
Dependently Typed Functional Programs

and their Proofs

Conor McBride

Doctor of Philosophy

University of Edinburgh

1999

Abstract

Research in dependent type theories [M-L71a] has, in the past, concentrated on its use

in the presentation of theorems and theorem-proving. This thesis is concerned mainly

with the exploitation of the computational aspects of type theory for programming, in

a context where the properties of programs may readily be specified and established.

In particular, it develops technology for programming with dependent inductive fami-

lies of datatypes and proving those programs correct. It demonstrates the considerable

advantage to be gained by indexing data structures with pertinent characteristic infor-

mation whose soundness is ensured by typechecking, rather than human effort.

Type theory traditionally presents safe and terminating computation on inductive

datatypes by means of elimination rules which serve as induction principles and, via

their associated reduction behaviour, recursion operators [Dyb91]. In the programming

language arena, these appear somewhat cumbersome and give rise to unappealing code,

complicated by the inevitable interaction between case analysis on dependent types

and equational reasoning on their indices which must appear explicitly in the terms.

Thierry Coquand’s proposal [Coq92] to equip type theory directly with the kind of

pattern matching notation to which functional programmers have become used over

the past three decades [Bur69, McB70] offers a remedy to many of these difficulties.

However, the status of pattern matching relative to the traditional elimination rules has

until now been in doubt. Pattern matching implies the uniqueness of identity proofs,

which Martin Hofmann showed underivable from the conventional definition of equal-

ity [Hof95]. This thesis shows that the adoption of this uniqueness as axiomatic is

sufficient to make pattern matching admissible.

A datatype’s elimination rule allows abstraction only over the whole inductively de-

fined family. In order to support pattern matching, the application of such rules to spe-

cific instances of dependent families has been systematised. The underlying analysis

extends beyond datatypes to other rules of a similar second order character, suggesting

they may have other roles to play in the specification, verification and, perhaps, deriva-

tion of programs. The technique developed shifts the specificity from the instantiation

of the type’s indices into equational constraints on indices freely chosen, allowing the

elimination rule to be applied.

Elimination by this means leaves equational hypotheses in the resulting subgoals,

which must be solved if further progress is to be made. The first-order unification

algorithm for constructor forms in simple types presented in [McB96] has been ex-

tended to cover dependent datatypes as well, yielding completely automated solution

to a class of problems which can be syntactically defined.

The justification and operation of these techniques requires the machine to construct

and exploit a standardised collection of auxiliary lemmas for each datatype. This is

greatly facilitated by two technical developments of interest in their own right:

� a more convenient definition of equality, with a relaxed formulation rule allowing

elements of different types to be compared, but nonetheless equivalent to the

usual equality plus the axiom of uniqueness;

� a type theory, OLEG, which incorporates incomplete objects, accounting for their

‘holes’ entirely within the typing judgments and, novelly, not requiring any no-

tion of explicit substitution to manage their scopes.

A substantial prototype has been implemented, extending the proof assistant LEGO

[LP92]. A number of programs are developed by way of example. Chiefly, the in-

creased expressivity of dependent datatypes is shown to capture a standard first-order

unification algorithm within the class of structurally recursive programs, removing any

need for a termination argument. Furthermore, the use of elimination rules in specify-

ing the components of the program simplifies significantly its correctness proof.

2

Acknowledgements

Writing this thesis has been a long hard struggle, and I could not have done it without a

great deal of friendship and support. I cannot thank my official supervisor Rod Burstall

enough for his constant enthusiasm, even when mine was straining at times. Supervi-

sions with Rod, whatever else they achieved, always managed to make me happy. It has

also been a pleasure to be part of the LEGO group, and indeed, the LFCS as a whole.

My slightly less official supervisors, successively James McKinna, Healf Goguen and

Martin Hofmann, deserve my warmest gratitude. I hope I have done them justice. A

word of thanks, too, must go to Randy Pollack for his implementation of LEGO—if it

were not for his code, I could not have built mine.

My friends and family have been a constant source of love and encouragement. Thank

you, all of you. Finally, I cannot express how much I appreciate the flatmates I have

lived with over the last four years. Phil, Carsten, Melanie, even Firkin the cat, your for-

bearance is something for which I shall always be profoundly grateful. Your friendship

is something I treasure.

Declaration

I declare that this thesis is my own work, not submitted for any previous degree.

Table of Contents

Chapter 1 Introduction 6

1.1 overview . 7

1.2 this thesis in context . 10

1.3 implementation . 15

Chapter 2 OLEG, a type theory with holes 16

2.1 the OLEG core . 17

2.2 the OLEG development calculus . 25

2.2.1 positions and replacement 30

2.2.2 the state information order 32

2.3 life of a hole . 34

2.4 displaying an OLEG state . 35

2.5 basic component manipulations . 37

2.6 moving holes . 39

2.7 refinement and unification . 40

2.8 discharge and other permutations . 43

2.9 systems with explicit substitution . 45

2.10 sequences, telescopes, families, triangles 46

Chapter 3 Elimination Rules for Refinement Proof 52

3.1 propositional equality (definition deferred) 54

1

3.2 anatomy of an elimination rule . 55

3.3 examples of elimination rules . 57

3.4 legitimate targets . 61

3.5 scheming with constraints . 63

3.5.1 simplification by coalescence 66

3.5.2 what to fix, what to abstract 67

3.5.3 abstracting patterns from the goal 69

3.5.4 constraints in inductive proofs 70

3.6 an elimination tactic . 71

3.6.1 preparing the application . 72

3.6.2 fingering targets . 73

3.6.3 constructing the scheme . 75

3.6.4 proving the goal . 77

3.6.5 tidying up . 77

3.7 an example—NNEq . 78

3.7.1 constructing NNEq . 80

3.7.2 proving NNEqRecI . 81

3.7.3 proving NNEqInv . 83

3.7.4 proving the ‘introduction rules’ 85

Chapter 4 Inductive Datatypes 87

4.1 construction of inductive datatypes 89

4.1.1 simple inductive datatypes like NN 89

4.1.2 parameterised datatypes like list 92

4.1.3 datatypes with higher-order recursive arguments, like ord . . 94

4.1.4 dependent inductive families like the fins 96

4.1.5 inductively defined relations like < 98

2

4.1.6 record types . 101

4.2 a compendium of inductive datatypes 103

4.3 abolishing �-types and reinventing them 103

4.3.1 the blunderbuss tactic . 105

4.4 constructing Case and Fix . 108

4.4.1 case analysis for datatypes and relations 108

4.4.2 the guarded fixpoint principle 110

Chapter 5 Equality and Object-Level Unification 117

5.1 two nearly inductive definitions of equality 118

5.1.1 Martin-Löf’s identity type 118

5.1.2 uniqueness of identity proofs 119

5.1.3 ', or ‘John Major’ equality 119

5.1.4 equality for sequences . 120

5.1.5 the relationship between = and ' 124

5.2 first-order unification for constructor forms 127

5.2.1 transition rules for first-order unification 129

5.2.2 an algorithm for constructor form unification problems 133

5.2.3 conflict and injectivity . 136

5.2.4 cycle . 140

5.2.5 a brief look beyond constructor form problems 149

Chapter 6 Pattern Matching for Dependent Types 152

6.1 pattern matching in ALF . 155

6.2 interactive pattern matching in OLEG 157

6.2.1 computational aspects of elimination 158

6.2.2 conservativity of pattern-matching over OLEG 162

6.2.3 constructing programs . 166

3

6.3 recognising programs . 173

6.3.1 recursion spotting . 174

6.3.2 exact problems . 175

6.3.3 splitting problems . 176

6.3.4 empty problems . 177

6.4 extensions . 178

6.4.1 functions with varying arity 178

6.4.2 more exotic recursion . 181

Chapter 7 Some Programs and Proofs 184

7.1 concrete categories, functors and monads 184

7.1.1 records for categories . 185

7.1.2 records for functors . 187

7.1.3 records for ‘concrete’ monads 188

7.2 substitution for the untyped �-calculus 192

7.2.1 lift, thin and thick . 194

7.2.2 the substitution monad splits the renaming functor 201

7.3 a correct first-order unification algorithm 210

7.3.1 optimistic optimisation . 212

7.3.2 optimistic unification . 216

7.3.3 dependent types to the rescue 217

7.3.4 correctness of mgu . 221

7.3.5 what substitution tells us about the occurs check 226

7.3.6 positions . 230

7.3.7 check and FlexRigid . 233

7.3.8 comment . 236

Chapter 8 Conclusion 240

4

8.1 further work . 242

Appendix A Implementation 245

Bibliography 247

Index 254

5

Chapter 1

Introduction

‘The philosophers have merely interpreted the world in various ways. The

point, however, is to change it.’ (Marx and Engels)

Computer programs are not expected to make sense. In fact, they are seldom expected

to work, which is as much as to say that computer programmers are not expected to

make sense either. This is understandable—programming is primarily a form of giving

orders.

Nonetheless, there are grounds for optimism. This is because programmers do not

really want genuinely stupid orders to be obeyed, and we understand that the more

sense we are able to make, the shorter our orders need be. The benefit comes by taking

the sense within the programmer’s mind and manifesting it explicitly in the program.

From named variables and looping constructs through to functional abstraction and

method encapsulation, the evolution of programming languages has greatly facilitated

the programmer who actively seeks to make sense. In particular, type systems now

allow so much sense to be made that they are even becoming compulsory in some

industrial programming languages. Where the purpose of typing in C is to indicate the

number of bits left an array subscript should be shifted, strongly typed languages like

Java genuinely reduce the gullibility with which machine faces human.

It is with the objective of promoting sense in programs that I have pursued the research

documented in this thesis. Its main purpose is to show the advantage a dependent type

system lends to the cause of principled programming.

Briefly, the principal contributions are these:

� OLEG, a type theory with ‘holes’ (or ‘metavariables’) standing for the missing

6

parts of constructions explained entirely within the judgments of the calculus—

the state of a theorem prover may thus be represented as a valid judgment

� the identification of what must be added to conventional type theories (such as

those underlying LEGO or COQ) to facilitate pattern matching for dependent

types (as implemented in ALF)

� a systematic view of elimination rules, leading to the use of derived elimination

rules to characterise and indeed specify programs in a compact and powerful

way

1.1 overview

This thesis records my development of technology to support functional programming

over dependent datatypes by pattern matching and structural recursion in an intensional

type theory. This technology also suggests novel tools and techniques for reasoning

about such programs. Let me give an overview, identifying the innovations.

I open with an account of a theorem proving in a type theory, OLEG,1 which is based

on Luo’s ECC [Luo94], but includes an account of ‘holes’2 in terms. There is a lot of

theorem proving in this thesis. Some of it is done by hand. Much of it is done by ma-

chines, manufacturing and exploiting standard equipment for working with datatypes

and equational problems. I therefore feel obliged to give a precise treatment not only

of theorems but also theorem proving.

The novelty is that holes are handled much as other variables and accounted for by

binding entirely within the judgments of the system. This system is workable because

the core calculus of terms is embedded in a ‘development calculus’, which is where

the hole-bindings are to be found—a core term in the scope of a hole may nonetheless

refer to that hole. The effect of the separation is to prevent troublesome interaction

between computation and holes. Consequently, terms (called ‘partial constructions’)

in the development calculus enjoy the property that one may safely be replaced by

another of the same type—remarkably good behaviour for a dependent type system.

As a result, theorem proving in OLEG consists exactly of editing OLEG judgments

in ways which are guaranteed to preserve their derivability. Although OLEG is more

1The name ‘OLEG’ is a tribute to Randy Pollack’s proof assistant LEGO. The new treatment of

partial proofs required only a minor rearrangement.
2also known as ‘metavariables’, ‘existential variables’, ‘question marks’ and many other names be-

sides

7

restrictive than systems with explicit substitution, those restrictions will not hinder us

in the slightest.

The inductive datatypes we shall be concerned with are much like those of LEGO,

COQ[Coq97] or ALF [Mag94]. Their elements are introduced by constructor symbols

whose recursive arguments satisfy a strict positivity condition. Recursive computation

and inductive proof are provided in the old-fashioned ‘elimination rule’ style. This

necessitated the innovation of principled tactical support for such rules, documented

in chapter three. However, the technology is not restricted to elimination rules arising

from datatypes.

The contribution from this thesis to the methodology of program verification lies in

the use of derived elimination rules to capture the leverage exerted by a given piece

of information on an arbitrary goal. The abstraction of the predicate in an induction

principle or the return type in a datatype fold operator point the way. Given a piece

of information, we have been indoctrinated to ask what we can deduce from it—we

should rather ask how we can deduce what we want from it. The tactics of chapter

three were developed to support datatype elimination rules, but they allow us to exploit

a wide class of rules which similarly abstract the type of their conclusions. I give

numerous examples capturing the behaviour of programs in this way, and I believe I

demonstrate the efficacy of the policy.

Once we understand elimination rules, we may give proper attention to inductive

datatypes. In particular, we may use chapter three’s technology to derive from each

‘conventional’ eliminator a pair of alternative eliminators which usefully untangle the

treatment of case analysis and recursion on structurally smaller terms. This gives ef-

fectively the same presentation as the Case and Fix constructs which are primitive

notions in COQ. The equivalence was established by Eduardo Giménez [Gim94]—

only minor adaptations are required to mechanise his construction. Chapter four is

reassuringly unremarkable.

Case analysis on a restricted instance of an inductive family (henceforth a subfamily)

inevitably involves equational reasoning. For example, we may define the family of

lists indexed by their length—when analysing the instance constrained to contain only

nonempty lists, we rule out the ‘nil’ constructor because the list it generates does not

satisfy that constraint. More generally, for each constructor, we must represent at the

object-level the constraint that its return type unifies with the subfamily under analy-

sis. These constraints are similar to the unification problems which arise in ‘unfolding’

transformations for logic programs [TS83, GS91]. My MSc work involved a system-

atic solution for simply typed problems in constructor form, implemented in the form

8

of a tactic [McB96].

