Plp] : ¥x:S.T
sowemusthave A;\x:S |- Plp] : T
following from  A;A\x:S;P I p : R
Suppose A x:S;PIFp R
Inductively Ay x:S PP T
Hence A lF AXx:S.Pp'] - Vx:5.T



e let, hole

We go under the component in the same way as for abs.

e guess

If the position goes under the component, the above argument applies. If the
position goes into the guess:

We have A F?x~Pp:S.q:T
sowe musthave A IF Plp] : S

following from  A;P IF p : R
Suppose A;PIFp iR
Inductively A Pp]:S
Hence A F?x~Ppl:S.q:T

Note that the typing of g and the side-condition x ¢ T are not affected by the
change of guess.

To claim that the simplicity of this theorem belies its utility is to misunderstand the

pragmatics of theory. There is no utility without simplicity.

2.2.2 the state information order

We shall need a little more metatheoretical apparatus before we are ready to reconstruct
theorem proving in OLEG. In particular, we shall need a notion of ‘progress’ between
OLEG states. The idea is that a state A’ ‘improves’ A if it contains at least as much

information—A' must simulate the behaviour of every variable in A.

DEFINITION: state information order

For valid states A and A, we say A C A/, if

e Foreachx e A,if A F x : Tthen A’ -+ x : T.

e Foreachx € A,if A F x ~% sthen A’ - x 2 s.
C is clearly a preorder.
Notice that inserting new components into A moves it up the order. So does replacing a

type-only binding or 7-with-guess by a !-binding of an appropriately typed value. Fur-
thermore, guesses may be added to holes, removed or modified at will, so long as their
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intended type is respected—the replacement property helps us to check modifications.

On the other hand, once a variable has a computational behaviour, we may not take it

away.

If A © A’ then, viewed as variable sets A C A/, so Devin C Devins. As the ordering

preserves all the observable behaviour of a state, we should expect to find the following

holds

METATHEOREM: monotonicity

If A C A, then for all J € Devin, A I J implies A’ IF J

PROOF

We must first generalise a little:

If A CAY
then A, Ay IF T implies A}, Ay IF J
and JANES R ol | implies A; I - J

provided A captures no variables from A, or I'

This allows us an easy induction on derivations. From the definition of C, we shall

acquire exactly the components we need to replace those subderivations which look

up types from Ay, perform J-reductions from A; or simply validate A;. That is, the

interesting cases are

the var rule

If the variable being typed lies in A, the definition of L tells us how to derive the
same type from A. Otherwise, the result follows from the inductive hypothesis,
which replaces the prefix in the premise, and the var rule, which recovers the
type from the unchanged suffix.

the validity rules

If the context being validated is A, replace the entire derivation with that of
A’ F valid. Otherwise, the context strictly contains Ay, so the premise context

contains A1, hence the inductive hypothesis applies.

the cuml rule

The inductive hypothesis supplies the modified premise. As for the computa-
tional side condition, the definition of C enables us to replace every d-reduction

for variables in A, with an equivalent conversion valid in A.
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2.3 life of a hole

I now present four basic replacement operations which act as a basis for working with

holes.

AlFp: T AFS: Type
AlF?x:S.p: T

claim (birth)

AlF?x:S.p: T Al-g:S§

try  (marriage) AFx~qSp:T
D~ - .
regret (divorce) A A”_ m&;.@ il? T r
? ~ . .
solve  (death) i lﬁ ,;C — g - :gg 5 - 71: q pure

It is clear that each of these rules is admissible. We may read them as justifying the
replacement at any position of the construction in the premise by the construction in
the conclusion. Monotonicity justifies the corresponding steps which insert and modify

new 7-components in the state.

Effectively, claim allows us to insert a new hole at any position. Holes are naturally
born this way—we claim that S holds in order to develop our proof of T. The side-

condition on the hole typing rule holds as a matter of course.

The try and regret steps allow us to attach and discard guesses repeatedly—hopefully
our judgment improves as we go round the cycle. Once the guess contains no 7-
components, it has become a core term—death is not the end of the journey, but the

transition by which a hole is solved, becoming a local definition.

These four rules allow us to extend the notion of ‘information order’ to positions. This
gives us the means to relate operations which are focused at a particular position to the

amount of information available at that position.

DEFINITION: position information order

For valid states A and P, P' € ®Posp, the position information order A |-

P C P'is given inductively by the following rules:
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refl ATPCDP

/ / /!
trans AIFPC P AIFPLCP

ANFPLCP
. A;P =S : Type
claim ANIF PP C P,7x:5. P
tr A;PIFg: S
y AF P;7x:S.P C P;7x~q:5. D
regret AT P7x~q:S5.P C P;7x:5. P
solve

A IF P;?7x~q:S.P' C P;lx=¢g:S. P g pure

The admissibility of the four basic replacement operations given above ensures that if
A IF P C P,then

e if A;P IF valid then A;P' |- valid and A;P C A; P

o if AIFPlp] : Tthen A I+ Plp] : T

We may now reconstruct the familiar tools of refinement proof as operations which
manipulate OLEG states, preserving their validity. Moreover, we can make assurance
double sure at any stage by rederiving the state’s validity judgment. This direct corre-
spondence between judgments of the type theory and states of the machine, and thus
between admissible rules and tactics, is quite a solid basis on which to build a proof

assistant.

2.4 displaying an OLEG state

The prototype implementation of OLEG was written for use by other programs, rather
than by people. However, this thesis is full of OLEG proofs, so we shall need some

way to see what we are doing. Let us think how we might display an OLEG state.

I propose to list the components of a state vertically, so that the more local bindings
are literally as well as metaphorically under the more global ones. For each binding,
we should give the binding operator, the identifier, then a table showing the property

indicators (:” or ‘=") with the associated terms (types or values). It will serve the cause
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of brevity if we sometimes relax vertical alignment, combining bindings when more

than one identifier is being given the same treatment.

Now, any term can be viewed as a subterm under a context of binders—Iet us allow
ourselves to format these contexts in the same way as the ‘main’ state and write the

subterm directly underneath. For example, we might have the state shown on the right.

The initial four assumptions introduce a |AN  : Type

type N of natural numbers, its two con- A0 N

structors and a primitive recursion opera- i?ec VN (I>_:> T':L

tor. Following this, I have shown a par- Vo, ®

tial development of the addition function. Vog: ® — P

Observe the completed successor case in- vn:N

troduced by a ! binding, while the zero 7plus~ ?g)lusz NN

case is still an unknown bound with a ?. Iplus,= Aplus,: N — N
The partial proof is bound with a 7, in- Ay N
dicating that it still contains ?-bindings s(plus, v)
which must not be duplicated. Note also : :; H —N
that !-binding enables us to inspect terms N

such as plus, which would otherwise be rec (N — N) plus, plus,
stuck beneath the application of rec. :N—-N-N

In general, then, a state is displayed as a tree whose forking nodes are bindings. From
each binding, one edge points ‘underneath’ to its scope, and others point ‘sideways’
into the terms attached by the property indicators ‘:’, ‘=" and ‘~’. The sequence of
components which make up a state form a spine of the tree, vertically aligned at the
left hand side, starting at the root and following the ‘underneath’ edges until the last
component is reached. In the above example, the spine consists of the bindings for
N, O, s, rec and plus. The subtrees reached by going ‘sideways’ from this spine
(representing, for example, the type of rec, or the incomplete development of plus)
have terms or partial constructions at the leaves. As we have seen, wherever we find a

partial construction, we may replace it by another of the same type.

It is unlikely that we should always want to see the whole tree of a large state fully
expanded as above. You can, perhaps, imagine using a mouse to draw clouds round
uninteresting parts of proofs, introducing a cloud symbol in the state display. Perhaps

we can double-click on the cloud to restore the expanded tree.
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Let us expand in detail only where we are interested, ‘(:b

keeping connected subtrees of uninteresting proof ob- ?plus~ 7plus,: Vy: N

scured by clouds. For instance, if we are simply in- : N

terested in unsolved goals, the above example can be

reduced to this picture.

I like this interface for obscuring irrelevant details because I can focus on a subtree
without displaying the full path back to the root. Further, if we allow subtrees contain-
ing clouds to be obscured by bigger clouds, we can structure our lack of interest—when
we expand the larger cloud to return to that part of the development, the bits marked as

dull remain hidden.

Now that we can visualise the state, let us visualise tactics as direct manipulations of the
displayed image. Each symbol is given a tangible presence by its binding. Operations
which affect a symbol should be addressed, by mouse or whatever, to its binding. We
shall soon find ourselves dragging bindings about the place, and so forth. It is, perhaps,

an advantage of making 7-bindings explicit that they afford such visual metaphors.

2.5 basic component manipulations

I shall present tactics as qualified state transitions. The valid-
ity of the final state must follow from that of the initial state, ‘ before ‘ = ‘ after ‘

given the side-conditions.
side-conditions

Table 2.7 shows some basic tactics for manipulating compo-

nents at the outer level of the OLEG state. These tactics are
justified by monotonicity, except for cut and abandon which

are standard metatheoretic properties.

We may also represent replacement as a tactic,

instantiating it to acquire tactics which work A A

at any position in the development. Conse- "x = Plp]:S|=|7x = P[p]:S
. A A’

quently, we may apply claim, abandon, try,

regret, solve and cut within guesses. How- APIFp:R

ever, we are not free to create and destroy s, A: P I P' ': R

as these would not preserve the type of the par-

tial construction.
Of course, we will want to operate with a little more sophistication than to edit partial

constructions directly with try and regret. What we have established is the machinery
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assume Jjustify claim
A A A A A A

=1 xS A :S|=|7x:S = 17x: S
A A A’ A’ A A’
A FE S Type A FE S Type
try regret solve
A A A A A A
X:S|=|xmp:S| | |Tx=p:S|=>|x:S|||Tx=p:S|=|Ix=p:S
A A’ A’ A’ A’ A
AlFp:S p pure
cut abandon postpone
A A A A A A
x=s:5|= A ?x:S:>A, x:S|=|Xx:S
AI [S/x] A/ Al AI

x¢g A

Table 2.7: basic component manipulations
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attack intro-V intro-!

‘C:) — |Tx~=7x: S eVy: S ||\ S xily=s:S5 |4 |ly=s:§S
?x: 8§ X T 7x: T T ?x: T
: S X X X X
retreat raise-Y raise-!

x:Vy: S ’x:ly=s:8S

Y~ x: S ANy S ly=s:8S

y=x = |9, . Y = y =

t %;étS-T T ST e T vy—sT-s
: T t /At t ;

Table 2.8: moving holes through their types

for making holes appear and disappear in a given place. Just like the cinema, if we

work this machinery fast enough, we create the illusion of movement.

2.6 moving holes

Traditionally, we may ‘introduce’ a term of functional type by filling a hole with a \-
binding whose body is a new hole—the context of the new hole contains the argument
of the function. We may ‘animate’ this manoeuvre by pretending that the 7-binding

has moved under the argument and shortened its type.

Another familiar manoeuvre undoes the effect of introduction, generalising a hole func-
tionally over the assumptions from which it was to be proven. The 7-binding moves
outwards through the binding of the assumption, and its type gets longer. Miller calls
this ‘raising’ [Mil91]. We may also shuffle holes in and out through !-bindings appear-
ing in their types.

These moves are collected in table 2.8.

Notice that the two introduction tactics only replace constructions of the form 7x:S. x.
If the body was some arbitrary ¢, the introductions would affect the x’s in ¢, rather than

the whole expression. Fortunately, any hole not of this form can be made ready for
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introduction by the attack tactic.

The raising tactics, however, have no such restriction. They allow us to move holes out

through assumptions and definitions, becoming more functional as they go, until they

are outermost in a guess. The retreat tactic may then be used to extract them from the

development. A partial construction can always be made pure by raising and retreating

its remaining ?-bindings.

2.7 refinement and unification

The intros-V tactic makes progress by filling a hole with a A-term. This section builds

tactics to fill holes with applications.

Let us begin with a very simple motivating example, say, de- Cj:)
veloping the double function for natural numbers in terms ’double: vn: N

of plus.

We may introduce the argument by attack, then intros-\.

At this point, we might decide to solve for d by adding
two numbers together. We can do this, even if we have
not yet decided which two numbers, by inserting holes

for the numbers. That is, we first claim . . .

... then solve 4 with plus x y and cut.

We have filled one old hole, d, with plus applied to two
new holes—that is, we have ‘refined d by plus’.

To complete the development, refine each of x and y by

n.
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7doublex~ \n: N
7d: N
d

Co

?doublex~ M \n : N

x,y: N
d :N
d

o

7doublex~ \n N

x,y: N
plus x y
ldouble= An: N
plusnn




The tactic naive-refine solves one hole by a given func- naive-refine

tion applied to unknowns represented by new holes. It

is a combination of claim, try and solve. Q - {::b
Note that I have not explained how the length of the ar- v T ?’f : gﬁ
gument sequence X is to be chosen. We could leave it .y%];x
to the user. However, since convertability is decidable, :

we can simply try the successively longer sequences af- £ VA ST

forded by the Vs in the type of f until either one works
or we run out of arguments.
Hence, in the above example, we effectively solved d by naive-refine with plus, then

each of x and y by naive-refine with 7.

While naive-refine is good for simple types, as one might ®
expect, it is not sufficiently powerful to be of real use in An =N N
the dependently typed setting. Consider this (admittedly Ansym: Vx
Vnex:n=y x
somewhat artificial) problem. X=xn
_ . am N

We have to find a y such that m =y y. Careful exami-

] ) ) o ] Anem :n=ym
nation shows that n will do, with a derivation via nsym. 7y ‘N
However, we cannot simply do naive-refine on mey with Tmey :m=yy

nsym, because nsym proves X =y 1, not m =y V.

We can, however, start by building an application of nsym in C:b

a |-binding. x :N

nex : n=y5Xx
If we could solve x and y so that the types of xen and mey Ixen = nsym x nex
became convertible, we could complete the refinement. That PX=ENn

. . . . Tmey: m=
is, we need to unify the two types. Note that it is unifica- 4 NYy

tion we need, not just one-sided matching—we need to infer

values for holes in the goal, not just unknown arguments.

This thesis is not the place for a discussion of unification for proof search—there is
much work on this in the literature [Pym90]. For my purposes, something similar
in power to first-order unification on normalised terms will prove adequate. OLEG’s
explicit bindings of holes and assumptions, and its support for various operations which
permute them, suggest that Miller’s technology for unification ‘under a mixed prefix’

[Mil92] could be imported very easily.

Let us therefore imagine ‘buying in’ a pre-existing unification tool and use it to drive

the tactic shown below.
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~

> b
= I
T v b
@M

Pl
<T

The idea is that unify solves holes until enough new d-reductions have been added to
give S < T. At that point, the desired s, temporarily stored in a !-binding, can be filled

in as the value for x.

Note that there is nothing to stop unify creating new holes, although this is unusual for
first-order algorithms. Nor do I require the unification process to terminate, although

this sometimes helps.

We may now build a two-phase tactic which incorporates unification in the refinement

process.

unify-refine

A
A 727 . R
7x: T IX'=fzZ:S
Ty~ Y=
1| P[P } = P T
> p
f:VZ:ﬁ.S

2. unify ¥’ and x (at position P; 77 : R)

As with naive-refine, it is not necessary to specify how many arguments f should have
in advance. Provided we are willing to wait for the unification attempts, we may simply

start with none and keep trying successively until either the unification succeeds or we
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run out of Vs. This is exactly the behaviour of LEGO’s notorious ‘Refine’ tactic.’

An alternative to this search behaviour is a more precise ‘drag-and-drop’ technique.
We can imagine a mouse action picking up a hypothesis by a suffix of the functional
part of its type and dropping it on a hole. The arguments of the hypothesis before the
point we selected would be the ones made holes by unify-refine.

Perhaps you are familiar with the children’s toy which consists of a postbox with var-
ious holes of different shapes in the top. The toy comes with a number of blocks, and
the object of the exercise is to post each block through the correct hole. In order to do
this, the child is given a refinement tactic which takes the form of a blue plastic ham-
mer. There is an initial phase where the connection between the shape of the block and
the shape of the hole has not yet been made—a phase characterised by violent ham-
mering and tantrums. Everyone who has ever learned LEGO has undergone a similar

experience.

2.8 discharge and other permutations

Let me complete this reconstruction of basic theorem-proving in OLEG with some
more technology for shuffling components around. It is fairly clear that we may per-
mute components in the state in any way which preserves the dependencies between

them.

Where dependency does arise, we may still reorder the components, but we have to
account for it by introducing appropriate functional behaviour. In particular, this allows
us to discharge an assumption by making everything which follows from it functional
over it. LEGO implements this transformation by its ‘Discharge’ tactic. We may

reconstruct it piecewise by the four manipulations given in table 2.9.

Although we may read each of the ‘four discharges’ as pulling the binding of x through
the binding of v, this is just a cinematic illusion. They are, of course, proven by creating
an earlier binding for y, then expressing the later one in terms of it. By monotonicity,

we may make the same permutations for 7-components as we can for A\-components.

We may also make permutations and deletions in the argument types of functional
holes, so long as we do not break any dependencies. See table 2.10. If we bracket such
moves with raising and introduction, we can make similar permutations and deletions

in arguments which have already been introduced.

SLEGO tries quite hard to keep going, applying weak head-normalisation at each step, in an attempt
to reveal a fresh V-binding.
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A-through-\ A-through-!
A
~ A ~ ly=Ax:S.t
Ax: S Ay Vx:S5. T Ax: S
= = :Vx:S. T
Ay : T Ax: S ly==t:T _
f , , Ax: S
A ly x/ylA A %y
I-through-\ I-through-!
A
a A a ly=Ix=s:5.t
lx=s:S Ay:lx=s5:5.T|||lx=s:S |
= =| :lx=s:5T
Ay : T x=s:S ly==t:T s S
A A’ A A’_ '

Table 2.9: the four discharges

swap-independent

o

?f VX
v
-
T

< <

S
Y
z

y¢Zz

Co

7f . V% S

= Vz: Z

Yy Y
T
f=\%,y,z.f Xzy

delete-unused

<o ] D

PEVR:S | |7f VRS

Yy Y T
T f=\¥,y. f ¥
yerT

Table 2.10: permuting and deleting arguments
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2.9 systems with explicit substitution

Now seems a good time to compare OLEG’s treatment of holes with that of other

systems.

The key issue is how to cope with holes leaking out of the scope of their explanation.
LEGO ignores this issue and reaps the consequent frightful harvest—although instanti-
ations are typechecked, they may involve out-of-scope values which are only detected
once the completed ‘proof’ is being verified. OLEG deals with the problem by for-
bidding it—a hole may not escape its scope, but its scope may be widened by raising,

keeping the dependency information explicit and intact.

The real comparison lies with systems which treat this problem via explicit substi-
tution, such as TypeLab [VHLS98] and ALF [Mag94]. Holes appear in the calculi
underlying both systems without explicit binding. Instead, the context and type of a
hole are recorded in an external ledger. By good design, this context coincides with
the collection of bound variables under which the hole makes its initial appearance, but

computation may destroy this coincidence, so explicit substitution is required to fix it
up.

[VHLS98] illustrates this with a simple example. Suppose ? is defined to have type T’
in context x : T'. That is, its ledger entry is x : 7' =7 : T'. Now consider the term

Az :T.7)t

We are told that the A-abstracted z is ‘the same object’ as the x in the ledger. On the
one hand, we may instantiate 7 with x and (3-reduce to get t. On the other, we may
[B-reduce to get 7 which we can then instantiate with z. The two do not commute, as

they show in this diagram:

Az :T.7)t _ > (Az:Tax)t
B g
T, =z t

{?:=z}

The trouble is that performing the 3-reduction first introduces a discrepancy—the term

no longer contains a binding occurrence of x corresponding to the x in the ledger,
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hence the subsequent instantiation is a touch anachronistic. In fact, the substitution im-
plicit in the -reduction has passed through ? without stopping to consider the fact that
some x’s might appear when it is instantiated, hence the solution is to delay explicitly
the application of the substitution to 7. When 7 is instantiated, the substitution may
proceed. That is, we repair the leak in scope by attaching an explicit substitution to the
hole:

{?: =z}

Az :T.7)t > (Ax:Tux)t
p B
?x =t > t
{?:=z}
The extra [z := t] is really a kind of binding which maintains consistency with the

ledger, so that ? remains a ‘function’ of x. That is, the problem remains ‘think of a

T — T function’, and the value remains ‘whatever-it-is applied to ¢’.

The OLEG approach to this problem is total cowardice—since such situations cause
trouble, they are forbidden. In particular, we may not bind holes inside an application,

so there is no relationship with -reduction to untangle.

We can, of course, have the state shown on the right. However, M: T

the guess for f has no computational force. We cannot reduce f ¢ T A T
a7

unless we widen f's scope by raising and retreating, undoing the y: T

introduction of the A and leaving us with an explicitly functional ft

hole.

Is this an unbearable restriction? I can assure you that it will give us no trouble in the
course of this thesis. The point is that OLEG offers a genuine compromise between
the ingenuity of explicit substitution and the pain of representing holes as, say, skolem
functions over the entire context—holes need only be kept functional as far as they are

used computationally.

2.10 sequences, telescopes, families, triangles

Finally, for this chapter, let me digress for a moment to introduce an important nota-
tional convenience which will serve both to abbreviate and clarify what follows. We

will frequently encounter sequences of terms, often as arguments to functions or in-
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dices of type families. I wish to avoid the traditional ¢, . . . t,, for a number of reasons:

e it’s too wide
e itintroduces a subscript which is frequently irrelevant

e our binding syntax involves significant dots—throwing more dots around (in

threes, no less) can only cause confusion

Forswear therefore the pointillist sequence in favour of de Bruijn’s telescope nota-
tion [deB91]. A sequence f, indicates a finite, perhaps empty sequence of terms, and,
following that primitive monoidal urge, we have composition operator ; and empty

sequence €.

de Bruijn explains how to give such a sequence a ‘type’. In a simply typed setting, we
could just write T, but things are a little more complicated for us: in our dependently
typed world, the values of earlier terms in a sequence can affect the types of later terms.
We cannot afford to lose this dependency information, hence we must incorporate some

kind of placeholder into the type sequence notation.

DEFINITION: telescope

If Vis a set of variables not containing X . ..x,, and T; € T%{xl...x'_l} for
1 < ¢ <n,then T is an X-telescope (where X abbreviates x;;. . .x, and T
abbreviates Ty;...T),).

That is, we define a sequence of types relative to a sequence of identifiers
which become bound in turn and stand as placeholders for earlier values

in later types.

For example, the X-telescope

X1 X2 X3

A

N~ ~ N O N
Type ; X1 — Prop; VY:X1. X2 Y

represents a triple of, respectively, a type X1, a predicate x, over x, and a proof x3 that

all elements of x; satisfy xs.

We may now exploit telescopes in all sorts of circumstances. For example, if T is an

X-telescope, the judgment I' + f : T abbreviates the conjunction of the judgments
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I' - tl : Tl
I' - ty [tl/xl]Tg

.F F t, : [tn_l/xn_l] ce [tl/xl]Tn

Further, the binding \y/ : T abbreviates the sequence of n A-bindings giving i, the type
T; with y’s for the x’s, while |y = f:T abbreviates the corresponding n !-bindings, and

similarly for the other binding operators.

We may thus speak of a sequence of bound variables as having a telescope where
we would speak of a single bound variable as having a type. I shall glibly omit a
telescope’s placeholding variables, unless they are necessary to avoid ambiguity. When
essential for clarity, I shall attach the placeholder variables to the types in situ, rather

than naming them beforehand, making the above example
X1 Type; Xo @ X1 — Type; X3 1 VY :1X1. Xo Y

The term ‘telescope’ comes from its notation-shrinking power, inspired by the kind
of collapsible telescope that Horatio Nelson once famously put to his blind eye. It is
a more appropriate metaphor for abbreviating a dependent type sequence than other
collapsible structures such as accordions or opera hats because each of the concentric
cylinders which makes up the telescope has a lip which constrains the next (and hence
all the following cylinders).

The optical behaviour of telescopes is helpful also. Broadly speaking, the longer an
optical telescope, the smaller the field of view and the greater the magnification. Sim-
ilarly, as you extend a type telescope, each new type acts as a new constraint, so the
collection of inhabiting sequences ‘visible through the telescope’ becomes smaller but

more informative.®

There is another sense in which type telescopes are collapsible—if we instantiate the

first placeholder, we acquire a more specific telescope shorter by one.

DEFINITION: telescope application

If T is the X1..n-telescope Ty; Ty; ... Ty, and t : Ty, then the application

—

Tt

is the x,_,-telescope

6de Bruijn talks of sequences ‘fitting into’ telescopes, but I prefer to avoid the mixed metaphor.
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[t/xl]Tg; . [t/xl]Tn
Observe that if ¢; f:Tthent: Tt

This notion of application for telescopes may be iterated over a term se-
quence in the same way as function application, shortening a telescope by
instantiating any prefix. That s, if S is an ¥-telescope and § : S then (S; T)§
is just [5§/]T.

Note that the use semicolon for sequential composition leaves the comma free for its
usual role, indicating multiple inhabitation of the same type or telescope. That is, X, ¥/ :
T means that each of ¥ and i/ inhabits T, where Xy T means that the concatenation
of X and 7 inhabits T

Let us also introduce a notation for making multiple copies of a telescope.

DEFINITION: iterated sequence or telescope

If £ is a sequence of terms or a telescope, then
an
i}
is the sequential composition of n copies of .

Iff;is a sequence of terms or telescope containing a free subscript ¢, then

i,

is the sequential composition

The empty sequence or telescope is thus {}°.

Hence we may say that plus has type {lNl}2 — N and still intend the curried form of
the function.

Observe thatifﬂ, .. .fn . T then {?Z} : {T} .

Similarly { ft; }n abbreviates (ff1);. .. (ft,).

Now that we have the telescope notation for expressing types of indices, we may define

the notion of an indexed family.

DEFINITION: indexed family
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IfSisa telescope and T is a type, then an S-indexed T-family is an inhab-
itant of V¥:S. T.

For example, if for all 2 : N we define finn to be the finite datatype with n elements, we
may say that fin is N-indexed Zype-family. Or, perhaps perversely, we may describe the

function which decides equality on the natural numbers as a {N}Z—indexed 2-family.
For any Type-family (henceforth ‘type family’), we may define the following telescope:
DEFINITION: free telescope for a type family

If T is an X-telescope and A is a T-indexed type family then, A, the free
telescope for A, is

T; (A )
For example, fin is justn : N x : finn.

What is visible through this telescope? Every member of the family A, of course! That

is,ifa : Af, then f;a : A. Note also that A f is the same as one element telescope A f

Finally, let us consider how to abstract over arbitrary telescopes. Simply taking
VT {‘Type}n. e

does not capture the potential for type dependency within the telescope: T> may depend
on a value of type T; and so on. We may represent this by taking T : T; — Tiype. We
then have not a telescope of types, but a telescope of type families:

T, : Type;
Ty : Ty — Type;
T3 : th : Tl. (T2 tl) — ‘Type,
' - i n—1
T, :Vt: {Ti {tj}j}z' . Type
This is a very special T—telescope which I call A" Type, and any sequence which in-

habits it is a triangle of length n. That is, a triangle is a sequence which represents a

telescope.

It is not hard to convert an X-telescope Tintoa triangle: we simply turn the abstractions
implicit in the telescope notation into A-bindings which capture the earlier x’s in later

T’s. The resulting triangle is
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Ty;
)\xlle. Tg,
)\xlle. )\x2:T2. T3,

AT T,
Correspondingly, if Sisa triangle, the X-telescope it represents is

xi: Sq;
Xy @S9 X1}

X3 1 S3.X1 Xo;
. S n—1
Xn © On {xz}z

There is no ambiguity between triangles and the telescopes they represent. You can

easily spot which is which by which side of the colon they appear. I shall happily write

VT A" Type. here T is a triangle
Vv T. here T is the represented telescope
What could T mean as a triangle in a type position? Its elements are type families and,

apart from the first unindexed one, these type families are not types.

Observe that if T; Sisthen + 1 length triangle representing telescope T; Tandt: T,
then the triangle representing (T; T) tis {S; t}. Telescope application is thus repre-

sented in the triangle coding by function applications.

These notational forms give us the syntactic power to manipulate dependent type fami-
lies and their inhabitants cleanly and with hardly any more effort than for simple types.
Since dependent type families feature strongly in this thesis, we are sure to be glad of

the convenience.

51



Chapter 3

Elimination Rules for Refinement
Proof

Introduction rules tell us how to establish new information. Elimination rules tell us
how to exploit what we know. This chapter identifies a particularly useful class of

elimination rule and develops a tactic to deploy them in refinement proof.

My first encounter with things described as ‘elimination rules” was when I was being
taught natural deduction as an undergraduate mathematician. In particular, I learned

elimination rules for the propositional connectives A and V:

P Ql

PAQ PAQ PVvQ s o
P Q )

I recall thinking the two A-elim rules uncontroversial, whilst being somewhat confused
by the convoluted behaviour of V-elim. It was only when I caught my supervisor build-
ing a proof from the bottom of the blackboard upwards that I began to see the point.
V-elim tells us how to exploit a disjunctive hypothesis to gain leverage on whatever
® it is we are trying to prove. The A-elim rules seem somewhat undermotivated by
comparison—they project out one or other conjunct, so we have to arrange to want the

conjuncts.

We can reformulate the A-elim rules as a single rule in the style of V-elim:

52



[P]
Q]

PAQ &
3

This rule (often called ‘uncurrying’) makes explicit the ‘see if you can prove it from
the conjuncts’ technique which the original pair of rules tacitly require the reasoner to
apply. And that is the key point. Elimination rules should supply a proof technique
which analyses the hypothesis in question to give leverage on whatever the objective
may be. The ‘projective’ rules only manage to be both applicable and motivated if we

are lucky enough to be trying to prove one or other of the projections.

MANTRA:
The end motivates the means.

It is only because A is a pretty boring connective—there is no choice about how to
prove P A Q—that we can get away with projective elimination rules. A disjunctive
hypothesis yields no definite conclusion, so forward synthesis is blocked—we have to

work analytically, reasoning by cases.

V-elim helps us prove ® from P V Q by splitting the task into two subtasks, decom-
posing the hypothesis. However, this is not the only way a well-designed elimination
rule can make analytical progress. We can also decompose the objective (or ‘goal’)

into more specific cases, our favourite example being the ‘principle of mathematical

induction’:
(@ n]
®0 dsn
Vn:N. ®n

This rule explains how to prove an arbitrary goal ® indexed by a natural number 7n: we
must show that proofs of ¢ are made the same way that numbers are. The subgoals in-
stantiate the index with more specific natural numbers. This instantiation may provide
us with the concrete data we need to perform some computation or simplification, and

this is, by and large, how inductive proofs work.

Henceforth, I shall intend by ‘elimination rule’ only this kind of rule whose conclu-

sion is an arbitrary goal, possibly abstracted over indices. This characterisation is very
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broad, including rules where there is nothing being eliminated. This may seem odd,
but it is sometimes useful to characterise what progress we can make towards an arbi-
trary goal without exploiting any further information. Good examples to bear in mind
are the impredicative encodings of the true proposition and the absurd proposition, re-
spectively VO : Prop. @ — ¢ and V® : Prop. ®. The former exploits no information in
the cause of proving its arbitrary ®, and consequently exerts no leverage, leaving ® as
a subgoal. The latter is only derivable in the context of a contradiction, and it indicates

that we already have all we need to establish whatever & we want.

In order to exploit elimination rules whose conclusion is abstracted over indices, we
need to make the corresponding abstractions from the goal we are trying to prove. It
is, of course, obvious how to do this when the goal already looks like Vn : N. & n.
This chapter is largely devoted to explaining how to make the abstractions under less

obvious circumstances.

3.1 propositional equality (definition deferred)

One of the tools we shall shortly require is a propositional notion of equality. The
conventional formulations become awkward once type dependency enters the picture.
The trouble is that two instances of a type family with indices which are not convertible,
just propositionally equal, are not the same type. The familiar definitions permit only
equations within one type—they forbid us even from stating the equality of elements

drawn from the two instances of the family.

Huet and Saibi encounter a similar problem in their formalisation of category theory
[SH95]—they need to state the equality of arrows whose domains are not necesssarily
computationally equal. Their solution is to relax the formulation rule for equations on
arrows whilst still supplying only the reflexive constructor. With care, this approach
may be extended to the commonplace propositional equality, and that is what I propose
to do.

Rather than presenting my definition at this stage, with slender motivation and less
context, I shall defer the treatment until we have more idea of what its properties should

be, and more language with which to describe them.

Since I do not use a familiar equality, I shall not presume to use the familiar ‘=" symbol.
Instead I shall write ‘~’. Experienced readers who dislike suspense will find its defini-
tion in chapter 5. Otherwise, read on here—let us look out for the required behaviour

of ~ as we go.
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3.2 anatomy of an elimination rule

Let us first establish notation for elimination rules and give names to their compo-
nents. Presenting elimination rules as raw types, or even in the conventional natural
deduction style is relatively uninformative, as I have found in the past to my cost. In
this section, I shall motivate what I hope is a clearer presentation (arising from a black-
board conversation with Rod Burstall). It is important that we come to some systematic

understanding of these rules, for we shall need to teach machines to use them.

In order to make sense of any elimination rule, we need to know

e what it eliminates—its target Ninduction
e what family of arbitrary goals it proves—its scheme O :Vn:N. Prop
For example, mathematical induction (right) eliminates a nat- dn

0 osn
An:N|on

I mark the target with a box. We can tell @ is the scheme because it stands at the head

ural number, 7, and proves goals of the form ® 7, where @ is

a family of propositions (ie, a predicate) over N.

of the rule’s return type.

If we want to apply this rule, the target marker tells us that we must select a natural
number to eliminate, which will stand in the place of . Having done so, we will need
to abstract it from the goal to make an appropriate scheme for ®. It is important to type
the scheme prominently. The index types are not always so obvious as here. Further,
we may need to be precise about which type universe the goal must inhabit: the ‘Prop’
in the above rule makes it suitable only for propositional goals—this rule cannot be

used for programming.

Schemes always have types of form V7': I. U 1 call the 7 the rule’s indices, and the
indexed telescope I the rule’s aperture. Later we shall see elimination rules for the
same thing, but with different apertures. We shall also see how to change the aperture
of arule. In conventional proofs by mathematical induction, the scheme is often called
the ‘induction predicate’. However, we shall have need of schemes which are not

predicates and rules which are not inductive.

Wherever @ is applied, its arguments are called patterns. The universally quantified
variables appearing in patterns are pattern variables. Target selection must instantiate

all the pattern variables in the conclusion of the goal—otherwise we will not know
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what to abstract to build the scheme. For mathematical induction, the only pattern

variable involved is the target itself, so this requirement is clearly fulfilled.

Above the solid line are the rule’s cases, each of which proves ® applied to some case
patterns (such as O and Sn above). Any subgoal-specific assumptions appear above a
dotted line, the horizontal cousin of natural deduction’s vertical ellipsis. Those which
do not involve ® are case data. Those which do are described as inductive hypotheses

or recursive calls.

The visual aspect of this presentation is intended to convey the idea that the cases of an
elimination rule are the ghosts of the corresponding introduction rules. Prawitz’s ‘in-
version principle’ captures this relationship between the introduction and elimination
rules of natural deduction [Pra65]—he attributes the idea to Gentzen who in [Gen35]

expresses the property as follows:

In eliminating a symbol, we may use the formula with whose terminal
symbol we are dealing only ‘in the sense afforded it by the introduction of

that symbol’.

In essence, elimination rules show us how to mimic the structure of the hypotheses on
which they act. Mathematical induction shows us to how to make ® n imitate 7 : N. T
will freely suppress implicit assumptions (such as the 7 : N in the ‘successor’ subgoal

above) in order to strengthen this resemblance.

MANTRA:
Decomposition is the exposition of construction.

Before I describe how to work with elimination rules in more detail, let me place the

discussion in context by exhibiting a number of variations on the theme.
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3.3 examples of elimination rules

Parameterised data structures like lists have pa- listElim

rameterised elimination rules.
A : Type

In particular, we say that an elimination rule’s | ® : (list A) — Type
parameters are those hypotheses on which the

scheme’s and cases’ types depend. They may, h:A &t

® (nilA) & (consht)
V1:listA| &1

where interesting, be listed at the top of the rule.

Note that I supply the case datum & : A explicitly, despite its appearance in the CONS

case pattern, in order to emphasise the imitation of the constructor.

A class of elimination rule which we will construct and use over and over again in this
thesis is the case analysis or inversion principle. For any notion given by introduction
rules, the corresponding inversion principle asserts that those introduction rules are
exhaustive. There is one case for each introduction rule, and there are no inductive

hypotheses.!

m<n
m<m m<Sn

Consider, by way of example, < for N, presented here in its

‘suffix’ variant.
The traditional ‘Clark completion’ [Cla78] presentation represents the choice of deriva-

tions as a disjunction of existentially quantified equations.

Vm,n. m<n —

Im'.  mo~m’ A n~m’

\ dm',n'. m~m' A n~sn' A m'<n’

There is one disjunct for each introduction rule—the schematic variables become ex-
istentially quantified over equations demanding that the conclusion proves the inverted
hypothesis and that the premises hold. This construction is somewhat mechanical, in
that it explicitly constrains each argument of the hypothesis even if the constraint is

redundant, like the 3m’ . . . m~m' in each case.