Chapter five extends the treatment to dependent types. Of necessity, this requires us

to compare sequences of terms where later elements may have propositionally equal

but computationally distinct types, an area which has always proved troublesome for

intensional type theory. I present a new, slightly more relaxed definition of equality

which scales up to sequences without significant attendant clumsiness. It turns out to

be equivalent to the more traditional inductive definition augmented by the axiom that

identity proofs are unique. So equipped, we may easily prove for each datatype its ‘no

confusion’ property—constructors are injective and disjoint—in the form of a single

elimination rule. I also give a systematic proof that each datatype contains no cycles.

It is these lemmas which justify the transitions of the unification tactic.

In [Coq92], Thierry Coquand characterises a class of ‘pattern matching’ programs over

dependent types which ensure that patterns cover all possibilities (deterministically)

and that recursion is structural. This is the class of programs made available (with

unrestricted recursion) in the ALF system [Mag94]. Chapter six contains the principal

metatheoretic result of this thesis, confirming that the same class of programs can be

constructed from traditional datatype elimination rules, given uniqueness of identity

proofs. The meta-level unification in Coquand’s presentation is performed at the object

level by the tactic developed in chapter five.

By way of illustration, if not celebration, the work of the thesis closes with two sub-

stantial examples of verified dependently typed programs. Both concern syntax:

� substitution for untyped �-terms, shown to have the properties of a monad

� a structurally recursive first-order unification algorithm, shown to compute most

general unifiers

It is well understood, at least in the type theory community, that we may only really

make sense of terms relative to a context which explains their free variables. Both

of these examples express that sense directly in their data structures, a gain which is

reflected in the correctness proofs.

Neither example is new to the literature of program synthesis and verification. Substi-

tution has been treated recently [BP99, AR99] via polymorphic recursion, and I include

it simply to show that dependent types easily offer the same functionality, without re-

course to counterfeiting index data at the type level.

The existing treatments of unification turn on the use of an externally imposed termi-

nation ordering. The novelty here is that by indexing terms with the number of vari-

9

ables which may occur in them, we gain access to computation over that index—this

is enough to capture the program for structural recursion. Witness the benefit from a

program which captures much more precisely the sense of the algorithm it implements.

Both developments adopt the methodology of characterising the behaviour of their sub-

programs by means of elimination rules. Establishing program correctness becomes

sufficiently easy that in presenting the proofs, I cut corners only where to do otherwise

would be monotonous in the extreme.

I would like to apologise for the length and linearity of this thesis. I hope it is not

nearly as much trouble to read as it was to write.

1.2 this thesis in context

‘I do press you still to give me an account of yourself, for you certainly

did not spring from a tree or a rock : : : ’ (Penelope. Odyssey, Homer)

I sprang from a little-known Belfast pattern-matcher in 1973. I have spent my whole

life surrounded by pattern matching, I have implemented pattern matching almost ev-

ery year since 1988, and now I am doing a PhD about pattern matching with Rod

Burstall. Fortunately, my mother was not a computer scientist. Enough about me.

Martin-Löf’s type theory [M-L71a] is a well established and convenient arena in which

computational Christians are regularly fed to logical lions—until relatively recently,

much more emphasis has been placed on type theory as a basis for constructive logic

than for programming. Comparatively boring programs have been written; compara-

tively interesting theorems have been proven. This is a pity, as the expressiveness of

type theory promises much benefit for both. But things have changed.

Induction on the natural numbers was presented explicitly in different guises by Pascal

and Fermat in the seventeenth century, although it has been used implicitly for a lot

longer. Frege and Dedekind independently gave inductive definitions an explanation in

impredicative set theory. ‘Structural induction’ had been widely used in mathematical

logic [CF58, MP67] by the time Burstall introduced the notion of inductive datatypes

to programming, with elements built from constructor functions and taken apart by

case analysis [Bur69].

Inductive datatypes have escaped from programming languages [McB70, BMS80]3

and arrived in type theory [M-L84, CPM90]. Since then, they have become more

3My father’s LISP-with-pattern-matching was a programming language which escaped from an in-

ductive datatype.

10

expressive, with the indexing power of dependent type theory giving a natural home to

inductive families of types [Dyb91]. For example, as hinted above, the polymorphic

datatype list A, with constructors

nil A : list A
h : A t : list A
cons h t : list A

can be presented in a usefully indexed way as vectors—lists of a given length:

vnilA : vectA 0
h : A t : vectA n

vcons h t : vectA sn

Typing is strong enough to tell when a vector is empty, so potentially disastrous de-

structive operations like ‘head’ and ‘tail’ can be safely defused.

However, there are significant ways in which dependent datatypes are more

troublesome—the question is ‘what datatypes shall we have and how shall we com-

pute with them?’. The datatypes and families proposed by Thierry Coquand, Christine

Paulin-Mohring and Peter Dybjer have been integrated with type theory in a number

of variations.

Zhaohui Luo’s UTT [Luo94] is closest to the traditional presentation, equipping fam-

ilies based on safe ‘strictly positive’ schemata with elimination constants doubling as

induction principles and recursion operators. This is a conservative treatment for which

the appropriate forms of good behaviour were established by Healf Goguen [Gog94].

Unfortunately, recursion operators make somewhat unwieldy instruments for program-

ming, as anyone who has ever added natural numbers in LEGO[Pol94] will tell you.

Thierry Coquand’s 1992 presentation of pattern matching for dependent types [Coq92],

implemented in the ALF system by Lena Magnusson [Mag94], was shown to be non-

conservative over conventional type theory by Hofmann and Streicher, since it implies

uniqueness of identity proofs [HoS94]. Pattern matching for the full language of in-

ductive families is contingent on unification, which is needed to check whether a given

constructor can manufacture an element of a given family instance. Unification, once

it escapes from simple first-order syntaxes, becomes frightening to anyone with a well

developed instinct for survival, although some do survive.

Subsequent systems in the ALF family, such as Agda [Hal99], have been much more

cautious about what datatypes they will allow, in order to be much more generous with

facilities for working with them. In particular, the question of unification is avoided by

forbidding datatype constructors to restrict their return types to a portion of the family

11

(eg, empty vectors, nonempty vectors). Families are declared in a similar manner to

datatypes in functional programming languages:

data family x
1

: : : x
n

= con T
1

: : :T
k

j : : :

The indices x
1

: : : x
n

are distinct variables, indicating that each constructor con, what-

ever its domain types T
1

: : :T
k

, its range is over the entire family Pattern matching over

an instantiated subfamily just instantiates the x’s in the types of the constructors, rather

than generating an arbitrarily complex unification problem.

This is a sensible restriction with a sound motivation. It is also a serious one, for-

bidding, for example, the formulation of the identity type—the reflexivity constructor

restricts its return type to the subfamily where the indices are equal. As we decompose

elements of these datatypes, their indices can only become more instantiated—Agda

datatype indices only ‘go up’.

Some of the power lost in this way is recaptured by computing types from data. For

example, the type of vectors, although not a datatype in Agda can be computed from

the length index:

vectA 0 = 11
vectA sn = A�(vectA n)

This kind of computed type is good for data which are in some way measured by the

indices—elements are finite, not because they contain only finitely many constructor

symbols per se, but because, as we decompose them, their indices recursively ‘go

down’ some well-founded ordering. There is no place, in this setting, for inductive

families whose indices, like those of the stock exchange, can go down as well as up.

The practical limitations of this system require further exploration. Certainly, the re-

moval of unification from the pattern matching process makes it considerably more

straightforward to implement attractively and to grasp. It has been even been im-

plemented outside the protective environment of the interactive proof assistant—in

Lennart Augustsson’s dependently typed programming language, Cayenne [Aug98].

Cayenne allows general recursion, hence its typechecker requires a boredom threshold

to prevent embarrassing nontermination. Of course, the programs which make sense

do typecheck, and some interesting examples are beginning to appear [AC99].

On the other hand, two recent examples—both implementations of first-order unifica-

tion, as it happens—cannot be expressed as they stand in this restricted system. Ana

12

Bove’s treatment [Bove99] shows that a standard Haskell implementation of the algo-

rithm can be imported almost systematically into type theory. However the general

recursion of the original is replaced by ‘petrol-powered recursion’4 over an inductively

defined accessibility predicate [Nor88] which can be expressed in ALF, but not its

successors.

My implementation, in chapter seven of this thesis, is dependently typed, and exploits

the power of ‘constraining constructors’ to represent substitutions as association lists in

a way which captures the idea that each assignment gets rid of a variable. Variables are

from finite sets indexed by size, fin n, and terms are trees over a number of variables,

tree n. Association lists, alist m n, represent substitutions from m variables to terms

over n:

aniln : alist n n
x : fin sm t : tree m g : alist m n

acons x t g : alist sm n

Having said that, I am quite sure that ‘gravity-powered’ unification can be implemented

in Agda using the restricted type system. I only use association lists because my ap-

plication of substitutions is delayed and incremental. If you are happy to apply substi-

tutions straight away, a functional representation suffices. Nonetheless, the alist type

stands as a useful data structure—a ‘context extension’—which one might reasonably

hope to represent as a datatype.

The COQ system [Coq97] has inductive families of types with strictly positive

schemata [P-M92, P-M96]. However, they have moved away from the traditional

‘one-step’ elimination operator, following a suggestion from Thierry Coquand: they

now divide elimination into a Case analysis operator and a constructor-guarded Fix-

point operator. Eduardo Giménez’s conservativity argument [Gim94] is bolstered by a

strong normalisation proof for the case of lists [Gim96]—he has recently proved strong

normalisation for the general case [Gim98]. Bruno Barras has formalised much of the

metathory for this system [Bar99], including the decidability of typechecking.

This Case-Fix separation is a sensible one, and it makes practical the technology

in this thesis—working in what is effectively Luo’s UTT [Luo94], I start from the

traditional ‘one-step’ rule, but I have mechanised the derivation of Case and Fix for

each datatype. Everything which then follows applies as much to COQ as to LEGO.

There is, though, a noticeable gap between programming by Case with Fix in COQ

and programming by pattern matching in ALF or Cayenne. This gap has been ad-

dressed by the work of Cristina Cornes [Cor97]. She identifies a decidable class of

4my phrase

13

second-order unification problems which captures many pattern matching programs

viewed as collections of functional equations. Solving these problems mechanically,

she has extended COQ with substantial facilities for translating such programs in terms

of Case and Fix.

This takes the form of a macro Cases which allows pattern matching style decompo-

sition of multiple terms from unconstrained inductive families (eg vect n—vectors of

arbitrary length) and combines with Fix to yield recursive function definition in the

style of ML. Although the full gamut of dependent families can be defined, she has

adopted an Agda-like solution to the problem of computing with them.

The task of implementing pattern matching for constrained instances of inductive fam-

ilies (or ‘subfamilies’, eg vect sn—nonempty vectors) she leaves to the future. Where

she leaves is where I arrive. I have not attempted to duplicate her machinery for the

translation of equational programs. Rather, I have concentrated on the problem of case

analysis for subfamilies, the last gap between her work and dependent pattern matching

in ALF.

As I have already mentioned, we have known for some time that dependent pattern

matching is not conservative—it implies the uniqueness of identity proofs, which does

not hold in Hofmann’s groupoid model of type theory [HoS94, Hof95]:

IdUnique : 8A :Type: 8a :A: 8e :a=a: e = refl a
IdUnique A a (refl a) = refl (refl a)

This points to a very real connection between pattern matching and the power of equal-

ity in type theory. Case analysis on inductive subfamilies (also known as ‘inversion’)

necessarily involves equational reasoning—for each constructor, we must check that its

return type unifies with the subfamily we are analysing. These unification problems re-

semble those which arise in unfold/fold program transformation [BD77, TS83, GS91].

They are treated at the meta-level in ALF [Coq92, Mag94].

Cristina Cornes made some progress in this area with her tactics for inverting induc-

tively defined relations over simply typed data in COQ[CT95]. My MSc project was to

import this technology for LEGO. I made explicit the separation between, on the one

hand, the splitting of the family into its constructors, with the subfamily constraints

becoming object-level equations, and on the other hand, the simplification of those

constraints. I implemented a complete first-order unification algorithm for object-level

equations over constructor forms in simple types [McB96].

The uniqueness of identity proofs contributes directly to the extension of this first-

order unification algorithm to dependent types, yielding explicit object-level solutions

14

to the same class of unification problems which ALF handles implicitly.5 The last gap

between programming with datatypes in LEGO or COQ and pattern matching in ALF

has now been bridged.

Building that bridge has involved many engineering problems and the development of

some, I feel, fascinating technology. In particular, the tactic which I built for deploying

the elimination rules of inductive datatypes has a potential far beyond that purpose. I

have begun to explore the use of rules in that style for specifying and proving properties

of programs: this thesis contains several examples.

1.3 implementation

I have implemented a prototype version of the technology described in this thesis as an

extension to LEGO. It contributed to, rather than benefiting from the full analysis set

out here. Nonetheless, let me emphasise at this stage that although the prototype could

work better, it does work.

Enough technology has been implemented to support all the example programs and

proofs in this thesis. They have all been built with OLEG’s assistance and checked

with LEGO—core OLEG is a subset of LEGO’s type theory for which Randy Pollack’s

typechecker runs unchanged. Sometimes I have had to hand-crank techniques I have

subsequently shown how to mechanise, but the developments described in the thesis

are an honest account of real machine proofs.

5In fact, ALF rejects cyclic equations as unification problems which are ‘too hard’, while I disprove

them, so four years’ work has been good for something.

15

Chapter 2

OLEG, a type theory with holes

Although you have just started reading this chapter, I have nearly finished writing it.

When I started, a long time ago, I intended it to be an unremarkable summary of a

familiar type theory, present largely out of the need to present the notational conven-

tions used in this thesis. However, despite my best intentions, this chapter does contain

original work—it describes a type theory, OLEG, which gives an account of incomplete

constructions quite different from those in existing use.

Let me say from the outset that I did not set out to invent such a thing. For some

years I have been writing programs which construct LEGO proofs of standard datatype

equipment—constructor injectivity and so forth—together with tactics to deploy them.

I began, in my MSc work, with direct synthesis of proof terms in the abstract syntax—

this was, frankly, rather painful. However, as time went on, the tools I was building

myself looked more and more like a theorem-prover. Eventually, the penny dropped—

synthetic programming and proof is only for clever people with nothing better to do;

busy people and stupid machines need an analytic framework with a sound treatment

of refinement. What had previously been ‘voodoo’, an ad hoc assortment of syntactic

trickery, became OLEG, a type theory for machines as well as people.

OLEG was thus manifest in code long before it was rationalised in this chapter. I

put it together with the help of many spare parts from Randy Pollack’s LEGO code.

LEGO’s treatment of ‘metavariables’ is remarkable in what it allows—too remarkable,

in fact. Scope is not quite managed properly, so that the reliability of LEGO still lies

in the final typecheck of the completed term. I did not consider it my business to

repair this problem—I was looking for a more convenient way to represent proofs-

with-holes for mechanical manipulation. I hit upon the idea of binding holes in the

context because it required very little alteration of the term syntax, and because it made

operations like refinement’s ‘turn the unknown premises into subgoals’ just a matter of

16

turning 8s into ?s. This treatment of holes resonates strongly with Dale Miller’s explicit

binding of existential variables in the ‘mixed’ quantifier prefix of unification problems

[Mil91, Mil92].

At the time, explicit substitution was not even an issue. If I had wanted to main-

tain the scope of holes via such technology (as is found in the ALF family [Mag94]

and Typelab [vHLS98]), I should have had to re-engineer the whole LEGO syntax, re-

duction mechanism and typechecker. As it turned out, my adaptations were minimal.

There is a profound reason for this—where explicit substitution relies on ingenuity,

OLEG relies on cowardice. Instead of repairing the troublesome interactions between

holes and computation by propagating bits of stack through the term structure, OLEG

simply forbids them.

However, let me keep you in suspense no longer. OLEG consists of a computational

core—Luo’s ECC [Luo94] with local definition [SP94] but without �-types—wrapped

in a development calculus, in much the same way that Extended ML [KST94] wraps

core Standard ML [MTH90]. My reason for the separation is precisely the aforemen-

tioned cowardice with respect to holes and computation.

Extended ML’s treatment of holes profits from the fact that, in simple type systems, it

is always safe to replace a term (eg, the placeholder ‘?’) with another of the same type.

Although there is no way that core terms in a dependent type theory could ever hope to

have such a replacement property (for a counterexample see section 2.2), it does hold

for the terms (or ‘partial constructions’) of OLEG’s development layer. This single

metatheorem does most of the work in OLEG’s successful reconstruction of refinement

proof as we know it.

2.1 the OLEG core

DEFINITION: universes, identifiers, bindings, terms

universes U ::= Prop j Type
j

where j is a natural number

identifiers I ::= x j y j : : :

Let us allow ourselves countably many identifiers.

I define families of bindings and terms indexed by the finite set of variables

V � I permitted to appear free in them. My motivation is to ensure that

17

identifiers are only used where they are meaningful.1

For any set V of variables, and any x not in V the sets Bx

V
of bindings of x

extending V and TV of terms over V are defined inductively2 as follows:

S 2 TV
8x : S 2 Bx

V

S 2 TV
�x : S 2 Bx

V

s; S 2 TV
!x = s :S 2 Bx

V

y 2 V
y 2 TV

U 2 U
U 2 TV

f; s 2 TV
f s 2 TV

B 2 Bx

V
t 2 TV[fxg

B:t 2 TV

Binding is the means of attaching to an identifier properties such as ‘type’, ‘value’ and

any other behavioural attributes in which we may be interested. A structural linguist,

following Saussure [Sau16], might point out that identifiers, like words, have no intrin-

sic significance. Variables, on the other hand, are signs. Binding creates a sign, linking

signifier and signified.

Syntactically, a binding is a binding operator, followed by an identifier, followed by

a sequence of properties each introduced by a special piece of punctuation, eg ‘:’ for

‘type’ or ‘=’ for ‘value’. The binding operator determines the computational role of

the variable. I would encourage you to think of bindings as important syntactic entities

in their own right, and the ‘.’ as a combinator which attaches a binding to its scope

which, by convention, extends rightwards as far as possible.

OLEG’s core binding operators comprise the usual 8 (often written �) for universal

quantification and � for functional abstraction, together with ! (pronounced ‘let’) rep-

resenting local definition. I describe those bindings where the bound variable occurs

nowhere in its scope as fatuous.

As usual, application is indicated by juxtaposition and associates leftwards. I shall

denote by x 2 T that variable x occurs free in term T. When x 62 T, I shall freely

abbreviate 8x : S: T by S ! T. Further, otherwise identical consecutive bindings of

distinct variables may be abbreviated with commas, �x : S: �y : S: T, for example,

becoming �x; y :S: T.

�-convertible terms are identified, with � representing the consequent notion of syn-

tactic identity. Let [S=x]T denote the result of substituting S for free occurrences of

x in T. Formally, we might prefer to live in a de Bruijn-indexed world [deB72]; infor-

mally, let us grant ourselves the luxury of names and the associated luxury of ignoring

the issue of variable capture.

1My ulterior motive is to prepare the ground for the application of dependently typed functional

programming to syntax in chapter seven.
2Natural deduction is the best style I have found for presenting indexed inductive families.

18

Having introduced all this syntax, let us abuse it wherever it suits us. We are not

machines, and we can suppress inferrable information which machines might demand.

To be sure, the machines are catching up, with work on implicit syntax from [Pol90]

and beyond. I do not propose to give any mechanistic account of the arguments I

shall omit, the parentheses I shall drop and the ad hoc notations I shall introduce—the

purpose is purely presentational.

DEFINITION: contexts and judgments

The set Ctxt of contexts is defined inductively:

hi 2 Ctxt

� 2 Ctxt S 2 T
�

x 62 �

�; x : S 2 Ctxt
� 2 Ctxt s; S 2 T

�

x 62 �

�; x = s : S 2 Ctxt

Note that we may treat a context ‘forgetfully’ as a set of variables, hence

T
�

is the set of terms over �.

If � 2 Ctxt, then J
�

is the set of �-judgments. If J 2 J
�

, we may assert

that J holds by writing

� ` J

J
�

contains context validity and typing judgments:

valid 2 J
�

t;T 2 T
�

t : T 2 J
�

In many presentations, a context is an assignment of types to identifiers. Here, value

assignments are also permitted. Let us also indulge in a slight abuse of notation and

write whole bindings in the context, effectively annotating entries with binding oper-

ators and perhaps additional properties.3 Seen as a data structure, for example in the

implementation of LEGO, a context is a stack of bindings. We can recover the ‘formal’

contexts defined above simply by forgetting the extra annotations. We shall often need

to check whether a given variable has a particular property, whether or not it may have

others. Let us, for example, write �; x :T; �0 for a context where x has the property that

its type is T, regardless of other annotations.

As we explore a term, each variable we encounter is given its meaning by the stack of

bindings under which we have passed. A variable is not a name; it is a reference to a

3It is often useful to know what colour a variable is.

19

binding. Names arise as a social phenomenon—just as in the story of Rumpelstiltskin,

naming things gives us power over them.

Let us now define computation with respect to a context. We should feel no apprehen-

sion at this. Quite the reverse, syntax only makes sense relative to the context which

explains its signs. Goguen’s typed operational semantics for type theory [Gog94] nec-

essarily and naturally involves the context, significantly reducing the cost of metathe-

ory. Although the contextual information he requires is active in typing and passive

in computation, this is more an accident of ECC than an inevitable restriction. Com-

pagnoni and Goguen’s more recent typed operational semantics for higher-order sub-

typing [CG99] exploits the potential to the full.

MANTRA:

� is with me, wherever I go.

I, too, feel strongly provoked to exploit the potential he reveals by increasing the activ-

ity of the context in computation. Real programming language implementations keep

values in stacks.

We may still employ the usual technique of supplying a number of contraction

schemes which indicate the actual computation steps, together with a notion of com-

patible closure which allows computation to occur anywhere within a term.

DEFINITION: contraction schemes

OLEG’s contraction schemes are shown in table 2.1.

Subterms susceptible to the �, � or ! contraction schemes are, respectively, �-, �- and

!-redexes. Note that the property of being a �-redex is implicitly context-dependent. A

term is in normal form if it contains no redexes.

It is perhaps helpful to think of ;� and ;� as ‘work’, while ;! is ‘waste disposal’.

As a fan of Fritz Lang’s 1926 classic silent film, ‘Metropolis’, I like to imagine what

computation sounds like: �-reduction sounds like paper-shuffling; �-reduction sounds

like filing cabinets and photocopiers; ! pops like sudden suction.

DEFINITION: compatible closure

If;� is a contraction scheme, its compatible closure,;
�

, is given by 2.2

20

�

� ` (�x :S: t) s ;�

!x = s :S: t

�

�; x = s :S; �0

` x ;� s

!

� ` !x = s :S:t ;! t
x 62 t

Table 2.1: contraction schemes

� ` s ;� s0

� ` s ;
�

s0

� ` s ;
�

s0

� ` s t ;
�

s0 t
� ` t ;

�

t0

� ` s t ;
�

s t0

� ` S ;
�

S0

� ` 8x :S: T ;
�

8x :S0

: T
� ` S ;

�

S0

� ` �x :S: t ;
�

�x :S0

: t

� ` s ;
�

s0

� ` !x = s :S:t ;
�

!x = s0 :S: t
� ` S ;

�

S0

� ` !x = s :S:t ;
�

!x = s :S0

: t

�;B

x

�

` t ;
�

t0

� ` B

x

�

:t ;
�

B

x

�

:t0

Table 2.2: compatible closure

� ` S �

=

T
� ` S � T

� ` R � S � ` S � T
� ` R � T

� ` Prop � Type
j

j < k

� ` Type
j

� Type
k

� ` S �

=

S0

�; 8x : S0

` T � T0

� ` 8x :S: T � 8x :S0

: T0

Table 2.3: cumlativity

21

empty
hi ` valid

declare
� ` S : Type

j

�;Bx :S ` valid
B 2 f8; �g

define � ` s : S
�; !x = s :S ` valid

prop � ` valid
� ` Prop : Type

0

type � ` valid
� ` Type

j

: Type
j+1

var
�; x :S; �0

` valid
�; x :S; �0

` x : S

imp
�; 8x : S ` P : Prop
� ` 8x :S: P : Prop

all
� ` S : Type

j

�; 8x : S ` T : Type
j

� ` 8x :S: T : Type
j

abs
�;�x : S ` t : T

� ` �x :S: t : 8x :S: T

app
� ` f : 8x :S: T � ` s : S

� ` f s : !x = s :S: T

let
�; !x = s :S ` t : T

� ` !x = s :S: t : !x = s :S: T

cuml � ` t : S
� ` t : T

� ` S � T

Table 2.4: OLEG core inference rules

22

METATHEOREM: Church-Rosser

� ` s �
=

t

implies existence of a common reduct r such that

� ` s . r � ` t . r

METATHEOREM: strengthening

�;Bx

�

; �

0

` t : T x 62 �

0

; t;T

implies

�; �

0

` t : T

METATHEOREM: subject reduction

� ` s : T � ` s . t

implies

� ` t : T

METATHEOREM: strong normalisation

� ` t : T

ensures that t is strongly normalising.

METATHEOREM: cut

�; !x = s :S; �0

` t : T

implies

�; [s=x]�0

` [s=x]t : [s=x]T

Table 2.5: metatheoretic properties

23

Henceforth, I shall elide the context in casual discussion. I write; for the union of the

labelled compatible closures, and . for its finite transitive closure. A term is strongly

normalising if admits only finite sequences of reductions. The smallest equivalence

relation closed under . is called conversion and denoted �
=

.

Observe that !-binding allows us to avoid meta-level substitution in describing compu-

tation. Explanations of identifiers are activated by putting them into the context, not by

propagating them through terms. The traditional �-contraction

(�x :S: t) s ; [s=x]t

becomes a ‘noisier’ reduction sequence

(�x :S: t) s ;

�

!x = s :S: t ;

�

� � � !x = s :S: [s=x]t ;

!

[s=x]t

Following Luo, I combine the notions of conversion and universe inclusion in a type

cumulativity preorder with respect to �
=

:

DEFINITION: cumulativity

The cumulativity relation, �, is defined inductively in table 2.3.

In [Luo94], Luo shows that � is antisymmetric and hence a partial order with respect

to �
=

. In fact, every well-typed term t (under �) has a principal type T in the sense that

� ` t : T0

() � ` T � T0.

Consequently it will be my habit to omit the index in Type where uncontroversial—

this phenomenon is known as typical ambiguity [HP91]. In practice, the cumulativity

constraints required to ensure consistency of any development can be stored as a finite

directed graph and checked for offending cycles.

The system of inference rules for the validity of contexts and typing judgments in the

OLEG core calculus is given in table 2.4. The formulation is slightly unusual in that

it involves no meta-level substitution in types—the same job is done by the computa-

tional behaviour of local definition, as performed by the cuml rule.