In [McB96], I gave a standardised ‘elimination rule’ presentation of inversion, essen-
tially currying the Clark completion. For example, the generic class of hypothesis m<n

would be inverted thus:

'In fact, it is good to think of induction as inversion augmented with recursive information.
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<Clarkinv

O : Prop

!

me~m' n~sn’ m'<n

m and n are parametric to the whole rule. Once they have been instantiated, the equa-
tions in the subgoals may be simplified automatically. This approach is somewhat
clumsy, but it is very easy to apply, as the scheme ® may be any proposition—no ab-
straction is necessary. We shall shortly develop the abstraction technology required
to exploit a more streamlined version, with an indexed scheme removing the need for

equational constraints on the parameters:

This inversion principle differs from the Clark rule <Inv
only in its aperture. They are, of course, interderiv-
. . . O Vm,n:N. Prop
able, suggesting that there might be a systematic

way to change the aperture of an elimination rule.

In fact, that is the essence of the tactic this chapter

dmm  Pdmsn

Vm,n. . m<n|— ®dmn

develops.

The process which simplifies the constraints arising from inversion makes critical use
of the fact that constructors are injective and disjoint (the ‘no confusion’ property). For

natural numbers, we might plausibly choose to derive two of Peano’s postulates:

e Vm,n:N.sm~sn — m~n

e Vn:N. O~fsn
The above formulation of injectivity is essentially projective after the fashion of the
awkward A-elim rules—directly useful only if it is m~n we are trying to prove. For
non-unary constructors, CONSs for example, the problem gets worse—we either have

separate head and tail injectivity theorems, or a single result which yields a tuple of

equations which we then eliminate.
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Consequently, I present injectivity as an inversion rule for sinjective
an equation of successors. This is really just the ‘tuple’
.. . . , . O : Prop
version in curried form—the ‘predecessor’ equations are
the hypotheses of the rule’s only case.
mo~n
Turning to the ‘constructors disjoint’ result, if we thinkof | -.....
‘not’ as ‘implies false’ and ‘false’ as the absurd proposition @
‘anything is true’, we discover that we had an elimination — @
rule all along, with a fortunate number of cases.
I shall show how to prove rules like these in chapter 5. 0-not.s
O : Prop
- ®

We should not think of elimination rules as solely belonging to datatypes and relations.
They also provide neat tools for reasoning about functions. After all, what is the ex-
tension of a function, but a relation on which a total and deterministic computational

mode has been imposed.

An equational presentation of a function corresponds to a set of introduction rules,
with recursive calls becoming inductive premises. It makes sense to reason about the

behaviour of the function by the corresponding elimination rule.

Consider NEg—the function which decides the equal- NEg O 0 =true
ity of two natural numbers. Later, we shall see how |NEQsm O =false
NEqg 0 sn =false
NEQ smsn =NEgmm

to define it by recursive pattern matching equations as

shown.
The corresponding elimination rule allows us to do what John McCarthy calls recur-

sion induction [McC67], effectively packaging up the recursive structure of NEQ as a

single induction principle.

NEgRecl

O : Vm,n:N.V@:Q. Prop

®00true @®0snfalse dsmOfalse Pdsmsnb

Vm,n.®mn| NEQmn
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Many proofs about functions operate by choosing the right combination of inductions
and case analyses on the arguments to make the computation unfold. Recursion in-
duction on functions does away with the apparent cunning of this choice by wrapping
up ‘the right combination’ in a derived rule which targets applications of the function
directly. The proof of a recursion induction principle follows the construction of the

function it describes, step by step.

In order to make proper use of such a recursion induction principle, or any other rule
eliminating a function application, we must choose a scheme ¢ which abstracts that ap-
plication from the goal. Each subgoal thus replaces the application by the appropriate

value.

Such abstractions are usually unnecessary when eliminating datatypes or relations.
However, exactly when and where this abstraction behaviour is required seems to vary
from rule to rule, and even from problem to problem—I cannot see how to infer it

reliably from the structure of the rule or its target.

The user must be free to indicate which arguments are to be abstracted in any given
case—I put a box in the type of the scheme around any index for which abstraction
is to be attempted. When b is boxed in NEQRecl, it indicates that we would like to

abstract occurrences of (NEQ m n) as b.

For many functions, typically of a ‘searching’ or ‘testing’ character, recursion induc-
tion is still too close to the implementation to be really useful. For example, regardless
of how the test works, we should like to know that NEQ returns true for equal and
false for unequal arguments. We can represent these requirements as ‘extensional’

introduction rules, via the propositional equality:

These equations may not be computational, but we can NEq x x ~frue
still use them for conditional rewriting, should we be lucky x Ay
enough to encounter applications of NEQ which look like NEQ x y ~ false

the left hand sides.
We are often less lucky. Imagine we are trying to prove a property of a program

Vx,y. P (if NEQ x i | then S else T)

The computation is blocked at the box, because the ‘if’ will only reduce given a
boolean value, and inside the box because x and y are not numerals. Neither rewrite
rule applies, because we do not know whether or not x and y are equal. We can remove
the blockage if we split the problem into the two cases where the NEQ call returns
frue and false respectively.
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This is exactly the behaviour of the inversion |NEgInv

principle corresponding to the rewrite rules.
® :Vm,n:N. V@:Q. Prop

Inverting a NIEQ call yields two cases: one
where the arguments are the same and the re- mtn

sult is true, the other where the arguments dif- | .. ..o
fer and false is returned. Pnntrue & munfalse

Vm,n.®mn|NEQmn

Again, boxing @ indicates that (NEQmn) is to be abstracted from the scheme. Conse-
quently, it is replaced in one subgoal by true and in the other by false. In both cases,

the ‘if” reduces—further, in the frue case, x and y are coalesced:

o Vx. [x/y|(PS)
o Vx,y.xy — PT

Inversion requires much less effort than extracting the same information from ‘charac-

terisation theorems’ like the following (from the LEGO library):
Vm,n:N. m~n < NEQ m n~tfrue

To achieve the effect of the inversion, you need to combine this lemma with projection

from the ‘<+’, boolean case analysis and a rewriting mechanism.

MANTRA:
Invert the blocking computation.

The point is simple. Introduction rules construct information. Elimination rules ex-
ploit information. It is a serious weakness to confuse these purposes. In my view, an
equational specification is the wrong tool to exploit the properties of one program in a
proof about another. By construction, elimination rules, especially those which invert
blocked computations, are much better tools for that purpose. Over the course of this

thesis, you will see this point reinforced in example after example.

3.4 legitimate targets

In order to refine a goal by an elimination rule, we must do two things:
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e select a target of the kind the rule eliminates

e construct a suitable scheme from the goal

I shall discuss the latter in the next section, but the first issue requires comment now,

because it impacts on how we should present elimination rules in the first place.

The point is that, in order to be able to select a target, we must know what kind of
target the rule eliminates. We must define what it means to be a ‘legitimate target’ of
a rule, so that when we tell the machine which rule we want to use, it can tell us what

we may use it on.

As we have just seen, there are many different kinds of elimination rule, eliminating
many different kinds of target. The elimination rule for a datatype eliminates an ar-
bitrary element of that type, abstracted in the rule and appearing in the concluding

pattern:

vin: Nl on

Inverting an inductively defined relation like < eliminates hypothetical inhabitants of
the relation, but the pattern (® m n) only involves the relation’s indices (1 and 1), not
the target (the proof of m<n) itself:

Vm,n. — ®dmn

An elimination rule for a function specifically eliminates applications of that function,
rather than arbitrary elements of the result type, so the target appears only in the pat-

terns.

Vm,n.®mn|NEQmn

More diverse variations include ‘double induction’, where we must provide two targets
for a nested analysis. There is no way we can expect a machine to cope with this

diversity, looking only at a type and trying to second-guess the intention behind it.

Let us place the burden of specifying what an elimination rule targets where it
belongs—with the manufacturer of the rule. In the Northern Irish tradition, a legiti-

mate target is whatever we say it is.

Consequently, the boxes around targets become more than a notational courtesy be-

tween you and me—they are annotations which the machine can also see. One way to
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represent such annotations is to store the boxed term and type in a fatuous !-binding

with a special identifier, ‘C1’, below:

e Vi:N.'O=n:N.dn
o Vm,n.VH:m<n.'O=H:m<n.®dmn

o Vm,n.!0=NEqmn:2. & mn (NEQmn)

Given the ‘manufacturer’s instructions’, the machine can ask us for legitimate targets in
the order that the annotations appear in the type. When we indicate what to eliminate, a
process known in the business as fingering, the machine can match it against the target

annotation, inferring the universally quantified variables therein.

This opens the interesting possibility that the type of an elimination rule might be
computed from its targets. After all, we cannot compute the elimination scheme until
we know what it is we intend to eliminate. We will see an example of this technique
later—the ‘injectivity’ and ‘conflict’ rules for a given datatype will be combined into a
single rule which computes the inversion appropriate to the equation being eliminated
once targetting has instantiated the two sides with constructor expressions. This is not
a caprice on my part—it really is the easy way to prove the Peano-style properties of

dependent datatypes.

3.5 scheming with constraints

“You can have any color you like, as long as it’s black.’ (Henry Ford)

Undergraduates should count themselves fortunate that the exercises in inductive proof

with which they are traditionally presented involve goals of form:
‘For all n € N, rthubarb rhubarb n.’

The formulation of the ‘base’ and ‘step’ cases then involves mindless copying of the
‘thubarb’ bit, with appropriate values substituted for the ‘n’. Even if they cannot com-
plete the question, they can still manufacture the proof template (once any tendency to
write ‘suppose n = k, show n = k + 1’ has been beaten out of them, that is) and thus

collect some credit.?

2For such purposes ‘thubarb rhubarb’ makes as worthy a predicate as any.
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When reasoning about even modestly complex notions, such as < for N, we are less
likely to be favoured by goals bearing so close a resemblence to an elimination rule

conclusion, such as that of <Inv:

<Inv: ...Vm,n. — dmn

<Inv’s scheme abstracts over arbitrary pairs of natural numbers, but how are we to
deal with less arbitrary pairs? How can we cope with particular restrictions of rela-
tions, datatypes and so forth? How might we apply a generic rule like <InV to a more

restricted instance of <? Consider the boxed hypothesis in

?0least : Vx. — x~0

We need to construct a scheme which is constrained according to the problem in hand,
but still abstracted over the entire aperture of the rule. The constraint we need can be

expressed by means of propositional equality, taking
® = \x,n.n~0 — x~0

As it were, ‘you can have any 7 : N you like, as long as it’s 0.

Plugging in this scheme, the conclusion of <INV becomes

Vm,n. — n~0 — m~0

Now, if we fill in the details of our selected target, x<O, this is further instantiated to
0~0 — x~0
and we can surely prove O~0—Ilet us presume there is some

refl : VA: Type. Va: A. a~a

More generally, suppose we have an elimination rule prov- d: V.U

ing some scheme ® for patterns p[yj], as shown to the right.
rule subgoals

vy. @ ply]

The notation p[ij] represents the sequence of patterns with the

pattern variables abstracted: more generally, ﬁ[ﬂ means ‘the

patterns with ¢’s substituted for the y’s’.

We may apply this rule to a more specific goal—Ilet us presume that targetting has pro-
duced a matching o giving the rule’s pattern variables in terms of the goal’s hypotheses.
That is, consider a goal which looks like
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VX. U[p[oy]]

We may choose a scheme ¢ with explicit equational constraints:

N VA, i~p[o] — Y[plot]]

What is 7~f[oij]? It is a telescopic equation: in general, if 5 and f are sequences of

length n, then the telescopic equation §~f abbreviates the telescope of equations:

{sj=t;};

Observe, though, that we must be able to express these constraints even in the presence

of type dependency. For example, if we were building constraints on an aperture
n:N;v:vectn

we might need something like
11 My; V10

even though v, : veCtn; and v, : veCtn,. That is, we need a notion of equality which

scales to telescopes—exactly what ~ will provide.

Let us instantiate the rule’s conclusion, filling in the pattern variables according to o

and ® with the scheme we have constructed:

VX. ploy]~ploy] — Y[ploy]]

If we can solve the equations, we will recover the target goal. Fortunately, they are

reflexive.

The point is this: in much the same way that Henry Ford’s customers could ask for
any colour of Model T, but would only receive satisfaction if they happened to choose
black, the above scheme is indeed abstracted over the entire aperture, but the patterns

to which it applies are subject to equational constraints which recover their specificity.

Notice that the formulation of this scheme requires no abstraction. The ¥[p[o]] re-
mains untouched. It is targetting which identifies the p[oj]—they need not even occur

in the goal, although the exercise is perhaps a little pointless if they do not.
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We have established the basic technique for constructing schemes when our goal is
more specific than the conclusion of the elimination rule. It is broadly effective, but it
sometimes generates redundant information. For example, constraints are unnecessary
wherever the goal really is as general as the rule—there is no point in saying ‘you can
have any color you like, as long as it’s a color’. We should try to avoid equations where
abstraction will do.

The next three subsections describe techniques to make the basic scheme less clumsy,

in accordance with the following three observations:

e wherever a fresh variable is constrained to equal an index, we can coalesce the

two and remove the constraint
e we can avoid abstracting the scheme over redundant information

e if an index is constrained to equal a complex pattern (for example, when we
apply an elimination rule characterising a function) we may sometimes simplify

the scheme by replacing copies of the pattern with the index

3.5.1 simplification by coalescence

The simpler the example, the more unnecessary constraints there are likely to be: if we
wanted to prove

Vn:N. rhubarb rhubarb n
the generic constrained scheme would be

Am:N. Vn:N. m~n — rhubarb rhubarb n
This is not the scheme which I want my students to write down, so it had better not
be the scheme which the machine computes. Wherever a scheme constrains a A-bound
index to a equal fresh V-bound variable of the same type, we may coalesce the two.
Our example becomes

A :N. rhubarb rhubarb n

as we might hope for.
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When we coalesce two variables, we have a choice of which name to keep—it is polite
to preserve the name from the goal. Note that if the same V-bound variable is con-
strained to equal more than one index, that effectively forces those indices to be the

same—we may only make one coalescence, otherwise we lose this ‘diagonalisation’.

3.5.2 what to fix, what to abstract

Which of the goal’s premises do we really want the scheme to abstract? Which should
remain fixed over the whole scope of the elimination? Unfortunately, these can be
quite subtle questions. Imagine, for example, that we are building the AP function

for polymorphic lists:
map : VS, T: Type. Vf:S — T.Vx:list S. list T

In order to do recursion on x we must certainly fix S—the element type is parametric

to the elimination rule for list. We may fix T and f or not as we please.

On the other hand, when we are constructing functions which require nested recursion,

we may not be so free to fix arguments. Consider, for example, Ackermann’s function:

ack:N— N — N

ackOn = sn

acksm 0 = ackmsO
acksmsn = ackm (ack smn)

When we apply the outer recursion on the first argument, we must not fix the second
argument—as you can see, the recursive calls which decrease the former also vary the
latter.

Abstracting wherever we are not forced to fix sounds like a promising policy—it does

not hurt us to have too much flexibility, only too little.

However, sometimes abstraction is definitely re- <lnv

dundant. Recall our earlier example, proving

Vx. — x~0

perhaps by <Inv (shown to the right). dmm  dmsn

O Vm,n:N. Prop

Vm,n. . m<n|— ®dmn
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As things stand, the basic scheme abstracts all the premises
® = Im,n.Vx. x<0 — m~x — n~0 — x~0

Coalescence removes Vx (and renames 1):
® = \x,n.x<0 — n~0 — x~0

Plugging this into the conclusion of the rule, we find we have a proof that
Vx,n.x<n — x<0 — n~0 — x~0

The extra inequality, x<0, is redundant. It is present because we have abstracted over
what we were eliminating, but it is not in any way useful because the scheme is not

indexed over the proof of the inequality.
Typically, once targetting has filled in what is being eliminated, the application of an
elimination rule looks like

rule ® ¢ oij = @ Floij]

The premises occurring in the inferred arguments o/ are the ones being eliminated.
However, some ’s may not appear in the patterns, so some eliminated premises may
not appear in the instantiated patterns p[oyj]. The elimination thus tells us nothing about

them, so we may omit them from the scheme provided type dependency permits.

That is, we may omit a premise x on grounds of redundancy provided

e x occurs in the arguments of the elimination rule inferred by targetting
e x does not occur in the instantiated patterns o]

e the remainder of the goal does not depend on x

Inductive relations like < are usually formulated in exactly this ‘proof irrelevant’ way.
In our example, the eliminated hypothesis x<0 satisfies the three conditions. We omit

it, leaving
® = \x,n.n~0 — x~0

This is the scheme we want.

68



3.5.3 abstracting patterns from the goal

Rules with indices marked for abstraction NEqglnv
oblige us to carry out further simplification
® :Vm,n:N. V@:Q. Prop

on the scheme, in order that they have the in-

tended ‘rewriting’ effect.

motn
Recall NEQInV from section 3.3—we might | ... ...
use this rule to rewrite an application of NEQ dnntrue ¢ mnfalse
in a goal like the following: Vm,n. ®mn|NEqmn

Vx,y. W[if| NEQ x i | then s else t]

Targetting infers [x/m][y/n]. The coalesced scheme is thus

o = )\x,y,@.b:Nquy — VJif|NEQ x y |then s else ¢]

The boxed @ tells us that we should abstract away occurrences of (NEQ x v) from the
goal. Once we have done this, we can throw the constraint away.

® = Ax,y,b. U[if b then s else {|

Abstracting arbitrary terms in dependent type theory is a sensitive business—we are
not always free to replace a given subterm by a variable of the same type, because the
typing of the whole term may depend on the particular intensional properties of the
subterm being replaced. However, it is worth a try—if unsuccessful, we may leave the

constraint as it is and continue.

This rewriting technique is very powerful. The trouble caused by the intensionality
of the type theory is a real pity. Perhaps a part of the problem could be avoided with
appropriate facilities for reconstructing broken typings from propositional equalities,

as proposed by Hofmann [Hof95].
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3.5.4 constraints in inductive proofs

Let us see how constrained schemes affect inductive | ® : Vm, n:IN. Prop
proofs. We will acquire constraints on the inductive

hypotheses, as well as those on the conclusions of dmn

dmm  Pmsn

Vm,n. . m<n|— ®dmn

the subgoals.

Consider applying the weak induction principle? for

< (see right) in a proof of

?strict: Vx, y. — x<y
Targetting gives 0 = [Sx/m][y/n], so we infer the scheme (coalescing y and n):

® = Am,y. Vx. m=Sx — x<y

The corresponding subgoals are shown to the right. ?hase: Vm, x: N
The constraints which appear as hypotheses in the Ve, :m~Sx
. . x<m
subgoals, e, and e,, are ‘friendly’—they restrict the
g ’ ’ y Y . 7step: VYm,n: N
m’s and x’s we have to deal with. The constraint Viyp : Vx': N
in the inductive hypothesis, e,, is ‘unfriendly’—it Vey,: m~sx’
restricts our choice of x'. x'<n
Vx :N
A closer examination of these constraints reveals a Ve, :m~Sx
more subtle but crucial distinction. x<sn

The variables appearing in these constraints come from two sources:

e the pattern variables for each case of the elimination rule, m and n above—these

become premises of the subgoals, and appear on the left-hand side of constraints

e the variables universally quantified in the scheme, x and x” above—these become
premises of the subgoals and also parameters of the inductive hypothesis: they

appear on the right-hand side of constraints

The ‘friendly’ constraints tell us useful information about the variables which occur

as subgoal premises, whether they come from the scheme or the patterns. In chapter

3An inductively defined relation like < also has a strong induction principle—the distinction is ex-
plained in section 4.1.5.
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5, we will see how to simplify them, solving for variables appearing on either side—

‘friendly’ constraints constitute unification problems.

In our example, let us imagine we can perform this ?base’: Vx: N
simplification on e, and e, instantiating the 1m’s to xX<Sx
?step’: Vx,n: N
leave the subgoals shown. ,
Vhyp: Vx': N
Vey,: Sx~Sx’
x'<n
x<sn

The ‘unfriendly’ constraints cannot tell us anything about the variables which occur as
subgoal premises—e;, does not allow us to infer x. Rather, they narrow our choices for
the copies of the scheme variables (like x’) which parameterise inductive hypotheses.
That is, ‘unfriendly’ constraints can only determine variables appearing on the right-

hand side—they are matching problems.

Look back before we simplified the ‘friendly’ constraints: ?base”: Vx: N

we cannot find an x’ to solve the matching problem , X<Sx
m~Sx’. However, now that we have done the unification, tstep”: :Z’ n JII:JI<
a solution has become available. Inferring x for x’ we can lezn "

obtain the subgoals shown on the right.
Something interesting has happened, and we will see what it is if we present these
subgoals in natural deduction style:

x<n

"
base x<sn

step”

x<Sx

This looks like a plausible recursive specification of <! In fact, what we have done
is apply the standard unfold/fold technique for logic programs [TS83, GS91] to trans-
form our goal, viewed as a specification of < in terms of <, into subgoals which give
< recursively. The unification problems in the conclusions are those which arise in
unfolding; the matching problems in the inductive hypotheses are those involved in

folding.

3.6 an elimination tactic

In this section, I shall present a tactic, eliminate, which refines a given goal by a given
elimination rule—the user is required to finger the targets, then the tactic constructs an

appropriate scheme and solves the goal, generating a subgoal for each case.

eliminate operates in five stages:
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e preparing a proforma application of the elimination rule to arguments initially

unknown

fingering the targets and inferring the pattern variables

constructing a constrained scheme

proving the goal

tidying up

I have implemented a prototype of this tactic with much of the functionality described
here as a key component in my extension of LEGO. Of course, if I had known then
what I know now, it would have all the functionality. This section is the blueprint for

the revised version.

I shall present each stage as a little tactic. The < A<Elim:V® :Vm,n: N
induction we have just seen in the previous sec- Prop
. . . Vo, :Vm: N
tion makes a useful running example. The tactic & mm
should reproduce exactly the effect we manu- Vs :Vm,n: N
factured by hand. Vomn: Pmn
® msn
The rule we shall use and the goal we shall Vm,n: N
prove are shown in OLEG notation on the right. V\ L :m<n \
The boxed premise in the rule is the inequality dmn
it eliminates: the boxed inequality in the goal is 5::)
the one we shall target. ?leGoal: Vx,y : N
i H: si<y]
x<y

3.6.1 preparing the application

The preparation step could be carried out for any goal to be solved by any lemma. It
is just an administrative manoeuvre, getting everything in the right place for the real

work which follows.

TACTIC: eliminate-prepare
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elim: V5:S. R[5
?goal: VX: X
Y[x]

elim : V5:S. R[§]

o

7goal \E ¢ X
75 S
lapp =elims

: R[s]

Tconc : Y[X]
conc

The goal’s hypotheses are introduced; the

lemma’s hypotheses are inserted as unknowns.

A ‘proforma’ application of the lemma is then

manufactured and stored as a !-binding. Ulti-

mately, this application will be used to solve

conc. We must first fill in some of the s.

The prepared application for our example is

shown on the right.

3.6.2 fingering targets

Having installed an application of the rule in the proof of the goal, the next step is
to infer some of its arguments by targetting. We may presume that the rule has a

sequence of targets marked by its manufacturer. The user must now finger a sequence

of matching expressions to be eliminated.

We may make use of the unify tactic to do our matching, although this may be a slight

overkill. Something like the following happens:

?leGoal~ Mx,y : N

NH : sx<y |

KR

20m ...

T ...

m,n: N

AL : m<n |

lapp = <Elim @ ...L
:dmn

Tconc: x <y

conc

—

7goal~ X X
7815821 5155
lapp =elim sy;s,

: R[Sl;SQ]
Tconc : Y[X]
conc

t[Sa] : T[so] target
e[X] : E[X] to be eliminated

7goal~ AX ;X
?§1 : §1
15, =7¥]
lapp = elim s ; 7]X]

. R[sy; 7X]]
?conc : Y[X]
conc
T[77)] = E[¥
Hrlx]] = elx




That is, targetting tries to match terms and types.

If successful, some of the rule’s

arguments S, will be inferred as 7[X]. Others, 7, will not be inferred. The two kinds do

not have to be bound in separate clumps—it is just easier to write down that way.

If a rule has more than one target, we will have to repeat

this step for each.

In our example, we successfully match H to L. Matching

the types also infers m and n.

o

'm =sx

m =y

'L =H

lapp= <Elim ® ... H
: dsxy

Now, if an elimination rule is particularly complicated, its later structure may be com-

puted from earlier arguments inferred by targetting. The instantiated type of app may

reduce, revealing more premises to be inferred. The tactic should create holes for these

and add them to the application. Computation may also reveal more targets. Incorpo-

rating this possibility, the real behaviour of the targetting step is as follows

TACTIC: eliminate-target

—

7goal~ A\X X

7815821 5155
lapp =elim sy;s,

: R[Sl;SQ]
Tconc : Y[X]
conc

t[Sa] : T[so] target
e[X] : E[X] to be eliminated

7goal~ AX ):(
7 S
!§2 _TX]
75y : Sy
lapp’ = elim s1; 7X]; S5
: R'[%;81; 85
Tconc : Y[X]
conc
T[rlx]] = E[]
HrX]] = efx]
R[5); 7[A]] > V&5:S;. R'[X;§); 5]

Observe that not only have the S, been inferred and turned into !-bindings, but some

S3 have appeared as a result of computation. The proforma application is extended

accordingly.
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3.6.3 constructing the scheme

If the targetting phase has left the state as shown,
the tactic may proceed to construct the elimination
scheme. The scheme variable, ®, has been uncovered
and the patterns, p[X], have been inferred. The task is
now to compute ¢. We must put the analysis of section

3.5 into practice.

2goal~ Nd A
A X

7P VI

u

lapp =elim 7

@ 3]
Recall that the basic scheme is manufactured by ab- ?conc: Y[x]
stracting all the premises and constraining the indices conc
to equal the instantiated patterns.
Correspondingly, the tactic begins by building a basic qb
scheme, copying the non-parametric premises X from the 1PN lﬁ]
goal and constraining all the indices. A premise 4 is con- v’__c:l : _{( o
sidered parametric exactly when it occurs in the type of ®. v‘;f 9_;,]2 pIx

The tactic may fail at this point if the goal being addressed
is too ‘big’ for the universe over which the rule eliminates.

The remainder of this phase prunes the basic scheme down to something less clumsy,
wherever this is possible. Of course, in a real implementation, we would try to save

work by approaching the desired scheme more directly, but I suspect that ‘pruning the

basic scheme’ gives a clearer exposition. There are two passes:

e For decreasing4 J, remove Vx;- from the scheme if it is redundant, ie

if x;er (x; has been targetted . .. )

and x; & p[X] (... butis not being ‘inspected’ in the patterns ... )
and x; ¢ )?, Y[X] (... ordepended on by the rest of the goal)

e For increasing® k, try to simplify constraint Vey, : i, ~ p, [¥]

There are two simplifications to check for: in order,

— coalescence

if p, is some x;- (index constrained to equal fresh variable . .. )

and I = X; (... of same type)

then replace x; by ik, remove Vx; from scheme

Strictly, we should then rename i to x, keeping the name from the goal,

but that would make this presentation more complex than it already is.

“Later redundant premises must not be used as excuses to retain earlier redundant premises.
3Simplifying earlier constraints may unify the types of later constraints.
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— abstraction for rewriting
When i;, is marked for abstraction with in the type of @, try replacing
all occurrences of p, in the scheme by i;. If the result is well-typed, discard

ey, otherwise leave the scheme alone.

Once simplification is complete, the pruned scheme is made accessible by changing

the 7® to !®. The type of app can then reduce.

In our example, the basic scheme is more complex than i:::>

it needs to be. Reflecting the ‘proof irrelevant’ nature of [ )\"?, ”,: “

. . . . vx', v

inductive relations, the H' is redundant. Furthermore, we }y , ,
VH :sx'<y

may remove e, by coalescence. Ve,, :m =~ sx
Ve, :nx~y

x' <y

The pruned scheme is exactly the one we came up with C:)
when we did this example by hand. The type of app 1o = Am,y" N

reduces accordingly vx' N
' Ve,, :m ~Sx'
x' <y

Co

lapp= <Elm ®.. . H

:Vx' - N
Ve,,: Sx ~ Sx’
x' <y

I summarise the behaviour of this phase as a tactic step:

TACTIC: eliminate-scheme

O S| O
70 VI I[d) 1® =\ :1[d]
“ K
Q Vep:p /: Py, %]
lapp= elim ... Y5,
: @i o
lapp=elim ..
: VD_C;: )2;
ve,: ﬁp[&;p]lz ﬁp [55;;]
Y'[plx]; %,

The 9?; are what remain of the ¥’ after pruning—%, is the corresponding
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selection from X.

The €, are what remain of the € after pruning, equating a pruned sequence

of indices 7, to a pruned sequence of patterns ﬁp [55;]

Recall that the conclusion we are trying to prove is Y[X]: by construction,

Y%, = YIE

3.6.4 proving the goal

TACTIC: eliminate-goal

This phase proves conc from app by instantiating the
premises abstracted in the scheme with their ‘originals’,
making the constraints reflexive and the return type the
desired Y[x].

The effect on our example is shown on the right.

3.6.5 tidying up

TACTIC: eliminate-tidy

—

Tgoal~ AX X

1 =...
2sub : S
Is =7

lapp = elim sub 7[X]
lconc= app %, (refl g, [%,])

conc
=
?Sl/:bl : Vfdiid. g
Igoal= \¥: X
elim. .. (sp_[bl Xq) ...

77

£ SO
lapp =elim7 lconc=app %, (refl p,[%,])
VJ_CZ,: }2; : YA
ATAIPTAA
Y'[pl¥]; X,
?conc : Y[X]

o

lapp = <Elm & ... H
VX' N
Ve,,: Sx ~ sx’
X<y
lconc= app x (refl sx)
tx <y




Each sub;’ proves S; generalised over the X it depends on.

Firstly this phase cuts the !-bindings for inferred arguments s, and also @, app and

conc.

The task is then to shuffle the subgoals—the rule arguments not inferred by targetting—
outside the proof of goal. This is done by discharging the s through them, so that they
are generalised over only what their types depend on (as opposed to raising the 7s,
which would generalise over everything regardless). Typically, this will re-abstract the

fixed parameters.

Once the 7s are outside the As, the retreat tactic moves them outside the binding of
goal. At this point, smart implementations try to 7-reduce the proof of goal. Finally,

goal is solved, becoming a !-binding.

In our example, the subgoals do not depend on any of the premises, so no generalisation

is necessary. The final subgoals and proof term are as follows:

?sub;  : Vm,x": N
Ve :m~sx
X <m
?suby  : Vm,n: N
Vhyp : Vx': N
Ve : m ~ sx’
X' <n
v :N
Ve :m~sx
X' < sn
lleGoal= \x,y: N
AH :sx <y
<Elim (Am,y'. Vx'. m~sx’ — x'<y’)
sub, suby sxy H
x (refl sx)
: Vx,y: N
VH :sx<y
x<y

3.7 an example—NEQq

We have built our hammer—Iet us bang in a few nails. I propose to synthesise the NEQ
function described earlier in the chapter, and to prove some useful theorems about it.

We will make use of the eliminate tactic for both programming and proof.
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NEQ is a recursive function on N, so the starting point for
the development will be N’s elimination rule, NElim, which
doubles as the traditional induction principle and its primitive

recursion operator.

The sequence of work is then as follows:

NElim

O Vn:N. Type
dn
0 dsn

e Use NEImM to build an implementation of |NEqQ O 0 =true
NEqgsm O = false
NEg O sn =false
NEq sm sn =NEgmm

NEQ corresponding to the obvious functional

program.

e Use NElim again to prove NEQ’s recursion induction principle:

NEgRecl

O : Vm,n:N.V@:Q. Prop

®00true ®0snfalse dsmOfalse dsmsnb

Vm,n.®mn| NEQmn

e Use NEgRecl to prove a more con- NEqInv
venient elimination rule for NEQ—
the inversion principle suggested

earlier in the chapter.

® nntrue

o Vm,n:N.V@:Q. Prop

® m n false

Vm,n.dmn|NEQmn

e Use NEQInv to show that NEQ satisfies its equa-
tional specification, given here as ‘introduction

rules’.

NEQ x x ~ frue
X2y

NEqg x y ~ false
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3.7.1 constructing NEqQ

Let us implement NEQ by a nested recursion, on the first argument and then the second.

PROGRAM: NEQ

INEQ= \m,n:N. 2

?’NEqQ : Vm,n:N. NEQ[m]n
satisfying

NEg O O =true

NEqgsm 0 =false

NEqg O sn = false
NEq smsn=NEgmm

DEVELOPMENT

The above goal is shown with a box around our first target. Note the !-binding which

replaces the return type of NEQ with a more informative alias.

See how the return type of NEQ looks a bit like the left-hand side of a pattern matching
definition? We can find our target m there. eliminate it with NElim!

We now have a base case and a step case.  |?’NEQ, : Vn: N
Note the way the return types have picked NEQQO
up the patterns corresponding to the case ’NEq, : vim : N
Vrec: Vn: N

analysis. NEQ m n

. vn :N
In the base case, we are ready to elimi- NEQ s 7
nate the second argument, 7, again with INEQ = NEIm (Am. Vn. NEQ m n)
NEIlim. NEg, NEq,

We can now ‘fill in the right-hand sides’ by in- C:)
troducing the premises, then refining by true "NEq, : NEQOO

for NEQ,, and false for NEq,,. *NEQb, - z:lecf NEQ On

NEQ O sn
'NEqg, = NElim (An. NEQOn)
NEq,, NEq,

The step case is kept neat by introducing m  |?NEqQ,~Am  : N

and its associated recursive call before elim- Arec :Vn: N

inating n with NElim. Note that the type it
?’NEqg,: vn: N

of the recursive call tells us which argument NEQ sm

patterns it is good for. NEQ,
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We solve NEQ,, with false. For NEq,,, we ‘(::)
introduce the premises and refine by the re- ?NEq,, : NEQsm O
’NEq,,: Vn :N
Vrec': NEQ sm n
NEQ sm sn
INEq, = NElim (An. NEQ sm n)
NEqsO NEqss

cursive call rec n.

U

We have built our first function with eliminate!

3.7.2 proving NEgRecl

There is a standard technique for proving the recursion induction principle for a func-
tion. We fix an arbitrary scheme ® indexed by the function’s arguments and result type.
We also assume that @ is preserved by each ‘introduction rule’, ie recursive equation.
We then prove that ¢ holds for any arguments and the corresponding result—this proof
has exactly the same recursive structure as the function itself. Discharging the fixed

assumptions will give us the general rule.

THEOREM: NEQRecl

2D :Vm,n:N.Vb:2. Type
APog :®00true
AP ys :Vn:N. ® Osn false
APsp :Vm:N. @ sm O false
)\(Zsss :Vm,n: N
Vb 2
Vhyp : @mmnb
dsmsnb
?NEgRecl: Vim,n: N
® mn (NEq[m]n)

81



PROOF

For our NEQ example, we fix ® and assume | AP :Vm,n:N.Vb:2. Type
it is preserved by each of the four equations. Adoo :®00true

AQgs :Vn:N. ® Osn false
We are left proving ® m n (NEQ m n) for | Ag, :Vm:N. ® sm O false
any m and n, where before we computed ADss :Vm,n: N
NEQ m n. We eliminate with NElim in ex- Vo 2

Vhyp : @mmnb

actly the same places. dsmsnb

?NEgRecl: Vm, n: N

@ mn (NEq[m]n)

I will show one base case and the step case.

Once elimination has instantiated the arguments | ?NEQRecl,,: ® 00 (NEg 0 0)
of NIEQ appropriately, it reduces in each sub- >® 00 true

goal, making them vulnerable to the assump-

tions constructed with exactly that purpose. The

base cases follow directly.

Similarly, the conclusion of the step
case reduces to the conclusion of the
relevant assumption, ¢, with b suit-

ably instantiated.

rec n computed the recursive call
in the construction of the function.
Here, rec n fills in the premise of ¢

to complete the proof.

Co

Arec :Vn: N
® mn (NEQ mn)
’NEgRecl,,:vVn :N
Vrec': ® smn (NEQ sm n)
® sm sn (NEQ sm sn)
> ® smsn (NEQ m n)

Discharging the subgoals proves the general rule we want.

Let us mark NEQRecl as targetting (NEQ m 1), and by default abstracting it.

This proof method gives a recursion induction principle for many of the functions we

can build in OLEG—it mimics exactly their construction. In effect, it packages up the

sequence of eliminations which made the function, so that they can be used at one

stroke in proofs of its properties.
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3.7.3 proving NEqginv

The proof of NEQInv by NEQRecl is a good example of deriving an inversion prin-
ciple from a recursion induction principle. It illustrates a technique which I shall use

relentlessly in similar circumstances for the rest of this thesis.

The proof of recursion induction principles is relatively simple. They directly describe
the computational behaviour of the function in question, so we should not be surprised
to find that the computational mechanism of the underlying calculus does all the hard
work. Recall that in each subgoal of the inductive proof, the conclusion reduces to

exactly what is proven by the corresponding premise.

Contrarily, inversion principles often cut against the computational grain, characteris-
ing the extensional properties of functions, rather than the mechanism by which they
operate. The key to proving them is not to fix their schemes as A-bindings outside the
induction, but rather to let them vary inside the induction. This means that the inductive
hypotheses are themselves inversion principles—we use inversion, not computation, to
simplify the inductive steps.

THEOREM: NEqInv

!NEQInV: V&  :Vm,n:N.Vb:2. Type
Vo, :Vm:N. d mmtrue
Vor :Vm,n:N
Yuneq: m n
® m n false
Vm,n: N
dmn|NEQmn

PROOF

We fix nothing in the context and eliminate by NEQRecl, abstracting (NEQ m n).