All the usual metatheoretic properties (see table 2.5) hold as we might expect them to.

They contribute no insight unavailable from the Luo’s treatment of ECC in [Luo94].

Severi and Poll have shown how to extend dependent type systems with local defini-

tions [SP94]. The Church-Rosser property follows by the ‘parallel reduction’ argu-

ment of Tait and Martin-Löf, as modernised by Takahashi[Tak95]. Subject reduction,

24

strengthening and cut follow by induction on typing derivations, differing only in mi-

nor details from the proofs for ECC. I have omitted weakening from the list because it

is a special case of the monotonicity property which I shall prove in section 2.2.2.

Strong normalisation for the OLEG core is a direct consequence of strong normalisation

for ECC. In the style of Severi and Poll, a type-preserving translation maps OLEG

terms to ECC terms adding apparently pointless �-redexes4, so that each step in an

OLEG reduction sequence can then be simulated by a step in an ECC reduction of its

translation. Consequently, an infinite reduction sequence for a well-typed OLEG term

becomes an infinite reduction sequence for a well-typed ECC term, and we know that

no such thing exists.

The interesting aspect of OLEG is its development superstructure. Let us now give our

attention to that.

2.2 the OLEG development calculus

‘You can’t put a hole where a hole don’t belong.’ (Bernard Cribbins)

Holes stand for the parts of constructions we have not yet invented. Every hole should

tell us two things about the candidates which may fill it:

� their type, T

� the context, �, of variables they may employ

We may ascribe these properties to the hole itself, by way of convenient abbreviation.

The point is that it must be safe to fill such a hole with any t such that � ` t : T.

Solutions must be locally checkable if working with holes is to be practicable.

As I have already mentioned, the treatment of holes for simple type systems is greatly

helped by the fact that terms do not ‘leak’ into types. Consequently, any subterm

may safely be replaced by another of the same type, without affecting the type of the

containing term—local checkability of hole solutions is just one special case. Holes

may safely be represented by unlabelled ? symbols, as typing places no dependency

between them.

4It may help to think of the translation to ECC as tying old tin cans onto terms to make the ECC

reduction as noisy as the OLEG reduction.

25

However, the application of a dependently typed function smuggles the argument term

into the result type—this is why the replacement property fails. Consider the following

example, in a context defining an equality symbol for natural numbers:

�=
N

: NN ! NN ! Prop

�refl
N

: 8n :NN: n=
N

n
�sym

N

: 8m; n :NN:m=
N

n ! n=
N

m

It may be reasonable to infer that

sym
N

? ? (refl
N

?) : ?=
N

?

but we may not instantiate any of the ?s and retain this typing unless we instantiate

them all—sym
N

’s first two arguments appear in the required type of (refl
N

?).

Somehow we must represent the information that the three ?s in sym
N

? ? (refl
N

?)

signify the same, and what more natural way could we choose than to give them a

single sign?

Hence, let us invent a new binding operator ‘?’ (pronounced ‘hole’) to introduce vari-

ables standing for holes in a proof which must be instantiated by a common candidate

of an appropriate type. We may now add to the context

?x : NN

and infer

sym
N

x x (refl
N

x) : x=
N

x

When we think of a suitable candidate, we may ‘solve the hole’ by changing the ?-

binding to, say, !x = 0 :NN, and the typing will stand.

However, the danger has not gone away. We could quite reasonably infer

sym
N

(?n :NN: n) (?n :NN: n) (refl
N

?n :NN: n) : ?n :NN: n =
N

?n :NN: n

since one binding ?n :NN: n is syntactically identical to another, even if we regard the

bound variables as distinct (indeed, not in the same scope). We are not free to solve

one without the others, so we must avoid this situation.

The point is that although there is nothing wrong with holes leaking into types, disas-

ter strikes if we permit ?-bindings to do so. The OLEG development calculus ensures

26

that ?-bindings are always in safe places—ie, that they may always be solved indepen-

dently. Indeed, this arises as a corollary of a more general replacement property, just

like in the simply typed case.

By introducing an explicit binding operator for holes, OLEG follows Dale Miller’s lead

[Mil91, Mil92] in representing the state of the system as a judgment whose context or

‘mixed prefix’ explains the variously quantified variables involved.

The OLEG development calculus represents the store of a theorem prover directly at

the judgment level. Theorem provers tend to contain four kinds of information:

� assumptions

� proved theorems

� unproved claims

� partial proofs of claims

These four components are each represented by a form of binding—respectively, the

four given in the definition below. A state is a context of such bindings. The terms of

the development calculus are called partial constructions.

DEFINITION: states, components and partial constructions

states State

hi 2 State

� 2 State C 2 Cx

V
�;C 2 State

components Cx

V
for x 2 I� V

S 2 TV
�x : S 2 Cx

V

s; S 2 TV
!x = s :S 2 Cx

V

S 2 TV
?x : S 2 Cx

V

q 2 PV S 2 TV
?x � q :S 2 Cx

V

partial constructions PV

t 2 TV
t 2 PV

C 2 Cx

V
p 2 PV[fxg

C: p 2 PV

27

Observe that partial proofs, or ‘guesses’ are attached to holes with a ‘�’ symbol, indi-

cating that they have not the computational force of !-bound values attached with ‘=’.

Indeed, we may view any state � as a core context by forgetting all but the ‘:’ and ‘=’

properties of each variable. This, in particular, means that guesses are invisible to the

core.

States � in the development calculus are equipped with �-judgment forms DevJ
�

corresponding to those of the core. If J 2 DevJ
�

, we may assert that J holds by

writing � J .

DevJ
�

is given by

valid 2 DevJ
�

p 2 P
�

T 2 T
�

p : T
�

2 DevJ
�

Even the abstract form of the typing judgment contains an important piece of

information—the development calculus does not extend the type system, only the lan-

guage of terms. Holes are never bound to the right of the ‘:’. This only serves to

emphasise the analytic view that types come before terms—we do not explain terms

with types, we search for terms inside types.

Table 2.6 shows the new inference rules. Note that core judgments� ` J only validate

� viewed forgetfully as a core context—any guesses in � will not be checked. This

accounts for the extra � valid premises appearing in some rules.

The analogous metatheoretic properties from table 2.5 continue to hold for this ex-

tended system. The parallel reduction treatment for Church-Rosser and the derivation

inductions for subject reduction, strengthening and cut can easily be adapted. Strong

normalisation for the development calculus reduces to strong normalisation for the

core by a translation argument which adds the assumption Imagine : 8A :Type:A at the

root of the context and turning ?-bindings into !-bindings: every hole without a guess,

?x : S, becomes ?x � ImagineS :S, then the translated guesses become !-bound values.

The core terms are embedded in the partial constructions. The forgetful interpretation

of states as core contexts allows variables to appear in partial constructions via the

term rule. The effect of the core/development separation is thus to restrict where holes

may be bound. A partial construction containing no ?-bindings is said to be pure, that

is, expressible as a core term. Pure terms may, of course, refer to variables ?-bound in

their context.

In particular, ?-bindings cannot occur inside applications or !-bound values. This is

enough to ensure that they have no interaction whatever with computation. ?-bindings

28

state validity

empty
hi valid

declare
� valid � ` S : Type

j

�;Cx :S valid
C 2 f�; ?g

define � valid � ` s : S
�; !x = s :S valid

construct
� p : S

�; ?x � p :S valid

typing partial constructions

term � valid � ` t : T
� t : T

abs
�;�x : S p : T

� �x :S: p : 8x :S: T

let
�; !x = s :S p : T

� !x = s :S:p : !x = s :S:T

hole
�; ?x : S p : T
� ?x :S: p : T

x 62 T

guess
�; ?x � q :S p : T
� ?x � q :S: p : T

x 62 T

cuml
� p : S
� p : T

� ` S � T

Table 2.6: development calculus inference rules

29

are allowed to appear in ‘guesses’—partial constructions attached to holes as potential

solutions. However, unlike !-bindings, guesses are merely typechecked annotations—

they have no computational behaviour and hence no effect on subsequent typing.

In fact, the only contraction scheme at the partial construction level is !-contraction

removing spent value bindings.

� !x = s :S: p ;! p
x 62 p

All the other computations occur within embedded terms via the closure rules given

below. Of course �-reduction in terms can exploit !-components in the context.

� ` t ;
�

t0

� t ;
�

t0

� ` S ;
�

S0

� �x :S: p ;
�

�x :S0

: p
� ` S ;

�

S0

� ?x :S: p ;
�

?x :S0

: p

� ` s ;
�

s0

� !x = s :S: p ;
�

!x = s0 :S: p
� ` S ;

�

S0

� !x = s :S: p ;
�

!x = s :S0

: p

� q ;
�

q0

� ?x � q :S: p ;
�

?x � q0 :S: p
� ` S ;

�

S0

� ?x � q :S: p ;
�

?x � q :S0

: p

�;C

x

�

 p ;
�

p0

� C

x

�

: p ;
�

C

x

�

: p0

A crucial role is played by the side-conditions in the hole and guess rules. These insist

that although the term under a ?-binding may exploit the bound variable, its type may

not. Without them, we should have to allow ?-bindings in types. Furthermore, these

restrictions simply reflect the natural ways in which holes arise—in a refinement style

proof, we only make claims motivated by the need to construct an inhabitant of a type

which we already know.

The inability to leak into types is something partial constructions share with terms in

simply typed systems. We should expect the replacement property to follow easily,

and in exactly the same manner—replacing the typing subderivation for the replaced

term.

2.2.1 positions and replacement

The positions PosV are formed from the partial constructions PV by deleting one sub-

partial construction. A position P 2 Pos
�

‘forgetfully’ induces a context extension

30

�P which collects the components under which the deletion point lies. If p 2 P
�;

�P,

then P[p] denotes the partial construction obtained by inserting p at P’s deletion point.

Positions are defined inductively as follows

DEFINITION: positions

For x 2 I� V

� 2 PosV

P 2 PosV[fxg

Cx

V
:P 2 PosV

P 2 PosV S 2 TV q 2 PV[fxg

?x � P :S: q 2 PosV

�[p] = p �;
�
�=�

(Cx

�

:P)[p] = Cx

�

:P[p] �; Cx

�

:P =�; Cx

�

;

�P
(?x � P :S: q)[p] = ?x � P[p] :S: q �; ?x � P :S: q =�;

�P

Crucially, any derivation of � P[p] : T follows from a subderivation of some

�;

�P p : S.

We may compose positions, writing P;P0 for the position obtained by replacing the �

in P by P0. Clearly (P;P0

)[p] = P[P0

[p]] and P;P0

=

�P; �P0.

METATHEOREM: replacement

If � P[p] : T
follows from �;

�P p : R
and �;

�P p0 : R
then � P[p0] : T

PROOF

The proof is by induction over the derivation of � P[p] : T, then case analysis on

the position.

In all cases where the position is �, ie P[p] = p, the typing derivations for P[p] and p

must be the same, yielding that R is T—the conclusion is exactly the typing of p0.

We only need the strength of the induction when the position is nontrivial.

� term—� is the only position

� abs

We have � �x :S: P[p] : 8x :S: T
so we must have �;�x : S P[p] : T
following from �;�x : S; �P p : R
Suppose �;�x : S; �P p0 : R
Inductively �;�x : S P[p0] : T
Hence � �x :S: P[p0] : 8x :S: T

31

� let, hole

We go under the component in the same way as for abs.

� guess

If the position goes under the component, the above argument applies. If the

position goes into the guess:

We have � ?x � P[p] :S: q : T
so we must have � P[p] : S
following from �;

�P p : R
Suppose �;

�P p0 : R
Inductively � P[p0] : S
Hence � ?x � P[p0] :S: q : T

Note that the typing of q and the side-condition x 62 T are not affected by the

change of guess.

�

To claim that the simplicity of this theorem belies its utility is to misunderstand the

pragmatics of theory. There is no utility without simplicity.

2.2.2 the state information order

We shall need a little more metatheoretical apparatus before we are ready to reconstruct

theorem proving in OLEG. In particular, we shall need a notion of ‘progress’ between

OLEG states. The idea is that a state �

0 ‘improves’ � if it contains at least as much

information—�

0 must simulate the behaviour of every variable in �.

DEFINITION: state information order

For valid states � and �

0, we say � v �

0, if

� For each x 2 �, if � ` x : T then �

0

` x : T.

� For each x 2 �, if � ` x ;� s then �

0

` x �

=

s.

v is clearly a preorder.

Notice that inserting new components into � moves it up the order. So does replacing a

type-only binding or ?-with-guess by a !-binding of an appropriately typed value. Fur-

thermore, guesses may be added to holes, removed or modified at will, so long as their

32

intended type is respected—the replacement property helps us to check modifications.

On the other hand, once a variable has a computational behaviour, we may not take it

away.

If � v �

0 then, viewed as variable sets � � �

0, so DevJ
�

� DevJ
�

0 . As the ordering

preserves all the observable behaviour of a state, we should expect to find the following

holds

METATHEOREM: monotonicity

If � v �

0, then for all J 2 DevJ
�

, � J implies �0

 J

PROOF

We must first generalise a little:

If �

1

v �

0

1

then �

1

;�

2

 J implies �

0

1

;�

2

 J

and �

1

; � ` J implies �

0

1

; � ` J

provided �

0

1

captures no variables from �

2

or �

This allows us an easy induction on derivations. From the definition of v, we shall

acquire exactly the components we need to replace those subderivations which look

up types from �

1

, perform �-reductions from �

1

or simply validate �

1

. That is, the

interesting cases are

� the var rule

If the variable being typed lies in �
1

, the definition ofv tells us how to derive the

same type from �

0

1

. Otherwise, the result follows from the inductive hypothesis,

which replaces the prefix in the premise, and the var rule, which recovers the

type from the unchanged suffix.

� the validity rules

If the context being validated is �

1

, replace the entire derivation with that of

�

0

1

` valid. Otherwise, the context strictly contains �
1

, so the premise context

contains �
1

, hence the inductive hypothesis applies.

� the cuml rule

The inductive hypothesis supplies the modified premise. As for the computa-

tional side condition, the definition of v enables us to replace every �-reduction

for variables in �

1

with an equivalent conversion valid in �

0

1

.

33

�

2.3 life of a hole

I now present four basic replacement operations which act as a basis for working with

holes.

claim (birth)
� p : T � ` S : Type

� ?x :S: p : T

try (marriage)
� ?x :S: p : T � q : S

� ?x � q :S: p : T

regret (divorce)
� ?x � q :S: p : T
� ?x :S: p : T

solve (death)
� ?x � q :S: p : T
� !x = q :S: p : T

q pure

It is clear that each of these rules is admissible. We may read them as justifying the

replacement at any position of the construction in the premise by the construction in

the conclusion. Monotonicity justifies the corresponding steps which insert and modify

new ?-components in the state.

Effectively, claim allows us to insert a new hole at any position. Holes are naturally

born this way—we claim that S holds in order to develop our proof of T. The side-

condition on the hole typing rule holds as a matter of course.

The try and regret steps allow us to attach and discard guesses repeatedly—hopefully

our judgment improves as we go round the cycle. Once the guess contains no ?-

components, it has become a core term—death is not the end of the journey, but the

transition by which a hole is solved, becoming a local definition.

These four rules allow us to extend the notion of ‘information order’ to positions. This

gives us the means to relate operations which are focused at a particular position to the

amount of information available at that position.

DEFINITION: position information order

For valid states � and P;P0

2 Pos
�

, the position information order �

P v P0 is given inductively by the following rules:

34

refl
� P v P

trans
� P v P0

� P0

v P00

� P v P00

claim
�;

�P ` S : Type

� P;P0

v P; ?x :S: P0

try
�;

�P q : S
� P; ?x :S: P0

v P; ?x � q :S: P0

regret
� P; ?x � q :S: P0

v P; ?x :S: P0

solve
� P; ?x � q :S: P0

v P; !x = q :S: P0

q pure

The admissibility of the four basic replacement operations given above ensures that if

� P v P0, then

� if �;

�P valid then �;

�P0

 valid and �;

�P v �;

�P0

� if � P[p] : T then � P0

[p] : T

We may now reconstruct the familiar tools of refinement proof as operations which

manipulate OLEG states, preserving their validity. Moreover, we can make assurance

double sure at any stage by rederiving the state’s validity judgment. This direct corre-

spondence between judgments of the type theory and states of the machine, and thus

between admissible rules and tactics, is quite a solid basis on which to build a proof

assistant.

2.4 displaying an OLEG state

The prototype implementation of OLEG was written for use by other programs, rather

than by people. However, this thesis is full of OLEG proofs, so we shall need some

way to see what we are doing. Let us think how we might display an OLEG state.

I propose to list the components of a state vertically, so that the more local bindings

are literally as well as metaphorically under the more global ones. For each binding,

we should give the binding operator, the identifier, then a table showing the property

indicators (‘:’ or ‘=’) with the associated terms (types or values). It will serve the cause

35

of brevity if we sometimes relax vertical alignment, combining bindings when more

than one identifier is being given the same treatment.

Now, any term can be viewed as a subterm under a context of binders—let us allow

ourselves to format these contexts in the same way as the ‘main’ state and write the

subterm directly underneath. For example, we might have the state shown on the right.

The initial four assumptions introduce a

type NN of natural numbers, its two con-

structors and a primitive recursion opera-

tor. Following this, I have shown a par-

tial development of the addition function.

Observe the completed successor case in-

troduced by a ! binding, while the zero

case is still an unknown bound with a ?.

The partial proof is bound with a ?, in-

dicating that it still contains ?-bindings

which must not be duplicated. Note also

that !-binding enables us to inspect terms

such as plus
s

which would otherwise be

stuck beneath the application of rec.

�NN : Type

�0 : NN
�s : NN ! NN

�rec : 8� : Type

8�

z

: �

8�

s

: �! �

8n : NN
�

?plus� ?plus
z

: NN ! NN
!plus

s

= �plus
x

: NN ! NN

�y : NN
s(plus

x

y)
: 8�: NN ! NN

8y: NN
NN

rec (NN ! NN) plus
z

plus
s

: NN ! NN ! NN

In general, then, a state is displayed as a tree whose forking nodes are bindings. From

each binding, one edge points ‘underneath’ to its scope, and others point ‘sideways’

into the terms attached by the property indicators ‘:’, ‘=’ and ‘�’. The sequence of

components which make up a state form a spine of the tree, vertically aligned at the

left hand side, starting at the root and following the ‘underneath’ edges until the last

component is reached. In the above example, the spine consists of the bindings for

NN, 0, s, rec and plus. The subtrees reached by going ‘sideways’ from this spine

(representing, for example, the type of rec, or the incomplete development of plus)

have terms or partial constructions at the leaves. As we have seen, wherever we find a

partial construction, we may replace it by another of the same type.

It is unlikely that we should always want to see the whole tree of a large state fully

expanded as above. You can, perhaps, imagine using a mouse to draw clouds round

uninteresting parts of proofs, introducing a cloud symbol in the state display. Perhaps

we can double-click on the cloud to restore the expanded tree.

36

Let us expand in detail only where we are interested,

keeping connected subtrees of uninteresting proof ob-

scured by clouds. For instance, if we are simply in-

terested in unsolved goals, the above example can be

reduced to this picture.

?plus� ?plus
z

: 8y: NN

NN

I like this interface for obscuring irrelevant details because I can focus on a subtree

without displaying the full path back to the root. Further, if we allow subtrees contain-

ing clouds to be obscured by bigger clouds, we can structure our lack of interest—when

we expand the larger cloud to return to that part of the development, the bits marked as

dull remain hidden.

Now that we can visualise the state, let us visualise tactics as direct manipulations of the

displayed image. Each symbol is given a tangible presence by its binding. Operations

which affect a symbol should be addressed, by mouse or whatever, to its binding. We

shall soon find ourselves dragging bindings about the place, and so forth. It is, perhaps,

an advantage of making ?-bindings explicit that they afford such visual metaphors.

2.5 basic component manipulations

I shall present tactics as qualified state transitions. The valid-

ity of the final state must follow from that of the initial state,

given the side-conditions.

Table 2.7 shows some basic tactics for manipulating compo-

nents at the outer level of the OLEG state. These tactics are

justified by monotonicity, except for cut and abandon which

are standard metatheoretic properties.

before) after

side-conditions

We may also represent replacement as a tactic,

instantiating it to acquire tactics which work

at any position in the development. Conse-

quently, we may apply claim, abandon, try,

regret, solve and cut within guesses. How-

ever, we are not free to create and destroy �s,

as these would not preserve the type of the par-

tial construction.

�

?x � P[p] :S
�

0

)

�

?x � P[p0] :S
�

0

�;

�P p : R
�;

�P p0 : R

Of course, we will want to operate with a little more sophistication than to edit partial

constructions directly with try and regret. What we have established is the machinery

37

assume justify claim

�

�

0

)

�

�x : S
�

0

�

�x : S
�

0

)

�

?x : S
�

0

�

�

0

)

�

?x : S
�

0

� ` S : Type � ` S : Type

try regret solve

�

?x : S
�

0

)

�

?x � p :S
�

0

�

?x � p :S
�

0

)

�

?x : S
�

0

�

?x � p :S
�

0

)

�

!x = p :S
�

0

� p : S p pure

cut abandon postpone

�

!x = s :S
�

0

)

�

[s=x]�0

�

?x : S
�

0

)

�

�

0

�

?x : S
�

0

)

�

�x : S
�

0

x 62 �

0

Table 2.7: basic component manipulations

38

attack intro-8 intro-!

?x : S
)

?x� ?x: S
x

: S

?x: 8y: S
T

x

)

�y: S
?x: T
x

?x: !y= s : S
T

x

)

!y= s : S
?x : T
x

retreat raise-8 raise-!

?y� ?x: S
t

: T

)

?x : S
?y� t : T

�y: S
?x: T
t

)

?x: 8y: S
T

�y: S
[x y=x]t

!y= s : S
?x : T
t

)

?x : !y= s : S
T

!y= s : S
t

Table 2.8: moving holes through their types

for making holes appear and disappear in a given place. Just like the cinema, if we

work this machinery fast enough, we create the illusion of movement.

2.6 moving holes

Traditionally, we may ‘introduce’ a term of functional type by filling a hole with a �-

binding whose body is a new hole—the context of the new hole contains the argument

of the function. We may ‘animate’ this manoeuvre by pretending that the ?-binding

has moved under the argument and shortened its type.

Another familiar manoeuvre undoes the effect of introduction, generalising a hole func-

tionally over the assumptions from which it was to be proven. The ?-binding moves

outwards through the binding of the assumption, and its type gets longer. Miller calls

this ‘raising’ [Mil91]. We may also shuffle holes in and out through !-bindings appear-

ing in their types.

These moves are collected in table 2.8.

Notice that the two introduction tactics only replace constructions of the form ?x :S: x.

If the body was some arbitrary t, the introductions would affect the x’s in t, rather than

the whole expression. Fortunately, any hole not of this form can be made ready for

39

introduction by the attack tactic.

The raising tactics, however, have no such restriction. They allow us to move holes out

through assumptions and definitions, becoming more functional as they go, until they

are outermost in a guess. The retreat tactic may then be used to extract them from the

development. A partial construction can always be made pure by raising and retreating

its remaining ?-bindings.

2.7 refinement and unification

The intros-8 tactic makes progress by filling a hole with a �-term. This section builds

tactics to fill holes with applications.

Let us begin with a very simple motivating example, say, de-

veloping the double function for natural numbers in terms

of plus.

?double: 8n: NN

NN

We may introduce the argument by attack, then intros-�.

?double� �n: NN
?d: NN

d

At this point, we might decide to solve for d by adding

two numbers together. We can do this, even if we have

not yet decided which two numbers, by inserting holes

for the numbers. That is, we first claim : : :

?double� �n : NN
?x; y: NN
?d : NN

d

: : : then solve d with plus x y and cut.

We have filled one old hole, d, with plus applied to two

new holes—that is, we have ‘refined d by plus’.

?double� �n : NN
?x; y: NN

plus x y

To complete the development, refine each of x and y by

n. !double= �n: NN

plus n n

40

The tactic naı̈ve-refine solves one hole by a given func-

tion applied to unknowns represented by new holes. It

is a combination of claim, try and solve.

Note that I have not explained how the length of the ar-

gument sequence ~x is to be chosen. We could leave it

to the user. However, since convertability is decidable,

we can simply try the successively longer sequences af-

forded by the 8s in the type of f until either one works

or we run out of arguments.

naı̈ve-refine

?y: T
)

?

~x :

~S
!y= f ~x
: T

f : 8

~x :~S: T

Hence, in the above example, we effectively solved d by naı̈ve-refine with plus, then

each of x and y by naı̈ve-refine with n.

While naı̈ve-refine is good for simple types, as one might

expect, it is not sufficiently powerful to be of real use in

the dependently typed setting. Consider this (admittedly

somewhat artificial) problem.

We have to find a y such that m =
N

y. Careful exami-

nation shows that n will do, with a derivation via nsym.

However, we cannot simply do naı̈ve-refine on mey with

nsym, because nsym proves x =
N

n, not m =
N

y.

�n : NN
�nsym: 8x : NN

8nex: n =
N

x
x =

N

n
�m : NN

�nem : n =
N

m
?y : NN
?mey : m =

N

y

We can, however, start by building an application of nsym in

a !-binding.

If we could solve x and y so that the types of xen and mey

became convertible, we could complete the refinement. That

is, we need to unify the two types. Note that it is unifica-

tion we need, not just one-sided matching—we need to infer

values for holes in the goal, not just unknown arguments.

?x : NN

?nex : n =
N

x
!xen = nsym x nex

: x =
N

n
?mey : m =

N

y

This thesis is not the place for a discussion of unification for proof search—there is

much work on this in the literature [Pym90]. For my purposes, something similar

in power to first-order unification on normalised terms will prove adequate. OLEG’s

explicit bindings of holes and assumptions, and its support for various operations which

permute them, suggest that Miller’s technology for unification ‘under a mixed prefix’

[Mil92] could be imported very easily.

Let us therefore imagine ‘buying in’ a pre-existing unification tool and use it to drive

the tactic shown below.

41

unify

�

?y� P

2

4

!x0= s : S
?x : T
p

3

5

)

�

0

?y� P0

�

!x= s : T
[x=x0]p

�

� v �

0

�

0

 P v P0

�

0

;

�P
0

` S � T

The idea is that unify solves holes until enough new �-reductions have been added to

give S � T. At that point, the desired s, temporarily stored in a !-binding, can be filled

in as the value for x.

Note that there is nothing to stop unify creating new holes, although this is unusual for

first-order algorithms. Nor do I require the unification process to terminate, although

this sometimes helps.

We may now build a two-phase tactic which incorporates unification in the refinement

process.

unify-refine

1.

�

?y� P

�

?x: T
p

�

)

�

?y� P

2

6

6

4

?

~z :

~R
!x0= f~z : S
?x : T
p

3

7

7

5

f : 8

~z :~R: S

2. unify x0 and x (at position P; ?~z :

~R)

As with naı̈ve-refine, it is not necessary to specify how many arguments f should have

in advance. Provided we are willing to wait for the unification attempts, we may simply

start with none and keep trying successively until either the unification succeeds or we

42

run out of 8s. This is exactly the behaviour of LEGO’s notorious ‘Refine’ tactic.5

An alternative to this search behaviour is a more precise ‘drag-and-drop’ technique.