The scheme generated by eliminate is abstracted Am,n: N

over the scheme of the rule we are trying to prove. b 22
Vo  Vm,n:N.Vb:2. Type

Observe that the original (NEQ m n) in the con- Vo, Vm:N. ®mmirue

clusion has been replaced by b. Vor :Vm,n:N
Vuneq: m +n
® m n false
dmnb

The recursion induction gives us directly the three base cases and the step case. Again,

one base case is sufficently representative.
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In this off-diagonal case, the recursion | ?NEQInv,,:Vn : N
induction has already filled in the an-

swer false. Hence, introducing the

. . \V/(ZSJH Vm, n:N
premises and refining by ¢, we are left Vuneq: mon
proving O sn. This is not difficult, as ® m n false

® O sn false

we shall see in chapter five.

VO :Vm,n:N.Vb:2. Type
Vo : Vm:N. & m mtrue

The step case is more entertaining. We do not know whether to use ¢, or ¢, because

we do not yet know what b is. However, the inductive hypothesis is an elimination rule

telling us about 11, 17 and b. I have called the scheme W to reduce confusion.

?NEQInv,,~ A\m,n
Ab

Ahyp

D
Ay
Aps

?NEqginv,,:

NEaglnv,,

N
: 2
VU :,:N.V@:Q. Type

Vi, - Vm:NL. ¥ m m true
Vpp:Vm,n: N
Yuneq: mn
U m n false
Umnb

:Vm,n:N.V@:Q. Type
:Vm:N. & mmtrue
:Vm,n: N

Vuneq: m#n
¢ mn false
dsmsnb

Introducing everything, we may now eliminate the conclusion with hyp, abstracting

all the indices. No targetting is necessary as the patterns are fully instantiated. The

generated scheme abstracts 1, n and b:

v = Am,n,b.dsmsnb

We are left with two subgoals, each with the equality decided:

Co

?NEqlnv,, :
?NEQInv,, s Vm,n: N

Vm:N. ® sm sm frue

Vuneq: m +n
® sm sn false
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These follow respectively from ¢, and ¢; without much difficulty, completing the
proof. UJ

As with NEQRecl, mark NEQINV as targetting (NEQ m 1) and by default abstracting
it.

3.7.4 proving the ‘introduction rules’

THEOREM: NEqgtrue

?NEgtrue: vm: N
NEqQ m m |~ true

PROOF

Eliminating with NEQINV introduces a constraint because the target is diagonalised:

® = \m,n:N. \b:2. m~n — b~true

Both subgoals are easy.

?NEqgtrue; : Vm: N
Ve : m~m
frue ~ true
’NEgfrue;: vm,n: N
Vuneq: m#n
Ye :m~n
false ~ true

THEOREM: NEgfalse

?NEgfalse: Vi, n: N
Vuneq: mon
NEqg m n |~ false

PROOF

Eliminating with NEQInv, both subgoals are even easier.
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?NEgfalse;:vm :N
Vuneq: m o/m
frue ~ false
?’NEgfalse;: Vm,n : N
Yuneq : m &n
Vuneq': mn
false ~ false
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Chapter 4

Inductive Datatypes

This chapter gives a formal definition of the class of inductive datatypes and families
with which we shall work in OLEG. I shall broadly follow Luo’s choice of which defi-
nitions to admit, and show how their elimination and computation rules are generated
[Luo94]. Goguen has checked that the usual metatheoretic properties such as strong

normalisation continue to hold for ECC extended with this notion of datatype [Gog94].

Basically, we shall have the datatypes and families arising from strictly positive
schemata, as proposed by Coquand, Paulin-Mohring and Dybjer [CPM90, Dyb91].
These are the datatypes of COQ, LEGO and ALF. Induction and recursion over them
will be provided by means of the traditional elimination rules, which do exactly one
step of case analysis, attaching an inductive hypothesis to each recursive subterm so ex-
posed. Each type is equipped with an ‘elimination constant” whose type codes up the
elimination rule—computation is then added by associating the appropriate contrac-
tion schemes (or ¢-reductions) with these constants. Elimination rules for inductively
defined relations were first formulated by Martin-Lof in [M-L71b].

This is the exactly the presentation described in Luo’s book [Luo94] and implemented
in LEGO[P0194] by Claire Jones. COQ has basically the same datatypes, but separates
the ‘inversion’ and ‘recursion’ aspects of elimination by providing a Case construct
for the former and a Fix construct for the latter. Fix is carefully checked to ensure
that recursive calls are made only on terms which are guarded by constructors and

hence strictly smaller than the term being decomposed.

The Case/F1ix presentation is much the neater one, for two reasons:

e Even if there is a particular argument on which I wish my function to do recur-
sion, that is no reason to suppose it is the first argument on which it should do

case analysis. Sometimes I want to look at another argument first, and then, per-
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haps in not all of the cases arising, to decompose the recursive argument. The

conventional eliminator ties the two notions together inappropriately.

e The conventional eliminator only facilitates recursion after exactly one construc-
tor has been stripped away. The Fix operator allows recursion on any subterm
exposed by Case. This serves a more useful purpose than merely to admit in-
efficient definitions of the Fibonacci function. Working interactively, we do not

need to predict so precisely in advance the inductive structure you require.

Eduardo Giménez showed the conservativity and confluence of Case and Fix in
[Gim94]. He showed strong normalisation for the Calculus of Constructions extended
with lists in this style [Gim96], and there seems no reason to suppose this does not
extend to other types. Intuitively, ¢-reductions make a sound like the clanking of a
giant metal cog in a ratchet. However deeply under skyscraping storeys of - and
0-‘administration’ the real work may be buried, we can still hear the great machines
going clank—we know that the hands of the clock will go forward and that the bell

will ring for midnight.

This is a rather prosaic chapter in which I show how to mechanise Giménez’s argument
in OLEG. The summary, for those who would rather skip the detail, is that I equip each
datatype with two alternative elimination rules, in the sense of the previous chapter. It

is, of course, the eliminate tactic which provides the means of their construction.

At this point, I should remark that I have omitted some classes of datatype found in
LEGO and C0Q. Both these systems permit mutually defined types: for example,
even and odd numbers given by a ‘zero’ constructor (which makes an ‘even’) and two
‘successor’ constructors (taking ‘even’ to ‘odd’ and ‘odd’ to ‘even’). I omit them,
not because they are awkward in principle, but because discussing them in general
terms is a notational nightmare: I have no examples in this thesis which require them.
However, all of the technology developed here for solitary inductive definitions extends
to the mutual case without any difficulty—indeed the implemented system does handle
mutual definitions. In any case, a mutual definition can always be represented as a
single inductive family of datatypes indexed by a finite type whose elements label the
branches—we might define a family Parity : 2 — Tiype with Parity true containing
the even numbers and Parity false the odd numbers.

CoqQ also allows embedded datatypes, where an existing datatype is used as an auxil-
liary to a new datatype—for example, defining the finitely branching trees by a single
‘node’ constructor which takes a list of subtrees. This facility is both neat and labour-

saving, but it adds no extra power. As Paulin-Mohring observes in [P-M96], embedded
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datatypes can be turned into mutual dataypes with extra branches duplicating the be-
haviour of the auxiliary types—we may define ‘finitely-branching-tree’ mutually with

‘list-of-finitely-branching-trees’.

4.1 construction of inductive datatypes

Rather than plunging at the deep end and drowning in subscripts, let us establish a
simply-typed theme, then examine variations: parameterised (or, when the parameters
are themselves types, polymorphic) types, types with higher-order constructors and
dependent inductive families, then degenerate types like relations and records.

The components of any inductive datatype definition are as follows
e The type former is the new constant which names the type or type family, eg N,
list, vect.

e The constructors (or ‘introduction rules’) are the means of forming the canoni-

cal elements of the datatype, eg O and s for N.

e The elimination rule (or ‘induction principle’) provides the mechanism for de-
composing elements of the datatype in the cause of constructing something else,
be it a proof ‘by induction’ or some recursively computed value. This rule must

be marked with a target so that eliminate can use it.

e The /-reductions animate this mechanism, defining the computational behaviour

of the elimination rule for each canonical element.

4.1.1 simple inductive datatypes like N

Componentwise
e The type former is a constant which inhabits some universe

Ind: Type
N is an example of such an Ind.

e The constructors are function symbols Con; ... Con,, where for each j in
1...¢c
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Con, : Va:A;. ¥&:{Ind}". Ind

The Aj are called the non-recursive arguments because they may not refer to
Ind. Neither may they involve any universe as large as that which /Nnd inhabits,
in order to avoid the paradoxical embedding of a larger universe inside a smaller
one—we may usually rely on Harper and Pollack’s universal policeman [HP91]

and use the unlabelled Type regardless.

We say that Con; has r; recursive arguments. Think of elements of /INnd as
tree structures made from nodes of different kinds given by the constructors, a
Con, node having r; out-edges and a label of telescope Aj. Actually, there
is no need for the recursive arguments to come after the non-recursive ones,
but it makes the presentation simpler if we pretend they always do—since non-
recursive arguments cannot have types involving INnd, they may certainly always

be permuted to the front.

We may also think of constructors as introduction rules for /nd:

i:A; xi:Ind ... x. :Ind
Con;dx:Ind

The derivation trees composed from such rules correspond exactly to the tree

notion of inductive data structures mentioned above.

N has two constructors:

n: N
O:N sn: N

Observe also that, if /Nd is to be inhabited, it will need at least one constructor

with no recursive arguments.

Let us examine /NdElimM, the constant whose type gives the elimination rule
for Ind, in accordance with the general analysis of elimination rules presented

earlier.

The pattern which INdElim eliminates is the free | INdElim
pattern on /Nd, which matches any element of
Ind. Hence INdElim has a scheme indexed by
Ind, ie ® : Vx:Ind. Type and a rule goal targetting o

the element to be eliminated. ¥|x : Ind|. ® x. The _ P x

outline of the rule is as shown.
In order to build a proof of ® x for an arbitrary x, we need a method for each

O : Vx:Ind. Type

constructor, showing how @ for its conclusion follows from @ for its recursive
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arguments—more succinctly, that each Con; preserves ®. We may think of ®
as a property which must hold wherever its argument is an /Nnd, hence it must
have ‘introduction rules’—the rule subgoals of /NdElim—analogous to those of
Ind. Thus we manufacture the rule subgoals of /NdElim from the introduction
rules of /nd by writing ® p in the former wherever the latter has p : Ind:

® (Con; dx)

Note that the recursive arguments X : {/Nd}"’ have not disappeared entirely. The
types of the recursion hypotheses depend on them, hence we may infer that they
are themselves present as case hypotheses, and suppress them from the writ-
ten rule accordingly. Functional programmers may be more familiar with ‘fold
operators’—the cut down version, where @ is a constant and the recursive argu-

ments are supplanted by the recursion hypotheses.

We now have all the pieces we need to complete the INdElim rule:

O : Vx:Ind. Type

Or, more inscrutably,
IndElim : V& :Ind — Type.
(Vd: A, VE:{Ind}™. {® x,}]" — & (Con, %)) —

(Vd:A.. V¥ {Ind}™. {® x;}* — & (Con,.d¥)) —

dx:Ind| @ x

For the natural numbers, then, we get NEIlimM

. O Vn:N. Type
NElim : V& :Vn:N. Type.

(®0) —
(vn:N.(on) - ®sn)—» |

fn M) o 50 Don
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e Those of us given to a skeptical disposition would be unlikely to accept the va-
lidity of IndElim if we did not see how to plug the proofs of its rule subgoals
together to build an inhabitant of ® for any particular x which we might make
from INd’s constructors. This process is represented in our type theory by the
t-reductions associated with /nd. By this means we imbue /NdElim with a com-

putational meaning, allowing us to evaluate recursive functions over Ind.

We add an :-reduction for the effect of INAElim on each constructor:
INGElim @ § (Con; %) ~, ¢, @ % { INAEiM ® § x,}

For the natural numbers, we get two such rules:

NEIM @ 6, ¢, 51 ~+, ¢, n (NElM @ 6, b, 1)

Given the type former and constructors for a simple inductive datatype, the elimination

rule and (-reductions can be computed in a straightforward way.

4.1.2 parameterised datatypes like list

It is not hard to represent datatypes such as lists of natural numbers via the above

mechanism:

n: N t: Nlist
Nlist : Zype  Nnil: Nlist ~ Nconsnt : Nlist

However, it seems much preferable to define lists once, polymorphically and instantiate
that definition for each type of element we encounter than to define a new list type
for every element type. That is, we should be able to define lists in a way which is
parameterised by the choice of element type, allowing us to write the functions which
operate on arbitrarily-typed lists once and for all. For each A : Type, list A should be
the simple inductive datatype of lists of A elements. Such entities are sometimes called
‘families of inductive datatypes’, because each element of the family is an inductive

datatype.

This kind of parameterisation is very simple—once the parameters have been instanti-
ated, they are fixed for the entire inductive definition—constructors, elimination rule,
the lot. For a given parameter telescope p : P, then, we need merely bind it parametri-
cally to each of the defined constants and rewrite rules, correspondingly replacing each

C by C p wherever they are applied.

Hence
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e type former

Ind: Vﬁ:l_j. Type

e constructors
Con; : Vp:P.Vd:A;. vx:{Indp}" . Indp
(or as an introduction rule)

i:A; xi:Indp ... x,:Indp
Con;ax: Indp

e climination rule

® : (Indp) — Type
i A, ®x ® x,, i A, dx, ® x,,
¢ (Con, pax) ¢ (Con,pax)
Vix:Indp| ®x

(or as a type)
IndElim : V§:P.V®: (Ind ) — Type.
(Va:A,. V& {Indp}™. {® x}/* — & (Con, fa X)) —

(Vd:A.. V¥ {Indp}. {® x;}}* — & (Con, Fa X)) —
Vix:Indp| ®x

e ,-reductions

InGEIM @ & (Con, 5 ) ~, ,d% {IncElim 5 @ § x,}"

The family of datatypes, list, is thus given by

h:A t:listA
listA: Type nNIIA:lisStA consht:listA
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listElim

O : (listA) — Type

® (nilA) @ (consht)
V1:listA| &1

listElim A @ ¢,, ¢. (NIlA) ~, ¢y,
listEim A @ ¢,, ¢. (CONSht) ~», ¢ ht (liStEimMA @ ¢, ¢, t)

Note that I suppress the parameter A when writing CONS /1 ¢, because it can be inferred
from the type of h, conversely leaving it visible in list A and nil A. In general, I shall

avoid mentioning parameters wherever convenient.

4.1.3 datatypes with higher-order recursive arguments, like ord

So far, each of the datatype constructors we have seen has a fixed number of recursive
arguments—in the tree metaphor, a fixed number of out-edges to smaller subtrees.
One might choose to see these as a family of out-edges indexed by a finite set, and
proceed to wonder whether any other types might be acceptable for indexing recursive
arguments. And yes, any small enough type (telescope) can be used to index a recursive
argument, as long as it does not involve the type being defined', giving us the increased

power of higher-order recursive arguments addressing infinite families of subterms.

Higher-order recursive arguments are thus functions returning elements of the in-
ductive datatype. The elimination thus rule has higher-order recursion hypotheses—

functions returning proofs of ®.

For example, we may construct a type of ordinal numbers which supplements the
‘zero’ and ‘successor’ constructors with the ‘supremum’ of a possibly infinite family

of smaller ordinals:

x : ord f: N — ord
zero:ord sucx:ord  supf:ord

The sUpP constructor takes a family of ordinals indexed by N, admitting a notionally

transfinite structure.? The corresponding subgoal in the elimination rule gives access

1a restriction known as strict positivity
20f course, N — ord has only countably many inhabitants.
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to a family of recursion hypotheses:

ordElim

O : Vx:ord. Type

How can we compute over such a type? The SUP branch expects a family of proofs
of ® for the image of its functional argument—we may manufacture such a family by

A-abstracting over the recursive call:

OrdEIM ® ¢, s Psup (SURS) ~>, Dsup f(An:NLOIAEIM @ ¢, p Pyuy (f11))

In the same way, we can allow constructors of an arbitrary inductive datatype to have
families of recursive arguments, with the elimination rule acquiring families of recur-

sion hypotheses:

e type former
Tnd = Type
e constructors
Con, : Va: A;. ¥f: {h;: ;. Ind}:j. Ind
(or as an introduction rule)

i:A; f:¥h:Hi.Ind ... f :Vh, :H,. Ind
Con; df: Ind

e climination rule

® : Ind — Type
q:A; Vh:H@(f ) ... Vh:H, ®(f, h)

® (Con; if)
x:Ind|. ®x

(or as a type)
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INndElim : Vo :Ind — Type.

r1
i

(V._':A’l. Vf: {VEZ ‘H;. /nd}:c.
Wi H;. @ (f, 1)}” ~ & (Con.df)) —

[

e ,-reductions
IndElim @ & (Con; @f) ~, &, ﬁf'{/\ﬁi H,. IndEIm ® & (f, i) }7

)

4.1.4 dependent inductive families like the fins

Let us now extend the notion of inductive datatypes to include inductively defined

indexed families of types as in [Dyb91].

For example, consider the finite sets. For any n, it is not hard to define a simple type
with n elements. Types such as @, 1 and 2 are commonplace. However, our choice
of n is at the meta-level, and we must define each type separately. How much more
useful if we could define fin : N — Type, enabling us to reason at the object level about
arbitary finite sets. Of course, fin O had better be empty, and we can make fin sn by
inventing a ‘new’ element, then embedding all the ‘old’ elements of fin n. That is, fin

is a mutually defined family of datatypes with constructors:

x:finn
fzn:finsn fsx: finsn

By convention, I choose to think of these sets growing in a ‘push-down’ fashion. The
new element introduced by fz is ‘zero’, while the old elements are embedded by a
‘successor’ function. By a deBruijn influenced predisposition, I see the newest as the

closest and lowest in number. Note that we may leave 7 as an implicit argument to fs.

fin has a family of elimination rules with a family of schemes
¢ :Vn:N. (finn) — Type

We form the rule subgoals by demanding that ® n holds wherever fin 7 is inhabited—
that is, we select the scheme corresponding to the relevant branch of the mutual defini-

tion. Hence, finElim
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finElim

¢ :Vn:N. (finn) — Type

dsn(fzn)  dsn (fsx)
Vn:N.Vix: finn| ®nx

with computational behaviour

fINEIM @ ¢y, ¢ps S11 (fZ 1) ~, P 1
fiNElIM @ ¢y, ¢ps S (fSx) ~>, P x (INEIM D ¢y, Pp 1 x)

fin is thus an inductively defined family of types—the instances of the family are not
inductive datatypes taken in isolation; only collectively do they form a mutual inductive
definition. Contrast this with a family of inductive datatypes such as list, where each

member, eg list Nl is an inductive datatype in its own right.

In the light of this example, let us generalise to dependent inductive families,
Fam : Vi:1. Type

The constructors now take recursive arguments from and return values in any instance
of the type family being defined, that is any Fam f for terms f : I. Thus, in the

‘introduction rule’ style, we get

i:A x, :Famf, ... «x, :Famt.
Conax: Famt,,

The scheme of FGMEIim must be indexed over the entirety of the types being defined,
that is

d Vi1 (Fam7) — Type

Recall that the ‘free telescope’ notation abbreviates this to ® : Fam — Type.

The rule subgoals demand that for all 7, ® 7 holds wherever FGmM 7 is inhabited; more
succinctly that ¢ holds wherever FGm is inhabited. Hence we get FOmEIlim:
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¢ : Fam — Type

D tpp; (CON T X)

Vi [x]: Fam. ® 7, x

Observe that there is still only one targetter: unifying term and type gives enough

information to infer an inhabitant of Fam.

The reduction rule for each constructor is thus:

FAMENM ® ¢ Foon; (CON A X) ~o, Goon @ X {FomE/im ® ST }T,
J

4.1.5 inductively defined relations like <

Inductively defined relations bear a strong resemblance to dependent inductive families
of datatypes. However, their presentation is differently motivated: inductive relations
are families of propositions and their role is in reasoning rather than computation—

they sit outside the domain of programs and data characterising aspects of it.

Propositions are types, and the terms which inhabit them constitute proofs. An induc-
tive relation’s inhabitants are built by constructor functions, just like a datatype—we
may think of these constructors as inference rules—but their elimination rules do not

inspect proofs explicitly in terms of their constructors.

Technically, the difference between inductive relations and datatypes is manifested in

two ways:

e the type formers of an inductive relation range over the impredicative universe
Prop, and correspondingly, the schemes of their elimination rules are also fami-

lies of propositions

e inductive relations are proof irrelevant—the apertures of their elimination rules
abstract the indices of the relation, but not the proofs themselves, hence the rule

cases never identify the constructors to which they correspond

We shall need at least one relation which can interfere with computation, and that is

~. We use = to represent constraints in the elimination process for datatypes as well
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as relations, and hence we must allow it to eliminate over Zype as well as Prop. Indeed,
this is not the only way in which ~ does not fit the presentation of inductive relations
given here. It is treated specially, and gets the next chapter to itself. For the moment,

let us consider inductive relations for reasoning.

Many dependent datatypes have relational analogues. For example, the fin family cor-

responds to the ‘less than’ relation:
< :VYm,n:N. Prop
There are two introduction rules for <:

<old t<n

<hew n<sn m<Sn

The names of the rules are really the constructor symbols, but taking them to the side
emphasises the proof irrelevant nature of relations. This leaves us free to write propo-

sitions with no prefixed proofs in the introduction rules.

Compare m < n with fin n. m < O is clearly empty. For each sn, <new proves that n
is the ‘new’ thing only just smaller, whilst <oOld lifts the proofs for those m’s already
smaller than #: exactly as fZ creates the ‘new’ element of each finite set and fS embeds

the ‘old’ ones.

The elimination rule OLEG provides for < is sometimes known as its strong induction
principle, <Elim:

<Elim

O :Vm,n:N. Prop

dnsn ® msn

Vm,n:N.V/H: m<n| dmn

Note that the scheme is indexed only over the two numbers, not the proof that the
first is less than the second. Correspondingly, the targetted H does not occur in the
goal patterns, nor do the constructor symbols <new and <old appear in the subgoals.
Consequently, the step case hypothesis m < 7 is no longer implicitly given by the in-
ductive hypothesis, so we must write it explicitly if we mean it to be there. As a matter

99



of fact, we can choose to omit it from the rule, obtaining the weak induction princi-
ple. The two are equivalent given an appropriate notion of conjunction, but the strong
version is more useful in practice: it is generally preferable to discard unnecessary

hypotheses than to reconstruct necessary ones.

It is not clear to me why inductively defined relations should be equipped with com-
putational behaviour: computation belongs within the realm of datatypes, and any of
these inductive relations over which computation is desired can easily be redefined as a
dependent family. On the other hand, in the sense that computation explains induction,
it should be possible to equip relations with reduction rules which are meaningful, if

not desirable. For <, we get

<EliM @ ¢pery Pora 1SN (KNEW 1)~ ey 1
<Elim ® ¢new ¢old mSn (<O|d H) ~r, ¢old H (<El|m d ¢new ¢old mn H)

With < to guide us, here is the general treatment:

e proposition former
Rel : V1:1. Prop
e inference rules (constructors)

i:A x :Relt;, ... x. :Relt
Ruledx : Relt,,.

e climination rule (strong induction principle)

® Vi Prop

V?,I?—el o7

e .-reductions

REIEIM ® G Fouie (RUIE A F) ~>, dyue @ % {I?elElim ® P, }

1
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4.1.6 record types

We can represent (dependent) record types as a degenerate case of inductive datatypes.
A simple datatype RecC with one constructor reC which has no recursive arguments is
just a tupling wrapper for the non-recursive arguments, or fields, as we might like to

call them.

The typical type former and constructor are as follows:

e type former
Rec : Type
e constructor (singular)

field : A
rec field : Rec

The ‘official’ field names field are significant in that they allow us to adopt a more
conventional named-tuple notation as syntactic sugar—I write X = Y to indicate

that X is a sugared notation for Y:
<fie7d = F> — recft

This presumes that the sequence of names field determines which of the defined record

types is intended. Underneath the layer of sugar, the names of fields are irrelevant.

Having established this syntax, the elimination and computation rules become

e climination rule RecElim

d : ReCc — Type
£ A

® <ﬁe7o/:?>

x:Rec| ®x

e .-reduction
RecElim @ ¢ <fié/d — E’> ~, b
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These record types do not come ready-equipped with projections. Instead, their elim-
ination rules require a function of the fields: introducing the arguments effectively
extends the local context with \-bindings for the fields. That is, ReCElim has a sim-
ilar behaviour to pattern-matching for named tuples, SML’s ‘open’ for structures or
Pascal’s ‘with ... do’ construct. Underneath the As, you are entitled to place any well-

typed expression you choose, involving as many or as few fields as you like.

In an interactive, analytical setting, eliminating by ReCElim is preferable to projection
because it is more focused on the goal. Also, a single elimination exposes all of the
fields together, where projection gives you but one at a time. To me it seems a rather
more honest account, especially when there may be type dependency between fields.
Understanding records by atomising them into fields in spite of the structure which
weaves them together is a bit like understanding London in terms of discrete hinter-
lands for each tube station. Plenty of people (including me) navigate London on that

basis, but they are not the Londoners.

Let us nonetheless define the projections with the conventional notation (-).field;. Type
dependency requires us to do so in order—earlier projections appear in the types of

later ones.

Presuming we have defined (-).field, ... (-).field,, (-).field,; is

(-).field, ., = RecElim
(AR:Rec. {|R.fielqd;/field;]}; A,+1)
(AT:A. a,41)
: VR: Rec. {[R.field;/field;]}! A1

I refer to this use of *.” as ‘spot’ because I think of it as an ugly thing which I wish to
distance from the ‘dot’ used for binding. ‘dot’ marks a scope which may contain any
well-typed expression whose identifiers have been explained. ‘spot’ only allows the
name of a field. Let us apply generous makeup to hide our acne. If R : Rec, we may

write
R[¥].t = ¥ = R.field: A. t

This syntactic sugar abbreviates a bunch of !-bindings which open the record with our
chosen local names. The dot introduces the scope of the bindings—we may naturally
have anything we like under it. Let us abbreviate further, in the case where the chosen

names are the ‘offical’ ones:

R.t = R[field.t
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If t happens to be a field name, we recover the effect of projection. However, if R =
(X=3;y=5;Z2=T),then RX*Yyx*z = 105.

There is a superficial resemblance between this ‘opening’ notation and the ‘explicit
environments’ of Sato, Sakurai and Burstall [SSB99]. However, their treatment prop-
agates environments through the term structure in the manner of explicit substitutions,
rather than giving them the ‘action at a distance’ effect of !-binding. I have imple-
mented these ‘first class local definition’ records as an experimental extension to LISP
[McB92].

4.2 a compendium of inductive datatypes

This section defines formally a number of familiar datatypes as used in this thesis and
in everyday functional programming. Its purpose is partly to consolidate the material
of the previous section, but mostly to confine to one contiguous portion of this thesis a

lot of boring definitions.

Some finite types, see table 4.1, are standard equipment: @ (‘empty’), T (‘unit’) and 2

(‘bool’). The constructor <) is pronounced ‘void’.
Let us also have disjoint sums, +, and, specifically, maylbe: table 4.2.

A dependent family, often to be found in the examples of this thesis are the vectors,

vect: table 4.3. Note the suppression of inferrable arguments.

4.3 abolishing >.-types and reinventing them

Luo supplies dependent pairs, or X-types, as basic features of ECC, equipped with first
and second projections. However, with our facility for datatypes, it seems preferable
to present pairing as a parameterised record type. Also, pairs might as well acquire the

apparatus we shall shortly build for other datatypes.

e record former

B:A — Type
Y B : Type

e fields

1:A

2:B1
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0 : Type

T : Type 2 : Type

O frue: 2

false : 2

Table 4.1: standard finite types

L,R: Type X't Type
L+R : Type maybe X : Type
[:L r:R x: X
iNnL7:L+R  inR7:L+R yesx: maybe X  no:maybe X
Table 4.2: + and maybe
A:Type n:N

VeCta n : Type

h:A t:vecCtan

vNily : vect, O

VCONS It : vecty sn

Table 4.3: vectors
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intro-> raise-X.

o |- SO ]| SO 580

x:Xy: S ?y: S 7y S x:Xy: S
T x: T ?x: T T
X (y; x) u x.[1/y][2/x]u

Table 4.4: tactics for X-types in goals

The only penalty we risk paying is slightly clumsy syntax, but it is in our power to

sugar this problem away. Let us have lots.

Yx:S5. T = ¥ (Ax:S.7T) ¥ is a fake binding operator
SXT = ¥_:S5.T the usual special case

(s;t) = (1=5;2=1t) unlabelled pairs

2} =1 empty telescope gives unit type
Eg; T — ¥x1:5;. ...2x,:S,. T nonempty telescope gives X-type
<{}0> = empty sequence gives void

(S$;t) = (s1; (... (Su;t)...)) nonempty sequence gives pair

There is no conflict between using 3 both for binding and as an operator which turns
telescopes into the types of tuples, represented as pairs nested to the right. Also, we
still have the dot-notation from record types as sugar for XElim. Our cunning choice

of field names gives us the familiar (-).1 and (-).2 projections as a special case.

We should equip OLEG with the tactics for dragging ?-bindings through our fake -
bindings. See table 4.4. Both are replacements. Applied recursively, intro-V and intro-
Y turn a goal full of Vs and ¥s into a partial proof full of As and 7s. Correspondingly,
raise-> combines with raise-V to allow multiple subgoals to retreat from a partial

contruction as a single outstanding proof obligation.

4.3.1 the blunderbuss tactic

intro-X caters for X-types in goals, allowing us to solve them piecewise. What about
Y-types in hypotheses? Although we usually try to curry them away wherever possible,
we do still find Y-types in inductive hypotheses, for example, when the original goal

was to compute a pair.
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It is awkward to exploit such hypotheses with tactics such as LEGO’s Refine which
are specifically geared to use functional information. I therefore propose the following

‘blunderbuss’ tactic,> which will search inside Y as well as under V: . .

TAcTIC: blunderbuss

This tactic tries to use some s to solve a goal by a depth- Cib

first search strategy. The nodes of the search tree are lroot=s : 5
?goal : G

given by !-bindings of proofs to try. Initially, the root

node is set to s.
At each Inode = s: S, starting with root, blunderbuss behaves as follows:

e try to unify node with goal—if successful, stop, otherwise . . .
e reduce S to weak head-normal form

e generate subnodes by the type-directed methods given in table 4.5
and try blunderbuss with each in turn—blunder-refl subnodes are
tried before blunder-V subnodes

We recover exactly LEGO’s Ref ine tactic if we only have blunder-V. However, now

we can just as well blunder under a .

I have taken this opportunity to sneak in blunder-refl. Recall that when eliminate
generates a constrained scheme, the equations generated appear as a matching problem
in any inductive hypotheses which may arise. blunder-refl is intended to make it easier

to exploit such hypotheses whenever the matching problem has an obvious solution.

Hence, whenever an equational premise is required, blunderbuss tries to unify the two
sides in order to supply a refl proof. If this fails, then blunder-V introduces the premise
as normal. It would be very unusual if making a possible unification turned out to be

an unfortunate choice.

The construction of the ‘guarded fixpoint’ operator in the next section uses a style of

hypothesis for whose exploitation blunderbuss is exactly the right tactic.

3A blunderbuss is an old-fashioned kind of gun with a barrel which opens out like a horn. It fires
almost anything at almost everyone in a wide spread. The phrase ‘blunderbuss tactics’ is used to describe
the technique of throwing everything you have got at a problem in the hope that something will work.
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blunder-refl

A ) = | A )
Inode=s lsub=s (reflt)
s Vit . [reflt/x|B
Ty~ P B Yy P :
: ?goal : G
7goal : G P
o ™
t and ¢’ unify, ie
AT A
AIFPLC P
AP Rty
blunder-V
A ] A ] )
'node=s > A
Vx: A lsub =sx
B : B
Ty~ P Ty~ P :
7goal : G ?goal : G
| P | P i
blunder-X
A ] A )
'mode=s 'subj=s.1: A
Yx A Isuby=1s.2
B : [sub,/x|B
Ty~ P : Ty~ P : [sub1/x]
?goal : G ?goal : G
| P W
Table 4.5: blunderbuss search methods
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4.4 constructing Case and Fix

This section shows how to derive two alternative eliminators for each datatype, corre-

sponding to the Case and Fix operators in COQ.

4.4.1 case analysis for datatypes and relations

From the elimination rule given for a datatype or relation, NCase

we may construct a ‘sawn-off” version which embodies the

) . . . ®:vn:N. T
notion that we may reason about an arbitrary inhabitant of v ype
the type by considering each of the possibilities for its outer- N
most ‘head’ constructor, but without any recursive informa- n:
tion. For N, we get NCase. o0 s

n:N|en

This construction builds theorem and proof together by a technique which I call hubris:

we proudly attempt to prove a blatantly false claim and fail, turning the remaining
subgoals into premises, just like a lecturer leaving the bits he has forgotten how to do
as exercises for the students. The trick is to postpone the remaining 7-bindings at the

outside level, turning them into \-bindings, and then to discharge them.

CONSTRUCTION: case analysis

Suppose we have a inductive family

Fam : Vi1 u;
where 7 are the indices (as in dependent datatypes or relations)
U; is the universe the family of types inhabits

We need only consider indices, fixing the parameters of families like list

and vect for the whole construction.

This family will have an elimination rule FQmMElmM

d:VZ. U,

subgoals

vy [y]:Fam. @ p

where Z inhabits a prefix of FOm
p is the corresponding prefix of ; y
U, is the universe over which the family of types eliminates
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For our inductive definitions, the s

applications of ®.

Let us boldly fix a & and attempt

prove

This is patently untrue, but never

mind, eliminate using FAMElmM.

Note that the holes may not appear so

neatly ordered, but no matter.

The subgoals 5 correspond to the

constructors of the datatype.

For each ¢;, we divide its hypotheses into

case data ¢ and inductive hypotheses 7eCg.

For our inductive definitions,
nothing is permitted to depend
on the inductive hypotheses.
Hence we may remove them with

delete-unused.

Having modified the subgoals in
this way, let us postpone them.

The state is now as shown.

Finally, we may discharge the
assumptions, recovering the case
analysis principle as we might ex-

pect it.

ubgoals $ have conclusions which are

to A
2D :VZ. U,
?FamCase: Vij;[y | Fam
¢p
€O
?<$ e
78 . S

'FamCase= FamEIim ® . ..

: Vﬁ;:%

op
20:¥¢ i C
Vrep: ... — D ...
© 4[c]
A
px : VZ. U,
A . VE. @ §[¢)
S . S

'FamCase= FamEIim ® . ..

: Vg;:%

®p

'[FamCase= \®: Vz. U
Aé: VE. @ F[d]
XS:S
FamEIim o ...
Ve :VZ. 1,
Vo Ve @ §lc)
Vs :S

Vy; : Fam

®p

It is not hard to see that the following reductions hold

FamCase ® ¢ 7. (Con, ¥) > ¢; X
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4.4.2 the guarded fixpoint principle

Before giving the construction of the elimination rule which performs the job of COQ’s

Fix construct, let us look at an example which motivates both the need for it and the

manner in which it is done.

It is that famous old troublemaker: the Fibonacci func-
tion, which is used for counting rabbits, drawing at-
tractive rectangles and making Euclid’s algorithm go

as slowly as possible:

Let us see what goes wrong if we just blunder in with NEIim, Fib=A_:N. N
trying to mimic this definition. Here is the initial state, with o N — Type
7fio . Vn: N

the return type decorated by !-binding, so we can see what is

happening.

Let us eliminate 7.

Again, the !-binding tracks the arguments. We can certainly ”fio,:Vn N
fill in fiby. Now watch what happens when we eliminate Vfib, : Fib n

again to split the successor case:

The Fib sO case is fine, but for double-successor,
disaster has struck! We have our Fib sn safely
enough, but what has happened with Fib n? It has
appeared, all right, but in the wrong place—we have

no hope of accessing it.

fio 0 = sO
fib sO = sO
flbossn =

plus (fib n) (fib sn)

Fib [11]

Co

?fibg: Fib O

Fib s[71]

o

?fibgo: Vfiby: Fio O
Fib sO
7fibg,:Vn N
Vhyp: Vfib, : Flo n
Fibb sn
Vfib,,: Fio sn
Filo ssn

Of course, the classic definition of the Fibonacci function is famous for its abominable

run-time.* The traditional remedy is to write a linear recursion computing a pair of

successive values. In [BD77], Burstall and Darlington transform the above definition

into the following more efficient form:

fio 0 = 0

fio s0O = sO

flo ssn = (fibssn)[u;v].plusuv
floss 0 = <s0,s0>
floss sn = (fibssn)[u;v].<v,plusu v>

“Exercise: compute this.
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By design, the auxiliary function filoss computes exactly the information required to
complete the double-successor case, and it does so by a one-step recursion. The main

function is thus reduced to a case analysis.

In [Gim94], Giménez effectively generalises this technique to an encoding of recursion

on guarded arguments, and it this technique which I present below.

DEFINITION: guarded

e if Con is a datatype constructor with non-recursive arguments @ and

recursive arguments 7, then each r; is gunarded® (by Con) in Cona7

e if r is guarded in s and s is guarded in ¢, then r is guarded in ¢

The idea is to introduce an intermediate data structure which O Vn:N. Type
stores for each input the recursive values we need to compute

the output. We may code this up as an elimination rule: Auxg n

Once we have applied this rule, case analysis on 7 allows us to split the subgoal into
cases for the separate patterns we wish to treat: for each pattern p, we must prove ® p

using the information supplied in AuXg, p.