We can imagine a mouse action picking up a hypothesis by a suffix of the functional

part of its type and dropping it on a hole. The arguments of the hypothesis before the

point we selected would be the ones made holes by unify-refine.

Perhaps you are familiar with the children’s toy which consists of a postbox with var-

ious holes of different shapes in the top. The toy comes with a number of blocks, and

the object of the exercise is to post each block through the correct hole. In order to do

this, the child is given a refinement tactic which takes the form of a blue plastic ham-

mer. There is an initial phase where the connection between the shape of the block and

the shape of the hole has not yet been made—a phase characterised by violent ham-

mering and tantrums. Everyone who has ever learned LEGO has undergone a similar

experience.

2.8 discharge and other permutations

Let me complete this reconstruction of basic theorem-proving in OLEG with some

more technology for shuffling components around. It is fairly clear that we may per-

mute components in the state in any way which preserves the dependencies between

them.

Where dependency does arise, we may still reorder the components, but we have to

account for it by introducing appropriate functional behaviour. In particular, this allows

us to discharge an assumption by making everything which follows from it functional

over it. LEGO implements this transformation by its ‘Discharge’ tactic. We may

reconstruct it piecewise by the four manipulations given in table 2.9.

Although we may read each of the ‘four discharges’ as pulling the binding of x through

the binding of y, this is just a cinematic illusion. They are, of course, proven by creating

an earlier binding for y, then expressing the later one in terms of it. By monotonicity,

we may make the same permutations for ?-components as we can for �-components.

We may also make permutations and deletions in the argument types of functional

holes, so long as we do not break any dependencies. See table 2.10. If we bracket such

moves with raising and introduction, we can make similar permutations and deletions

in arguments which have already been introduced.

5LEGO tries quite hard to keep going, applying weak head-normalisation at each step, in an attempt

to reveal a fresh 8-binding.

43

�-through-� �-through-!

�

�x : S
�y : T
�

0

)

�

�y : 8x :S: T
�x : S
[y x=y]�0

�

�x : S
!y = t :T
�

0

)

�

!y= �x :S: t
: 8x :S: T

�x : S
[y x=y]�0

!-through-� !-through-!

�

!x = s :S
�y : T
�

0

)

�

�y :!x = s :S: T
!x = s :S
�

0

�

!x = s :S
!y = t :T
�

0

)

�

!y= !x = s :S: t
: !x = s :S: T

!x= s : S
�

0

Table 2.9: the four discharges

swap-independent delete-unused

?f: 8~x: ~S
8y: Y
8z: Z

T

)

?f0 : 8~x: ~S
8z: Z
8y: Y

T
!f = �

~x; y; z: f0 ~x z y

?f: 8~x: ~S
8y: Y

T

)

?f0 : 8~x: ~S
T

!f = �

~x; y: f0 ~x

y 62 Z y 62 T

Table 2.10: permuting and deleting arguments

44

2.9 systems with explicit substitution

Now seems a good time to compare OLEG’s treatment of holes with that of other

systems.

The key issue is how to cope with holes leaking out of the scope of their explanation.

LEGO ignores this issue and reaps the consequent frightful harvest—although instanti-

ations are typechecked, they may involve out-of-scope values which are only detected

once the completed ‘proof’ is being verified. OLEG deals with the problem by for-

bidding it—a hole may not escape its scope, but its scope may be widened by raising,

keeping the dependency information explicit and intact.

The real comparison lies with systems which treat this problem via explicit substi-

tution, such as TypeLab [vHLS98] and ALF [Mag94]. Holes appear in the calculi

underlying both systems without explicit binding. Instead, the context and type of a

hole are recorded in an external ledger. By good design, this context coincides with

the collection of bound variables under which the hole makes its initial appearance, but

computation may destroy this coincidence, so explicit substitution is required to fix it

up.

[vHLS98] illustrates this with a simple example. Suppose ? is defined to have type T

in context x : T . That is, its ledger entry is x : T `? : T . Now consider the term

(�x : T:?) t

We are told that the �-abstracted x is ‘the same object’ as the x in the ledger. On the

one hand, we may instantiate ? with x and �-reduce to get t. On the other, we may

�-reduce to get ? which we can then instantiate with x. The two do not commute, as

they show in this diagram:

f? := xg

(�x : T:?) t

-

(�x : T:x) t

�

? ?

�

?

-

x t

f? := xg

The trouble is that performing the �-reduction first introduces a discrepancy—the term

no longer contains a binding occurrence of x corresponding to the x in the ledger,

45

hence the subsequent instantiation is a touch anachronistic. In fact, the substitution im-

plicit in the �-reduction has passed through ? without stopping to consider the fact that

some x’s might appear when it is instantiated, hence the solution is to delay explicitly

the application of the substitution to ?. When ? is instantiated, the substitution may

proceed. That is, we repair the leak in scope by attaching an explicit substitution to the

hole:

f? := xg

(�x : T:?) t

-

(�x : T:x) t

�

? ?

�

?[x := t]

-

t

f? := xg

The extra [x := t] is really a kind of binding which maintains consistency with the

ledger, so that ? remains a ‘function’ of x. That is, the problem remains ‘think of a

T ! T function’, and the value remains ‘whatever-it-is applied to t’.

The OLEG approach to this problem is total cowardice—since such situations cause

trouble, they are forbidden. In particular, we may not bind holes inside an application,

so there is no relationship with �-reduction to untangle.

We can, of course, have the state shown on the right. However,

the guess for f has no computational force. We cannot reduce f t

unless we widen f’s scope by raising and retreating, undoing the

introduction of the � and leaving us with an explicitly functional

hole.

�t : T
?f� �x: T

?y: T
y

f t

Is this an unbearable restriction? I can assure you that it will give us no trouble in the

course of this thesis. The point is that OLEG offers a genuine compromise between

the ingenuity of explicit substitution and the pain of representing holes as, say, skolem

functions over the entire context—holes need only be kept functional as far as they are

used computationally.

2.10 sequences, telescopes, families, triangles

Finally, for this chapter, let me digress for a moment to introduce an important nota-

tional convenience which will serve both to abbreviate and clarify what follows. We

will frequently encounter sequences of terms, often as arguments to functions or in-

46

dices of type families. I wish to avoid the traditional t
1

: : : t
n

for a number of reasons:

� it’s too wide

� it introduces a subscript which is frequently irrelevant

� our binding syntax involves significant dots—throwing more dots around (in

threes, no less) can only cause confusion

Forswear therefore the pointillist sequence in favour of de Bruijn’s telescope nota-

tion [deB91]. A sequence~t, indicates a finite, perhaps empty sequence of terms, and,

following that primitive monoidal urge, we have composition operator ; and empty

sequence ".

de Bruijn explains how to give such a sequence a ‘type’. In a simply typed setting, we

could just write ~T, but things are a little more complicated for us: in our dependently

typed world, the values of earlier terms in a sequence can affect the types of later terms.

We cannot afford to lose this dependency information, hence we must incorporate some

kind of placeholder into the type sequence notation.

DEFINITION: telescope

If V is a set of variables not containing x
1

: : : x
n

, and T
i

2 TV[fx
1

:::x
i�1

g

for

1 � i � n, then ~T is an ~x-telescope (where ~x abbreviates x
1

; : : : x
n

and ~T

abbreviates T
1

; : : :T
n

).

That is, we define a sequence of types relative to a sequence of identifiers

which become bound in turn and stand as placeholders for earlier values

in later types.

For example, the ~x-telescope

x
1

x
2

x
3

z}|{

Type ;
z }| {

x
1

! Prop ;
z }| {

8y :x
1

: x
2

y

represents a triple of, respectively, a type x
1

, a predicate x
2

over x
1

, and a proof x
3

that

all elements of x
1

satisfy x
2

.

We may now exploit telescopes in all sorts of circumstances. For example, if ~T is an

~x-telescope, the judgment � `

~t :

~T abbreviates the conjunction of the judgments

47

� ` t
1

: T
1

� ` t
2

: [t
1

=x
1

]T
2

...

� ` t
n

: [t
n�1

=x
n�1

] : : : [t
1

=x
1

]T
n

Further, the binding �~y :

~T abbreviates the sequence of n �-bindings giving y
i

the type

T
i

with y’s for the x’s, while !~y =

~t :~T abbreviates the corresponding n !-bindings, and

similarly for the other binding operators.

We may thus speak of a sequence of bound variables as having a telescope where

we would speak of a single bound variable as having a type. I shall glibly omit a

telescope’s placeholding variables, unless they are necessary to avoid ambiguity. When

essential for clarity, I shall attach the placeholder variables to the types in situ, rather

than naming them beforehand, making the above example

x
1

: Type; x
2

: x
1

! Type; x
3

: 8y :x
1

: x
2

y

The term ‘telescope’ comes from its notation-shrinking power, inspired by the kind

of collapsible telescope that Horatio Nelson once famously put to his blind eye. It is

a more appropriate metaphor for abbreviating a dependent type sequence than other

collapsible structures such as accordions or opera hats because each of the concentric

cylinders which makes up the telescope has a lip which constrains the next (and hence

all the following cylinders).

The optical behaviour of telescopes is helpful also. Broadly speaking, the longer an

optical telescope, the smaller the field of view and the greater the magnification. Sim-

ilarly, as you extend a type telescope, each new type acts as a new constraint, so the

collection of inhabiting sequences ‘visible through the telescope’ becomes smaller but

more informative.6

There is another sense in which type telescopes are collapsible—if we instantiate the

first placeholder, we acquire a more specific telescope shorter by one.

DEFINITION: telescope application

If ~T is the x
1:::n

-telescope T
1

;T
2

; : : :T
n

and t : T
1

, then the application

~T t

is the x
2:::n

-telescope

6de Bruijn talks of sequences ‘fitting into’ telescopes, but I prefer to avoid the mixed metaphor.

48

[t=x
1

]T
2

; : : : [t=x
1

]T
n

Observe that if t;~t : ~T then~t : ~T t.

This notion of application for telescopes may be iterated over a term se-

quence in the same way as function application, shortening a telescope by

instantiating any prefix. That is, if ~S is an~x-telescope and~s : ~S then (~S; ~T)~s

is just [~s=~x]~T.

Note that the use semicolon for sequential composition leaves the comma free for its

usual role, indicating multiple inhabitation of the same type or telescope. That is, ~x;~y :

~T means that each of ~x and ~y inhabits ~T, where ~x;~y :

~T means that the concatenation

of ~x and ~y inhabits ~T.

Let us also introduce a notation for making multiple copies of a telescope.

DEFINITION: iterated sequence or telescope

If~t is a sequence of terms or a telescope, then

n

~t
o

n

is the sequential composition of n copies of~t.

If~t
i

is a sequence of terms or telescope containing a free subscript i, then

n

~t
i

o

n

i

is the sequential composition

~t
1

; : : :

~t
n

The empty sequence or telescope is thus fg
0

.

Hence we may say that plus has type fNNg
2

! NN and still intend the curried form of

the function.

Observe that if~t
1

; : : :

~t
n

:

~T then
n

~t
i

o

n

i

:

n

~T
o

n

.

Similarly
n

f~t
i

o

n

i

abbreviates (f~t
1

); : : : (f~t
n

).

Now that we have the telescope notation for expressing types of indices, we may define

the notion of an indexed family.

DEFINITION: indexed family

49

If ~S is a telescope and T is a type, then an ~S-indexed T-family is an inhab-

itant of 8~x :~S: T.

For example, if for all n : NN we define finn to be the finite datatype with n elements, we

may say that fin is NN-indexed Type-family. Or, perhaps perversely, we may describe the

function which decides equality on the natural numbers as a fNNg2-indexed 22-family.

For any Type-family (henceforth ‘type family’), we may define the following telescope:

DEFINITION: free telescope for a type family

If ~T is an ~x-telescope and A is a ~T-indexed type family then, A, the free

telescope for A, is

~T; (A ~x)

For example, fin is just n : NN; x : fin n.

What is visible through this telescope? Every member of the family A, of course! That

is, if a : A~t, then~t; a : A. Note also that A~t is the same as one element telescope A~t!

Finally, let us consider how to abstract over arbitrary telescopes. Simply taking

8

~T :

�

Type
	

n

: : : :

does not capture the potential for type dependency within the telescope: T
2

may depend

on a value of type T
1

and so on. We may represent this by taking T
2

: T
1

! Type. We

then have not a telescope of types, but a telescope of type families:

T
1

: Type;

T
2

: T
1

! Type;

T
3

: 8t
1

:T
1

: (T
2

t
1

)! Type;
...

T
n

: 8

~t :
n

T
i

ft
j

g

i

j

o

n�1

i

: Type

This is a very special ~T-telescope which I call 4nType, and any sequence which in-

habits it is a triangle of length n. That is, a triangle is a sequence which represents a

telescope.

It is not hard to convert an~x-telescope ~T into a triangle: we simply turn the abstractions

implicit in the telescope notation into �-bindings which capture the earlier x’s in later

T’s. The resulting triangle is

50

T
1

;

�x
1

:T
1

: T
2

;

�x
1

:T
1

: �x
2

:T
2

: T
3

;

...

�

~x :fT
i

g

n�1

i

: T
n

Correspondingly, if ~S is a triangle, the ~x-telescope it represents is

x
1

: S
1

;

x
2

: S
2

x
1

;

x
3

: S
3

x
1

x
2

;

...

x
n

: S
n

fx
i

g

n�1

i

There is no ambiguity between triangles and the telescopes they represent. You can

easily spot which is which by which side of the colon they appear. I shall happily write

8

~T :4

nType: here ~T is a triangle

8

~t :~T: here ~T is the represented telescope

What could ~T mean as a triangle in a type position? Its elements are type families and,

apart from the first unindexed one, these type families are not types.

Observe that if T;~S is the n + 1 length triangle representing telescope T; ~T and t : T,

then the triangle representing (T; ~T) t is fS
i

tgn
i

. Telescope application is thus repre-

sented in the triangle coding by function applications.

These notational forms give us the syntactic power to manipulate dependent type fami-

lies and their inhabitants cleanly and with hardly any more effort than for simple types.

Since dependent type families feature strongly in this thesis, we are sure to be glad of

the convenience.

51

Chapter 3

Elimination Rules for Refinement

Proof

Introduction rules tell us how to establish new information. Elimination rules tell us

how to exploit what we know. This chapter identifies a particularly useful class of

elimination rule and develops a tactic to deploy them in refinement proof.

My first encounter with things described as ‘elimination rules’ was when I was being

taught natural deduction as an undergraduate mathematician. In particular, I learned

elimination rules for the propositional connectives ^ and _:

P ^Q
P

P ^Q
Q

P _Q

[P]
...

�

[Q]

...

�

�

I recall thinking the two ^-elim rules uncontroversial, whilst being somewhat confused

by the convoluted behaviour of _-elim. It was only when I caught my supervisor build-

ing a proof from the bottom of the blackboard upwards that I began to see the point.

_-elim tells us how to exploit a disjunctive hypothesis to gain leverage on whatever

� it is we are trying to prove. The ^-elim rules seem somewhat undermotivated by

comparison—they project out one or other conjunct, so we have to arrange to want the

conjuncts.

We can reformulate the ^-elim rules as a single rule in the style of _-elim:

52

P ^Q

[P]
[Q]

...

�

�

This rule (often called ‘uncurrying’) makes explicit the ‘see if you can prove it from

the conjuncts’ technique which the original pair of rules tacitly require the reasoner to

apply. And that is the key point. Elimination rules should supply a proof technique

which analyses the hypothesis in question to give leverage on whatever the objective

may be. The ‘projective’ rules only manage to be both applicable and motivated if we

are lucky enough to be trying to prove one or other of the projections.

MANTRA:

The end motivates the means.

It is only because ^ is a pretty boring connective—there is no choice about how to

prove P ^ Q—that we can get away with projective elimination rules. A disjunctive

hypothesis yields no definite conclusion, so forward synthesis is blocked—we have to

work analytically, reasoning by cases.

_-elim helps us prove � from P _ Q by splitting the task into two subtasks, decom-

posing the hypothesis. However, this is not the only way a well-designed elimination

rule can make analytical progress. We can also decompose the objective (or ‘goal’)

into more specific cases, our favourite example being the ‘principle of mathematical

induction’:

� 0

[� n]
...

� sn
8n :NN: � n

This rule explains how to prove an arbitrary goal � indexed by a natural number n: we

must show that proofs of � are made the same way that numbers are. The subgoals in-

stantiate the index with more specific natural numbers. This instantiation may provide

us with the concrete data we need to perform some computation or simplification, and

this is, by and large, how inductive proofs work.

Henceforth, I shall intend by ‘elimination rule’ only this kind of rule whose conclu-

sion is an arbitrary goal, possibly abstracted over indices. This characterisation is very

53

broad, including rules where there is nothing being eliminated. This may seem odd,

but it is sometimes useful to characterise what progress we can make towards an arbi-

trary goal without exploiting any further information. Good examples to bear in mind

are the impredicative encodings of the true proposition and the absurd proposition, re-

spectively 8� : Prop: � ! � and 8� : Prop: �. The former exploits no information in

the cause of proving its arbitrary �, and consequently exerts no leverage, leaving � as

a subgoal. The latter is only derivable in the context of a contradiction, and it indicates

that we already have all we need to establish whatever � we want.

In order to exploit elimination rules whose conclusion is abstracted over indices, we

need to make the corresponding abstractions from the goal we are trying to prove. It

is, of course, obvious how to do this when the goal already looks like 8n : NN: � n.

This chapter is largely devoted to explaining how to make the abstractions under less

obvious circumstances.

3.1 propositional equality (definition deferred)

One of the tools we shall shortly require is a propositional notion of equality. The

conventional formulations become awkward once type dependency enters the picture.

The trouble is that two instances of a type family with indices which are not convertible,

just propositionally equal, are not the same type. The familiar definitions permit only

equations within one type—they forbid us even from stating the equality of elements

drawn from the two instances of the family.

Huet and Saı̈bi encounter a similar problem in their formalisation of category theory

[SH95]—they need to state the equality of arrows whose domains are not necesssarily

computationally equal. Their solution is to relax the formulation rule for equations on

arrows whilst still supplying only the reflexive constructor. With care, this approach

may be extended to the commonplace propositional equality, and that is what I propose

to do.

Rather than presenting my definition at this stage, with slender motivation and less

context, I shall defer the treatment until we have more idea of what its properties should

be, and more language with which to describe them.

Since I do not use a familiar equality, I shall not presume to use the familiar ‘=’ symbol.

Instead I shall write ‘'’. Experienced readers who dislike suspense will find its defini-

tion in chapter 5. Otherwise, read on here—let us look out for the required behaviour

of ' as we go.

54

3.2 anatomy of an elimination rule

Let us first establish notation for elimination rules and give names to their compo-

nents. Presenting elimination rules as raw types, or even in the conventional natural

deduction style is relatively uninformative, as I have found in the past to my cost. In

this section, I shall motivate what I hope is a clearer presentation (arising from a black-

board conversation with Rod Burstall). It is important that we come to some systematic

understanding of these rules, for we shall need to teach machines to use them.

In order to make sense of any elimination rule, we need to know

� what it eliminates—its target

� what family of arbitrary goals it proves—its scheme

For example, mathematical induction (right) eliminates a nat-

ural number, n, and proves goals of the form � n, where � is

a family of propositions (ie, a predicate) over NN.

NNInduction

� : 8n :NN: Prop

� 0

� n
: : : : : :

� sn

8 n : NN : � n

I mark the target with a box. We can tell � is the scheme because it stands at the head

of the rule’s return type.

If we want to apply this rule, the target marker tells us that we must select a natural

number to eliminate, which will stand in the place of n. Having done so, we will need

to abstract it from the goal to make an appropriate scheme for �. It is important to type

the scheme prominently. The index types are not always so obvious as here. Further,

we may need to be precise about which type universe the goal must inhabit: the ‘Prop’

in the above rule makes it suitable only for propositional goals—this rule cannot be

used for programming.

Schemes always have types of form 8

~ı :~I: U. I call the~ı the rule’s indices, and the

indexed telescope~I the rule’s aperture. Later we shall see elimination rules for the

same thing, but with different apertures. We shall also see how to change the aperture

of a rule. In conventional proofs by mathematical induction, the scheme is often called

the ‘induction predicate’. However, we shall have need of schemes which are not

predicates and rules which are not inductive.

Wherever � is applied, its arguments are called patterns. The universally quantified

variables appearing in patterns are pattern variables. Target selection must instantiate

all the pattern variables in the conclusion of the goal—otherwise we will not know

55

what to abstract to build the scheme. For mathematical induction, the only pattern

variable involved is the target itself, so this requirement is clearly fulfilled.

Above the solid line are the rule’s cases, each of which proves � applied to some case

patterns (such as 0 and sn above). Any subgoal-specific assumptions appear above a

dotted line, the horizontal cousin of natural deduction’s vertical ellipsis. Those which

do not involve� are case data. Those which do are described as inductive hypotheses

or recursive calls.

The visual aspect of this presentation is intended to convey the idea that the cases of an

elimination rule are the ghosts of the corresponding introduction rules. Prawitz’s ‘in-

version principle’ captures this relationship between the introduction and elimination

rules of natural deduction [Pra65]—he attributes the idea to Gentzen who in [Gen35]

expresses the property as follows:

In eliminating a symbol, we may use the formula with whose terminal

symbol we are dealing only ‘in the sense afforded it by the introduction of

that symbol’.

In essence, elimination rules show us how to mimic the structure of the hypotheses on

which they act. Mathematical induction shows us to how to make � n imitate n : NN. I

will freely suppress implicit assumptions (such as the n : NN in the ‘successor’ subgoal

above) in order to strengthen this resemblance.

MANTRA:

Decomposition is the exposition of construction.

Before I describe how to work with elimination rules in more detail, let me place the

discussion in context by exhibiting a number of variations on the theme.

56

3.3 examples of elimination rules

Parameterised data structures like lists have pa-

rameterised elimination rules.

In particular, we say that an elimination rule’s

parameters are those hypotheses on which the

scheme’s and cases’ types depend. They may,

where interesting, be listed at the top of the rule.

listElim

A : Type

� : (list A)! Type

� (nil A)

h : A � t
: : : : : : : : : : : : :

� (cons h t)

8 l : list A : � l

Note that I supply the case datum h : A explicitly, despite its appearance in the cons

case pattern, in order to emphasise the imitation of the constructor.

A class of elimination rule which we will construct and use over and over again in this

thesis is the case analysis or inversion principle. For any notion given by introduction

rules, the corresponding inversion principle asserts that those introduction rules are

exhaustive. There is one case for each introduction rule, and there are no inductive

hypotheses.1

Consider, by way of example,� for NN, presented here in its

‘suffix’ variant.
m�m

m�n
m�sn

The traditional ‘Clark completion’ [Cla78] presentation represents the choice of deriva-

tions as a disjunction of existentially quantified equations.

8m; n: m�n !
W

9m0

: m'm0

^ n'm0

9m0

; n0

: m'm0

^ n'sn0

^m0

�n0

There is one disjunct for each introduction rule—the schematic variables become ex-

istentially quantified over equations demanding that the conclusion proves the inverted

hypothesis and that the premises hold. This construction is somewhat mechanical, in

that it explicitly constrains each argument of the hypothesis even if the constraint is

redundant, like the 9m0

: : :m'm0 in each case.

In [McB96], I gave a standardised ‘elimination rule’ presentation of inversion, essen-

tially currying the Clark completion. For example, the generic class of hypothesis m�n

would be inverted thus:

1In fact, it is good to think of induction as inversion augmented with recursive information.

57

�ClarkInv

� : Prop

m'm0 n'm0

: : : : : : : : : : : : : : :

�

m'm0 n'sn0 m0

�n0

: :

�

m�n ! �

m and n are parametric to the whole rule. Once they have been instantiated, the equa-

tions in the subgoals may be simplified automatically. This approach is somewhat

clumsy, but it is very easy to apply, as the scheme � may be any proposition—no ab-

straction is necessary. We shall shortly develop the abstraction technology required

to exploit a more streamlined version, with an indexed scheme removing the need for

equational constraints on the parameters:

This inversion principle differs from the Clark rule

only in its aperture. They are, of course, interderiv-

able, suggesting that there might be a systematic

way to change the aperture of an elimination rule.

In fact, that is the essence of the tactic this chapter

develops.

�Inv

� : 8m; n :NN: Prop

� m m

m�n
: : : : : : : :

� m sn

8m; n: m�n ! � m n

The process which simplifies the constraints arising from inversion makes critical use

of the fact that constructors are injective and disjoint (the ‘no confusion’ property). For

natural numbers, we might plausibly choose to derive two of Peano’s postulates:

� 8m; n :NN: sm'sn ! m'n

� 8n :NN: 0 6'sn

The above formulation of injectivity is essentially projective after the fashion of the

awkward ^-elim rules—directly useful only if it is m'n we are trying to prove. For

non-unary constructors, cons for example, the problem gets worse—we either have

separate head and tail injectivity theorems, or a single result which yields a tuple of

equations which we then eliminate.

58

Consequently, I present injectivity as an inversion rule for

an equation of successors. This is really just the ‘tuple’

version in curried form—the ‘predecessor’ equations are

the hypotheses of the rule’s only case.

Turning to the ‘constructors disjoint’ result, if we think of

‘not’ as ‘implies false’ and ‘false’ as the absurd proposition

‘anything is true’, we discover that we had an elimination

rule all along, with a fortunate number of cases.

I shall show how to prove rules like these in chapter 5.

sInjective

� : Prop

m'n
: : : : : :

�

sm'sn ! �

0 not s

� : Prop

0'sn ! �

We should not think of elimination rules as solely belonging to datatypes and relations.

They also provide neat tools for reasoning about functions. After all, what is the ex-

tension of a function, but a relation on which a total and deterministic computational

mode has been imposed.

An equational presentation of a function corresponds to a set of introduction rules,

with recursive calls becoming inductive premises. It makes sense to reason about the

behaviour of the function by the corresponding elimination rule.

Consider NNEq—the function which decides the equal-

ity of two natural numbers. Later, we shall see how

to define it by recursive pattern matching equations as

shown.

NNEq 0 0 = true
NNEq sm 0 = false
NNEq 0 sn = false

NNEq sm sn = NNEq m m

The corresponding elimination rule allows us to do what John McCarthy calls recur-

sion induction [McC67], effectively packaging up the recursive structure of NNEq as a

single induction principle.

NNEqRecI

� : 8m; n :NN: 8 b :22: Prop

� 0 0 true � 0 sn false � sm 0 false

� m n b
: : : : : : : : : :

� sm sn b

8m; n: � m n NNEq m n

59

Many proofs about functions operate by choosing the right combination of inductions

and case analyses on the arguments to make the computation unfold. Recursion in-

duction on functions does away with the apparent cunning of this choice by wrapping

up ‘the right combination’ in a derived rule which targets applications of the function

directly. The proof of a recursion induction principle follows the construction of the

function it describes, step by step.