Of course, to prove this rule, we shall have to be able to show
vn:N. Auxg n

This proof will go by recursion on n: we must generate the auxiliary information for
sn from the corresponding information for 7. Just as in the Fibonacci function, we may
carry over any information we need to keep, together with computing the new value in

exactly the same way as the ‘main’ function does.

What should Auxg, be? Different depths of recursion necessitate different amounts of

auxiliary information. For Fibonacci, we may choose

AUX 0 = 1
AUXpyp SO =
Auxpy ssn = (Fib n)x (Fib sn)

Smore carefully, if 7; is a higher-order recursive argument of type Vi : H. , then it is 7 h which is

guarded, for any h
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Stylish users may choose to develop their auxiliary data structure as they develop their

function, for each follows the case analysis of the other.

More generally, we may give a single auxiliary structure suitable for all occasions.

Giménez defines it inductively for a parametric ®:

dn INlAuxDoToq, n
NAuxDatag, 0 NAuxDatag, sn

For each datatype, the auxiliary mimics the constructors and recursion pattern. Each
recursive argument is decorated with a ® proof, so that for each element of the original

type, the auxiliary stores ® for all its proper subterms. Proofs of
vn:N. (NAuxDatag sn) — @ n

then go by case analysis on NAuxDatq, at the same time splitting the N-patterns and

surfacing the recursions for the exposed subterms.

My treatment differs only pragmatically, in that I compute the auxiliary structure rather

than defining it inductively.

NAux® 0 =
NAux®sn = (P n)x(NAux® n)

As case analysis feeds NAUX constructor expressions, it unfolds like one of those wal-
lets for people with too many credit cards, revealing the proofs of ® for the exposed
subterms. The blunderbuss tactic can be used to extract the required hypothesis, pro-

vided it can be identified from its type.

Let us try to prove
Vn:N. NAux @ n

by induction on #. The base case is trivial. The step case is
Vn:N. (NAux @ n) — NAux @ sn

which reduces to

Vin:N. (NAux @ n) — (@ n)x(NAUx @ n)
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We can clearly establish the second component of the pair. This leaves the requirement

Vn:N. (NAux ®n) — & n

Again using the ‘hubris’ technique, we may postpone and dis- NIFix
charge this subgoal, we have the auxiliary generation lemma
O :Vn:N. Type
NAuxGen:
Vn:N. (NAux®n) - & n NAUX & n
vn:N.NAuxe» | e
dn
and hence the elimination rule NFix. . P n

I shall give the general construction for simple types, then discuss extensions.

CONSTRUCTION: guarded fixpoint

Consider an inductive family of datatypes Tnd - Type
with ¢ constructors as shown right. L. _
a:A; x:{Ind}"
The 4 are non-recursive and the X are r; Con;ax:Ind
recursive arguments. Let INAElmM be its
standard elimination rule.
Let us fix the components to be AP : Vx:Ind. Type
supplied by the user and make lIndAUX = Ax:Ind. Type
holes for the components to be “InaAux + vz Ind
INdAUX x
supplied by machine. A I- Abody - Vx :Ind
binding INdAUX helps us track Vaux: INAAuUX x
the development of INAAUX. P x
?IndAuxGen: Vx: Ind
IndAux x
?IndFix :
V| x : Ind
D x

We may immediately prove INndFix with
IndFix = \x:Ind. body x (IndAuxGenx)

Now let us eliminate the x in both the auxiliary and its generator, aquiring
a subgoal for each constructor. One is enough to illustrate the point, and

reduces the subscript terror.
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o

—

?INdAUX,,, cVa A
vx: {Ind}"
VT: {INdAUX x;}}
IndAUX (Con @ X)
'INndAux = IndElim IndAUX IndAux.,,, . . .

o

?IndAuxGen,,, : Va: A
v {Ind)’
VE: {IndAuxx;}!
INdAUX,,, A X
'INndAuxGen = IndElim IndAux IndAuxGen,,, . . .

To build INAAUX,.,,,, we introduce the arguments and return the iterated 3
of pair-types collecting, for each recursive argument x;, both ® x; and T,
which the lovely let-binding reminds us is really INdAUX x;.

For IndAuxGen,,,,, we introduce the arguments and return the corre-
sponding iterated tuple of pairs, passing on the accumulated proof ¢; and

adding the next layer, computed by body.

£
UndAUX,,, = Mi:A
AX: {Ind)”
AT: {INdAUX x;}!
S{(® x;)xT;};

lIndAuxGen,,, = \i: A
A% {Indl)”
A {IndAuxx; ),

'INndAuxGen = IndElim IndAux IndAuxGen,,,, . . .

Cutting INAAUX and the proofs of the subgoals, then discharging the fixed

hypotheses, we are left with
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'INndAux = ...
: VO: Vx:Ind. Type
Vx: Ind
Type
INndAuxGen= ...
: VO VINd:x. Type
Vbody: Vx :Ind
Vaux: INAAUX x
P x
Vx - Ind
IndAux ¥

lIndFix = ... O : Vx:Ind. Type
VO Vx:Ind. Type
Vbody: Vx :Ind

P x
w x : Ind ‘ b x

P x .(I)n

The following conversions hold:

IndAux® (Conax) = L{(®x;)x(INndAux ® x;)};
IndAuxGen ® f(Conax) =

({{IndFix @ fx;; INndAuxGen @ fx;)}.)

IndFix® fx = f(IndAuxGen® fx) x

For dependent families FOM, we have exactly the same construction, replacing /nd by

Fam or some FOM 7 as appropriate:
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AP . V¥: Fam. Type
'lFamAUX = \X: Fam. Type
IFOMAUX,,, = Mi:A

\X: {Fams;};
AT: {FamAUX5; x;}!
S{(®5;x:)x T, };

'FamAux = FamElim FamAUX FamAUX,,,, . . .
Abody : V¥ Fam
Vaux: FOmMAuUx X
o X

IFamAuxGen,,,= \i: A
\X: {Fams;};
M : {FaMAUXE;; x;}!
({{(body ; x; £:): £)}7)
'FamAuxGen = FameElim FamAux FamAuxGen,,, . . .
'FamFix = \¥: Fam. body ¥ (FamAuxGen X)

If we have higher-order recursive arguments, we must abstract the pairs over them:

Co

'INdAuUX;,, =...
\x:Vh:H. Ind
AT: Vi H. IndAUX (x h)
S ...Vh:H. (® (xh))x(Th)
'INdAuxGeny,,= . ..

M\x: Vh:H. Ind

A Vi FL IndAux (x h)
<...Afi;ﬁ. <(body (xT0) (t7)); (tﬁ)>>

Now that we have built these useful elimination rules, let us move on to consider the
technology we need to solve the constraints which arise when we use them for depen-
dent subfamilies.
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Chapter 5

Equality and Object-Level Unification

This chapter examines different notions of propositional equality in Type Theory, to-

gether with the forms of equational reasoning they support.

In particular, I shall give a formal treatment of the ~ predicate which I have been ex-
ploiting glibly until now: it is merely a convenient packaging of Martin-L6f’s identity
type together with the ‘uniqueness of identity proofs’ axiom proposed by Altenkirch
and Streicher [Str93]. The reason for reformulating equality in this way is to improve

the treatment of equality for sequences of terms in the presence of type dependency.

Once we have a definition of equality we can work with, the task is then to build
a tactic, simplify, which solves first-order constructor form equations appearing as
premises to goals. To achieve this, we will need to construct still more machinery for

each inductive datatype:

e a proof that constructors are injective and disjoint

e a disproof of cyclic equations like n~sn
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5.1 two nearly inductive definitions of equality

5.1.1 Martin-Lof’s identity type

a,b: A
a=b : Prop

a:A
refl.a : a=a

iIdEIM A a @ ¢repa (refl-a) ~, ¢rep

idElim
¢ :Vbh:A. (a=b) — Type

O a (refl- a)
Vb:A.V|q:a=b|. ®bq

idElim is known in the business as ‘J’, for historical reasons.

We may easily prove that this equality is

substitutive in the usual sense.

The proof fixes ® and the proof of the
single case, then applies eliminate with
idElim. The generated scheme makes no
use of the equation’s proof—idSulbst is

‘proof irrelevant’.

idSulost
®: A — Type

]
Vb:A.Yq:a=b|. Db

It will prove convenient to have some sugar for applications of idSubst:

e substitution

[q]®s = idSubst Aadsbg

e coercion

AT Type. T
2 lg

[q]l-s = [q]

The computational behaviour of idSubst follows from that of idElim:

[refl a]? t>t
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5.1.2 uniqueness of identity proofs

Altenkirch and Streicher suggest that = should be equipped |idUnique
with the additional elimination rule shown, together with its

computational behaviour. ® : (a=a) — Type

O (refl-a)

idUnique A a @ ¢, (refl-a) ~, e , dgq

This rule is sometimes known in the business as ‘K’, largely because it comes after
‘J’ 1

For a given element type, A, the aperture of idElIim, ie the space of equations over
which its scheme must range is two dimensional: AxA. However, idUnique’s
scheme ranges only over the diagonal. Of course, it is only the diagonal which is
inhabited.

Hofmann and Streicher have shown that idUnique is not derivable from idE-
lim[HoS94]. On the other hand, Streicher adds that idElim is unnecessary if idSulbost
and idUnique are taken as axiomatic: we may first use idSubst to replace b by a, say,
then idUnique to reduce the remaining arbitrary proof of a=a to (refl- a). Effectively,
we divide the idElim process into two phases: the proof irrelevant phase (idSulbst)
reduces the = family to its inhabited subfamily of reflexive equations, so the proof
relevant phase (idUnique) need only be concerned with that restricted case.

5.1.3 ~, or ‘John Major’ equality

It is now time to reveal the definition of ~, the ‘John Major’ equality relation.? John
Major’s ‘classless society’ widened people’s aspirations to equality, but also the gap
between rich and poor. After all, aspiring to be equal to others than oneself is the
politics of envy. In much the same way, ~ forms equations between members of any
type, but they cannot be treated as equals (ie substituted) unless they are of the same

type. Just as before, each thing is only equal to itself.

! Aficionados of the trombone might fondly imagine that the two rules are named after legendary jazz
duo J.J. Johnson and Kai Winding. I do not propose to pour cold water on this explanation.

2John Major was the last ever leader of the Conservative Party to be Prime Minister (1990 to 1997)
of the United Kingdom, in case he has slipped your mind.
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a:A b:B

a~b : Prop eqElim
i A O :Va':A. (a~a') — Type
refla : a~a

® a (refla)

Va :A. Y1 :a~d| ®a'l

eqElimAa® ¢pa(refla) ~, ¢

Observe that egElim is not the elimination rule which one would expect if ~ was
inductively defined.

The ‘usual’ rule eliminates over all the eqindElim

formable equations, and it is quite use-
less: it cannot be used to substitute ® : VB: Type. Vb:B. (axb) — Type

two values of the same type because the ® Aa (refla)

scheme must be abstracted over an arbi- VB: Type. ¥b:B.Ye : a~b]. ® Bbe

trary type.

By contrast, egElim eliminates only over the subfamily where the two types are the

same, the ‘type diagonal’: of course, all the inhabitants lie in this subfamily.

5.1.4 equality for sequences

The reason for adopting ~ rather than = when working with dependent types can be
seen clearly when we attempt to extend the notion of equality to cover not just two
terms in a type but two sequences of terms in a telescope. Suppose we have 7,5 : T for

some X-telescope T. We may not, in general, state the equality of sequences 7 and § as
r1=81;¥2=S59; ... (X)

since 1y : Ty[r1] while s, : Ty[s], and these may be different.

There is, of course, nothing to stop us writing
V122851, 79>=S9; ...

which will henceforth be abbreviated as the telescopic equation 7~s.

We may correspondingly abbreviate the sequence of reflexivity proofs

(reflry); (reflry); . ..
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by refl 7.

Let us not stop at that: in fact, we may prove substitutivity and uniqueness for tele-

scopic equations.

CONSTRUCTION: telescopic substitution

For each natural number n, we may derive eqSubst,

a substitution principle for telescopic equa-

tions of length n. ®: T — Type

The reduction behaviour will be as follows: o7
e

eqSubst, T7® ¢y 7 (refl 7) > grep

The construction is by recursion on n, effectively iterating eQqElim.

The zero case is proved by the polymorphic identity func- | eqSubst,

tion. Clearly the reduction behaviour is correct.

D : Type
[
P
Now, assuming we have al- |eqSubst,
ready constructed eqSubst,,, .
let us construct eqSubst,, ;. ®:T;T — Type
dr 7
Vs:5:T;T.Ve; @ : r;7~s; 5| ®s;§
Fixing T; T, r; 7, ® and the proof of ® r; 7, we ®
have the goal shown. ?goal: Vs;s : T; T
Vel é: r;r~s; s
ds;3

Now, e is a proof that r~~s, where both have type T, hence we may elimi-
nate e by €gElim. The generated scheme includes all the § and é:

As:T. A\_:r=s.V5:T.Vé:7~35. & s;§

Note that, as nothing depends on e, the proof relevance of €gElim is not

necessary for this construction, just as in the construction of idSubst from
idElim.
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The elimination leaves with the subgoal
shown.
Note that (T;T) r is just [r/x]T, which is

exactly the telescope of 7.

o

?subgoal: V5 : (T;T)r

{7 7= ]

dr;s

Now that 7 and S have the same telescope, we may eliminate the remaining

¢ by eqSubst,

the scheme is just ® . This leaves us with the subgoal

® r; 7, a proof of which we fixed in the context.

From the ¢-reduction associated with egElim and then the inductive hy-

pothesis, we may deduce that

eqSubst, | T; T r;

17 ® ¢, r; 7 (reflr); (refl 7) >
(reflr)... >

eqElim Tr(...) (eqSubst,...)r
eqSubst, (T:T) ) 7 (® 1) ¢, 7 (refl F)
o

Observe that the same proof structure also

yields substitutivity in the other direction.

Although the roles of 7 and s are reversed,
we may still fix the 7 and abstract over
the S (the right hand sides) as required by
eqElim.

CONSTRUCTION: telescopic uniqueness

For each natural number n, we may derive a

substitution principle for telescopic equations of

length n.

The reduction behaviour will be as follows:

equnique,, TF® ¢ 7 (1efl 7) > dren

eqSubstLR,

@:T—)‘Iype

o3
e: 7

v7:T. F~g| ®F

egUnique,,

®:I~f — Type

This construction also proceeds by recursion on n, again with polymorphic

identity as the base case. The step case is slightly more subtle than for

eqSubst.

Suppose we have already constructed egUnique,,:

eqgUnique,,
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This time we fix everything except the proofs C:)

of the equations. ?goal: Ve €: t;t~t;
deée

We have little choice but to eliminate e with eqElim. Perforce, this intro-

duces equational constraints in the scheme:
As:T. N :trvs. Ve; &:t; bt £ (st) — (I've) — De; @

Neither of these constraints is disposable, since e definitely occurs in the

goal, and, in general, we may expect ¢ to occur (implicitly) in the types of

the €.

Consequently, the subgoal we get is as ®

shown. ?subgoal: Ve; & t; f~t;
Ve :t~t

We may discard ¢', then eliminate E with : refl t~e

eqSubst,. De;e

Now we are ready to appeal to Q

equnique,,, with scheme & (refl t). ?subgoal: : f~f
o (reflt); e

This turns the remaining & into (refl £), so that the fixed proof of ® (refl )

completes our obligations.

As far as the reduction behaviour is concerned, forgive me if [ omit the de-
tail. The construction successively applies elimination rules for equations
which reduce to their single subgoals when those equations are instantiated

with reflexivity. Consequently, each eqUnique,, inherits this behaviour.

It is not impossible to build a notion of telescopic equality with substitution using =, but
it is considerably more cumbersome. The method forces each equation to typecheck,
by explicit appeal to the substitution operator for the prefixed equations. That is, we
need the first n operators in order to formulate a telescopic equation of length n +
1, let alone establish its own substitutivity. Furthermore, in order to make the step
in the construction, it is not sufficient simply to substitute for the first equation with
idSubost, but rather we must eliminate it with idElim, not only substituting the terms,
but also instantiating the proof with reflexivity, allowing the substitutions repairing the
remainder of the equations to reduce. By adopting ~, we achieve at least this telescopic

extension without acquiring proof relevant dirt under our fingernails.
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5.1.5 the relationship between = and ~

Having argued for the practicality of using ~ instead of = when working with depen-
dent types, I nonetheless feel obliged to point out that the two are equivalent—provided
we mean = equipped with idUnigque. Let me now give the mutual construction. First,

the easy direction:

CONSTRUCTION: = from ~

This is so easy that I will just tell you the answers—by construction, = is

just telescopic equation for telescopes of length 1.

I= =)MA : Type
A, b: A
a~b
: VA Type
Va,b: A
Prop
Irefl- = refl
1 VA: Type
Va: A
a=a
lidSubst = eqSubst,
: VA : Type
VYa A
Vo A — Type
Vo Pa
Vb A
Ve : a=b |
b
lidUnigue= eqUnique,
: VA Type
Va A
VO :a~a — Type
Vo @ (refl-a)
Ve : a=a |
de

Furthermore, the reduction behaviour for idSubst and idUnique is ex-
actly that for egSubst; and eqUnique;.

The other direction is the interesting one.

CONSTRUCTION: ~ from = with idUnique

Let us assume we have = and construct:
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P~ : VA: Type
Va: A
VB : Type
Vb:B
Prop
?refl : VA: Type
Va: A
a~a
7eqElim: YA : Type
Va A
VO :Va':A.a~a" — Type
Vo :®a(refla)
Va' A
w e : a~a
dal

Let us first make a little abbreviation:
cell = YA : Type A
cell packages up a typed term. The idea is that ~ is just = for cells:

I~ = A\A: Type
Aa A
AB: Type
Ab: B
(A;a)=(B;b)
Irefl= A\A: Type
Aa A
refl. (A;a)

This makes the elimination rule

Co

7eqElim: YA : Type

Va A
Vo :Vb: A
Ve: (A;a) =(A;b)
Type
Vo :Pa(refl- (A;a))
Vb A
Ve : (A;a)=(A;D) |
dbe

If we could only deduce a=b from e, we would be most of the way there.

For that, we need a proof that equal cells have equal second projections.
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The equivalence of idUnique and equality of second projections from

dependent pairs is folklore knowledge, but I shall do the work nonetheless.

It is even difficult to state the equality of the second projections, because

they are not of convertible types—we must use the substitutivity of equal-

ity to make a type coercion.

The lemma we need is as shown. Let us
claim it globally and work on the main

goal.

Observe that
sproje : Vq:A=A. ([g)-a)=b
so that
sproj e (refl- A) : a=b
Let us exploit this discovery. Introducing

all the hypotheses, this is the goal we now

must solve.

?sproj: VAa, Bb: cell
Ve : Aa=Bb
AalA, a]
Bb[B, b]
Vq : A=B
(lg)-a)=b

Co

lab =sproje (refl- A)
:a=b
’goal: ®be

As the type of e contains b, it is wise to

reabstract it:

We may now eliminate ab by
idSulbost.

[ab] = sproje (refl- A)

a=b
?goal’ : Ve': (A;a) = (A;b)
obe
lgoal : goal'e

Now ¢ is a reflexive equation! S::)

?subgoal: Ve': (A;a) = (A;a)

We may eliminate it by idUnique. Pae
The subgoal we acquire follows {,\::)
from ¢. ?immediate: @ a (refl,, (A;a))

All that remains is to prove sproj. Firstly, we eliminate the equation on

the cells, e with idSulbost.

126




Although the two pairs unpacked by the bind- q:b
ing sugar are the same, we have two names for ’same: Vi cell

each projection. We can clear this up by elimi- ia E;"Z]]

a Y
nating Aa, reducing the projections and cutting Vg :A=B
the sugared !-bindings. ([q]a)=b
Now we may use idUnique to remove the reflex- ‘(::>
ive g. Topen: VA: Type

Va:A
Vg : A=A
([g]-a)=a
The remaining subgoal has exactly the type of refl.! C:b
Trefl: VA: Type
VA:a
a=a

As far as reduction behaviour is concerned, first observe that
sproj (refl- (A;a)) (refl- A) = (refl-a)

This is because sproj eliminates in succession the first equation, the cell,
then the second equation, and all three are in constructor form. Conse-
quently, when egElim is applied to (refl a), the computed equality proof
ab turns out to be (refl- a). Since both these equations are reflexive, both
the idSubst and idUnique steps reduce as required.

5.2 first-order unification for constructor forms

A typical application of an elimination rule with scheme variable ® : V7 I Type will
engender a scheme

d = A\ VX I~HF] — W

Correspondingly, cases of form
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yield subgoals in the proof of form

Vij. VE. Sly|~7] = ¥

The equational constraints constitute a unification problem: if there is no solution,

then the goal follows vacuously; if there is a most general unifier, we may use it to

instantiate the i/ and X.

Suppose, for example, we wish to write the ‘vector tail’
function, whose type prevents application to a null vec-

tor:

Note that I have fixed the element type A to avoid clutter.

Co

?viail: va: N
Vv: vect (sn)
vectn

Eliminating v with vectCase creates a constrained scheme

Mi:N. \x:vecti.Vn:N. Vo:vect (sn). i~sn — x~v — vectn

The corresponding subgoals are as shown. 2vidilyy :Vn: N

The vtaQily, subgoal features the impossible
premise that zero equals a successor, whilst in
the vidil,cons case the equations conveniently con-
strain the type of the tail to be the return type of the

function.

Vo : vect (sn)

Ve,: O~sn

Veq: x~v
vectn

?2viQilycons: Vm: N

Vh: A

Vt :vectm

Vn: N

Vo : vect (sn)

Ve, : Sm~Sn

Vey: xo2v
vectn

If we could solve these unification problems, we would
be left with this goal.

?Vidilycons: Vi: N
Vh: A
Vt:vectn
vectn

We would then introduce the arguments and return the tail.

The task does seem to hinge on solving the unification problems generated in the course
of elimination. In [McB96], I presented a tactic (‘Qnify’) for solving such problems,

provided the terms comprised constructor forms in simple datatypes. I shall largely

follow that treatment, extending the same procedure to dependent datatypes.
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5.2.1 transition rules for first-order unification

The ‘Qnify’ tactic operates by successively eliminating from the goal hypothetical

equations between constructor forms:
VX. st — P

DEFINITION: constructor form

t is a constructor form over variable set V' if either

e tcV
e t=cont

where each ¢; is a constructor form over V'

In the above goal, suppose s and t have the same type and are constructor forms over

the X. We may distinguish six possibilities by the following decision table:?

s ~ t [« | cheeset
X identity if x € f then cycle
y coalescence | else substitution
chalks apply conflict
cheeses || symmetry | injectivity

For each of these six kinds of constructor equation, there is an elimination rule. They

are shown in table 5.1

These six rules, once we have proven them, will constitute the transition rules of a

unification algorithm which is complete for the following class of problem:

DEFINITION: constructor form unification problem

A constructor form unification problem is a goal of form:

VX. st — ®[X]
where the S and f are sequences of constructor forms over X

inhabiting some telescope T

3chalk and cheese are constructors as different as chalk and cheese.
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D : Type
identity o
O : T — Type
coalescence d x
Vy:T.M — Qy
D : Type
cycle xet
x~cheeset| — ®
O : T — Type
substitution & cheese? xgrt
Vx:T.|x~cheeset| — ®x
D : Type
conflict
chalks~cheeset| — ®
D : Type
injectivity ~f s B
cheeses~cheeset| —

Table 5.1: elimination rules for constructor form equations

130



Since sy, t; : Ty, the leading equation has both sides the same type, so that exactly one
of the above rules must apply (using symmetry if necessary). We must also check that

each of these rules preserves this structure.

LEMMA: transition rules preserve problem structure

Given a constructor form unification problem
VX. Ve; €:s; 5~1; 1. O[X]

eliminating e by the appropriate transition rule either solves the goal or

leaves a subgoal which is also a constructor form unification problem.

PROOF

Let us check, rule by rule:

e identity

Before, we have

—

?before: VX: X
Ve: x;~x;
Ve §~f

d

where x;; S, x;;t : T. Afterwards, we have

Pafter: V¥: X
Ve 5t
@

- =

where S, t : T x;. Since the variable set is unchanged, § and £ are still constructor

forms.

e coalescence and substitution

Up to a permutation of the goal (performed by the elimination tactic) we start

with

?before: V¥: X
Vx: T,
Ve: x~t
Vij: Yx]
VE: 5[x|~t[x]
®fx]
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where x & t and x; S, £; f: T After elimination, we have

Pafter: V¥: X
Vij: Y]1]
Ve 5t ~1[t]
ft]

Although, x has vanished from the variable set, it has been replaced by construc-
tor form ¢ which does not contain x. As for the remaining problem, 5]¢], £[¢] : T't.
cycle and conflict
There are no subgoals.
injectivity
Before:

?before: V¥: X

Ve: cheese§~cheeset

Vé: §~f
()

where (cheeses'); s, (cheesef'); f: T. Now, the type of constructor cheese

must be

Vy:Y. T[y]
with §' ,F . Y. After elimination:

Pafter: V¥: X
ve: s ~F
Ve : §~f

Certainly, the problem still consists of constructor forms over the X. Furthermore,
both §';§ and £ ; £ inhabit the telescope (i : Y); (T (cheese))).

Now we have checked that each transition rule preserves the structure of constructor

form unification problems, the next step is to put them together to make a unification

algorithm.
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5.2.2 an algorithm for constructor form unification problems

The algorithm is very straightforward: it consists of repeatedly applying the transition
rule appropriate to the leading equation until either the goal is proved outright or no

equations remain.

From the above lemma, it is clear that if one step leaves a subgoal, the next step can
be made. However, we must still show that unification terminates and computes most

general unifiers:

DEFINITION: unifier, most general unifier

If s~t is a constructor form unification problem over X and o is a substitu-

. — -/ . . - 7. — -
tion from the X to terms over some X , then o is unifer of s~t if s = ot.

In addition, o is a most general unifier or mgu of S~f if any unifier of

§~f can be factorised p - o, where p is a substitution on the X'.
LEMMA: unification terminates

For all constructor form unification problems, the sequence of transition

rule applications determined at each stage by the leading equation is finite.

PROOF

I shall use the traditional proof: we may establish a well-founded ordering on unifica-

tion problems, being the lexicographical ordering on the following three quantities:

e the number of variables X
e the number of constructor symbols appearing in the problem

e the number of equations in the problem

We may then check case by case that each transition rule either terminates directly or

reduces this measure.

e cycle and conflict terminate directly
e coalescence and substitution decrement the number of variables

e injectivity preserves the number of variables but reduces the number of con-

structor symbols
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e identity preserves the number of variables and the number of constructor sym-
bols, but reduces the number of equations

LEMMA: unification correct

For any initial goal which is constructor form unification problem
VX. 5f — O[F]

either § and f have no unifier, in which case the algorithm proves the goal,
or there is a subset ¥ C ¥ and a substitution ¢ from the ¥ to constructor
forms over the ¥ such that o is a mgu of § with f and the algorithm yields

subgoal

VX' ®[0X]

PROOF

It is enough to check that at each step of the problem, either

e the goal has been proven and there is no unifier, or

e the goal is of form
Ve 5~f — PloX]

. . _I .
such that a most general unifier p of remainder s'~f induces a most general

unifier p - o of §~f

This invariant holds initially, with accumulator o the identity substitution. If it holds
finally with no goal, there was no unifier. Otherwise it holds finally with the empty
remainder whose mgu is the identity substitution, so the accumulator is the mgu of

gt
Case by case, then:

e cycle and conflict prove the goal in cases where there is no unifer

e identity and injectivity change neither the accumulator nor the unifiers of the

remainder
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e coalescence and substitution

remainder accumulator

before x;§ ~t; ¥ o
after | [t/x|S~[t/x]f  [t/x]-o

Suppose p is a mgu of the remainder after the transition. It is enough to show

that p - [t/x] is a mgu of the remainder beforehand, with the invariant forcing

p-[t/x] - o to be a mgu of 5~

Clearly p - [t/x] unifies x; &' ~t; £,

Now suppose T also unifies x;5'~#f. Then 7 = 7 - [t/x], because
— 7 - [t/x]x = 7t = 7x by hypothesis
- 7 [t/x]y = Ty when y # x

Hence 7 unifies [t/x]é’:[t/x]fl and can thus be factorised v - p. But 7 = 7 - [t/
x] =wv - p-[t/x]. Thus p- [t/x] is most general as required.

I feel I should make some comment on these proofs, not that there is anything unusual
about them, quite the reverse. I have deliberately given a conventional ‘measure’ proof
of termination, by way of comparison with the structurally recursive algorithm I shall

exhibit later as an example of programming with dependent datatypes.

Now that we have an algorithm which exploits the transition rules, it remains only to
construct proofs of them. identity is trivial. coalescence and substitution are just

applications of eqSubst,. conflict, injectivity and cycle all require some work.

Before I give the constructions, I want to draw attention to the computational aspect
of the proofs built by the unification algorithm: we shall need this technology to build

programs as well as proofs. If the algorithm generates

Co

?soFar: VX.§~f — ®[oF]
Istart = ...
. VX, §~f — B[]

we shall need the computational behaviour (for arbitrary ¥')

start ox (reflos) = sokFar x (refls
X (refl ~ goFar ¥ (refl§
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Recall that the elimination tactic supplies refl proofs for the constraints. When an
elimination rule with associated reductions is applied to a constructor-headed target,
it reduces to one of the subgoal proofs, like start, and the refls are passed for the
subgoal’s constraint arguments—this must allow the subgoal proof to reduce to its
simplified version soFar, and ultimately to the value the user has supplied for that

casc.

Once again, we may check this property stepwise. identity is implemented by a \-
abstraction with the appropriate (3-behaviour, while coalescence and substitution ex-
ploit the established reduction of eqSulbost;. For conflict and cycle there is nothing to

prove, but we must pay attention in the case of injectivity.

5.2.3 conflict and injectivity

Consider an inductive family of datatypes
Fam : Vi:1. Type

with n constructors
Con; : VZ:Z;. Fam;[Z]

We have already seen how to compute the case analysis principle FamCase:

¢ : Fam — Type

Let us now use FamCase to prove conflict and injectivity theorems for this class of
datatype.

The conventional way to prove injectivity for the constructors of simple datatypes is
to define a suite of predecessor functions for each argument of each constructor and
use the fact that equality respects function application. This is the presentation used in

[CT95, McB96]. We cannot do this in general for dependent types, as it is not always
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possible to supply dummy values for predecessor functions applied to constructors
for which they were not originally intended. It is my contention, in any case, that
predecessor functions are immoral: the whole idea of pattern matching is to expose
the ‘predecessors’ locally to each constructor case—we should never apply techniques

appropriate for one constructor only to arbitrary elements of a type.

Fortunately, the computational power of dependent type theory comes to our rescue.
Instead of proving n? Peano-style conflict or injectivity theorems, we may manufacture
a single ‘Peano concerto’ which eliminates any constructor-headed equation, comput-

ing the appropriate rule by case analysis.

CONSTRUCTION: Peano concerto

We begin by establishing the structure of the development: we wish to
compute the Peano theorem appropriate to a given pair of elements, then

prove it for an equal pair of elements:

?FaGmPEANQO: V¥: Fam
Vij: Fam
Type
?FamPeano : V7 : 1
Vx :Fam7
Yy :Fam7
Ve: xy |
FoamPEANOT; x 7,y

Note that it is perfectly reasonable to prove the theorem only for x and y in
the same instance of the family FOM7, because this is exactly the situation
in which the theorem will be used: eliminating the leading equation in a

unification problem, where both terms have the same type.

Looking first to the ‘statement’ problem, FamPEANO, we may eliminate
each of X and i by FamCase, giving n? subgoals, of two varieties.

In the first ‘off-diagonal’ kind, we are asked to compute the conflict theo-

rems for unlike constructors Con; and Con;

?FAamPEANO,;: V¥: Z,
Vﬁ: Z j
Type
We simply introduce all the premises and supply the rather useful elimina-

tion rule
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D : Type

[

After all, an equation with unlike constructors at the head is very unlikely

to be true.

More interestingly, on the diagonal, we must compute the injectivity theo-

rems for like constructors

?FAmPEANO;;: V¥: Z,
Type
Fortunately, the case analysis has exposed the predecessors we need, so all

we do is pair them off. Introducing the X and i/, we supply the rule

D : Type

X~ij — @
)

Crucially, the reduction behaviour of FmCase really means that
FamPEANOYX; (Con; ¥') i/; (Con, ') = FAGmPEANO;; ¥y

Now let us show that the rule we have assigned to each kind of constructor-

headed equation really holds if the equation does. Recall the goal

TS

2FamPeano: Vi 1

Vx :Fam7

Vy :Fam7

Ve : xy |
FOmPEANOT; x 1, y

We have quite a choice of things to eliminate here, but by far the most

useful is the equation e. Applying eqQSubst;, we are left with

TS

?FamPeano;;,: Vi': I
vx: Fam7
FOMPEANOT; x 1 x
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By eliminating the equation, we have restricted our attention exclusively
to the diagonal, sparing ourselves the trouble of considering the untrue

equations, let alone deducing their untrue consequences.

Now we may eliminate x with FGmCase, yielding n subgoals

o

?FamPeano;: Vz: Z;
FamPEANO;[Z]; (Con, Z) £[Z]; (Con; 2)

Reducing FamPEANO, now that its case analyses have been fed con-

structor symbols, we obtain

Co

?FamPeano;:VZ : 7,

VO : Type
Vhyp: Ve: Z~Z
d
d

From here, we simply introduce all the hypotheses and prove ® with

—

hyp (refl 2)
Checking the reduction behaviour, we find

FamPeanoT, (Con; x) 7; (Con; X) (refl (Con, X)) =
FamPeano, 7; (Con; X) =

FamPeano; x =

AD : Type. \hyp : XX — @. hyp (refl X)

This ensures that the identity transition decomposes refl proofs as required

for its use in programs.

Note the critical use of targetting in making this rule applicable. It is not obvious that

Vil Vx,y: Fami.[x=y] - FAamPEANOT; x i y

is an elimination rule, but that does not stop us unifying the targetter with a candidate

equation. If the equated terms have constructor heads, then the instantiated rule will

reduce, revealing the scheme variable and subgoals we would normally expect.

Although the unification algorithm only requires us to prove the Peano theorems for

two elements of a particular instance FOM 7, and that is the construction I have given
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above, it is nonetheless possible to prove the stronger theorem which operates on any

two sequences in Fam:

FamStrongPeano : VX, ij: Fam. | X~y | - FamMPEANO X ij

If we eliminate all but the last equation, we have reduced the problem to FOmPeano!

It is possible to use this theorem to eliminate a constructor-headed equation from any-
where in a telescopic problem, not just at the front. This can improve the efficiency of
unification: if we can see a conflict later in the telescopic equation, we can solve the
goal without first hacking through the earlier stages of the problem. Such measures are
not necessary when everything is in constructor form, but increase our efficacy for the
wider class of problems polluted by non-constructor terms. It is much more difficult
to work with inductive families involving indices which are not in constructor form.
Such problems are beyond the technology developed in this thesis—I shall discuss
them briefly in section 5.2.5.

5.2.4 cycle

Showing that cycles do not occur in our inductive datatypes is quite a subtle business.

Even proving

?nNotSn: Vn: N
n~sn — L

requires quite a lot of technology. Let us do it. Eliminating n,

?0NotSO :0~s0 — L
?SnNotSSn:Vn : N
Vhyp: n~sn — L
Ve :Sn~Ssn
1

Applying unification (without cycle elimination) to both subgoals, we can at least sim-
plify the two constructor-headed equations via the NPeano theorem. This eliminates

the O case by conflict, while injectivity leaves us with an immediate step:

Co

teasy:Vn :N
Vhyp: n~sn — L
Ve :n~sn
4
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In fact, we can follow the same structure for any number of S’s, but this is only because
the natural numbers are deceptively symmetrical. Watch what happens if we throw in

a spare successor constructor, T, (making type N') and try to prove

Co

?nNotSTn: Vn: N
n~stn — 1

Induction on 7 yields O and 1 cases which perish by conflict. The S case is as follows:

Co

?SnNotSTSn: ¥n N’
Vhyp: n~stn — L
Ve :sn~stsn
1

Injectivity yields

Co

Ptricky:vn N’
Vhyp: n~stn — L
Ve :nxtsn
4L

Oh dear! We have the wrong inductive hypothesis! The extra S appeared at the very
inside, rotating the cycle: it is only because one successor usually looks much like

another that these theorems are so easy for N.

In order to prove the result in this style, we must first strengthen it:

Co

?10CycleST: Vn: N’
(n~stn — L) x (n~tsn — 1)

By including not just the St cycle, but also all its rotations, we will have more to do:
there will be work in both successor cases, although one is enough to show what hap-

pens:

Co

?moCycleST :¥n : N
Vhyp: (n~stn — L)x(n~tsn — 1)
(sn~stsn — L) x(sn~tssn — L)
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The right conjunct follows by conflict. The left reduces by injectivity:

Co

?repaired:Vn N/
Vhyp: (n~stn — L)x(n~fsn — L)
n~tsn — L

The rotated conclusion follows by projecting the appropriately rotated conjunct of the

inductive hypothesis.

This technique can be generalised to arbitrary cycles in arbitrary datatypes. The draw-
back is that (up to rotation), we need a new theorem for every cycle pattern. This leaves

us little choice but to generate them on the fly.

A slightly more cunning technique, arising from a conversation with Andrew Adams,
is mentioned in [McB96]. It constructs for a given cycle pattern x~p[x] * in some type
Ind a quotient function quot, : Ind — N

quot,plx] =  s(quot, x)
quot, = 0

Applying quofp to both sides of the cycle, we get
(quot, x)~s(quot, x)

We have already seen a disproof of that!

While the guarded recursion principles we have constructed for each datatype make
these functions relatively easy to manufacture—indeed 1 have implemented this
technique—we have still not escaped from the burden substantial on-the-fly construc-

tion work, cycle by cycle.

Remember, though, that in cycle x~p|[x], p[x] is a constructor form, and hence we can
compute by structural recursion on it: perhaps there is a way to compute the proof we
want. Unfortunately, though, there is no way to test whether we have decomposed as
far as a non-canonical symbol like x: our programs have no access to the decidable

conversion relation of the type theory which describes them.

Nonetheless, we can adopt blunderbuss tactics: for any element x of a datatype, we
can construct the property of ‘not being a proper subterm of x” in such a way that when

x has a constructor head, the property reduces to a product explicitly enforcing ‘not

*Without loss of generality, assume p[x] has fresh variables in argument positions off the ‘cycle-path’.
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being any of the exposed subterms’. The idea works in the same as the auxiliary data
structure with which we earlier constructed guarded recursion. In fact, the predicate

we need is just an instance of that structure.

We may define this property for N, together with its non-strict counterpart as follows:

INUnequal= A\x,y: N
x~y — L
INNotPSub= Ax: N
NAux (NUnequal x)
INNotSub = A\x,y: N
(NUnequal x y) x (NNotPSub x v)

with conversion behaviour

T
NNotSub x n
(NUnequal x n) x (NNotPSub x n)

NNotPSub x 0
NNotPSub x sn

11111

NINOtPSUb x y is thus inhabited exactly when x is not a proper subterm of y, whilst
NNotSub x y adds the requirement x 74y to indicate that x is not any subterm of y.
NNotPSub x y unfolds computationally to reveal a proof that x is not equal to any

guarded subterm of y. Observe, for example,

NNotPSub x ssx = (NUnequal x sx) x
(NUnequal x x) x (NNotPSub x x)

Suppose we can prove
Vax, t:N. x~t — NINotPSub x ¢

Then for any hypothetical proof of x~p[x], we have a proof of NNotPSub x p[x],

which will expand to a product containing
NUnequal x x

from which contradiction the goal should surely follow.

The first step in the proof is to eliminate the equation, leaving the highly plausible

Tcycle: Vx: N
NNotPSub x x
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You could be forgiven for hoping that we might get a cheap proof by the NAuxGen
theorem we have already built, but sadly, that only proves NAUX® when & is a constant
and all we have to do at each stage is pass on the accumulated information, adding just

the new layer. Here, the scheme varies over the recursion, so we must be more cunning.

Our next move is unsurprising: induction on Xx.

Co

cycle,: NNotPSUb 00
Teycle :Vx : N
Vxh: NNotPSub x x
NNotPSub sx sx

The base case is trivial as its type reduces to 1. Unfortunately, the step is genuinely dif-
ficult: NINotPSub fixes its first argument, so there is no way, as things stand, that we
can reduce the conclusion to the inductive hypothesis. Some intelligent strengthening

will be necessary. First reduce the conclusion to its non-strict expansion:

Co

Tcycle:Vx =N
Vxh: NNotPSub x x
NNotSub sx x

We must prove that if x is not a proper subterm of itself, Sx is certainly not a subterm.
We can see that if Sx were a subterm, x would be a proper subterm, nomatter what
is on the right hand side. Let us make the corresponding generalisation. That is, we
introduce the hypotheses, create a hole for the more general version of the goal, then

use it to solve the original:

Co

Teycle~ x N
Axh : NNotPSub x x
tgen:Vy N
VxNPy: NNotPSub x y
NNotSub sx vy

gen x xh

Why is this a good move? Well, we have fixed the first argument of the predicates, and
we are now free to let the second vary in an induction on y which corresponds to the
computational behaviour of NNotPSub.

144



Co

7gen: VxNPO: NNotPSub x 0
NINotSub sx 0
Tgen : Vy :N
Vyh  :VxNPy: NNotPSub x y
NNotSub sx vy
VxNPsy: NNotPSub x sy
NINotSub sx sy

Applying a little computation, the base case becomes

Co

7gen,: VXNPO: 1
(NUnequal sx 0)x 1

This is easily proven, with a little help from NPeano.

Reducing the step case, we get

Co

7gen : Vy :N
Vyh  :VxNPy: NNotPSub x y
NNotSub sx y

VxNPsy: (NUnequal x y) x (NNotPSub x )
(NUnequal sx sy) x (NNotSub sx y)

The implication between the two right conjuncts is exactly given by the inductive hy-
pothesis. As for the left conjuncts, expanding the conclusion’s NUnequal gives us a
proof of sx~Sy from which we must prove L. NPeano exposes a proof of x~y, for

which we have a disproof at the ready.

Having established this property for the natural numbers, there is always the nagging
suspicion that we have exploited in some hidden way the symmetry of that datatype,
just as we would be wary of generalising to all triangles a property which held in the
equilateral case. When there is only one step constructor, with only one recursive
argument, the issue of whether phenomena behave conjuctively or disjunctively can

become blurred. However, in this case, everything fits together perfectly.

CONSTRUCTION: cycle

Consider type former
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Ind: Type
and ¢ constructors

i:A %:{Ind}
Con;ax: Ind

Note that I really should write r;, as the number of recursive arguments
may vary from constructor to constructor. However, the proof will be even

less readable if I start subscripting superscripts.

We may define the inequality property

IndUnequal = A\x,y:Ind. x~y — L

We can then add the proper subterm relation
IndNotPSub = Xx:Ind. IndAux (IndUnequal x)

and the non-strict subterm relation

IndNotSub = A\x,y:Ind.
(IndUnequal x y) x (IndNotPSub x y)

The computational behaviour of these definitions is as one would hope:
IndNotPSub x (Con; @) = S{IndNotSubxy,}

We may now prove the cycle theorem:
?IndCycle: Vx, t: Ind

W e : x~t
IndNotPSub x t

First, we eliminate the equation, leaving

o,

?IndCycle’: Vx: Ind
IndNotPSub x x

Next, we eliminate the x.

O
7casei: Va: Az
vx: {Ind}"
Vi: {IndNotPSub x;, x}"
IndNotPSub (Con; 4 X) (Con; 4 X)
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The conclusion expands, yielding a product

?case;: Vi: A;
vx: {Ind}"
Vh: {IndNotPSub xj, xy}),
>{IndNotSub (Con; @ X) x; },,
Now we come to the strengthening step. The conclusion we are trying to
show is r-fold now. The trick is to prove each separately, abstracting away

the right hand x;, in r separate lemmas:

?case;~ M A
X {Ind}’
M {IndNotPSub xy, x;},

—

Zem: { ¥y  :Ind
VxNPy: INndNotPSub x;, y
IndNotSub (Con; @ X) y

({lemy, x;, . }.)

The proof of each lemma is again inductive. We apply INndElim, Thus for

k

each of the r, lemmas, we acquire ¢ constructor cases:

TS

—

Plem;:Vd A
vy {Ind}"
Vi :{ VxNPy,: IndNotPSub x, y,
IndNotSub (Con; ax)y, ),

VxNPc: IndNotPSub x, (Con; b i)
IndNotSub (Con; i X) (Con, b i)

Now, a little computation is in order:

TS

—

Plem;: Va' A
vy  :{Ind}’
Vi :{ VxNPy,: IndNotPSub x y,
IndNotSub (Con;ax)y, ),

VxNPc: ©{(IndUnequal x; y,) x (IndNotPSub x, ;) },
¥ : IndUnequal (Con; 4 X) (Con; b V)
»:{IndNotSub (Con; @ %) y,}!
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Firstly, each
IndNotSub (Con; 4 X) y,
follows by h; applied to the proof of

IndNotPSub xy, y,

projected from xNPc.

Secondly, we must establish

IndUnequal (Con; @ ¥) (Con, b )
That is, we must prove

(Con, @ ¥)~(Con; bij) — L

so we apply IndPeano. If the constructors are different (i # 7), the goal

is proved at once, otherwise ¢ = j and we must show
d~b — X~y — L

But look! xPNc contains proofs for each [ of
IndUnequalx;, y,

We may select the proof of x;~y, from the injected equations, and the

proof of
IndUnequalx; y,

from xPNc establishing a contradiction and completing the construction.

Let me remark only briefly on the extension to dependent families. For

Fam : V7:1. Type

the appropriate notion of inequality is

FamUnequal = M\X,y: Fam. (X~y) — L

We can then construct FGMNofPSub and FamNotSub as before:

FamNotPSub = \X:Fam. FamAux (FamUnequal X)
FamNotSub = \X,y: Fam. (FamUnequalxij) x (FamNotPSub x i)
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Since all three of these take two sequences in FGM, rather than two elements in some
Fam 7, no problem arises in the strengthening step: we are free to abstract away the

whole right hand sequence, ensuring the induction is on the entire family.

As for the equational reasoning, suppose we are trying to prove some inequality
X;x~i;y — L where both sequences inhabit Fam, with both x and y constructor-
headed. Rather than trying to unify the X and i, we may apply the ‘strong’ version of
the Peano theorem directly to the telescopic equation, solving the goal in the case of
different constructors, and exposing the equations of the predecessors if the construc-

tors are the same.

In effect, then, the construction scales up without any difficulty from elements of sim-

ple types to sequences in some FQm.

This construction also generalises easily to datatypes which use higher-order construc-
tors to represent infinitely-branching structures. When the higher-order arguments ap-
pear as hypotheses they may simply be fixed, so that they may be used as the appro-
priate witnesses for higher-order arguments in goal positions. However, it is not easy
to exploit this proof automatically, as it is undecidable whether an infinitely-branching
structure contains a cycle. Suppose we have a hypothetical ordinal x, together with a
function f : N — ord which yields x for input 37. If we have a hypothesis

x>~sup f

we acquire a proof of ordNotPSub x (sup f), which expands to uncover a proof of
Vn:N. x~f — L but the machine has no reliable way of guessing that 37 is the right
number to expose the contradiction. Of course, if we know which branches a cycle
takes, we can still apply ordCycle by hand.

5.2.5 a brief look beyond constructor form problems

There is nothing which restricts our use of dependent families to indices in constructor
form. More complex indices lead to more complex unification problems, and the gen-
eral case is inevitably undecidable. There are two ways in which such problems can

arise, and they are not mutually exclusive:

e Non-constructor-form indices may appear in the type of a constructor. For ex-

ample, we might define sized binary trees, sfree : N — Type as follows:

X:streex Y:streey
empty : stree 0 node X Y : stree s(plus x y)
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e Non-constructor-form indices may appear in the type of an argument over which

case analysis is to be performed. For example, we might wish to write

vprefix : VA: Type. Vm, n:N. Vo:vect, (plusm n). vect, m

The tractability of such problems, even by hand, depends on the fypes of the non-

constructor-form expressions:

e Many problems involving the comparison of types or functions are simply be-
yond us. On the one hand, we do not have theorems such as conflict at the level
of types—we cannot disprove N~2. On the other hand, the intensionality of ~

prevents us from solving even such simple higher-order problems as
VFiN — N. (Vx:N. fx~sx) — ...

Even though the extensional behaviour of f is completely determined, there are

many intensionally distinct terms which exhibit that behaviour.

e Equations within datatypes involving defined functions like pIus are less trou-
blesome, especially if we have equipped those functions with derived elimination

rules which do constructor-based analysis of the return values.

Let us examine the example of vVprefixX. Induction on v will leave subgoals containing

unsolved equational problems, such as the vnil case:

tvprefix, : VA: Type. Vm,n:N. Yo:vect, (plusmn).
O~(plusmn) — vnil~v — vect, m

Case analysis on m will get us out of this predica- plusRecl

ment, but only because we know how plus works.

A more cunning approach is to address the trou- ®:Vx,y,[z]:N. Type

blesome plus directly, constructing vVprefix with
plus’s recursion induction principle, shown on the

right. Note that the plus symbol is completely ab- ®0yy

sent from the cases.

Targetting the (plus m n) in goal vprefix yields subgoals:
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?vprefix, : VA : Type. Vn:N. Vo:vect, n. vect, 0
vprefix, : VA: Type. Vm, n,z:N.
(Vo':vecty, z. vecty m) —
VYv:vect, sz. vect, sm

The remaining indices are in constructor form!

I draw two conclusions from this discussion. Firstly, dependently typed program-
ming with non-constructor-form indices is difficult—a principled machine treatment
is a long way off. Secondly, for hand treatments of such problems, derived elimination

rules describing the behaviour of non-constructor functions are of considerable benefit.
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Chapter 6

Pattern Matching for Dependent Types

We are now in a position to build tools for programming with dependent datatypes.
In this chapter, I shall first discuss the interactive development of programs. How-
ever, | believe it also important to consider the translation of functional programs from
the conventional equational style into real OLEG terms based on the elimination rules

primitive for each datatype.

Why should we be interested in these programs? Some people like to write programs,'
and raw type theory is hard to write, especially as it must record explicitly the unfica-
tion attendant to the elimination of dependent datatypes. That is why we get machines
to doit.

I am an enthusiastic advocate of the analytic style of programming afforded by proof
editors. For me, the key point is that the search for programs is carried out in a struc-
tured space of partial objects constrained to make sense: the machine performs most

of the bookkeeping and checks for type errors locally and incrementally.

Synthesising programs in the conventional way involves unconstrained search amongst
arbitrary sequences of potential gibberish for completed objects which a compiler ei-
ther accepts or rejects. The incremental programming afforded by interactive declare-
before-use environments common in the ML community is almost entirely useless
because it is incremental from the bottom up: it requires the details to be presented
before the outline and thus supports only the kind of lonely obsessiveness that gives
programming a bad name. The module system offers some compensation, at a coarse

granularity.

The trouble with raw type theory is not that it is hard to write, but that it is hard to

read. Even if a program is generated with machine help, it is still a good thing if

!Others are merely paid to do it.
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we can represent it in a way which is comprehensible to humans. Sequences of tactic
applications are not especially informative and, in any case, run counter to the demands

of a good user interface.

I hope, therefore, you will agree that it is good to have a high-level representation
for synthesised proofs and programs which nonetheless exposes the analysis both by
which it operates and by which it can be constructed. Pattern matching notation has
been with us for three decades in theory and in practice [Bur69, McB70]. Perhaps it
is because I have been brought up in these old ways that I am so slow to change, but
I still prefer equational presentations of programs to this newfangled ‘pointer derefer-
encing’ or whatever it is the young people do these days. One side effect of a concise
and readable notation is that we can still write programs on the backs of quite small

envelopes.

What do these programs look like? Let us simplify matters for the time being, and

consider only solitary functions:

f VX:S. T
f §1 - tl
f Sn = Iy

Each §; will contain some ‘free’ variables ¥/ : ?Z which are really universally quantified.
f may not appear in any of the §;. Both fand the i may appear in ¢;. It is, of course,
impossible to guess the Y; for arbitrary S and although it is not hard to imagine
classes of problem for which it is routine. Let us assume they are also supplied by the

programmer, but nonetheless omit them informally when unremarkable.

What do we mean by such a program? I suggest that we mean to determine the type
and the intensional behaviour of the defined symbol f. It is not enough that the program
should determine for each closed input s : Sa unique output £: that is merely to describe
the extension of a function—to give equations which must cover all the cases and
be true. The programs must also reflect a deterministic and terminating computation
mechanism, even on open terms, and taking canonical inputs to canonical outputs. That
is, the equations must have computational, not just propositional force. The programs
must decode internally into combinations of abstractions, applications, case analysis
and terminating recursion. This requirement is reflected to a considerable extent in
the task of translating such programs in terms of the effective computational behaviour

primitive to OLEG datatypes.
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A common notion of pattern matching from functional programming with simple types
requires the patterns (the S; above) to be in constructor form, nonlinear, exhaustive and
disjoint. This is not sufficient to guarantee the intensional behaviour required here.
The classic counterexample (due, as far as I know, to Berry) is the three juror majority

function:

majority : verdict — verdict — verdict — verdict

majority innocent innocent innocent = innocent
nmajority quilty innocent z =z
nmajority innocent y quilty =y
nmajority X Quilty innocent = x
majority Quilty Quiilty Quilty = Quilty

Now, imagine you are in a low-budget remake of the Henry Fonda film, ‘Twelve Angry
Men’, entitled ‘Three Mildly Peeved Men’, and your task is to find out what the ma-
jority verdict is. The three jurors do not each know what the others think, so the only
way you can gain any information is to ask them individually for their verdicts: you
cannot ask ‘should you have the casting vote’. Represent what you know by a pattern:

initially, you know nothing, so the pattern is
Xyz

When you ask a question, of the first juror, say, your state of knowledge divides in two

possibilities

innocenty z
Quiltyy z

Based on this choice, you can adopt different strategies of questioning, ultimately giv-
ing you a set of possibilities from each of which you draw a conclusion. Does Berry’s
collection of patterns represent a set of such possibilities, arising from a conditional
questioning strategy? No: each juror appears undeclared in at least one pattern, and at

least two jurors must declare in order to determine the answer.

The following shorter and intensionally realisable function has the same extensional

behaviour:?

majority : verdict — verdict — verdict — verdict

majority innocent innocent z = innocent
nmajority innocent Quilty z =z
nmajority quilty innocent z =z
nmajority quilty Quilty z = Quilty

21t also has an advantage in some cases if you are the third juror and prone to moments of angst.
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Extensional presentations of functions are not useless: they are merely non-
computational. It is highly desirable, at times, to give such extensional properties in
specifications of functions. The question is then whether they can be transformed into

intensional programs, preserving the extensional requirements.

The fact that intensionally realisable patterns arise from such questioning strategies
militates strongly in favour of the analytic view of programming: generating pat-
terns by case splitting not only guarantees their computational meaningfulness, but

also gives some guidance to the way we think about problems in the first place.?

Generating coverings of patterns by splitting is central to Thierry Coquand’s charac-
terisation of pattern matching for dependent types [Coq92], as implemented in ALF
[Mag94]. It is worth taking the time to review this now, not only to place the work of
this chapter in its wider context, but also because it is in his meta-level footsteps that I
have followed with my object-level treatment.

6.1 pattern matching in ALF

Coquand proposes to admit functions defined in pattern matching style directly to the
type theory as constants with reduction rules given by the equations provided they sat-
isfy certain safety conditions, more stringent than necessary, but nonetheless allowing

considerable freedom of expression. For

f . vx:S. T
\V/gl?l. f §1 = tl
Vg:?n. f Sn = t,

he demands

no nesting : for each f7 in any ¢;, fdoes not occur in any r;

guarded recursion : for some j and every i, every recursive f7in t; has r; guarded in

Sij

covering : the §; form a covering of S, in the sense to be defined below

3When teaching students ML, I have so frequently found myself asking ‘What do you do with the
empty list? What do you do with h cons ¢?° that it has become something of a mantra, for me, if not for
them.
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The definition of covering captures the notion of successive case-splitting. We shall
first need a definition of such a split or elementary covering—this we iterate to yield

covering.

DEFINITION: elementary covering

The §; form an elementary covering of Y if there is an argument position
7 such that

e s;; is constructor-headed for each 7

e for any argument sequence 7 with r; constructor-headed, there is ex-

actly one ¢ and instantiation of the ¥ : Y; which makes §; & 7
Note that, in particular, sequences with different constructors heading the jth argu-
ment must be covered by different patterns, and that all possible constructors must be

covered: we have just asked the jth argument to reveal which constructor is at its head.

DEFINITION: covering

e the free pattern* i/ : S is a covering of S

e ifs; (over j : Y;) is an elementary covering of S and 7;; (over Z : Z;;)

are coverings of the Y;, then the [7:;/V]5; also form a covering of S

Which coverings we can build interactively depends on which elementary coverings
we can recognise as such—this is where unification comes in. Let us suppose that we
have a family of types FOmM, and that we wish to form an elementary covering of some

telescope

—/

:?;y: Fams,yj . Y

—

<

by case-splitting on y. FamM has constructors

.7_C’ . Xz
Con; ¥ : Famt;

so the possible cases are those where the S unify with the t;, the flexible variables being
XX V: Y.
We apply an appropriate unification algorithm, such as the constructor unification from

last chapter, getting one of three responses

4my term
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e a most general unifier o; from variables X : X;;/ : Y to terms over some Z : Z
e indication that there is no unifier

e failure due to ambiguity or getting stuck

If the unification is conclusive for each constructor case, then our elementary covering

has one pattern for each mgu o;, given by
o), (Con; o,%); i (overZ: Z;if oY)

We can now build coverings by starting with the free pattern and repeatedly applying
case-splitting, as allowed by the unification. Note that unification is a meta-level notion
here: it must be sound with respect to the computational equality. Apart from that, we
can make it as clever or as stupid as we like. Constructor unification is already quite
generous—this is essentially what the implementation of ALF provides.

Programming then proceeds in a type-directed way, building a covering for the argu-
ment telescope of a function, then filling in the right-hand sides by refinement, allowing

recursive calls, provided the appropriate termination check is satisfied.’

It is not hard to see that all the (-reductions so far presented in this thesis fall into this
class of definable function (provided we make the appropriate straightforward exten-
sion for mutually defined functions on mutually defined datatypes): the elimination
rules for datatypes have been constructed to yield elementary coverings of them, with
one-step guarded recursion. In fact, we do not even need the unification algorithm to
handle conflict, injectivity or cycles: coalescence and substitution are enough for the

datatype t-reductions, and we must add identity if we wish to support eqElim.

What about the other way around? If we fix on constructor form unification as that
which informs the case-splitting process, then we may follow this treatment at the

object-level.

6.2 interactive pattern matching in OLEG

This section contains the main metatheoretic result of this thesis: it proves that func-
tions which can be manufactured interactively in ALF can be manufactured interac-

tively in OLEG. Furthermore, the simulation is at an intensional level—the functions

>In the original ALF implementation, this was left as a moral obligation, but Coquand’s criterion
above is not hard to enforce.
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we manufacture from OLEG elimination rules have the same computational behaviour
as those defined directly in ALF.

Before we can progress to the theorem, we must examine computation with elimination

rules in more detail.

6.2.1 computational aspects of elimination

Suppose a function f can be given in terms of another g as follows:
f=\:X.gs§

What can we infer about the computational behaviour of f from that of g?

This is a very common situation. If g is an elimination rule and we construct f by
eliminating some of its arguments with g, this is exactly the structure which fwill take.
If g has a reduction behaviour given by ¢-reductions or a pattern matching function in
the Coquand style, we may be able to infer the corresponding behaviour for f. For
example, we have already seen how to construct NCase from NEIim in this way:
how does NCase reduce when it is fed constructor-headed numbers? It is not hard to

check that it inherits the appropriate behaviour from NElim:

NCase @ ¢) ¢ 0 = ¢y
NCase ® ¢ ¢, 51 = ¢pyn

Similarly, if we want to implement the pattern matching version of plus by means of
NElim, we need to be sure that the defining equations are intensionally recoverable.
In particular, we need to show that any recursive calls to NElim in the implementation
can be replaced by recursive calls to plus convertible to them. We can achieve this
by a process of unfold/fold transformation on functional programs which respects the

computational equality of OLEG.

Let us consider unfolding first.

Suppose g is given by a pattern matching program
g:Vy: S.T
gsi = t;

(over pattern variables i : Y;)
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From the definition of f, we can infer the lengthened equation
f¥ =~ g§ (any¥:X)
For each s, there are two possibilities

e Sis at least as long as §;

e 5 is shorter than §;

—

In the former case, we may split 5 as 7: 7, so that 7,5; : S. If o is a substitution from

X; ¥ to terms over Z : Z which unifies s; and 7, then we have

—

fox

—

~ go(F7) = gos;of = (o) oF  (overZ:Z)

In the latter case, it is 5; which we split as 7 7 so that 5,7 : R, where R is a prefix of S.

If o is a unifying substitution, then we have
foX = gos = gorF

and therefore

Note that we may not, in general, pad out the application of f before the unification,

because X may not have functional type until the X have been instantiated.

Folding is more straightforward. If we know that

fX = r  where X is the free pattern, and

fS = t{or]  (overij:Y)
then
f§ = t[foX] (overij:Y)

I have not explained where these substitutions ¢ come from,® but I do not have to:
unfolding and folding are a pair of techniques by which we can derive new intensional
equations from old ones. I do not propose to use them to construct pattern matching
programs, but rather to confirm their intensional status. For example, the program plus

may be written in pattern matching notation

®Perhaps you can guess.
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plus O y = y
plus sx y = s(plusxy)

This quite clearly falls within Coquand’s class of definable functions. We have already

seen Plus defined somewhat less perspicuously in OLEG:

plus = NEIm (Ax:N.N — N)

(Ay:N.y)
(Ax:N. Aplus,:N — N. \y:N. s(plus, v))

We can check that the pattern matching equations hold intensionally for the OLEG

definition. First unfolding with respect to each ¢-reduction of NElim:

plus 0 = Jy:N.y
plus sx = Ay:N.s(NElm...xy)

Folding with respect to the OLEG definition:

plus 0 = Ay:N.y

plus sx = Ay:N.s(plusxy)
Lengthening:

plus O y = y

plus sx y = s(plusxy)

We have checked our implementation of the pattern matching program!

In fact, we can use lengthening, unfolding and folding to check all the dervived com-
putation laws in this thesis, and we shall use them in particular to ensure the intensional

validity of the pattern matching programs we shall shortly construct.

Of particular interest is the computational effect of case analysis followed by unifica-

tion.

Suppose we face the goal

o

2£VX:S. T

where S; is some Fam p, with the p in constructor form. Let FOmM have constructors
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Z:7;
Con; z: Famp;

I~

Eliminating x; by FamCase yields, in general:

£

Id= \ij: Fam
Vi: S

Ve: i ~ p; x;

T

1 Yz Zj
Vx: S
Ve p; (Con; 2) ~px;
T

If = \%: S
FamCase ® ...f;... p;x; (refl p); (refl x;)

Now let us apply the unification algorithm to f;. Either there is no unifier, in which
case we have no need of a computational explanation, or there is a most general unifier

o;. In this case, the new subgoal looks like

o

21V Y;
O'jT

Furthermore, having found o;, we may also unfold the definition of f with respect to
FamCase, discovering that for all i

fajx

<

f; 0,7 0;%; (refl o, (7 x;))

1R

~

The latter conversion holds by the computational properties of the proof term generated

by the unification algorithm established in the previous chapter.

This shows us that case analysis with constructor form unification really does corre-
spond intensionally to Coquand’s case-splitting step. We are now in a position to prove

a crucial metatheorem.
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6.2.2 conservativity of pattern-matching over OLEG

THEOREM: conservativity of pattern-matching over OLEG

Suppose
f . VX:S. T
Vg:?l. f §1 == tl
Vg:?n. f Sp = t,

is an admissible program according to the characterisation of the previous

section, with

e thes; (overy : ?i) a covering of S built interactively by case-splitting

with constructor form unification

e recursive calls structurally smaller on the rth argument

Then there is an OLEG term f: VX:S.T satisfying for each i, for any g’ : ?i,

PROOF
Let us present the main problem as one of theorem proving. We must prove goal

Co

2£:V%:S. T

However, we must check that however we implement f, it satisfies the computational

laws intended by the pattern matching equations.

One of the key aspects of this construction is justifying the recursive calls. We can help

ourselves in this regard if we give them highly distinctive types. As they stand, they

just have whatever type it is the function returns for the given arguments, which might

be something dull. We can introduce a much more informative type as follows

Co

G . VX:S. Type

?call : V¥:5.(GX) =T
?return: V¥:5.T — GX

i{e] : VX:5. GX

I'f = \X:S. call (gX)

iy g
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What has happened? I have defined fin terms of g, a function which returns elements
of an as yet unknown S-indexed Type-family, G. Of course, G is going to turn out to
be AX: S. T, in the style of the decorative !-bindings from previous chapters, but for
now, it remains obscure: we transfer values between T and G X by means of a pair of
unknowns call and refurn, both of which will turn out to be the identity function. As
things stand, though, the type of a call to g identifies precisely its arguments—when
we wish to make a recursive call, we, and also the blunderbuss tactic, shall be able to

find the hypothesis we need just by looking at its type!

The next step is to eliminate the rth argument of g with the appropriate guarded recur-
sion principle. Suppose S, is FOM p, where Fam is a dependent family of datatypes.’
The guarded recursion principle we need is thus FOmMFix. Eliminating, we obtain the

scheme
® = \Z:Fam.V#:S.Z~p;x, — G¥

In fact, this scheme will have had its constraints optimised in the usual way—there will
be none at all if FOM is a simple type. Let us nonetheless consider the general case.

The immediate subgoal is

Co

?gguarded: VZ : Fa—m
Vrecs: FOmMAuUX @ Z
VX :S
Ve :Z
Gx

=Pp;Xr

Intensionally speaking, unfolding the definition of g with respect to FOmMFix tells us
that

gx = FamFiX ® g,,.rqeq P; X X (refl p; x,.)
= gguarded ﬁ; Xr (FGmAUXGen P gguarded ﬁ; xT) 55 (reﬂ ﬁ; xT)

The subgoal constraints require exactly that the X are well typed arguments of g, so

they reduce by unification to

Co

Qe VX 1S
Vrecs: FOMAUX @ p; x,
GX

7We may consider any parameters fixed.
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That is, we have the same goal as before, but with the addition of the auxiliary premise
which is ready to unfold revealing the available recursive calls as we split x,. into

cases—it may not be the last argument, as shown here, but its position is immaterial.

Note also that the computational behaviour of terms generated by unification gives
gx = gpp.. X (FAMAUXGEN @ G, 01 dea P Xr)

Now we replay the interactive case-splitting process which justified the covering §;.
Splitting an argument means eliminating it by the case analysis rule for its datatype,
then applying the unification tactic to the subgoals. Because the unification tactic im-
plements the same unification algorithm as that which justifies the elementary covering

induced by the split, we know we will achieve exactly the same effect.

We are left with subgoals corresponding to the covering

Co

79V 1Y,
Vrecs: FOMAUX @ p; sy
Gs;

What is more, we know that case analysis with unification has the right intensional

effect, so that
95 = g, (FAMAUXGen ® g, qeq Pi: Sir)

It is time to fill in the right-hand side. Let us introduce the premises and refine by

return:

Co

Arecs: FOMAUX @ p; sy
returns; r;

t; is the expression we want to supply for r;, but it may contain some recursive fZ;, so
we cannot just refine by it. We must replace those applications by calls to fresh holes
of type G Z; first. Since there is no nesting, we may write them in any order, although
if nesting was permitted, we would still be able to choose an order. I shall only write

one of them in.
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Co

g N 1Y
Arecs: FOMAUX @ p; sy
?gz] : GZ]
returns; t;[...callg;; .. .]

Where are we to find these elements of G Zj? From recs, of course! Since z;, is, by
assumption, structurally smaller than s;,, and must have some type Fam p, i» the type

FamAux @ p,; s, expands to a product containing ® p, ;; z;,., ie
VX:S. ﬁij;zjr ~p;x, - GX

Let us project this out and call it 7. Because gZ; is well typed, we can find a matching

substitution which solves the constraints. Hence we may form
rz; (reflp;;z;) : GZ;

and thus instantiate g, ;.

In point of fact, blunderbuss with recs is enough to solve 9ijs because it solves re-
flexive equations and searches through X-types. Since G Z; is uniquely the type of the
recursive call on those arguments, there is no way the search can come back with the

wrong value.

Let us check that this type-directed folding really finds the recursive call. The point is
that

FamAuxGen® g, ,.,deq Piisir =
<. . <FomFix<I> Oyuarded Piji Zirs - - - > . >

Projecting this out and applying it as shown above gives
FAMFIX® Qyuardea Piji Zir Zi (FM1 P55 2j0)

Compare this with the definition of g above: it folds (by the matching substitution) to
97

Hence we know that for all i
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gs; = retunt;[...call(gz;)...|

All that remains is to solve and cut G, call and refurn as suggested earlier. We find
that ¥ is exactly g ¥. Hence (trivially unfolding and folding), the calls and refurns

disappear and the g’s turn into f’s. As required, for each 7 and all ¥/ : 17@

6.2.3 constructing programs

A man bought a full size replica of Michelangelo’s ‘David’. He put it in

his back garden and invited his friends round to see.
‘It’s just a big block of white marble.” said they.

His reply: ‘I haven’t unwrapped it yet.’

The above theorem makes use of the guarded recursion, case analysis and unification
technology from the previous two chapters to ‘replay’ the justification of a pattern
matching function known to lie within Coquand’s class of admissible definitions. We
had the advantage of knowing the equations in advance, and indeed the derivation of
the covering—we merely had to check that we could build a term with the right type
and computational behaviour. As we shall shortly see, this is only a slight advantage—

we can use essentially the same technique and construct the pattern equations as we

go.

I propose to supply a collection of tactics for programming. As well as performing
theorem-proving actions on the OLEG state, these tactics will create and manipulate
associated pattern-matching programs in such a way that they are always justifiable by

Coquand’s criteria and, once the holes are filled, intensionally correct.
By way of a running example, I propose to construct VlQst, the function which extracts
the last element of a nonempty vector. Let us fix and suppress the element type A.

viast : Vn:N. Vx:vectsn. A

I shall not tell you what the pattern matching program is, for the point is to unwrap it.

We begin with a goal
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Co

?goal: Vn:N. Vx:vect sn. A

Here is a tactic which indicates that a given goal should be regarded as a programming

problem.

TACTIC: program

O
’F . VX:S. Type
7call  : VE:S. (F¥) — T[X]
?return: VX:S. T[X] — FX
D = \z: Fam
Vi S
{Cib Ve: Z ~ p; x,
= Fx
?goal: Vx,: 54 °f, . vi &
: Vrecs: FOMAUX @ p; x,
Vx,: Famp F¥
: If = \¥:S. FamFix @ f,  (refl j; x,.)
Vx,: S, Igoal = \¥:S. call ()

T(x]

PROOF

The tactic
program n Xx,

turns goal, which must have at least n premises, into a programming problem. goal is

solved by appeal to a function fof arity n, recursive on its rth argument.

As before, the more informative type family F is introduced, together with call and
return, then x, is eliminated with the relevant guarded recursion theorem. This leaves
us filling in the body of the function f,. Associated with f; is a pattern matching equa-
tion labelled [f;], with its pattern variables listed in parentheses, which describes the
aspects of 's behaviour for which f; accounts. The left-hand side of this equation is fx,
indicating that fy describes the effect of ffor any arguments matching the free pattern
X—that is, any arguments at all. The right-hand side is a placeholder 7, indicating that

we have not yet decided what f returns for arguments matching X.
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As we split the goal f; to yield subgoals for specific constructor cases, so we shall
split the equation [fy] into the corresponding equations with more instantiated patterns.
These equations constitute the pattern matching program we are building, and we
shall maintain the invariant that their patterns constitute a covering in accordance with

Coquand’s definition. This is trivially the case for [f]. O

By the way, if the program is not recursive, let us allow the omission of the x,. from the
tactic call. Correspondingly, we do not need to apply the guarded recursion theorem.

The type of f, is then the same as that of f. The rest of the techique is unaffected.

Now, Vlast is structurally recursive on either of its arguments, so it is immaterial which

we choose. I shall pick the vector. Let us see the effect of the tactic:

Co

?Vlast : vn:N. Vx:vect sn. Type
tcall  : vn:N.vVx:vectsn. (Vlast, x) — A
?refurn: Vn:N.Vx:vectsn. A — Vlast, x
D = m: N

Ay :vectm

Vn: N

Vx : vect sn

Ve;:m>~Sn

Vey:y ~x
Vlast, x
71 :vn N

Vx :vectsn

Vrecs: veCctAux @ n x

Vlast, x

viast = An:N. Ax:vect sn. vectFix @ f, sn x (refl sn) (refl x)
lgoal = An:N. \x:vect sn. call (vlost, x)

[fo] viast, x =7 (n: N;x: vectsn)

Now that we know how to start the process, we must figure out how to build coverings.

TACTIC: split
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£
® 1 VZ :Zj

Vi 1Y Vrecs: FAMAUX ® o (p,; sir)
Vrecs: FOMAUX® p;sir | = Fojsi
Fs; :
] fsi =7 (v: qz’) [fj] fojs; =7 (Z: Z])

where y, : Fam' ¥

and Con; : V¥:X. Fam' {

and o is a most general unifier (from ;X to terms over z) of 7}y, and
f; (Con; %), both in Fam

PROOF

The tactic

split v,

performs a case split on y, in subgoal f;, yielding a bunch of subgoals f;. The equation

for f; is split correspondingly into equations for the ;.

As above, we eliminate y, in subgoal f; via the case analysis principle for Fam' and
then apply unification. The tactic succeeds provided unification in each case either
shows that there is no unifier or finds a mgu o;. The resulting collection of mgus
justifies the new covering, and it also justifies the unfoldings which show that f; §;

reduces in each case to f; 0j§i.

The invariant that the patterns of the equations associated with the subgoals form a

covering is maintained. U

In our example, we shall certainly need to split on the vector x. There is no way to

make a nonempty vector with vnil, so only the VCONS case survives:
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Co

?f.vn N
Vh A
vVt :vectn
Vrecs: Yt Vm: N
Vx : vect sm
Ve;:n~sm
Veq:t ~x
Vlost,, x

vectAux ¢ n t
Vlast n (vcons h t)

f.] vlast, (vconsht) =7 (n:N;h:A;t:vectn)

Note that the wallet of recursions has unfolded by one step, showing us the recursive
call we could make for ¢, but for the fact that it is not known to be nonempty. The effect
of our informative retyping has been to make the conclusion of f. tell us the patterns in

the corresponding equation.

We must make one more split before we can finish the job. If this were simply typed
programming, we would split ¢ to see whether / is the last element or not. However,

we do not need to destructure t—splitting n will tell us all we need.

Co

2t Vh A
vt :vectO
Vrecs: Yt,e.: Ym: N
Vx : vect sm
Ve,: 0~ sm
Vey: t~x
Vlast,, x
vectAux ® Ot
Vlast O (vcons i t)
?fe:vn N
Vh A

Vt :vectsn
Vrecs: Yt .. Ym: N
Vx : vect sm
Ve, : Sn ~ Sm
Vey: t~x
Vlost,, x
vectAux ® sn t
Vlast sn (vcons h t)

[f..] vlastg (vconsht) =7 (h:A;t:vectO)
f.s] vlasty, (vconsht) =7 (n:N;h:A;t:vectsn)
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Observe that in the former case, there is no way the matching problem can ever be

solved to allow access to a recursive call, whilst in the latter, the way is clear.
Having split as far as is necessary, we should like to fill in the right-hand sides.

TACTIC: return

V) Y f=X\j :Y;
Vrecs: FOMAUX® p;sir | Arecs: FOMAUX ® [,; 5y
Fsi returnt,
[f1fsi =7 (j:Y)) [f] 5, = retunt, (i:Y)
PROOF
Given
return f;

we may, as before, form #; by replacing the recursive calls fZ by calls to holes of type
FZ. If these calls are structurally smaller at argument 7, we will once again be able to

solve these holes by appeal to appropriate projections from recs.

The structural condition ensures that the new equation is acceptable, and the same

argument as that in the above theorem shows that it holds intensionally. UJ

Our example has two cases. For the singleton, the value should just be the head. return

h gives us
o
'f,A\h A
M :vectO
Arecs: Sty Vm: N
Vx : vect sm
Ve,;: 0~ sm
Vey: t ~x
Vliast,, x
vectAux ® Ot
returnh

[f..] vlastg (vconsht) = refurnh  (h: A;t: vect0)

In the case with the nonempty tail, we make the recursive call
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return Vviast, t

This becomes

o

fo:xn N
Moo A
At :vectsn
Arecs: Xt,ee: Vm: N
Vx : vect sm
Ve;: Sn ~ Sm
Ves: t >~ x
Vlost,, x
vectAux ® sn t
70, :Vlast, t
return (callvy)

A quick search reveals the appropriate recursion

Co

lo,=recs.1 nt (reflsn) (refl t)

justifying the equation

f.s] viasts, (vconsht) = return (call (viost, t))
(n:N;h:A;t:vectsn)

We can tell when a program is finished—once all the placeholding ”s have gone. We
may now solve F, call and return as in the previous case. This leaves us with a real
term f whose intensional behaviour corresponds to the associated equational program,

which satisfies Coquand’s conditions by construction.

Our example becomes

vliasty (vconsht) = h
vlasts, (vconsht) = vlast, t

This is a rather subtle way to write VIOst which makes crucial use of the extra indexing

information. Naively erasing the indices in the hope of recovering a function over

ordinary lists yields
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last (consht) = h
last (consht) = lastt (X)

This is clearly not the right function, or indeed a function at all.

Of course, we could have split ¢ and built the usual

vlasty (veons hvnil) = h
vlasts, (vcons h (vcons k' t)) = vlast, (vconsh't)

I do not wish to embark on a discussion of the relative merits of these two programs—I
will merely point out that computation on the indices of a type behaves differently from

computation on the type directly, and sometimes interestingly so.

The combined effect of these tactics is to allow a similar style of interactive program
development to that available in ALF—not only can we build the same programs, but

we can do so in the same way.

However, this is not enough. Having built these programs, how do we store them?
For OLEG, the representation of the program is still a ghastly term involving guarded
recursion, case analysis and unification, all painstakingly recorded. Why can’t we
just write the pattern matching equations down? The construction of programs in this
section has relied on knowing more than just the equations—we have also exploited the
justification that the equations satisfy Coquand’s conditions, and we have recovered a

process for building those justifications interactively.

In the next section, I consider how much we can do with just the equations.

6.3 recognising programs

The question asked in this section is ‘for which pattern matching programs can we
recover the justification?’. Sadly, as we shall see, the answer is not ‘all of them’.
Nonetheless, it is worth analysing at what point the problem becomes undecidable,
with a view to building a system where we can store enough information to allow
the recovery. The aim is to describe a class of recognisable programs. I have made
some progress in this direction, although there is work still to be done. I feel some
discussion of the problem is worthwhile, not least because the techniques described
here are sufficient to recognise all the examples in this thesis, which will save me the

trouble of describing the construction.
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Our existing tactical presentation of program construction will be of assistance to us.
We have built ourselves a structural editor for acceptable programs. Let us now imagine
this editor being used not by humans but by a mechanical recogniser whose task is to
take a set of pattern matching equations and build the program. This echoes the view
I have taken of the constructions with which we may equip our datatypes—they make
use of the tools we have developed for theorem-proving, ie the structural editing of
OLEG terms. I know relatively little about writing compilers, but it seems to me that a

promising first move is to build a structural editor for the target language.

The three tactics from the previous section divide recognition into three phases:
e identify an argument position on which the recursion in the program is guarded
(and apply program)
e show that the patterns form a covering (by applying split)
e fill in the right-hand sides (with return)
The first and third of these are easy. We may simply check each argument position
in turn for one which satisfies the guardedness condition before applying program.

Meanwhile, return codes up exactly the operation we need. It is the second phase,

checking the covering, where undecidability creeps in.

6.3.1 recursion spotting

Given a goal

Co

?goal: V¥:S. T
and a pattern matching program of arity n
(5=t (F:Y))

It is easy to check for recursive calls to fin the ¢;. Itis also easy to find for each equation
the set R; of argument positions which satisfy the guardedness condition. We may say
that non-recursive equations are guarded in all their argument positions. Coquand’s
criterion requires that the intersection of the R; be nonempty. If so, we may apply the

program tactic for any of the indicated positions.
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It is possible that this procedure will yield a choice of positions. While any of them will
do, we may still have a preference. For example, structurally recursive programs over
vects or fins are necessarily also guarded on their natural number indices. It does not
really matter which we choose, but I would prefer the recursion to be on the datatypes
themselves, rather than the indices, as this produces a justification which seems to me

more intuitive.

Now we have found r, we may apply
program n X,

This leaves us with subgoal f and its associated equation

. 5)

=l

HFF =7

Now, let us relate the program equations we are trying to construct with the asso-
ciated equations in the current state of the construction. I call the latter the cover-
ing equations because their patterns are guaranteed to form a covering. In particular,
we are certain that each program equation is covered by exactly one of the covering
equations—only one of the covering patterns may be instantiated to give each program

pattern.
For each covering equation, we may collect the program equations it covers—this is

just a first-order matching problem. There are three possibilities:

e there is one equation, and it is covered exactly, meaning that the covered equa-
tion also covers its coverer—the patterns are the same, up to renaming of vari-

ables and return is now applicable

e there is at least one covered equation, but none covered exactly, so splitting will

be necessary

e there are no equations covered—this means either that the program is incom-
plete, or that there is nothing to cover—an undecidable type inhabitation prob-

lem

Let us look at each case in turn.

6.3.2 exact problems

If we have reached the stage where a covering equation
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f1f5 =7 (H:Y))
exactly covers a program equation
f§, =t (ij:Y)
then we may apply tactic
return f;

We know that the guarded recursive calls will be available to us, so we complete this

branch of the justification.

6.3.3 splitting problems

We have a covering equation

which covers several program equations

where o; is a (matching) substitution from the ¥ to terms over the ¥/,.

Each time we split a covering equation, we introduce at least one more constructor
symbol into its patterns (since patterns may be nonlinear, replacing a pattern variable
by a constructor form may add more than one constructor symbol to the pattern). We
may exploit this property to measure how far away the program equations are from be-
ing covered exactly. In order for a matching to exist, a program equation must contain
at least as many constructor symbols as the covering equation, so we may simply count

the excess.

Suppose f; covers equation 7 and is then split into several cases, one of which, f; say,
covers i also. We know the constructor excess of equation i over f; is strictly less than
that over f;, because the f;, patterns contain more constructor symbols. Hence, we may
keep splitting problems until they become exact or empty and be sure that the process

will terminate.

Which split should we make? In order to see this, we must expand each of the program

equations in terms of f;. We know
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fO'igj = fJO'lg <>

where the tuple is just the collection of accessible recursive call values

If there is a y, such that each o;y, is constructor-headed, then y, is a candidate for
splitting. If that split is successful, constructor symbols will appear at y,, yielding

simpler subproblems.

Ideally, everything will be in constructor form, splits will always yield solvable unifi-
cation problems, so we may split any of the candidates and carry on. Which candidate
should we choose? 1 would suggest we prefer candidates higher up the type depen-
dency hierarchy, as these may induce splits in other arguments by unification. For
example, if we are building a covering of the vects, splitting a vector will automati-
cally split its length into O and S cases, while merely splitting the length will leave us

with work still to do on the vector.

Even if there are awkward non-constructor expressions involved, there will only be
a finite number of candidates at any stage, so we may keep trying to split until one
works. It is conceivable that, in an impure world, splitting something too early may
yield unsolvable unfication problems later. For the sake of argument, we may con-
sider the recogniser to be nondeterministic—any justification will do. This is far from

satisfactory, but it is safe.

6.3.4 empty problems

We have a subgoal

Co

but no program equations to give us a clue what should go on the right-hand side,
or how to do any further case splitting. This either means that the programmer has
forgotten a case, or else one of the Y;; is empty, and there is morally no need to explain

what should happen, as the case cannot arise.

Types can be empty for arbitrarily subtle reasons—the type inhabitation problem is
undecidable. Even if we restrict everything in sight to constructor forms, we will still
be able to code up the halting problem as a datatype inhabitation question (see table
6.1). Some empty types, such as the simple type with one step constructor and no

base constructors, require an inductive argument to prove them empty. Others may
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eventually disappear after enough case splitting, but there is no way of telling how

much is required.

If we cannot be totally clever, can we be totally stupid? That is, can we reject these
problems out of hand? Unfortunately not. The elimination rule for the @ type has no
t-reductions and thus corresponds to an empty program—if we are to recognise the
recursion operators provided for datatypes as bona fide programs, we shall have to be

able to solve some empty problems.

Having rejected trying zero and infinity steps of case splitting, the only other intuitively
plausible option is one. Let us try one case split on each argument in turn, and if any
proves the goal, we have success. Otherwise, the problem is too hard and we fail to
recognise the program. This is enough to allow us to ignore cases with arguments in
types like @, fin O and so on. The idea is that a type is obviously empty if there is no

constructor-headed expression which inhabits it.

Effectively, the programmer must deal with non-obviously empty types explicitly, by
calling subprograms which eliminate them. If we construct a program interactively
which takes several steps of splitting to dispose of a type, we may represent the last
step by an obviously empty subprogram which gets called from the last case where
a pattern existed. This effectively records the splitting process used to dismiss the
type. If we find ourselves repeating ourselves, perhaps we should be able to register
commonly used emptiness proofs in such a way that they are tried along with splitting

whenever an empty problem is encountered.

It is conceivable that one search path through checking a covering may lead to only
obvious empty problems, while another may lead to a non-obvious empty problem.
Once again, we may save ourselves by crude nondeterminism. Whether we can do

better remains to be seen.

6.4 extensions

I feel I should make brief mention of a number of obvious extensions to the class of

programs we should be willing to consider, none of which is particularly controversial.

6.4.1 functions with varying arity

In simply typed languages, we are not used to seeing functions with varying arity.

Certainly, the use of curried functions is commonplace, but there is nothing serious
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e basic datatypes

startstafe  halfstare - otherstates

- other symbols

plank : symbol

leff : move right : move

e describing the machine

fransition = state x symbol x state xsymbolxmove
fransitions = list tfransition
tape = (tsil symbol) xsymbolx (list symbol)
configuration = statextape
(tsil is the type of lists built by adding elements at the right-hand end with the
constructor SNOC. I overload nil.)

e list membership (for any element type A)

h:A t:listA h:A T:memberxt
findht: memberh (consht) seekh T : memberx (consht)

e updating the tape (Uupdate : fape — move — tape — Type)

s : symbol 7 : list symbol
Iblank s 7 : update (nil;s;r) left (nil; blank; conss r)

[:1silsymbol t,s:symbol r: list symbol
Imove Itsr:update (snoclt;s;r) left (I;t;conssr)

[ : tsil symbol s : symbol
rblank I's : update (I;s; nily right (snoc I's; blank; nil)

[: tsilsymbol s, t:symbol r:list symbol
rmove [s tr: update (I;s;constr) right (Snocs;t;r)

e one step (step : fransifions — configurafion — configuration — Type)

tr - member (gq;s;q';s";d) trs  u :update (I;s';r) d tape
dotru:steptrs (q;(l;s;r)) (q';tape)

e halting problem (halts : transitions — configuration — tape — Type)

trs : fransitions  tape : tape
stop trs tape : NAlts trs (halt; tape) tape

step : step trs XY  halts : halts trs Y tape
QO step halts : alfs trs X tape

Table 6.1: coding the halting problem
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happening that n-equivalence cannot explain. There seems to be little motivation for

allowing functions to be defined with arity varying between pattern equations.

By contrast, there are some dependently typed functions for which such a relaxation in
the syntax would be of genuine benefit. These tend to arise when we write one function

to compute types involved in another. For example

Sum:N—>Type
SumO = N
Sumsn = N — Sumn

sum : vVn:N. Sumn

sumQ0 = 0

sumsOx = x

sumssnxy = sumsn (plus x y)

The first argument of SUM is the number of subsequent arguments, and the function
computes their sum. You might well point out that I could make the arities uniform
by A-abstraction, but that is because I am not doing any pattern matching on the newly
exposed arguments. Of course, in any case I can always introduce subprograms, but

why should I have to?

You might also suspect that such functions are uncommon in practice, and thus not
worth the trouble. There are three things to say to that:

e Dependently typed programming is still in its infancy—we do not know which

techniques will turn out to be common in practice.

e This is the kind of technique which is used somewhat less frivolously in strong
normalisation proofs—we compute a meta-level function type from an object-
level function type, then we compute the appropriate metal-level function to in-
habit it.

e This sort of behaviour is already supported in as industrial a programming lan-
guage as C. The remarkably common printf command takes a formatting
string, followed by arguments appropriate to the fields to be printed—you hope.
Of course, there is no check to see that it makes sense. C compilers do not blink

twice at

printf (Y “%s%s%s’’);
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but the effect is seldom benign. Dependent types sanitise these rather frightening

functions.

We may accommodate this behaviour by adjusting the definition of covering to allow
lengthening of pattern sequences by fresh pattern variables, provided the result type
beforehand is functional. These extended patterns may then be split as before. Each
lengthening can, of course, be replaced by a call to a subprogram in order to recover
the uniform arity of the original. The treatment of recursion is as before. Recursive
calls can be recognised provided they have at least the arity of the pattern to which the
guarded recursion principle was applied. Longer sequences of arguments can be cut in

two, leaving a recursive Call of the right length which is then applied further.

6.4.2 more exotic recursion

While it is sufficient to facilitate functions which are only recursive on one argument
position, it is nonetheless convenient to allow more complex structures to be built into
a single function, rather than forcing the programmer to break them up. The traditional

example is Ackermann’s function:

ack: N—+ N — N

ackOn = sn

acksm 0 = ackmsO
acksmsn = ackm (ack sm n)

The recursion in this function is lexicographic in the sense that either the first argument
decreases structurally, or else it stays the same, but the second argument decreases. It

can be split into a pair of Coquand-accepted primitive recursive functionals as follows:

acky, : (N—-N) - N—- N

acks,, ack,, O = ack,, sO

acKs,, ack,, sn = ack,, (aCKs,, ack,, n)
ack:N—-N— N

ackQ = s

acksm = acks,, (ackm)

What has happened here? For a start, the main AQCK function has been 7’d into a

functional. This enables the Sm case to be delegated to the auxiliary function Ack,,,.
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This receives as an argument the function ACk m, available by structural recursion—it

is thus free to apply this function, as well as making its own guarded calls.®

Would not all but the most die-hard of origami programmers’ prefer to write the lex-
icographic version? In fact, we already have the tools to construct it interactively—

suppose we have reached the following stage:

Co

TAck : Vm,n:N. Type
teall  : Vm,n:N. (Ackmn) — N
rreturn: Vm,n:N.N — Ackmn
lack, = Arecs: 1
A N
sn
7ack, :Vm :N
Vrecs: (Vn:N. Ack m n)x (NAUX ... m)
vn :N
Ack smn
lack = NFix...

The recs argument gives us access to guarded recursion on the first argument. We may
now add guarded recursion on the second (for the same first argument) by eliminating

n with NIFix, fixing m and recs:

Co

7ack,:Vvm N
Vrecs : (Vn:N. Ack m n)x (NAuUX ... m)
vn :N
Vrecs': NAUX (Ack sm) n
Acksmn

Case splitting on 7 now gives us

$We would not need to pass ack,, explicitly through the recursion if we could define ACKj,, locally

to the successor case of ACk.
9 An origami programmer only uses pattern matching to define fold operators.
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Co

?ack,:Vm N
Vrecs : (Yn:N. Ackm n)x (NAuUX ... m)
Vrecs': 1
AcksmO
7ack,,: Vm N
Vrecs : (Yn:N. Ackm n)x (NAuUX ... m)
Vvn :N
Vrecs': (Ack sm n)x (NAux (Ack sm) n)
Ack sm sn

For the Ack,, case, we may project the appropriate component of recs. Looking at
ack,, in more detail, the nested right-hand side translates by call and refurn to

Co

7ack,: Am N
Arecs : (Vn:N. Ack m n) x (NAuUX ... m)
o N
Arecs': (Ack sm n) x (NAux (Ack sm) n)
?rec; : ACK smn
Trecy : ACk m (call recy)
return (callrecy)

recy is solved from recs’ and rec, is solved from recs. The definition is complete.

We can build quite complex structures with multiple eliminations by guarded
recursion—more even than lexicographic recursion on a number of argument posi-
tions. For example, we may define a function on lists of trees which at each recursion
replaces the head tree by its subtrees—some steps may make the list longer, but the

decomposition of the head tree guarantees termination.

The question of how to extend the class of recognisable pattern matching programs
into this more exotic territory is an important and interesting one. Much attention has
already been paid to the simply typed case, for example, in Manoury and Simonot’s
‘ProPre’ [MS94] system. Further, Cristina Cornes has equipped COQ with a substantial
package translating equational programs with relatively interesting recursive structure

into constructor guarded fixpoint expressions [Cor97].

Further investigation is beyond the scope of this thesis. However, I shall nonetheless
write such equational programs in the following chapter, since they are shorter and
clearer than their expanded versions where each recursion has its own subfunction.
When I do so, I shall always be careful to point out the justification, imagining that we

are deriving the function interactively.
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Chapter 7

Some Programs and Proofs

We have now developed substantial technology for constructing dependently typed
functional programs, and also for reasoning about them. Let us now put that technology

to work.

In the course of this chapter, I offer some examples which I believe illustrate the ad-
vantages afforded by working with more informative types. We shall see new versions
of old programs which are tidier and easier to prove correct. We shall see applications
of our elimination rule technology which aid program discovery as well as verification.

Hopefully, we shall see sense.

Later, I shall focus on the manipulation of syntax as a programming domain which
shows off to great effect the expressive power of dependent pattern matching. In par-
ticular, I shall construct and prove correct a first-order unification algorithm which has

the novel merit of being structurally recursive.

7.1 concrete categories, functors and monads

In the examples which follow, we shall examine methods of working with syntax via
dependently typed functional programming. The behaviour of the functions we shall
develop fits neatly into a categorical treatment, so it is worthwhile building some tools

for packaging these functions and their properties categorically.

We shall not need any particularly heavy category theory, which is just as well, as far
as I am concerned. For a substantial formalisation of category theory, see [SH95]. In
fact, we may restrict our attention to concrete categories—those whose objects can
be interpreted as a family of types and whose arrows can be interpreted as functions

between types in the family.
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7.1.1 records for categories

So, what shall we say is a category?

The idea is not that objects are types and arrows functions, but that both are data which
can be interpreted as such. Imagine we are modelling a programming language cate-
gorically: we might have OLEG datatypes representing the types and functions of that
language, together with translations which model those types and functions as OLEG
types and functions. Those datatypes give us the objects and arrows of a concrete

category, and the translations their interpretations.

Let us fix the types of objects and arrows.

O : Type
—: 0 = O — Type

Now, let us define a record type Concrete to contain the things we must supply to

have a meaningful category:

1:¥5:0.5— S
oVR,5,T:0.(§—T) - (R—S) = (R—T)
[[]:0 — Type
[[]:¥S, T:0.(S—T) — [S] — [T]
Respl:vS: 0. Vs:[S]. [ts] s ~s
RespC:VR,S, T:0.Vf:S — T.Vg:R — S.Vr:[R]. [fogl r~ [f] ([g] r)

I think it is safe to overload [-]. Confusion between the interpretations of objects and

arrows will not arise in these examples.

Saunders MacLane [Mac71] defines a concrete category to be a category equipped
with a faithful functor into Set. That is, the interpretations must not only preserve
identity and composition, but must also embed the objects and arrows in Set. I have
given no such condition. It begs the question ‘what is the appropriate equality on

objects and arrows?’.

In type theory, as in marriage, fidelity comes down to the way you see things. OLEG’s
intensional equality is too discriminating to be useful here. I propose to consider two
arrows the same if their interpretations are extensionally equal: interpretations are thus
trivially faithful. Consequently, it makes little sense to consider the category sepa-
rately from the functor which interprets it—the functor properties are how we know
the category has the traditional absorption and associativity laws with respect to this

extensional notion of equality.
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Correspondingly, if f, ¢ : S ~— T, let us make the abbreviation

fr~g = Vs:[S]. [fl s~ [g] s
The usual absorption and associtivity properties

forxf
LOg%g
(Fog)oh~folgoh)

all follow by reflexivity.

Discharging the parameters, we have our notion of category. I shall typically write
Concrete —

to mean a category for a given notion of arrow, leaving the object type implicit.

For any type family Fam : O — Type, we may define

b d

Fam = XS, T:O0.FamS — FamT : O — O — Type

We may easily define an operation [-] on such families such that

—_

[Fam] : Concrete Fam

with objects interpreted via Fam and arrows, identity and composition as themselves.
This is the usual notion of functions between types in a family, represented within our

defined class of category.

In particular, if we let Type be the identity function on Zype, then [Type] is the category
of OLEG types.

As a special case, we may pretend any type T is a 1-indexed type family and manufac-
ture the one-object category [T of its endofunctions.

We will encounter categories whose arrows are not represented directly as OLEG func-
—

tions. A rather glib example is the Concrete N whose arrows live in N (actually,
T — T — N, but never mind), with n interpreted as plus n. The identity is O, the
composition is PIlUs, and hence the property that interpretation respects composition is

just associativity.
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7.1.2 records for functors

A functor takes objects and arrows from one category to objects and arrows of another,
preserving identity and composition. We can certainly write these requirements down

as a parameterised record.

Let us fix source and target categories, then open them:

O’ : Type

—* 0 = O° = Type
C’°: Concrete —*
O Type

—t O = O — Type
C': Concrete -t

C*[%; 0% 1% [1° s Respl’; RespC?| C'[it; of; [1°; ] ; Respl’; RespC']

Relative to these, let us define a record type Functor with fields

Fo:0° — O
Fa:...(§—*T) — (FoS) —! (FOoT)
PresEq:....f~ ¢ — Faf ~ Fag
Presl....Fa 1§ ~ i
PresC:...Fa (fo* g) ~ (Faf)o! (Fag)

Note that I have left out some human-inferrable universal quantifiers for the sake of

readability.

The extra condition—preservation of extensional equality of arrows—is necessary. Itis
possible for two extensionally equal source arrows to be distinguished computationally,
and hence mapped to different arrows in the target category, unless we expressly forbid
it.

Of course, when writing functor types, I shall suppress all the details and just leave
Functor C* C".

By way of example, every polymorphic! type family has an associated functor. It
would be nice if these were manufactured automatically. I shall outline the functor for
maybe.

lin the ML sense
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maybeF : Functor [Type| [Type]

maybeF = ( Fo =maybe
Fa=\S, T:Type. \f:S — T. Ax:maybe S.
X
yess | yes (fs)
NnoS |NOT
PreskEq= ...
Presl= ...
PresC= ... )

This functor just lifts functions to their exception-propagating images. I use a ‘table’
notation for case expressions: the column heading x indicates what is being analysed,
underneath it are the patterns, and to the right are the corresponding return values—
this notation is easily interpreted by pattern matching. The three remaining fields may
easily be proven by inverting FQ, ie case analysis on the maybe-typed argument

implicit in the extensional equations.

Finally, one irritating aspect of intensional type theory is that we may have to work
with several implementations of, extensionally speaking, the same function. Suppose
we have another candidate FQ' for the arrow part FQ of a given functor, with the same
type and extensional behaviour. It would be really annoying if we had to redo the
proofs of the properties for the functor with FQ replaced by FQ', but fortunately, we

may make this argument once and for all.

The point is that the functor properties concern only the extensional behaviour of FQ,
so we may construct a function sdsmeFunctor which takes our source functor, Fo
and a proof that FQ and FQ' have the same extension, returning the functor with Fa' on
arrows and all the same properties. I shall not give the details here—they amount only

to unremarkable rewriting.

7.1.3 records for ‘concrete’ monads

The formalisation of monads I shall give is a ‘concrete’ version of the Kleisli triple
presentation due to Manes [Man76], which he showed equivalent to the convention

definition [Mac71] by an endofunctor 7" with natural transformations 7 and .

DEFINITION: Kleisli triple

A Kleisli triple (7', 7, ()* on a category C'is given by

2( is pronounced ‘bind’.
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e a function 7" from C-objects to C'-objects

e an object-indexed family of morphisms n € C(X,TX), interpreting

the elements of X in its 7-image
e a family of functions (, indexed by a pair of objects X, Y, from
C(X,TY)to C(TX,TY)
satisfying the equations
e =id
e (flon =f
e (f) o) = (H)o(g()

The Kleisli category arising from such a structure has the same objects
as C, and X to Y arrows given by the C'(X,TY"). n gives each object its

identity, and the composition ¢ is
fog = fleg

Consequently, no- gives a functor from C'to the Kleisli category, and - gives a functor
from the Kleisli category to the image of C' under 7. The composition of the two is

thus a functor which does 7" to objects.

The presentation of monads given below is based on the idea of a functor which is split

into 7 o - (below ))-) and - (.

Given two concrete categories and a functor, we may describe what it means to be a
concrete monad which splits that functor. Let us keep the same target and source

categories opened as above and fix further
F: Functor C* C*

Let us open F with the names given by the fields.

A concrete monad splitting F captures a class of ‘diagonal arrows’, S \, T (S, T : O%),
which are interpreted in [S]* — [FO T]". These will be the arrows of the Kleisli
category, and they must be equipped with a notion of composition ¢ which behaves

under interpretation like the composition in the Kleisli category.

Think of the maybeF functor, viewing yes as packaging data and NO as representing

an error condition. Arrows in the source category are ‘reliable’ functions acting on
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actual data; arrows in the target category are ‘error-aware’ functions—they may han-
dle errors or create them. The functor takes reliable functions to ‘error-propagating’
functions—they will give actual output for actual input and transmit error conditions.
A ‘diagonal arrow’ is an unreliable function—it accepts actual data, but may result in
an error. A monad splitting MaybeF characterises a class of these unreliable functions
such that

e cvery reliable function f has an unreliable image (which just packages the output
with yes) given by )f

iff: S — Tthen )f: S — maybeT

e every unreliable function g in the class has an error-aware image (which propa-

gates input errors, but may make new output errors) given by g

ifg: S — maybe T then g( : maybe S — maybe T

e the combination )f( does the same thing to source arrows as maybeF

if f: S — T then )f( : maybe S — maybe T
More formally, let us fix the carrier type for diagonal arrows
N O = O — Type

and collect the relevant details in a record type Monad with fields

i (S—=°T) — SN/ T

{e..(S\.T) — (FoS) —! (FOT)

0. (SNUT) = (RN.S) —» (RN\/T)

[I:-- - (SNT) — [S]° — [T]'
Monadl:... [A]" ([):] s)

MonadC:.. . [fog] r~ [A]" ([g] 7)
split.... )f( ~ Faf
FrontEq:...f~¢ — )f = g
FrontC:...)(fo* g) =~ ()f) ¢ ()g)
BackEQ:.

BackC:.. (fog){ ~ () o (()

This may look like a lot of stuff, but remember that the diagonal arrows might not
be represented functionally—they might be something really concrete like association
lists. The operations )-, - and ¢ should be viewed as syntactic. We have to ensure that
they have the right semantics. Of course, if they are just functions and their interpreta-

tion is application, then this is very easy to do.
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The maybeF functor has trivial functional representations of arrows source and target.
For the corresponding maybeM : Monad maybefF, we take the diagonal arrow
type to be S — maybe T and the interpretation as application. ))- just composes yes

on the back of its argument whilst -( is defined by case analysis:

fl (yess) =fs
fl (noS)=noT

Composition is defined in accordance with the requirement on its interpretation:

(fog)r = fl (g7)

As for the properties
e Monadl, MonadC and FrontC hold by reflexivity.
e Split and BackC hold by case analysis then reflexivity.
e FrontEQ holds, rewriting by the premise.

e BackEQ holds by case analysis, then reflexivity in the NO case and rewriting by
the premise in the yes case.

There is a function which constructs the (concrete) Kleisli category for a given concrete
monad.

Kleisli : Monad \, — Concrete \

The Concrete so constructed has operations:

g = g
of = o
S]* = [Fos]'

Observe
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12]" s (definition of /*)
{

[)
~ [Deg(]" s (definition of [-]")
~ [Fawi] s (Split)
t
~ [[LEFO S)H s (Presl)
~ s (Respl")

, (definition of o*)
a0 r (definition of [-]")
t (g< ]]t 7 (BackC)
[g(I')  (RespCh

~[1° (s°r)  (definition of []°)

7.2 substitution for the untyped \-calculus

In this section, I shall develop the technology to give a monadic [Man76, Mog91] pre-
sentation of substitution for terms with binding—in particular, the untyped A-calculus
with de Bruijn indices [deB72]. Bellegarde and Hook [BH94] suggest the following
datatype, which Altenkirch and Reus [AR99] describe as ‘heterogeneous’, and Bird
and Paterson [BP99] describe as ‘nested’.

X : Type
Lam X : Type
x: X s,t:lam X t: Lam (maybe X)
varx:LlamX appst:LamX lamt: Lam X

This datatype relativises terms to an arbitrary type of variables.? It can be defined in
SML, but recursion over it is necessarily polymorphic and hence unavailable. However,
Haskell now allows functions over such datatypes, so long as their types are supplied

explicitly.

In such languages, terms may not appear in types—this apartheid policy is advisable
because the terms often engage in such criminal activities as nontermination. Hence, if
we want to make some kind of indexed family, the indices must themselves be types.
This presentation works by using maybe as a kind of type-level S, corresponding
to the idea that there is some number of variables and that abstraction introduces one

more. Also, Lam @ is a type of closed terms. However, this hacked-up type-level

3In fact, our scheme of definitions restricts the variable type to inhabit a smaller universe than the
terms over it.
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N has only introduction rules: no computation on indices is available. Fortunately,

substitution is structural on terms.
We need no such Group Areas Act. In our system, terms are as trustworthy as types.

We can use the N God invented, and then fin to make sets of variables.

n:N
Lam n : Type

x:finn s,t:Lammn t:Lamsn
varx:Llamn appst:Llamn  lamt:Lammn

Lam n is the type of A-terms with # free variables. Later, we shall see operations on

syntax which are made structural by the availability of recursion on this index.

Placing these types in our categorical setting, we have

[fin] : Concrete fin

b d

[Lam] : Concrete Lam

The objects in these categories are elements of N, interpreted via fin and Lam respec-
tively. The arrows are function spaces interpreted by application. Hence we effectively

abbreviate:

m—In —= finm — finn
m—Ltn —= Lamm — Lamn

In this section, we shall be looking to build a functor
Rename : Functor [fin] [Lam]

which, for every arrow on a variable space in [fin], gives us the operation on terms from
[Lam] over those variables renaming them as indicated. The object part of the functor

is just the identity on N.. We may then view functions in the type
mN\n = finm — Lamn

as simultaneous substitutions from m variables to terms over n variables and seek a

monadic implementation
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SubstM : Monad Rename

Note that Rename is not an endofunctor, as in the conventinal notion of monad, but
we can still think of splitting it in a monadic way. The consequent Kleisli category will
thus interpret substitutions as functions from terms over one set of variables to terms

over another.

Before we can work with terms, we need some basic tools for working with variables

in the de Bruijn style.

7.2.1 lift, thin and thick

de Bruijn’s insight was to see a variable not just as an indentifier, but as a reference to a
binding. Variable indices count outwards through the A-bindings, O for the most local,

1 for the next and so on. For example,
M. Ax. fx becomes A1 0

Every time we go under a binder, the new variable is 0 and the old ones get incre-

mented. We may represent this distinction by the constructors of the fin family.

Now, suppose we have a renaming—an arrow f : m ~—/ n. In order to apply such a
renaming across a term, we must explain what to do with the expanded variable space
under a lam—it must affect only the free variables embedded by fS, leaving the newly

bound fz variable alone.

f . sm—7sn
f (fzm) = fzn
f (fsx) = fs(fx)

This is a recognisable program.

Discharging over arbitrary n, m and f, we obtain the functional lift which takes any

such fto the appropriate f. I suppress the boring arguments when I apply it.

lift : Vi, n:N.VF:finm — finn. finsm — finsn

ittf (fzm) = fzn
ittf (fsx) = fs(fx)

lift gives us the arrow part of the functor
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Liff : Functor [fin] [fin]

Lift = ( Fo=s
Fa =lift
Preskq= ...
Presl= ...
PresC= ... )

There is a recursion induction principle for lift which we may regard as generated
automatically from its equational definition. liff is not a recursive function, so it is

perhaps more informative to call it an inversion principle liffinv:

m,n: N
fm—'n
® : finsm — finsn — Type

® (fzm) (fzn) @ (fsx) (fs (fx))

Vx:finsm. ® x|lift fx

The three functor properties left elliptic above follow easily by inversion. I shall show

PresC and leave the other two to your imagination.

Co

?PresC: Vr,s,t: N

Vf sl t
Vg r—ts
: fin sr

lift (fo @) x ~ lift f|lift g x

Inverting the boxed liff application, we acquire two subgoals

Co

?PresC,: vr,s, t: N

i cs—t
Vg r—'s
Vx  :finsr

lift (fo g) (fzr) ~lift f(fzs)
?PresC :vr,s,t: N

i cs— t
Vg r—ls
Vx finr

lift (fo @) (s x) = lift £ (fs (g x))
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The two conclusions then reduce respectively to

fzt~fzt
fs (f(gx)) =fs (f(gx))

As you can see, these are both reflexive.

We can use liff to define an important class of renamings—the thinnings. These add
a new variable to the set, but not necessarily at the top.* If there are 7 old variables,
there are Sn choices for the new variable x. thin x is the renaming which shuffles the

old variables in around the new one, without changing their order.

The idea is, morally:

thinxy = y,ify <x
y+1ify >x

In particular, thinxy # x.

Now, if the new variable is fz n1, then thinning is just the fS embedding. Otherwise, it is

a liffed thinning!

thin: vn:N.finsn — (n—7 sn)
ie

thin: vn:N.finsn — finn — finsn
thin (fzn) = fs,
thin  (fsx) = lift (thinx)

Thinning provides us with an alternative view of finsn. Every variable is either the new
one, x, or an embedded old one, thin x y for some y : fin n. We may imagine a partial

inverse to thin which makes the distinction, with the following extensional behaviour:

thick : Vn:N. finsn — finsn — maybe (finn)

thick x (thinxy) yesy
thick x X no (finn)

~
~

thick is a refinement of the decidable equality for the finite sets—it not only tells us
whether two elements differ, but also in what way.

We can get some help writing thick if we try to prove the above pair of equational laws
(for a common abstracted x) by recursion induction on thin, as defined in the obvious

way. We thus seek:

#“Thinning’ is a liquid metaphor.
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o

7thick :vVn N
Vx,y: finsn
maybe (fin n)
7thick;: N
:finsn
Ythick,: Vy: finn

thick x (| m y) ~yesy
thick x x ~ no (fin n)

The abstraction of x outside both equations allows them to be transformed simultane-
ously. The induction yields subgoals:

Co

?thick :vn :N
Vx,y: finsn
maybe (fin n)
7thick,,: Vn N
Ythick,: Vy: finn
thick (fzn) (fsy) ~yesy
thick (fzn) (fzn) ~ no (fin n)
7thick;,: Vn :N

Vx :finsn
i finn — finsn
Vhyp : Xthick,: Vy: finn

thick x (fy) ~yesy
thick x x ~ no (fin n)
sthicky: Yy fin sn
thick (fsx)|lift fy |~ yesy
thick (fs x) (fs x) ~ no (fin sn)

We now know how to thick at fz n. We can gain further information about the fs case

by inverting the liff. Allowing that we can do this inside the -binding by appropriate
algebraic manipulation, we obtain
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o

7thick;,: Vn :N
Vx :finsn
vf finn — finsn
Vhyp - Xthick,: Yy: finn
thick x (fy) ~yesy
thick x x ~ no (fin n)
Ythick,: Lthick,: thick (fs x) (fzsn) ~ yes (fzn)
Yy finn
thick (fs x) (fs (fy)) ~ yes (fsy)
thick (fs x) (fs x) ~ no (fin sn)

Stripping away the excess notation, we have certainly found the base cases to our

function:
thick (fzn) (fzn) = no(finn)
thick (fzn) (fsy) = yesy

thick (fsx) (fzsn) yes (fz n)

We have also found out some useful information about the step case. It must satisfy:

Vy:finn. thick x (fy) ~ yesy
A thick x x ~ no (fin n)
Vy:fin n. thick (fs x) (fs (fy)) ~ yes (fs y)
A thick (fs x) (fs x) ~ no (fin sn)

Effectively, each branch of the conclusion propagates the result of the corresponding
recursive call: yes stays yes and NO stays NO°. That is, the recursive value is passed

on by the appropriate monadic lifting )fs, (. Hence the whole program is

thick (fzn) (fzn) = no (finn)

thick (fzn) (fsy) = yesy

thick (fsx) (fzsn) = vyes(fzn)

thick (fsx) (fsy) = )fs,( (thickxy)

By construction, this satisfies the three base case equations and reduces the step case

to

Vy:finn. thick x (fy) ~yesy
A thick x x ~ no (fin n)
Vy:finn. fs,( (thickx (fy)) ~yes (fsy)
A s, ( (thick x x) ~ no (fin sn)

SMatthew 5:37
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This holds by rewriting the conclusions with the hypotheses. The desired extensional
introduction rules have thus been satisfied. The corresponding non-computational in-

version rule, thickInv, is the real prize:

n:N
x:finsn
® : finsn — maybe (finn) — Type

® x (no (finn)) @ (thinxy) (yesy)
Vy:finsn. ® y|thick x y

thickinv tells us that there are two possible outcomes from thick and under what
circumstances they arise. Fixing ‘new variable’ x, then any y is either x (in which case
thick returns NO) or an ‘old variable’ thinned (in which case thick identifies it). It is
a very useful rule, because it effectively performs a constructor case analysis on the

output of the function. We will see just why this is so helpful later on.

Can you guess how we prove this rule? That’s right: by thiCk’s recursion induction
principle, making sure to keep ¢ in the scheme, so that any inductive hypotheses are

themselves elimination rules. We start with

o

?thickinv: V{n]: N
Vx]: finsn
Vo :finsn — maybe (finn) — Type
Von: @ x (no (finn))
Voy: Vy:finn
@ (thinx y) (yesy)
Vy :finsn
¢ y|thick xy

I have indicated by boxing how the recursion induction scheme is abstracted. We
acquire three base subgoals, corresponding to the base cases of the function, and their
conclusions all follow directly from ¢, (off the diagonal) or ¢, (for x = y = (fz n)).
It is on the step subgoal where you should concentrate any remaining interest you can

muster.
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o

thickinv,:vVn N

Vx,y: finsn
vy :maybe (fin n)
Vhyp: V@ : finsn — maybe (finn) — Tiype

Von: @ x (NoO (finn))

Voy: Vy: finsn

@ (thinxy) (yesy)
Qyy

Vo :finssn — maybe (finsn) — Tiype
Vo, @ (fsx) (no (finsn))

Voy :Vy:finsn
@ (thin (fsx) y) (yesy)
Vy :finsn

® (fs[y]) (Msu{ [v']

We are not yet in a position to use either ¢, or ¢y, because we do not yet know which

applies. In the conclusion, the computation is blocked at the point where )fs,{ is
applied to ¥/, the result of the recursive call, not yet in constructor form. However,
case analysis on the result of the recursive call is exactly the effect of the inductive
hypothesis. Eliminating with the indicated scheme, we obtain:

£
7thicklinv,g,: {:«\)

Vou: @ (fsx) (no (fin sn))

Co

@ (fsx) ()fs,{ (no (finn)))
7thickinvg,:
Voy: Vy: finsn
@ (thin (fsx) y) (yesy)

Co

vz :finn
® (fs (thinx z)) ()fs,( (yesz))

The lifted fs now reduces, propagating the two cases correctly. Both conclusions now

follow from the indicated hypotheses. The elimination rule holds.

In fact, the way the inductive step was proven shows us how this rule is useful in the
wider setting. Applying this rule unblocks computations which are waiting to do case
analysis on the result of a call to Thick, and these are very common. For example, we

may define the following function:
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[+ ] :Vn:N.Vx:finsn. Vt:Lamn. (sn \, n)

thick x y
x—=tly = no (finn) | t
yesy' | vary

[- — -] (pronounced ‘knockout’) generates a substitution (function from variables to
terms) which removes x, replacing it by a term f over the ‘remaining variables’. A
source variable y other than x, ie a (thin x y'), is mapped to the i’ given by removing

x from the variable set without reordering the others.

When proving properties of [- — -], we will see it reduce to the case analysis on thick.
At this point, elimination by thicklnv has exactly the effect required to unblock the
computation. We are interested in what comes out of ThiCk, so the more conventional

elimination of what goes in is a clumsy way to proceed.

Now that we have the tools to work with variables, let us turn our attention to terms.

7.2.2 the substitution monad splits the renaming functor

We have already decided that the object part of the functor Rename is just the identity
on N. It is also fairly clear that a renaming becomes a substitution just by composing
var on the back, ie

M x = var (fx)

Hence var is the identity for substitution.

The remaining programming consists of the arrow part of Rename and the -( opera-
tion of SUbstM—the effect on terms.

It is fairly clear that we shall have
fl (varx) = fx (a monad law)

|
A (appst) = app (f s) (] 1)

It is not so clear how to push funder a binder. We need something like

.f<| (lamt) = lam (f(| t)
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where f is the lifting of f which takes the source bound variable to (a reference to) the

target bound variable, and whose behaviour on the free variables respects that of f.

Now, we have already defined lift to lift renamings. How do we lift substitutions? The
bound/free case analysis on the source variable is easy enough. We know what to do
with the bound variable, otherwise the case analysis also tells us which ‘old’ variable
f should be applied to. The latter yields a term over the old variables, which must
then be renamed to the free variables in the target set. Now, we know that the variable

renaming is just fs,, but we need this lifted to terms. That is, we need something like

slift f(fzm) = var (fzn)
slift f(fsx) = )fs,{ (fx)

However, it is -( which we are trying to define, and applying it recursively to the result

of fis not structural.

One solution is to define the renaming FQ operation in advance—we already know how

to lift renamings:

Fa f(varx) = var(fx)
Faf(appst) = app (Fafs) (Faft)
Faf(lamt) = lam (Fa (lift f) ¢)

Once we have this, we can define sliff with Fa fs, for )fs, (, leaving us free to define -

in terms of it.

As Altenkirch and Reus point out, this involves writing two very similar functions
over terms, where one nonstructural function would do. Of course, the nonstructural
function saves three lines of code at the expense of a well-founded induction on an
ordering which they must exhibit and prove satisfactory. They suggest that, turning a
blind eye to the proof obligations, the nonstructural function is preferable, expressing
the vague hope that the carpet under which they are sweeping the actual work will one

day become magic.

As it happens, no carpets are necessary, magic or otherwise. -( and FQ can be imple-
mented with a single structurally recursive function, provided it is made sufficiently

parametric. Suppose that for some type family T we have a function
f:finm — Tn

We can map this function across terms, provided we know
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e how to convert foutput from T 7 to terms Lam n
e how to represent variables in T n

e how to lift functions between fin sets and T sets

We already know how to do these things when T is fin, so we have renaming—we can

then build the three operations for use when T is A:. .

In fact, we will have an easier time proving the monadic behaviour of substitution if we
take this opportunity to generalise lifting from inserting new variables at fZ to inserting
them anywhere—thick and thin make this just as easy to implement. We only ever

use thick on variables, so the ‘how to lift’ requirement becomes ‘how to thin’.

The goal is

Co

AT N — Type
T :Vn:N.finn — Tn
AN Lam:Vn:N. Tn — Lamn
MhinT:Vn:N.Vx:finsn.Tn — Tsn
?map: Vm,n: N

Vf  :finm — Tn

vt lamm

Lamn

Subject to these parameters, we may first build lifting for T from the thinning parame-

ter:

liftT : Vm, n:N. Vx:finsm. Vx':finsn. Vf:finm — Tn.finsm — Tsn
thick x y
iftTxx' Fy = | no (finm) | vT '

yesy' thinT x' (fy')

x is the ‘new’ source variable and x’ is the corresponding target variable. The lifted

function uses thick to distinguish new from old, and either embeds x’ via vt or thins

the result of fwith thinT.

The MAp function may now be written

map f(varx) = TLam (fx)

map f(appst) = app (Map fs) (Map ft)

map f(lamt) = lam (map (liffT (fzm) (fzn) f) t)
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Once the parameters are discharged, we may take:

Fa = map fin ./ var thin
thinL, x = Fa (thinx)
- = map Lam var . thinL

Note that the notion of lifting used in renaming
liftT fin ./ var thin (fzm) (fzn)

is extensionally the same as the lift function we defined earlier. This follows easily by
inverting the ThiCk contained in liffT. It therefore inherits all the same functor properties
via sameFunctor.

Our task is now to plug these into the relevant functor and monad. I am afraid to say
that a little forward planning at this point will pay dividends later. I will motivate it
as best I can. Both Functor and Monad require the extensional equality of arrows
to be respected: conditions which will apply to both FO and -({. Since these are both
implemented by Map, it is worth proving this property for maAp while the parameters

are still abstracted. The goal is

Co

?mapkq: Vm, n: N
vi,g:finm — Tn
Vhyp - Vx: finm
fx~gx
:Lamm
map (MG g

You will, I hope, be unsurprised to learn that the technique I recommend is recursion
induction on MAP. Either map will do—I have chosen the second. Three subgoals,

one at a time:

Co

’mapkq,: Vm,n: N
vi,g:finm — Tn

Vhyp : Vx: finm
fx~gx
Vx finm

TLam (fx) ~ TLam (9 x)
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Rewrite by hyp. Next . ..

Co

’mapkq,: Vm,n: N
vi,g :finm — Tn

Vhyp :Vx:finm
fx~gx

Vs, t :Lamm

vs' t':Lamn

Vshyp:Vf :finm — Tn

Vhyp: Vx: finm
fx~gx

map fs~s'

Vthyp: ®

app (map fs) (map ft) ~app s’ '

If we plug hyp into shyp, we can turn (MAP fs) into s'. The same thing happens with
(map ft). In fact, all the inductive proofs (implicitly) on Lam we shall encounter
in this thesis have an QPP case whose proof is ‘rewrite by the inductive hypotheses’.

From now on, I shall omit them.

Of course, the real interest is in the laM case:

Co

?mapkq;: Vm,n: N
vf,g :finm — Tn
Vhyp :Vx:finm
fx~gx
vVt :Lamsm
vt Lamsn
Vthyp:Vf :finsm — Tsn
Vhyp: Vx: fin sm
fx ~|iftT (fzm) (fzn) gx
map ft~t
lam (map (liftT (fzm) (fzn) Ht) ~lam ¢

Now, equation respects function application, so we may strip off those As. The conclu-

sion is now
map (liftT (fzn) (fzm) £ t ~ ¢

and this is ripe for the inductive hypothesis, leaving us with
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o

Phyp': Vx: fin sm
T (f2m) (fzn) Fx = iftT (=2 m) (2 n) gx

Expanding liftT, we find this is really

Co

Phyp’: Vx: finsm

thick (fz m) x thick (fzm) x
no (finm) | vT (fzn) =| no (finm) |oT (fzn)
yesy thinT (fzn) (fy) yesy thinT (fzn) (9y)

The computation is blocked by the two thick applications, but we know how to invert
them. Indeed, since they have the same arguments, we may invert them simultaneously.
Of course, in this instance, a case analysis on x would have the same effect, but that is
only because we are thickening at (fzn), and we know how thick is implemented—we

want the effect of inversion, so we do inversion. We are left with two cases:

Co

?case,,: vT (fzn) ~ vT (fzn)
Tcase,: Vy: finn
thinT (fzn) (fy) ~ thinT (fzn) (9y)

The first is reflexive; the second becomes so after rewriting with hyp. We have proven
MAPEQ and may now discharge the parameters.

Let us prove that renaming is functorial—we have already supplied FO and Fa. It

remains to prove the properties. PresEqQ is just a special case of mapEQ.

The Presl property gives us the goal

Co

?Presl: Vm: N
YVt :Lamm
Faul t~t

Here, at last, my devotion to recursion induction comes unstuck. The trouble is
twofold:

e The scheme for MAP recursion induction is abstracted over different source and
target objects and here they are unified. The elimination tactic will supply a

constraint to resolve this, but it is a little clumsy.

206



e The scheme is abstracted over an arbitrary renaming, but we are concerned with
a very particular one. Again the tactic will give us a constraint—that the function
is intensionally equal to /. We will only have extensional equality, so the proof

will not go through.

There is still much work to do to come to an understanding of the correct manipulation
of constraints for this kind of inductive proof. In the meantime, let us do structural

induction on ¢! The var and QPP cases are easy.’ Here is lam:

Co

?Presl;: vm N
vt :Lamsm
Vthyp: FQ i, t ~t
lam (Fa (iftT. .. (fzm) (fzm) i) t) ~ lam ¢

We may introduce the hypotheses and strip off the Iams. This leaves us with ...~ ¢.
The inductive hypothesis looks a bit like that, so let us try transitivity (or rewriting
backwards).

Co

?Presl: Fa (IiftT. .. (fzm) (fzm) ) t ~Fal,, t

Now we get a bonus for proving MAPEQ in advance. The goal asks us to show that
two renamings do the same thing to a term ¢. If we apply mapEQ, it is enough to show

that they agree at every variable:

Co

?same: Vx: fin sm
ftT. .. (fzm) (fzm) oy x ~ i, x

But liftT. .. (fzm) (fz m) has the same functor properties as lift, including preservation
of identity—exactly the goal here.

Next, PresC:

o

?PresC: Vt,r,s: N
Vf  is—lt
Vg r—ls
:Lamr
Fa (fo/ g)x~Fa flFagx

Trust me, I'm doing the proof as I write this.
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Recursion induction is once more our friend. Eliminating the boxed application, we
again find easy var and Qpp cases. The lam case is very similar to that in the previous

proof:

Co

?PresC;: Vt,r,s: N
Vi sl t
Vg r—ts
Vx :lLamsr
vx'  :lLamss
Vhyp :Vt:N
Vf ss 7 ¢
Fa (fo/ (liffT...g)) x ~Fa fx'
lam (Fa (liftT. .. (fo/ 9)) x) ~lam (Fa (liftT... f) x')

Once again, strip the lams, apply transitivity with the inductive hypothesis on the right,
and then mapkEQ, leaving:

Co

?PresC;: Vx: fin sr
liftT... (fof g) x ~IiftT.. f(liffT...gx)

Quelle surprise! The property that the lifting functor preserves composition! Renaming

is a functor!

Now let us turn to showing that substitution is monadic. We have already supplied |-
(composition with var) and -(. Since the representation of \ is functional, we inter-
pret these arrows by application. We may also supply directly the Kleisli ¢ demanded
by MonadC:

fogx = f| (g mx)

Monadl reduces to reflexivity and MonadC is true by construction. FrontEQ fol-
lows because var respects equality whilst BQCKEQ is an instance of mapEq. FrontC
is reflexive. Only Split and BackC require any real work.

Split says
7Split: Vi, n: N
v m—'n
vt| :Lamm

M t~[Faft]

208



We can prove this with exactly the same plan as before. Recursion induction leaves

easy var and app cases. The lam case reduces by the same strategy as before to

o

7Split;: Vx: fin sm
liftT. .. thinL (fz m) (fzn) ()f) x ~ var (liffT...thin (fzm) (fzn) fx)

That is, composing var and lifting must commute. Both liftTs, on expansion, are
blocked at (thick (fz m) x). Inverting thick leaves two trivial subgoals.

BackC starts the same way:

Co

?BackC: Vr,s,t: N
Vi s N\t
Vg r\s
Lamr
(fog){ x~ ] |9{ x

But after the usual story, the lam case is reduced to

Co

?BackC;: Vx: fin sr
liftT... (fo g) x = IiftT... f(liffT... gx)

This says that lifting for substitutions must respect composition—we only know this
result for renamings. We can boil the goal down a little further by expanding the outer
liffTs and inverting their blocked thicks. This give us two cases: one for the newly
bound variable, just a reflexive equation, indicating that it is correctly propagated by

lifting; the other, for the free variables, is still awkward.

Co

?BackC;: Vx: finr
thinL (fz¢)(f| (gx)) ~ (liffT... f){ (thinL (fzs) (gx))

This is a special case of the last lemma we need to prove—a crucial fact about the

relationship between thinning and substitution:
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Co

?thinSubst: Vi, n: N

Vx :finsm
Vx'  :finsn
Vi cmN\yn
v :Lam m

thinLx' [/ t|~ (IfT... xx' A (thinLx )

That is, substituting then thinning has the same effect as thining first, then applying the

lifted substitution.

There is no point inventing a new proof plan when an old one will do. var and App
are easy as before. Modulo the need to switch between a liftTed thin and a liffed thin
(ie another thin), we can again reduce the |lOm case to an equation involving blocked

liffTs which we simplify by inversion, leaving us with the free variable case:

o

?thinSubst;: Vy: fin m
thinL (fs x') (thinL (fzn) (fy)) ~ thinL (fzsn) (thinLx' (fy))

Now fhinL is just renaming via thin, so what we really have is

o

?thinSubst;: Vy: fin m
Fa (lift (thinx’)) (Fa (fs,) (fy)) ~ Fa (fss,) (Fa (thinx’) (fy))

We may rewrite both sides by the property that renaming preserves composition (back-

wards):

o

?thinSubst;: Vy: fin m
Fa ((liff (thin x")) o/ fs,) (fy) ~ Fa (fss, o/ (thinx")) (fy)

But all the lift does is shuffle fs through (thin x”). The two sides of the equation are

intensionally the same. We have proven that substitution is monadic.

7.3 a correct first-order unification algorithm

This is the main example of dependently typed functional programming in this thesis.
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I propose to study unification for ‘trees with holes’. The algorithm is a variation on the
theme which goes back to Alan Robinson [Rob65]. It is the program implementing the
algorithm which is new, and which benefits from the dependent type system in a way
which is just not available in the simply typed world, even with the remarkable higher-
order polymorphic extensions which are becoming available in the more upmarket sorts
of programming language. Here we shall make critical use of the fact that our types

depend on data—real data with elimination as well as introduction rules.

Just as with Lam, let us represent variables via fin, but since trees have no binding, we

may fix the number of variables as a parameter of the type.

e formation rule
n:N
freen : Type
e constructors

x:finn s,t:treen
varx:treen leaof,:freen  forkst:treen

e climination rule
n: N
o :treen — Type

® (varx) @leaf, ¢ (forkst)

t:freen| ot

We may construct the renaming functor and substitution monad for tree following
much the same path as for Lam, but without the work required to cope with binding.
For this section, let us have

m—tn = treem — treen
m\n = finm — treen
Rename : Functor [fin] [tree]
SubstM : Monad Rename
SubstK = Kleisli SubstM

Within this framework, we may equip substitutions with the preorder induced by prior

composition:
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fog < g

The task of unifying some s, t : tree m is to find (an #n and) an arrow f: m \, n such
that

if any exists, and in particular, to find one which is maximal with respect to the above

ordering.

Unification is thus an optimisation problem, and it is worth spending a little time think-

ing about such problems in general, before proceeding with this particular example.

7.3.1 optimistic optimisation

Unification is just one example of a problem involving optimisation with respect to a
conjunction of constraints. I should like to draw your attention to a particular class of
constraint which makes such problems vulnerable to a reassuringly naive technique—

optimism.

That is, we begin by guessing that the optimum is the best thing we can think of. Then,
as we encounter each constraint in turn, we continue to think the best that it allows,
reducing our current guess by only so much as is necessary. Once we have worked our
way through all the constraints, it is to be hoped that our final guess, however battered

by bitter experience, is genuinely optimal.

This hope holds true if each constraint has the property that once a solution has been
found, anything smaller remains a solution. Let us call such constraints downward-
closed, or closed for short. This property of constraints gives the underlying rationale
to the transformation of recursive optimisation algorithms which relativises them to
an accumulating solution—a technique which has already found its way into the auto-

mated synthesis of (parts of) a unification algorithm in [ASG99].

We can give a record type characterising such properties for arrows ordered by compo-
sition. Fixing a category and a source object S, we may represent a closed constraint

on S out-arrows as inhabitants of the record type Closed S with fields:

Why:VT. (S — T) — Type
ClosedEq:VT.Vf,g:S — T.f~ g — Whyf — Why g
Closure:vT.vg:S — T.Why g — VU.Vf.T — U.Why fo g
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Note the extra condition that the constraint must not distinguish extensionally equal
arrows. This is the price of allowing functional representations of arrows in intensional

type theory.

We may further define what it means to be maximal with respect to such a constraint.
Fixing and opening a Closed S record, and also fixing a target T and an arrow f: S —

T, we may collect the relevant conditions in a record Maximal f with fields:

Holds:Why f
Factors:vU.Vg:S — U.Whyg — Yh: T— U.g~ hof

That is, f must be a solution, and every other solution g must be smaller than f, with a
witness h such that g ~ hof. We may easily prove that maximality respects extensional

equality of arrows.

Next, let us define an operator which conjoins closed constraints.

AND : VS. VP, Q:Closed S. Closed S

AND (Why = P; ClosedEq = PEg; Closure = PCI)
(Why = Q; ClosedEq = QEg; Closure = QCI)
= (Why = AT. M. (P )x(Qf);...)

The proofs of the properties are unremarkable.

The optimistic strategy at each constraint P extends an accumulated guess g by enough
of an f that PWhy fo g holds. We may regard this as effectively constraining the
witnesses f to the existence of solutions to P bounded by g. The constraint on f is

closed provided P is. Let us therefore construct an operator

Bound: VS, T.vg:S — T.Closed S — Closed T

Bound g (Why = P; ClosedEq = PEg; Closure = PCI)
=(Why=AU.AN.T— U Pfog,...)

Again, the properties are easily proven.
We are now ready to prove the optimist’s lemma:

Co

?Optimist: VR, S, T : O
VclP, clQ: Closed R

Vg :R—S
VgMax :Maximal P g
i :S—T

VfMax :Maximal (Bound gP) f
Maximal (AND P Q) (fo g)
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This is the key step in the correctness proof for the optimistic strategy. It tells us that a
conjunction (AND P Q) may be optimised by extending the optimum g for P with just
enough fto satisfy Q. The proof is not very difficult, which is one of the reasons why
I like it.

First, let us unpack the definitions by the elimination rules for the argument records

and introduce the hypotheses:

AR,S,T :0O

AP :

APEq

APCI

AQ

AQEq

AQCI

AQ :R— S

AgHolds :P g

AgFactors : YU : O
Vk :R— U
VPk: P k
Yh:S—U

k=~ ho g
A :S5—T

MgHolds : Qfog
MgFactors: YU : O
vk S—U
VQkg: Qko g
h :T—U
k~hof
?max : Maximal (AND P Q) (fo 9)

We may also attack the goal with the introduction rules for records and implications:

£
?Pfg:Pfog
7Qfe: Qfog

AU 0O

Ak :R—U
APk : Pk
AQk : Qk

h :T—U
?kEq: k=~ ho (fo Q)
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Now, Q fo g is already known to hold, and P fo g follows by PCI from gHolds, so
we have certainly found a solution to the composite problem. It remains to show the
optimality by expressing the hypothetical solution k as some h o fo g.

The proof successively exploits the optimality of the solution to each subproblem.

Firstly, we use gFactors to acquire for some h' : § — U
k~Hhog

By QEg, we now know that Q 1’ o g, hence fgFactors gives us an h : T — U with
h ~ hof

We supply this h as the witness, for we have
k~hogw (hoflfog ~ ho(foQ)

as required.

Note that the proof does not make use of QCI. In effect, we can optimise with respect
to a collection of constraints all but one of which are downward-closed, as long as we

address the non-closed constraint last—it is not a freedom we shall need.

The Optimist lemma allows us to solve a complex closed constraint by recursively
decomposing it into an equivalent conjuction of simpler closed constraints, each of
which we address in turn, accumulating the solution. Accordingly, we shall need a

book equivalence on closed constraints

Equiv : VS. Closed S — Closed S — Type

Equiv(Why =P;...) (Why =0Q;...)
=VT.Vf:S—T.(Pf— QNHx(Qf — P

together with a proof EQUiVMaX that for equivalent constraints an arrow maximising
one also maximises the other—this is easy.

Lots of algorithms follow the optimistic strategy, from finding the largest element of a
nonempty list of numbers to principal type inference for ML. Let us see how it works

for unification.
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7.3.2 optimistic unification

A unifier for s, t : freem is a substitution f: m \, n subject to the constraint (s~ f{ t.
We may thus consider the computation of most general unifiers to be an optimisation
problem over the Kleisli category SubstK induced by the substitution monad. Fortu-

nately for us, the constraint is downward-closed. We may construct

Unifiess t : Closed m

Unifiesst = (Why = An. Af fls~ ft...)

The two properties are easily proven. Extensional equality of arrows in SUbStK means
exactly that they have the same effect on terms. Downwards closure follows from the
fact that the interpretation of arrows in the Kleisli category—substitution—respects

composition.

It is easy to provide the justification for the structural decomposition of rigid-rigid

problems:

Equiv (Unifies (fork s, t;) (fork sy ts))
(AND (Unifies sy so) (Unifies £ t5))

We may represent out-arrows from m by a dependent pair
fromm = Yn:N.m\n
We might well guess that the type of the unification algorithm should be

MQgu : Vm. Vs, t:free m. maybe (from m)

The adoption of the optimist strategy means defining MQgu in terms of a subfunction

IbMQgu computing unifiers which are most general relative to an accumulated bound.
bbmgu : Vm. Vs, t:free m. fromm — maybe (from m)

The identity substitution is the biggest substitution in the composition ordering, so we
take

mgu,, st = bmgust (m;)
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Note that for any given s and ¢ this function is an arrow in the Kleisli category of
the maybe monad—we already know how to propagate unification failures correctly.
This suggests a functional definition of bmgu, with the rigid-rigid cases given by:

bmgu leaf,, leaf,, = Af.yesf
bmgu leaf,, (forkst) = Af.no (fromm)
bmgu  (forkst leaf,, = Af.no (fromm)

bmgu (forks; t;) (forksyty) = (bmgut; ts) o (bmgus; ss)

So far, this is structural on terms. The trouble comes once we encounter a variable.
How do we unify a variable with a tree, relative to a nontrivial bounding guess g?
The traditional approach is to unload the accumulator g, and we may easily prove the
lemma Unload

Equiv  (Bound g (Unifiesst)) (Unifies g(s g(t)

Unfortunately, applying the substitution blows up the terms, so the corresponding re-
cursive program is not structural. This is where you might think we need to impose
an external termination ordering or accessibility argument which exploits the fact that,
although the substitutions blow up the terms, they do get rid of variables. In fact, this

is not the case.

7.3.3 dependent types to the rescue

Incidentally, I have just noticed that Augustsson and Carlsson’s paper [AC99] also

contains a section with this title—I expect it to become traditional.

Now, we certainly need to exploit the property that the accumulated substitution gets
rid of variables as it blows up terms. Every development of unification in the literature’
does this externally to the program, by means of a more or less ad hoc termination
ordering. This invariably requires an auxiliary function to count the distinct variables
in a term and an auxiliary lemma which relates the value of this function before and

after a substitution subject to the occur check.

That is to say, a vital component of the sense made by the unification algorithm has
been absent from every one of its implementations until now—understandably, because

the data structures which manifest that sense have not been available until now. The

7or at least those which care about termination
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point is that by explaining terms as built over a finite context of variables, we have
equipped them with exactly the natural recursive behaviour which we need. To count
the number of variables in a term is to make a posterior phenomenon of what is, at
least to structural linguists [Saul6], a prior requirement for the terms to be considered
meaningful. The number of variables has finally arrived where it belongs—in the fype

of terms.

Look again at the type of bmgu:
bbmgu : Vm. Vs, t:free m. fromm — maybe (from m)

This entitles us to proceed not only by structural recursion on trees, but also by struc-
tural recursion on m. I cannot stress too strongly that it is the indexing of types with
terms which allows this. Parametric polymorphism is not enough, because we cannot
compute on types. There are structural forms of computation available in our depen-

dently typed setting which just cannot be found in simply typed languages.

The recursive structure I therefore suggest is lexicographic, first on m and then on s. If
we are unifying trees over Sm variables, we are entitled to make recursive calls for any

trees over m variables, however large.

Of course, the number of variables must not merely be decreasing—it must do so
in a structural way, one at a time if we are to avoid further appeals to well-founded
recursion. We have already seen how to define a substitution which gets rid of a single
variable via the [- — -] function. Here it is again:

[+ ] : Vn:N. Vx:finsn. Vt:tree n. (sn \ n)

thick x y
x—tly = no (finn) | t
yesy | vary

[- — -] can easily be shown to have extensional behaviour (or, thinking relationally,

introduction rules):

x—=tlx~t [x—t(thinxy) ~vary

These follow directly from the established extensional behaviour of thick. The corre-
sponding inversion rule, knockoutlny, follows from thickinv:
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knockoutinv

m: N

x : finsm

t:freem

¢ finsm — treem — Type

dxt O (thinxy) (vary)
Qylx—tly

If our accumulator is a composition of [- — -|s, we may apply it one step at a time
whenever we reach a variable. In fact, this is not merely a structural way to do unifica-
tion, but also quite an efficient one. Of course, we must constrain the accumulator to
take this form, and the easiest way to do this means abandoning our functional repre-

sentation of substitution in favour of a more concrete ‘association list’ treatment.

Let us then define the following datatype

e formation rule M, n N
alistm n : Type
e constructors x:finsm t:freem @g:dlistmn
anil, : alistnn aconsxtg:alistsmn

This datatype is a combination of a conventional association list and the > relation.
It is definable in ALF, COQ and OLEG, but not in Agda or Cayenne because of its

nonlinear base constructor type.

We may equip it with

e a composition which behaves like append for association lists and transitivity for

>
1 anil = f
fi(aconsxtg) = aconsxt(fig)

e an interpretation via [- — -] into SUbStK

anil€4 =
(aconsxtf) 4« = (f4)o[x— 1]

Correspondingly, we may manufacture a concrete category AList : Concrete alist
with
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[[m(ﬁ : ’}Lree m
[gl=9g«(

There is trivially a functor from AList to SulbstK which does « to arrows, because the

interpretations of arrows in source and target are the same.

It is amongst the arrows of AList that I propose we search for unifiers, although we
should still show that any most general fcomputed yields a most general f < in SUbStK.
Correspondingly, let us take

fromm = Yn:N.adlistmn

and define
bbmgu : Vm. Vs, t:free m. fromm — maybe (from m)
MQgu : Vm. Vs, t:free m. maybe (from m)

mgust = bmgus t anil

We now have all we need to outline a structurally recursive defininition of bmgui,

deferring the treatment of the base cases:

220



bmgu,, leaf,, leaf,, = yesf
bmgu,, leaf,, (fork s t) = no (fromm)
= no (fromm)

bmgum (fOI’k S1 tl) (fork 59 t2)

f

f

bmgu,, (forkst) leaf,, f
f

(M. bmgu,, t; £, (| (lbmgu,, s; s2

f)
bmgu,,  (varx) (vary) f =

f
anil yes (FlexFlex x y)

aconszr g | )(Extendzr)(
(omgu,, [z = rl{ (varx) [z — r]{ (vary) g)

bmgu,,  (varx) leafy, f =
f
anil FlexRigid x leafs,
aconszr g | h(Extendzr)(
(lomgu,, [z — r]{ (varx) [z — r]{ledf, 9)

bmgu,,  (varx) (forkst) f =
f
anil FlexRigid x (fork s t)
aconszr g | )(Extendzr)(
(lomgu,, [z — r]{ (varx) [z — 7]{ (forkst) g)

and the symmetric cases . . .

where
Extendzr (n;9) = (n;aconszr g)

and )Extend z r( is its failure-propagating image.

7.3.4 correctness of mgu

In the spirit of refinement, let us now reduce correctness of the unification algorithm to
correctness of FlexFlex and FlexRigid. We have not yet defined the latter, but we can

motivate the definition by seeing where we get stuck.

Here is the specification of M@u in the form of an inversion principle mgulnv:
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mgulnv

m:N
s,t: treem @ : maybe (fromm) — Type

f:alistmn
NoUnifiers ¢ Maximal (Unifiess t) (f <)
® (no (from m)) ® (yes (n; 1))
¢ (MQust)

where
NoUnifierst = Vn.Vf:m N\ n. f(s &£ f{t

We can prove mgulnv from an inversion principle bmgulnv for bmgu:

bmgulnv

m:N
s, t:treem
® : fromm — maybe (fromm) — Type

f:alistmn
g:alistmn g:alistnn
NoUnifier g «€(s g «(t Maximal (Bound (f «) (Unifiess t)) (g <)

® (n; 1) (no (fromm)) ® (n;f) (yes (n'; gif))

Vi:fromm. @ f(bmgust )

The proof simply expands MQgu in terms of a call to bmgu which is then inverted.
This leaves bmgulnv subgoals with g instantiated to anil. Recall that anil « is just
1. The properties of AList and SubstK then reduce these subgoals to those of mguinv.

The interesting work is proving bmgulnv. Of course, like all our other proofs of
non-computational rules by recursion induction, the proof is by recursion induction on
bmMgu keeping ¢ universally quantified. In the subgoals involving variables, let us
also follow the program and do case analysis on the accumulated substitution. We may

classify the subgoals as follows

e rigid-rigid off-diagonal (also known as ‘conflict’)
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Here we are trying to unify leaf with fork s t. bmgu returns NO, so we must
apply the NO case. This leaves us proving

o

?leafFork:Vn :N

Vg :alistmn
Vbad: g 4(leaf ~ g «( (fork s t)
1

Fortunately, reducing -( pushes the substitution under the constructors, leaving
us with a hypothesis

bad : leaof ~fork g «€(s g «(t
The goal can thus be proven by the unification tactic from chapter 5.

rigid-rigid on-diagonal (also known as ‘injectivity’)

Correctness for leaf with ledf is very easy.

As for (fork s; ;) and (fork s, t5), the computation reduces the goal conclusion
to

® f((Af.bmgu,, ti ¢, f){ (bmgu,, s s 1))

If my propaganda has worked, you should now expect me to use the inductive
hypotheses to invert the recursive calls. I shall not disappoint you. This leaves
us with four subgoals.

In three of them, the unification has failed somewhere and the ultimate value is
NO—the inversion will give us a proof of NoUnifier s; t; for some i. We may

use this to show that the original forks have no unifier.
Otherwise, we have substitutions h and g, together with proofs of

TS

AgMax: Maximal (Bound (f «) (Unifiess; s3)) (g <)
AhMax: Maximal (Bound ((gif) <€) (Unifiest, t5)) (h <)

Unification has returned (hfg)if and applying the yes case leaves us trying to

prove.
?goal: Maximal (Bound (f «) (Unifies (fork's, t,) (fork s, t2))) ((hig) <€)

By EqQuivMax with Unload, followed by structural decomposition and
AlList.RespC this becomes
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o

?goal: Maximal (AND (Unifies f «(s; f«(s1)
(Unifies f «(t, f4(t2)) (h <) ¢ (g <))

Applying Optimist, we acquire two subgoals

o

?goal ;- Maximal (Unifies f «(s1 f«(s1) (g <)
7goal, : Maximal (Bound (g «) (Unifies f «(t, f«4(t3)) (h <)

In the former, Unload backwards lets us move fout as a bound, giving us a goal
which follows immediately from gMax. In the latter, we may shuffle the bound

inside, then apply composition laws to get
7goal, : Maximal (Unifies (gif) «(t, (gif) «(t2)) (h <)

Now, pulling out the composition as a bound, we reduce the goal to hMax.

e flexible cases with aconszr g

All of these work the same way. We have some
bmgust (n;aconszr g)

where either s or £ is a variable. This reduces to
VExtend z r( (obmgu [z — 7]s [z +— 7]t Q)

Inverting the recursive call with the inductive hypothesis, we find one of two
things

- NoUnifier g «{([z — 7](s) g «{([z — 7]{)
and we must prove
NoUnifier (aconszr g) «(s (aconszr g) «(t

But (Qconsz r g) < is just (g «) ¢ [z — 7], so it is just a question of
pushing -( through the composition.

- h such that Maximal (Bound (g <) (Unifies [z — r]s [z — 1]t)) (h «)

and we must prove
Maximal (Bound ((aconszr g) «) (Unifiess t)) (h <)

The proof is easy bound shuffling and composition hacking.
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o flex-flex base case

The computation of

lomgu (var x) (vary) anil
has reduced to

yes (FlexFlex x y)

We may safely presume a yes answer, because we are in either the ‘identity’
or the ‘coalescence’ situation, according as x equals i or not. Hence, we must

choose the yes case in the proof, leaving us with the obligation
?¢oal: Maximal (Bound ¢ (Unifies (var x) (vary))) ((FlexFlex x y) «)
We may easily remove the trivial bound, yielding
?goal: Maximal (Unifies (var x) (vary)) ((FlexFlex x y) <)
Since we have not yet implemented FlexFlex, we can go no further with the
proof. Let us export this goal as the specification of FlexFlex.
o flex-rigid base cases

For these five subgoals, we are trying to unify var x with some ¢ which is not a
variable. We may collect them all together in the following rule, expressing the

latter as a side condition:

m:N

x : finsm

t:treesm

notVar : Vy:finsm.t &£ vary

¢ : fromsm — maybe (fromsm) — Type

f:alistmn

g:alistnn

Maximal
g:alistmn (Bound (f «) (Unifies (varx) t))
NoUnifierg €« x g «(¢ (g <€
® (n; @) (no (fromm)) © (n;f) (ves (n'; gif)

¢ anil (FlexRigid x t)
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We could regard this as an inversion rule specification for FlexRigid, but it is still
a little too general. For example, the hypotheses of the rule each have arbitrary
accumulators, but we know the accumulator is Anil. Once we have made the
accumulator Anil everywhere, we no longer need to let it vary in the scheme. Let

us tidy up a little.

m: N

x: finsm

t:freesm

notVar : Vy:finsm.t £ vary

¢ : maybe (fromsm) — Type

g:alistnn
NouUnifier (var x) ¢ Maximal (Unifies (var x) t) (g <)
® (no (fromm)) ® (yes (n; 9))
o (FlexRigid x t)

The tidy version proves the untidy version because the tidy hypotheses are spe-
cial cases of the untidy ones, modulo some equational reasoning. Let us take this
as the specification of FlexRigid.

We have proven correctness of unification, contingent on correct implementation of
FlexFlex and FlexRigid. You may have noticed that we did not have to unwrap any of
the Maximals in the above proof—we merely showed that the most general unifiers
computed in the base cases were correctly propagated. It is in FlexFlex and FlexRigid
that we create the substitutions and where we shall have to do real work proving max-
imality. In order to achieve this, we must come to an understanding of variable occur-

rence.

But even now, we have seen enough to know that our unification algorithm is terminat-

ing of its own accord.

7.3.5 what substitution tells us about the occurs check

In conventional presentations of unification, the occurs check is a boolean decision,
and its role in ensuring termination is external to the program. For us, though, the
situation is somewhat different—what is to happen if there is no occurrence of (var x)

in some rigid t with which it is to be unified? We do not just substitute ¢ itself for x.
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We must make manifest in the program the elimination of x by computing the image
of t in the syntax with one fewer variable—t' such that

Mhinx( ¢ ~t
If we can find such a t, then
[x — 1]

is a most general unifier for (vVar x) and ¢. Let us prove this lemma, as we shall need it

several times.

o

?Knockout: Vm: N
Vx : fin sm
vt :treem
Maximal (Unifies (var x) (pthinx(t')) [x — #|

Now, at last, we must do some real work. Introducing the Maximal record:

Co

Tholds : [x — t'|{| (varx) ~ [x — t'|( (pthin x( t')
*factors: Vn N
Vi ism N\ n
Vhyp: f( (var x) ~ £ (pthin x{t')
g :m—n
fegox—t]

Taking holds first, notice that the left-hand side is just [x — #]x, which we can rewrite
by the ‘introduction rules’ to #'. Observe that the right-hand side is a composition of

substitutions. After a little monadic tinkering, we obtain

Co

Pholds’: it ~ ([x s ] o Jthin x){ #

This says that two substitutions have the same behaviour at an arbitrary tree . By
BackEq, it is enough to prove that they behave the same at variables.

Co

?holds": Vy: fin m
bey~([x — t'] o )thinx) y

227



Reducing, we obtain

o

?holds’: Vy: fin m
vary ~[x — '] (thin x y)

Again, this follows by the established extensional behaviour of |- — -|.

We have found a unifier—Ilet us now show that any other unifier factors through it.

Introducing the assumptions and the pair:

Co

N

A ismN\yn

Ahyp: £ (varx) ~ £ (pthin x(t')
79 tmNn

fac : fra golx ]

Let us try to prove fac first, hoping to shed some light on g. This goal also comes down

to checking that the two substitutions agree at all variables:

fac’: Yy finsm

fy~g{|lx—t]y

Predictably, the next step is to invert the blocked computation with knockoutinv:

Co

fac,: fx~ gt
*fac,: Vy: ﬂn. m
f(thinxy) ~ gy
The latter subgoal gives us a big clue. We can prove it by taking

g = \y:finm. f(thinxy)

We must now prove fac, . A little monadic massage shows g is extensionally the same

as the composition

fo pthin x
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Making the replacement,
fac’: fx ~ (fo hthinx)(#
Unwinding the composition reduces this goal to hyp.

This is progress indeed, for all the nontrivial substitutions generated by FlexFlex or
FlexRigid will be most general unifiers by this lemma. Indeed, we are now in a posi-
tion to write FlexFlex:

FlexFlex : Vm. Vx,y:fin sm. from sm

thick x y
FlexFlexxy = | no (finm) | (sm;anil)
yesy' (m;acons x (vary') anil)

Recall that to establish correctness, we must prove

Co

?FlexFleX,4.: Vm : N
Vx,y: finsm
Maximal (Unifies (var x) (vary)) ((FlexFlex x y) <)

Since FlexFlex is defined with thick, it is verified by thicklnv, leaving two cases

Co

?FlexFlex,,: Vm: N
Vx : fin sm
Maximal (Unifies (var x) (var x)) (anil «)
’FlexFlex,: Ym: N
Vx : finsm
Vy :finm
Maximal (Unifies (var x) (var (thinx y))) ((acons x (var y) anil) «)

For the former, recall that Anil « is the identity substitution—this clearly unifies two
equal variables, and equally clearly, every other unifier factors through it. For the latter,

interpreting the association list and tidying, we get

Co

?FlexFlex;: Vm: N
Vx : fin sm
Vy :finm
Maximal (Unifies (var x) (Jthinx( (vary))) [x — vary]
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This follows from Knockout.

The role thick plays in FlexFlex is to attempt to compute the image of i in the variable
set with x removed. If this succeeds, we manufacture the corresponding knockout. If

it fails, that is because y is x and the identity substitution will do.

The analogous role in FlexRigid is played by the occurs check, seen as an attempt to
compute the appropriate ‘thickened’ tree for use in a knockout—this will fail exactly
in the case of an offending occurrence. Correspondingly, the occurs check is no longer
a boolean decision—it provides us with the witness which explains why it is safe to

substitute. More sense has appeared in the program! The type of the occur check is
check : Vm. Vx:fin sm. Vt:free sm. maybe (free m)

Its inversion rule should be something like:

m: N
x: finsm
® : tfreesm — maybe (freem) — Type

Occursx t

® (pthinx(¢t) (yest) &t (no (tree m))
Vt:free sm. &t (Check x t)

where OcCcurs is some useful means of characterising when x occurs in £.

In other words, check x is the partial inverse of )thin x(. Hence we will implement
check x by pushing thick x through trees, with any NO at a variable causing a NO
overall. However, before we can really work with the occurs check, we must formalise

the notion of occurrence.

7.3.6 positions

The idea of pattern matching is to explain decomposition by inverting construction,
and I was exposed to it at such an early age that it simply refuses to wear off. We
have already seen NEQ in terms of duplication and thick in terms of thin. Since
searching for an occurrence is a kind of decomposition, I cannot help asking what the

corresponding construction might be.
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Let us therefore identify the operation which makes an occurrence—the operation
which puts something at a given position. In order to do this, we shall need to rep-

resent positions within a tree.

Every datatype T has an allied datatype of positions or ‘one-hole contexts’ within el-
ements of T, together with an operation which puts a T in the hole. Huet gives a
beautiful construction of ‘zipper’ types which code up one-hole contexts as paths from
the hole back to the root of the term, recording the contents of other side-branches on
the way. We may equivalently, and slightly more conveniently for our purposes, re-
verse the direction and code up paths from the root to the hole. Let us therefore define

the parameterised datatype OS n of positions within # :

. n: N
e formation rule posn: N
there : pOSn t:treen

here, : pos n left theret : pOSn

e constructors

s:treen there: pPOSn
right s there : POS n

The constructors may be interpreted as directions for finding the position from the root,
respectively ‘stop here’, ‘go left” and ‘go right’. Consequently, the function which

puts a term at a position is
.- Qoes : Vn. Vthere: pos n. Vit:free n. free n

Allow me to break with convention and write gOes postfix—its definition is:

here it goes = it
(left theret) it gQoes =  fork (thereit goes)t
(right s there) it Qoes =  forks (there it goes)

In particular, we may now describe a term containing VAr x as
where (VAr x) goes

In order to reason about positions, it will be useful to have some other apparatus.
Indeed, we may consider gO€s to interpret POS n as the arrows of a category with
one object interpreted as tree n. here is the identity. Let us therefore define the
composition, which, in the spirit of the piece, I shall write as an infix operator called
then:
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then : Vn. Vthere, where:p0OS n. POS n

here then where =  where
(left theret) then where = left (there then where) t
(right s there) then where = rights (there then where)

The definition of gOes ensures the correct interpretation of here. An easy recursion

induction proves the correct interpretation of then:
(where then there) it gOes ~ where (there it gOEs) gOes

By the way, datatypes (eg list, N) with a single and constant base constructor (eg Nil,
0) and linear step constructors (eg CONS, S) are isomorphic to their own position types.
The goes and then operations are the same (eg append, plus). This may account

for their peculiarly regular behaviour.

Returning to our tree syntax, we shall also need to push substitutions through posi-

tions. Overloading slightly:

A :Vm,n.Vf:m \ n.posm — pPosn

f( here,, = here,
f (left there t)  left (£ there) (f(t)
f{ (right s there) right (fs) (f( there)

Recursion induction on this operation gives us a proof of Coherence:
f( (there it QOes) ~ (f{ there) (f( it) goes

Now, in order to prove that occurs check failure causes unification failure, we shall

need to show that the only position at which we may find a term inside itself is here:

Co

’NoCycle:Vn :N
Vit  :treen
Vthere: POS n
Vhyp :it ~ there it gO€s
there ~ here

We have seen a similar theorem before. The proof goes by induction on if, then case
analysis on there. A lot of impossible cases are removed by unification—there are
obviously no left or right positions within var x or leaf. The only real work to be
done is when there is not here and it is a fork. There are two such cases, one much

like the other, so I shall just give the proof for fork and left:
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o,

’NoCycle,;:vn  :N
Vs, t,r:freen
VsHyp: Vthere: pOS n
Vhyp : s~ theres Joes
there ~ here

VtHyp: Q:b

Vthere : POS n
Vhyp :forkst~ (left therer) (fork s t) goes
there ~ here

The trick is to rotate the cycle. Reducing goes, hyp becomes
fork s t ~ fork (there (fork s t) goes) r

Unification identifies t and r and tells us that
s ~ there (fork s t) goes

Now, if we are careful, we can turn this into a cycle in s and apply the relevant inductive

hypothesis. Our categorical tools allow us to rewrite the above equation to
s ~ (there then (left here t)) s goes

The inductive hypothesis sHyp now tells us that
(there then (left here t)) ~ here

This is manifest nonsense, but we need to make a constructor appear at the head on
the left-hand side to reveal the conflict. That is to say, a further case analysis on there,

accompanied by the unification tactic, completes the proof.

We are now in a position to fill in the last component of the unification algorithm.

7.3.7 check and FlexRigid

As suggested earlier, the check function pushes thick through a tree.

check x (vary) = |var,((thickxy)
check x ledof,, = ledf,
checkxs | checkxt
check x (forkst) = yess yest | yes (forks't)
yess no (freen) | no (tree n)
no (free n) t no (tree n)
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Now that we know how to talk about positions, we can give this function a better

inversion principle, checkinv:

checklinv

m: N
x: finsm

O : tfreesm — maybe (freem) — Type

O (pthinx(t) (yest) @ (where (var x) goes) (no (tree m))

Vt:freesm. & t (Check x f)

The proof, which I omit, is by recursion induction and inversion of the blocked com-

putations.

Now let us define FlexRigid:

checkxt
FlexRigidxt = yest yes (m;acons x t' anil)
no (tree m) | no (from sm)

We must show that this function satisfies its specification:

Co

?FlexRigid,

Vm N
Vx :finsm
vt :free sm
VnotVar: Vy: fin sm
t Zvary
Vo :maybe (fromsm) — Type

Vo,  :Vocc: NoUnifier (var x) ¢
® (no (from sm))
Vo, :vn N
vf  :alistmn
VfMax: Maximal (Unifies (var x) t) (f <)
® yes (n; 1)
® (FlexRigid x f)

This we prove by expanding FlexRigid and inverting check x ¢, leaving two cases.

The first is
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o
*FlexRigid,:

vVt :freem
Vo : maybe (fromsm) — Type
Voy:Vn o =N
Vi :adlistmn
VfMax: Maximal (Unifies (var x) )thin x(t) (f <)
d yes (n; 1)

o (yes (m;acons x t anil)

Introducing the hypotheses, refining by ¢, and unpacking the association list, we are

left proving

Co

?FlexRigid, : Maximal (Unifies (var x) Jthin x(t) [x — t]

This follows by the Knockout lemma.

Meanwhile, the other case of the inversion is

o
?FlexRigid,,: Q

VYwhere : POS Sm

VnotVar: Vy: fin sm
where (Var x) goes £ vary

Vo :maybe (fromsm) — Type

Vo,  :Vocc: NoUnifier (var x) (where (var x) goes)
® (no (from sm))

® (no (from sm))

This time, introducing the hypotheses, refining by ¢, and expanding NoUnifier leaves

Co

?FlexRigid,: Vn : N

Vi csm N\ n
Vbad: f( (var x) ~ f{ (where (var x) goes)
1

By Coherence, we may push f through goes, telling us
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fx ~ (f| where) (fx) goes
NoCycle now tells us that
where ~ here
reducing notVar to
Vy.varx 3 vary

from which we may easily prove the goal.

7.3.8 comment

This verification of a unification is another in a long line of such developments. From
Zohar Manna and Richard Waldinger’s pioneering hand-synthesis [MW&1], through
Lawrence Paulson’s machine verification in LCF [Pau85] to the more recent work in
diverse proof systems [Coen92, Rou92, Jau97, Bove99], all have faced the same inher-
ent problem of explaining a program which simply does not make the sense its maker

intended.

Critical to the correctness of the unification algorithm is the relativisation of terms to
their context of variables. Such relativised data structures occur naturally in dependent
type systems. Unification has always been structurally recursive—it is just that the
structure could not be made data until the right types came along. Now they have, and

that is something to be pleased about, and to be vocal about.

There are three delicate aspects of unification which must be handled somehow in

every treatment, and they are not entirely independent:

e the termination of the algorithm

e the propagation of a unifier computed for one part of a problem through the rest

of the problem

e the failure of unification due to failure of the occur check

The termination issue has, over the years, been separated from partial correctness with
increasing panache and aplomb, but the technique standard in the literature is well-

founded recursion over an ad hoc ordering. Manna and Waldinger [MW81] are sensible
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enough to leave the choice of this ordering until they have extracted the conditions it

must satisfy:

‘We have deferred the choice of an ordering <,,, to satisfy the ordering
conditions we have accumulated during the proof. The choice of this or-
dering is not so well-motivated formally as the other steps of this deriva-

tion.’

The necessary ordering combines lexicographically the size of the variable set and the
structure of the problem—the different treatments manifest this in slightly different
ways. Paulson [Pau85] points out that he works rather harder than he would like to,
motivating the desire for ‘an LCF package for well-founded induction’ in order to

emulate Manna and Waldinger’s paper development more closely.

Implementations of what would otherwise be generally recursive programs in type
theory necessarily involve computation over the proof of termination. Different strate-
gies exist to minimise the impact of this unwelcome intrusion of proof into program.
Joseph Rouyer [Rou92] manages to confine the logical component to the outermost
well-founded recursion on the number of variables, the inner recursion on terms being

purely structural.

Ana Bove moves the goalposts in a pleasingly systematic way [Bove99]. Her ALF
program does its recursion over the proof of an accessibility relation constructed almost
directly from the Haskell program she wishes to import—the arguments to the program
become the indices of the relation. A single induction over this relation thus splits into
cases corresponding to the left-hand sides of the original program, while the exposed
sub-proofs give exactly the recursive calls. Of course, she still has to prove that all the
elements are accessible by well-founded lexicographic induction, but by packaging this
complicated induction into a single relation, she has not only supported the program
but also effectively acquired ipso facto its recursion induction principle—useful for

proving its properties.

Of course, my program does a similar lexicographic recursion, but it is internalised in
the data structures. I avoid an appeal to well-founded recursion on < for the number
of variables by unloading the accumulated substitutions incrementally, which is not
unreasonable as they are built incrementally, and which incidentally enables me to

delay them until they become critical.

It might perhaps be interesting to consider how much more trouble it would be to use

a normalised representation of substitution, applied all at once. However, normalising
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substitutions is, in any case, computationally quite expensive.

Manna and Waldinger work rather hard to synthesise the accumulation of a unifier
across a list of subproblems. The idempotence of the unifier plays a pivotal role. Paul-
son’s proof is apparently simpler, but he is unforthcoming about the ‘occasional ugly
steps’. Coen [Coen92] describes this problem as the only awkward aspect of partial

correctness.

The ‘optimistic’ treatment of accumulators makes this problem rather easier to deal
with—introducing the accumulator as an extra parameter effectively strengthens the
inductive hypotheses for the subproblems in exactly the necessary manner. Armando,
Smaill and Green’s automated synthesis manages to profit from this without excessive
prompting [ASG99]. Bove also exploits an accumulating parameter with the same
benefit. As I have shown, it is a natural technique to employ when the order with

respect to which we seek an optimum is induced by some notion of composition.

As for showing there is no unifier when the occur check fails, my treatment is morally
the same as Manna and Waldinger’s, packaged slightly more categorically. It is also
slightly more concrete. The use of the datatype of positions and its attendant opera-
tions, together with Thin, means that the inversion of the occur check instantiates the
investigated term with patterns capturing the relevant information, rather than present-
ing it propositionally. However, the position datatype comes into play only in the proof,

not in the program, so in this case, there is not much to choose between the two.

Nonetheless, we may one day want a unification algorithm which augments the failure
response with diagnostic information, so that a PhD student desperate for cash can have
an easier time finding the type errors in an undergraduate’s ML program. At this point,
a concrete representation of positions becomes a must. The type of check could just

as easily have been
check : vn.finsn — treesn — treen+ possn

returning a witness in the case of failure. A treatment of positions is hardly wasted.
Furthermore, as Huet points out [Hue97], there is no reason why the construction of

position apparatus should not be automated for arbitrary datatypes.

Finally, I would like to comment on two ‘packaging’ aspects of the development of
unification in this thesis. Firstly, the monadic treatment both of failure-propagation
and of substitution itself seems to present the necessary equipment in a useful and

orderly way.

Secondly, the use of inversion and recursion induction principles to capture the be-
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haviour of components lent such a regularity and tangibility to the components of the
correctness proof that I believe I have given substantial credence to the methodology
of capturing ‘leverage’ in this way. Recall, for example, how the inversion of the occur
check not only exposed the information pertinent to the two possibilities but performed
the consequent rewriting, allowing still further progress by computation. Further, the
whole effect was triggered by asking a single high-level question about a program

component

‘what can have happened in that occur check?’
rather than a low-level question about data

‘what values can that maybe (tree n) have?’

We have been able to stare at unification without going blind.
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Chapter 8

Conclusion

What are the contributions of this thesis?

Firstly, and somewhat tangentially, it introduced OLEG, a type theory with holes which

has two advantages:

e separation of partial constructions from the core computational terms in such a
way that the partial constructions—where the holes live—behave well enough to

have the replacement property

e internalisation of the account of the holes within the judgments of the theory,

allowing the state of a theorem prover to be represented exactly by a valid context

Of course, relative to systems which explain holes with the aid of explicit substitution,
it has the disadvantage of forbidding certain interactions between holes and computa-
tion. For the work presented here, this has not troubled us at all. Admittedly, this has
not involved the kind of higher-order problem for which the banned interactions might

help.

On the other hand, the resemblance to Miller’s ‘mixed prefix’ [Mil92] treatment is
strong enough to suggest that his brand of higher-order unification might be feasible.
He too handles the interaction between holes and computation by ‘raising’ the holes to
the functionality required to ensure that the computation happens entirely within their
scope. Nonetheless, deeper exploration is needed before we can say that OLEG is a
suitable basis for sophisticated theorem proving. It is, however, an effective basis for

the tactics and mechanised constructions on which the main work of the thesis depends.

That work was to build object-level support for pattern matching on dependent

types in a conventional type theory extended with uniqueness of identity proofs. It
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closes the problem opened by Thierry Coquand as to the status of pattern matching
[Coq92, CS93] as implemented in ALF [Mag94]: it demonstrates that uniqueness of
identity proofs is sufficient to support pattern matching where the unification underpin-
ning case analysis is for first-order constructor forms—this is the unification suggested
by Coquand and implemented in ALF. The necessity was shown by Hofmann and Stre-
icher [HoS94, Hof95].

In the course of that demonstration, I used a new ‘John Major’ formulation of proposi-
tional equality. This allows elements of different types to aspire to equality, but ensures
that they are only freated equally if they come from the same type. John Major equal-
ity is equivalent to Martin-Lof equality, but considerably more convenient in practice.
It facilitates the expression of unification problems over sequences of terms involving

type dependency, without requiring any dependency in the equations.

Consequently, I was able to extend the object-level first-order unification algorithm
presented for simply typed constructor forms in my MSc work [McB96] to the de-
pendently typed case. The necessary ‘no confusion’ and ‘no cycle’ theorems for each
family of types can be constructed automatically in a uniform way. This is the object-
level unification required to support pattern matching, and it shows that the need for

uniqueness of identity proofs is no idle coincidence.

However, following the famous dictum of Marx and Engels, it is not enough merely
to show that dependently typed pattern matching can be given meaning in an almost
conventional type theory—the point is to show that it is good for something. I hope I
have successively argued for the principle of representing relativised data in relativised
types. I believe the developments of substitution and unification in chapter seven lend
tangible credence to this argument. The unification example, in particular, demon-

strates the importance of allowing datatypes to depend on terms.

The latter may require general recursion to be abandoned for the sake of typechecking,'
but it makes more programs structurally recursive because it gives us more structures—
types indexed by terms allow computation on the indices; types indexed by types do

not.

MANTRA:
If my recursion is not structural, [ am using the wrong structure.

Dependent types make sense where general recursion is made sense of, if we are lucky.

Lennart Augustsson disagrees, as do a number of others. In my opinion they are trying to have their
cake and eat it, but they are nonetheless convinced of the advantages of cake.
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There are many examples where the ‘right structure’ is hard to represent internally to
the program, and where an external termination argument seems the prudent course,
but the expressiveness of a dependent type system nonetheless offers the improved
prospect of principled structural alternatives. The functional programming community

ignores dependent types at its peril.

Turning from programs to their proofs, I suspect the idea of using elimination rules
to capture the behaviour of program components abstractly from their implementa-
tions to be an important one. Specifications should not only tell us what programs to
write—they should tell us what we need to know about the function when it is used.
The latter behaviour is clearly like elimination in character. The kind of second-order
rule supported by OLEG’s eliminate tactic exploits such information in a compact and

powerful way, relativised to the goal which motivates its use.

We are quite happy to specify and write programs (derived introduction rules) in an
abstract and modular fashion—we should derive the corresponding elimination rules
so that we can reason about programs in an abstract and modular fashion. We have
been trying far too long to prove properties of programs by fiddling about with the
primitive rules for data—we would never dream of writing programs that way. Henrik
Persson has also identified this style of reasoning as of considerable assistance in his
formalisation of the polynomial ring [Per99]. First-order equational specifications only
do half the job—they are inappropriate for reasoning about the usage of programs.
That is, they are good for characterising introduction behaviour, but they need to be

complemented by a more effective treatment of elimination.

I believe the technology and methodology developed in this thesis contributes not only
to the writing of programs which make sense, but to the effective exploitation of that

sense in reasoning about them.

8.1 further work

‘The world will be far better when we turn things upside down.’
(J. Bruce Glasier)

There is a great deal to be done.

Firstly, as far as the technology supporting dependently typed programming is con-
cerned, it is an important task to identify a recognisable dependently typed program-

ming language. As things stand, the equational programs we might like to write corre-
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spond only to the deducible computational behaviour of complex proof terms—if we

want to be able to check a reloaded program, we need to reload its justification.

As I pointed out in chapter six, the problem lies in ensuring that stored programs give
a satisfactory account of their empty cases. I believe that a reasonable way to go about
this is to make the machine capable of detecting those argument types which can be
shown to be empty by one step of case analysis. If more than one step is required,
then the empty type can nonetheless be split into nontrivial constructor cases, and this
is something the program can and should record. In effect, the program must contain

enough hints to allow the reconstruction of the emptiness proof.

We might consider insisting that types be ‘filled up’ with markers indicating ‘badness’
in regions which would otherwise be empty. What implications for the expressiveness
of the type system the enforcement of this discipline would entail, it is too early to say.
However, the propagation of ‘badness’ surely involves the same work as the propaga-
tion of emptiness. It is a question of which gives the clearest treatment, and a more

explicit approach is certainly worthy of attention.

With the development of improved technology for programming with dependent types,
there is an imperative to write programs. Despite the clear argument from principle
that more precise data structures lead to tighter programs—otherwise, why have types

at all?—it is not rhetoric which changes practice but competition.

One example, close to home, which springs to mind is the development of a polymor-
phically typed strongly terminating functional programming language: parser, type
inference algorithm, interpreter. Delphine Terrasse has encoded Natural Semantics in
Coq [Ter95a, Ter95b] using a simply typed presentation of terms and types, with in-
ductively defined relations describing valid formation and typing. It seems reasonable
to hope that these latter properties can be built directly into data structures via depen-
dent types. The work of Altenkirch and Reus [AR99] and of Augustsson and Carlsson
[AC99] is already moving positively in this direction. Further, having developed first-
order unification, an ML-style type inference algorithm [DM82] seems an obvious next
step, especially as finding principal types is another optimisation problem addressable
by the optimistic strategy. Also, there are existing developments in simple types avail-
able for comparison [NN96, DM99].

However, in tandem with the continuing development of programming technology, the
development of a strong specification methodology which includes elimination as well
as introduction rules seems a task of genuine importance. The focus of that develop-

ment should be on program derivation at least as much as verification. Even at the
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early stage reached in this thesis, we have seen a small example of elimination rules

used to transform a specification towards a program—the development of thick from

thin.

More than this, an area of interest not touched on in this thesis, but prominent in my
thinking is the use of derived elimination rules for programming itself. As a starting
point, it seems very likely that Phil Wadler’s suggestion to equip datatypes with dif-
ferent ‘views’ [Wad87] supporting different notions of pattern matching for the same

underlying type can be put on a sound footing.

The motivation for such a development is very straightforward. As a matter of course,
we write ‘derived constructors’—functions which build elements of datatypes in more
abstract patterns, reflecting the macroscopic structure of the problem at hand. We write
plus to add numbers together, SNOC to add an element to the end of a list, and so forth.
It would surely be helpful to equip programmers with the means to analyse data at the

same macroscopic level.

Although a great deal of attention has been paid to developing what goes on the right-
hand side of pattern equations in a principled way, the left-hand side has long been
neglected. It is time the left came into its own. We have nothing to lose but our chains.

We have a world to gain.
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Appendix A

Implementation

A few points about the prototype implementation:

e OLEG was implemented primarily as technology for the machine construction of
the standard theorems with which I equip datatypes, and to support the writing
of tactics at a relatively high level. The separation of partial constructions from
terms is not rigidly enforced. Further, as it uses LEGO’s unification algorithm,
the scoping conditions for solving holes are not enforced either. However, the
complete terms generated are independently checked by LEGO’s reliable type-

checker before they are trusted.

The restrictions on the positioning and behaviour of holes were not rationalised
until after the implementation was complete. Nonetheless, in all the develop-
ments | implemented, I found that I obeyed them. This gives at least anecdotal

support to the suggestion that they are, in some way, natural restrictions to make.

e The implementation of the eliminate tactic does not have the abstraction facility
described in chapter three. This still makes it entirely adequate for all the pro-
gramming in this thesis, as such abstractions are not necessary when working

with datatype elimination rules.

The tactic does not, however, support derived elimination rules for functions in
the way that it should. Although the examples using such rules have all been
implemented and machine checked, the elimination rules for functions were ap-
plied by hand.

e The invention of ‘John Major’ equality came some time after I stopped work
on the prototype. Consequently, the traditional equality (plus uniqueness) is

used. Telescopic equations are thus represented in a somewhat awkward way,
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with each equation in the telescope coercing by all the previous ones in order
to be well typed. This significantly complicated the elimination tactic and the

unification technology, but nonetheless they work.
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Index

property indicators
: ‘type’, 18
= ‘value’, 18
~ ‘guess’, 28
binding operators
Vx : S ‘universal quantification’, 18
Ax : S ‘functional abstraction’, 18,
27
'x = 5:S ‘local definition’, 18, 27
?x : S ‘hole component’, 27
?x ~ p:S ‘hole with guess’, 27
contexts
() ‘empty context’, 19, 28
['; B ‘context extension’, 19, 28
C ‘information order’, 32
judgments
I' = J ‘core judgment’, 19
A I J ‘development judgment’,
28
computation
= ‘syntactic identity’, 18
~»" ‘contraction’, 21, 30
~. ‘one-step reduction’, 21, 30
> ‘many-step reduction’, 20
& ‘conversion’, 20
=< ‘cumulativity’, 21, 24
positions
o ‘trivial position’, 31
P; P' ‘position composition’, 31
P ‘context from position’, 31
P[p| ‘put at position’, 31
C ‘information order’, 34
[t/x] ‘substitution’, 18
telescopes
?‘sequence’, 47
Ltelescope’, 47
Fam ‘free telescope’, 50
{-} “iteration’, 49
Tt ‘application’, 48
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A" Type ‘triangle telescope’, 50
— ‘is sugar for’, 101
datatypes

‘empty type’, 104

T “unit type’, 104

2 ‘boolean type’, 104

+ ‘sum type’, 104
records _

field = ?> ‘record as tuple’, 101

R.field; ‘projection’, 102
R.t ‘open with official names’, 102
R[X].t ‘open with local names’, 102
sigma types
Yx : S ‘fake ¥-binding’, 105
X ‘non-dependent product’, 105
(s; t) ‘pair’, 105
xS ‘tuple type’, 105
(S) ‘tuple’, 105
equalities
o, see equality
=, see equality
concrete categories
— ‘categorical arrow’, 185
o ‘arrow composition’, 185
~ ‘arrow equality’, 185
¢ ‘identity arrow’, 185
[[] ‘object/arrow interpretation’,
185
concrete monads
N\, ‘monad arrow’, 190
( ‘monad bind’, 188
¢ ‘monad composition’, 190
) ‘monad embed’, 190
[-] ‘arrow interpretation’, 190
[- — -] ‘knockout’, 200, 218
alist operations
1 ‘alist composition’, 219
<« ‘alist interpretation’, 219



abandon, 38
abstraction for rewriting, 60, 76
Ackermann’s function, 67, 181
alist, 219
AlList category, 219
AND, 213
aperture, 55
assume, 38
attack, 39

(-reduction, 20
bindings, 17
fatuous, 18
blue plastic hammer, 43
blunderbuss, 106, 142, 165
bmgu, 217, 220
bmgulnv, 222
boolean type, see 2
Bound, 213

call, 163

case analysis, 57, 108

category, see concrete category

cell, 125

check, 230, 233
checklnv, 234

Church-Rosser, 23

claim, 34, 38

Clark completion, 57

Closed, 212

closed constraint, 212

T3 36

coalescence, 75
coalescence, 129, 130, 136
compatible closure

core, 20, 21

development, 30
components, 27
Concrete, 185
concrete category, 184, 185

from a family, 186

of types, 186
concrete monad, 189
conflict, 129, 130, 136
constraints, 65

friendly, 70

unfriendly, 70
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constructor form, 129
unification problem, 129
constructors, 89
contexts, 19
contraction schemes
core, 20, 21
development, 30
conversion, 24
covering, 155, 156
elementary, 156
empty, 177
equations, 175
exact, 175
cumulativity, 21, 24
cut, 38
cut property, 23
cycle, 129, 130, 145

d-reduction, 20
discharge, 43, 44
downward-closed constraint, 212

eliminate, 71-78
elimination rule, 53
aperture, 55
case data, 56
case patterns, 56
cases, 56
datatype, 89
indices, 55
inductive hypotheses, 56
patterns, 55
recursive calls, 56
scheme, 55, 63-71, 75
target, 55, 61-63, 73
empty type, see
equality
John Major, 119
Martin-Lof, 118
propositional, 54
~,54,119
construction from =, 124
eqgElim, 119
eqIndElim, 120
eqSubst,,, 121
eqUnique,,, 122
=118



construction from ~, 124

idElim, 118

idSubst, 118

idUnique, 119
Equiv, 215

faithful functor, 185
Fam, 97, 163
FamAux, 115, 163

FamAuxGen, 115, 163

FamCase, 108
FaméElim, 97
FamfFix, 115, 163
family
indexed, 50
type, 50
Fibonacci function, 110
fields, 101
fin, 96
finElim, 96
fixpoint, guarded, 110, 113
folding, 71, 159
Ford, Henry, 63
free pattern, 156
from, 216, 220
Functor, 187
functor, 187

goes, 231

guarded, 111

guarded fixpoint, 110, 113
guess, 28

halting problem, 177, 179
hole, 25

?-binding, 28

life of, 34
hubris, 108, 113

identity, 129, 130, 136
Ind, 89
INndAux, 113
INndAuxGen, 113
IndElim, 91
IndFix, 113
indentifiers, 17
indexed family, 50
induction principle
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strong, 99
weak, 70, 100
inductive datatypes, 87
dependent families, 96
parameterised, 92
records, 101
simple, 89
with higher-order constructors, 94
inductively defined relations, 98
injectivity, 129, 130, 136
intro-v, 39
intro-!, 39
inversion, 57
t-reductions, 89
iterated sequence, 49
iterated telescope, 49

Jrule, 118
judgments
core, 19
development, 28
Jjustify, 38

K rule, 119

Kleisli
category, 189
triple, 188

Kleisli, 191

knockout, 200, 218
knockoutinv, 218

Lam, 193
lengthening, 159, 181
<, 71,99
<Elim, 99
<,57
Clark completion, 57
Clark-style inversion, 57
<lnv, 58, 64
weak induction principle, 70
I-reduction, 20
lexicographic recursion, 181
Lift, 194
lift, 194
liffinv, 195
list, 93
listElim, 57, 93



Major, John, 119

majority, 154

mantra
about blocking computations, 61
about contexts, 20
about decomposition, 56
about recursion, 241
about the means, 53

Maximal, 213

maybe, 104

mayberF, 187

maybeM, 191

mgu, 133

mQgu, 216, 220
mgulnv, 221

Monad, 190

monad, 188

most general unifier, 133

naive-refine, 40

N, 90
NAux, 112
NAuxGen, 113
NCase, 108
NElim, 91
NFix, 113

NEq, 59, 78-86
introduction rules, 85
NEQgInv, 60, 83
NEgRecl, 59, 81

NoCycle, 232

NoUnifier, 222

obviously empty, 178
optimism, 212
Optimist, 213
ord, 94

ordElim, 95

partial constructions, 27
patterns, 55
Peano
concerto, 137
postulates, 58
plus, 159
pos, 231
position information order, 34
positions, 30, 31
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postpone, 38

program, 167

property, 18
propositional equality, 54
pure, 28

raise-V, 39
raise-!, 39
records, 101
opening, 102
projection, 102
regret, 34, 38
Rename, 193, 201-210
renaming, 194
replacement
fails in general, 25
for partial constructions, 31
retreat, 39
return, 163
return, 171
rhubarb, 63, 66

samefFunctor, 188
scheme, 55, 63-71, 75
sequence, 47
iterated, 49
Y-types, 103
solve, 34, 38
split, 168
spot, 102
state information order, 32
states, 27
strengthening, 23
strong induction principle, 99
strong normalisation, 23
strongly normalising, 24
subject reduction, 23
SubstM, 201-210
substitution, 129, 130, 136
SubstM, 193
sum type, see +
syntactic identity, 18
syntax
core, 18
development, 27

tactic
abandon, 38



assume, 38
attack, 39
blunderbuss, 106
claim, 38
cut, 38
deletion, 44
discharges, 44
eliminate, 71-78
intro-V, 39
intro-!, 39
justify, 38
naive-refine, 40
permutation, 44
postpone, 38
program, 167
raise-V, 39
raise-!, 39
regret, 38
retreat, 39
return, 171
solve, 38
split, 168
try, 38
unify, 41
unify-refine, 42

target, 55, 61-63, 73

telescope, 47
application, 48
free, 50
iterated, 49

telescopic
equation, 65
substitution, 121
uniqueness, 122

terms, 17

then, 231

thick, 196-199
thicklnv, 199

thin, 196

free, 211

triangle, 50

try, 34, 38

type family, 50

type former, 89

type inference rules
core, 22, 24
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development, 29

unfolding, 71, 159
unification problem, 129
unifier, 133

Unifies, 216

unify, 41

unify-refine, 42

unit type, see 1
universes, 17

Unload, 217

vect, 104
vlast

viast, 172
vtail, 128

weak induction principle, 70, 100