In order to make proper use of such a recursion induction principle, or any other rule

eliminating a function application, we must choose a scheme � which abstracts that ap-

plication from the goal. Each subgoal thus replaces the application by the appropriate

value.

Such abstractions are usually unnecessary when eliminating datatypes or relations.

However, exactly when and where this abstraction behaviour is required seems to vary

from rule to rule, and even from problem to problem—I cannot see how to infer it

reliably from the structure of the rule or its target.

The user must be free to indicate which arguments are to be abstracted in any given

case—I put a box in the type of the scheme around any index for which abstraction

is to be attempted. When b is boxed in NNEqRecI, it indicates that we would like to

abstract occurrences of (NNEq m n) as b.

For many functions, typically of a ‘searching’ or ‘testing’ character, recursion induc-

tion is still too close to the implementation to be really useful. For example, regardless

of how the test works, we should like to know that NNEq returns true for equal and

false for unequal arguments. We can represent these requirements as ‘extensional’

introduction rules, via the propositional equality:

These equations may not be computational, but we can

still use them for conditional rewriting, should we be lucky

enough to encounter applications of NNEq which look like

the left hand sides.

NNEq x x' true

x 6' y
NNEq x y' false

We are often less lucky. Imagine we are trying to prove a property of a program

8x; y: P (if NNEq x y then S else T)

The computation is blocked at the box, because the ‘if’ will only reduce given a

boolean value, and inside the box because x and y are not numerals. Neither rewrite

rule applies, because we do not know whether or not x and y are equal. We can remove

the blockage if we split the problem into the two cases where the NNEq call returns

true and false respectively.

60

This is exactly the behaviour of the inversion

principle corresponding to the rewrite rules.

Inverting a NNEq call yields two cases: one

where the arguments are the same and the re-

sult is true, the other where the arguments dif-

fer and false is returned.

NNEqInv

� : 8m; n :NN: 8 b :22: Prop

� n n true

m 6'n
: : : : : : : : : : : : :

� m n false

8m; n: � m n NNEq m n

Again, boxing b indicates that (NNEqmn) is to be abstracted from the scheme. Conse-

quently, it is replaced in one subgoal by true and in the other by false. In both cases,

the ‘if’ reduces—further, in the true case, x and y are coalesced:

� 8x: [x=y](P S)

� 8x; y: x 6'y ! P T

Inversion requires much less effort than extracting the same information from ‘charac-

terisation theorems’ like the following (from the LEGO library):

8m; n :NN:m'n $ NNEq m n'true

To achieve the effect of the inversion, you need to combine this lemma with projection

from the ‘$’, boolean case analysis and a rewriting mechanism.

MANTRA:

Invert the blocking computation.

The point is simple. Introduction rules construct information. Elimination rules ex-

ploit information. It is a serious weakness to confuse these purposes. In my view, an

equational specification is the wrong tool to exploit the properties of one program in a

proof about another. By construction, elimination rules, especially those which invert

blocked computations, are much better tools for that purpose. Over the course of this

thesis, you will see this point reinforced in example after example.

3.4 legitimate targets

In order to refine a goal by an elimination rule, we must do two things:

61

� select a target of the kind the rule eliminates

� construct a suitable scheme from the goal

I shall discuss the latter in the next section, but the first issue requires comment now,

because it impacts on how we should present elimination rules in the first place.

The point is that, in order to be able to select a target, we must know what kind of

target the rule eliminates. We must define what it means to be a ‘legitimate target’ of

a rule, so that when we tell the machine which rule we want to use, it can tell us what

we may use it on.

As we have just seen, there are many different kinds of elimination rule, eliminating

many different kinds of target. The elimination rule for a datatype eliminates an ar-

bitrary element of that type, abstracted in the rule and appearing in the concluding

pattern:

8 n : NN : � n

Inverting an inductively defined relation like � eliminates hypothetical inhabitants of

the relation, but the pattern (� m n) only involves the relation’s indices (m and n), not

the target (the proof of m�n) itself:

8m; n: m�n ! � m n

An elimination rule for a function specifically eliminates applications of that function,

rather than arbitrary elements of the result type, so the target appears only in the pat-

terns.

8m; n: � m n NNEq m n

More diverse variations include ‘double induction’, where we must provide two targets

for a nested analysis. There is no way we can expect a machine to cope with this

diversity, looking only at a type and trying to second-guess the intention behind it.

Let us place the burden of specifying what an elimination rule targets where it

belongs—with the manufacturer of the rule. In the Northern Irish tradition, a legiti-

mate target is whatever we say it is.

Consequently, the boxes around targets become more than a notational courtesy be-

tween you and me—they are annotations which the machine can also see. One way to

62

represent such annotations is to store the boxed term and type in a fatuous !-binding

with a special identifier, ‘2’, below:

� 8n :NN: !2 = n :NN: � n

� 8m; n: 8H :m�n: !2 = H :m�n: � m n

� 8m; n: !2 = NNEq m n :22: � m n (NNEq m n)

Given the ‘manufacturer’s instructions’, the machine can ask us for legitimate targets in

the order that the annotations appear in the type. When we indicate what to eliminate, a

process known in the business as fingering, the machine can match it against the target

annotation, inferring the universally quantified variables therein.

This opens the interesting possibility that the type of an elimination rule might be

computed from its targets. After all, we cannot compute the elimination scheme until

we know what it is we intend to eliminate. We will see an example of this technique

later—the ‘injectivity’ and ‘conflict’ rules for a given datatype will be combined into a

single rule which computes the inversion appropriate to the equation being eliminated

once targetting has instantiated the two sides with constructor expressions. This is not

a caprice on my part—it really is the easy way to prove the Peano-style properties of

dependent datatypes.

3.5 scheming with constraints

‘You can have any color you like, as long as it’s black.’ (Henry Ford)

Undergraduates should count themselves fortunate that the exercises in inductive proof

with which they are traditionally presented involve goals of form:

‘For all n 2 NN, rhubarb rhubarb n.’

The formulation of the ‘base’ and ‘step’ cases then involves mindless copying of the

‘rhubarb’ bit, with appropriate values substituted for the ‘n’. Even if they cannot com-

plete the question, they can still manufacture the proof template (once any tendency to

write ‘suppose n = k, show n = k + 1’ has been beaten out of them, that is) and thus

collect some credit.2

2For such purposes ‘rhubarb rhubarb’ makes as worthy a predicate as any.

63

When reasoning about even modestly complex notions, such as � for NN, we are less

likely to be favoured by goals bearing so close a resemblence to an elimination rule

conclusion, such as that of �Inv:

�Inv : : : :8m; n: m�n ! � m n

�Inv’s scheme abstracts over arbitrary pairs of natural numbers, but how are we to

deal with less arbitrary pairs? How can we cope with particular restrictions of rela-

tions, datatypes and so forth? How might we apply a generic rule like �Inv to a more

restricted instance of �? Consider the boxed hypothesis in

?0least : 8x: x�0 ! x'0

We need to construct a scheme which is constrained according to the problem in hand,

but still abstracted over the entire aperture of the rule. The constraint we need can be

expressed by means of propositional equality, taking

� = �x; n: n'0 ! x'0

As it were, ‘you can have any n : NN you like, as long as it’s 0’.

Plugging in this scheme, the conclusion of �Inv becomes

8m; n: m�n ! n'0 ! m'0

Now, if we fill in the details of our selected target, x�0, this is further instantiated to

0'0 ! x'0

and we can surely prove 0'0—let us presume there is some

refl : 8A :Type: 8a :A: a'a

More generally, suppose we have an elimination rule prov-

ing some scheme � for patterns ~p[~y], as shown to the right.

The notation ~p[~y] represents the sequence of patterns with the

pattern variables abstracted: more generally, ~p[~t] means ‘the

patterns with t’s substituted for the y’s’.

� : 8

~ı: U

rule subgoals
8

~y: � ~p[~y]

We may apply this rule to a more specific goal—let us presume that targetting has pro-

duced a matching � giving the rule’s pattern variables in terms of the goal’s hypotheses.

That is, consider a goal which looks like

64

8

~x:	[~p[�~y]]

We may choose a scheme � with explicit equational constraints:

�

~ı: 8~x:~ı'~p[�~y]! 	[

~p[�~y]]

What is~ı'~p[�~y]? It is a telescopic equation: in general, if ~s and ~t are sequences of

length n, then the telescopic equation~s'~t abbreviates the telescope of equations:

fs
j

't
j

g

n

j

Observe, though, that we must be able to express these constraints even in the presence

of type dependency. For example, if we were building constraints on an aperture

n : NN; v : vect n

we might need something like

n
1

'n
2

; v
1

'v
2

even though v
1

: vectn
1

and v
2

: vectn
2

. That is, we need a notion of equality which

scales to telescopes—exactly what ' will provide.

Let us instantiate the rule’s conclusion, filling in the pattern variables according to �

and � with the scheme we have constructed:

8

~x: ~p[�~y]'~p[�~y]! 	[

~p[�~y]]

If we can solve the equations, we will recover the target goal. Fortunately, they are

reflexive.

The point is this: in much the same way that Henry Ford’s customers could ask for

any colour of Model T, but would only receive satisfaction if they happened to choose

black, the above scheme is indeed abstracted over the entire aperture, but the patterns

to which it applies are subject to equational constraints which recover their specificity.

Notice that the formulation of this scheme requires no abstraction. The 	[

~p[�~y]] re-

mains untouched. It is targetting which identifies the ~p[�~y]—they need not even occur

in the goal, although the exercise is perhaps a little pointless if they do not.

65

We have established the basic technique for constructing schemes when our goal is

more specific than the conclusion of the elimination rule. It is broadly effective, but it

sometimes generates redundant information. For example, constraints are unnecessary

wherever the goal really is as general as the rule—there is no point in saying ‘you can

have any color you like, as long as it’s a color’. We should try to avoid equations where

abstraction will do.

The next three subsections describe techniques to make the basic scheme less clumsy,

in accordance with the following three observations:

� wherever a fresh variable is constrained to equal an index, we can coalesce the

two and remove the constraint

� we can avoid abstracting the scheme over redundant information

� if an index is constrained to equal a complex pattern (for example, when we

apply an elimination rule characterising a function) we may sometimes simplify

the scheme by replacing copies of the pattern with the index

3.5.1 simplification by coalescence

The simpler the example, the more unnecessary constraints there are likely to be: if we

wanted to prove

8n :NN: rhubarb rhubarb n

the generic constrained scheme would be

�m :NN: 8n :NN:m'n ! rhubarb rhubarb n

This is not the scheme which I want my students to write down, so it had better not

be the scheme which the machine computes. Wherever a scheme constrains a �-bound

index to a equal fresh 8-bound variable of the same type, we may coalesce the two.

Our example becomes

�n :NN: rhubarb rhubarb n

as we might hope for.

66

When we coalesce two variables, we have a choice of which name to keep—it is polite

to preserve the name from the goal. Note that if the same 8-bound variable is con-

strained to equal more than one index, that effectively forces those indices to be the

same—we may only make one coalescence, otherwise we lose this ‘diagonalisation’.

3.5.2 what to fix, what to abstract

Which of the goal’s premises do we really want the scheme to abstract? Which should

remain fixed over the whole scope of the elimination? Unfortunately, these can be

quite subtle questions. Imagine, for example, that we are building the map function

for polymorphic lists:

map : 8S;T :Type: 8f :S ! T: 8x : list S: list T

In order to do recursion on x we must certainly fix S—the element type is parametric

to the elimination rule for list. We may fix T and f or not as we please.

On the other hand, when we are constructing functions which require nested recursion,

we may not be so free to fix arguments. Consider, for example, Ackermann’s function:

ack : NN ! NN ! NN

ack 0 n = sn

ack sm 0 = ack m s0

ack sm sn = ack m (ack sm n)

When we apply the outer recursion on the first argument, we must not fix the second

argument—as you can see, the recursive calls which decrease the former also vary the

latter.

Abstracting wherever we are not forced to fix sounds like a promising policy—it does

not hurt us to have too much flexibility, only too little.

However, sometimes abstraction is definitely re-

dundant. Recall our earlier example, proving

8x: x�0 ! x'0

perhaps by �Inv (shown to the right).

�Inv

� : 8m; n :NN: Prop

� m m

m�n
: : : : : : : :

� m sn

8m; n: m�n ! � m n

67

As things stand, the basic scheme abstracts all the premises

� = �m; n: 8x: x�0 ! m'x ! n'0 ! x'0

Coalescence removes 8x (and renames m):

� = �x; n: x�0 ! n'0 ! x'0

Plugging this into the conclusion of the rule, we find we have a proof that

8x; n: x�n ! x�0 ! n'0 ! x'0

The extra inequality, x�0, is redundant. It is present because we have abstracted over

what we were eliminating, but it is not in any way useful because the scheme is not

indexed over the proof of the inequality.

Typically, once targetting has filled in what is being eliminated, the application of an

elimination rule looks like

rule � ~� �~y : �

~p[�~y]

The premises occurring in the inferred arguments �~y are the ones being eliminated.

However, some y’s may not appear in the patterns, so some eliminated premises may

not appear in the instantiated patterns~p[�~y]. The elimination thus tells us nothing about

them, so we may omit them from the scheme provided type dependency permits.

That is, we may omit a premise x on grounds of redundancy provided

� x occurs in the arguments of the elimination rule inferred by targetting

� x does not occur in the instantiated patterns ~p[�~y]

� the remainder of the goal does not depend on x

Inductive relations like � are usually formulated in exactly this ‘proof irrelevant’ way.

In our example, the eliminated hypothesis x�0 satisfies the three conditions. We omit

it, leaving

� = �x; n: n'0 ! x'0

This is the scheme we want.

68

3.5.3 abstracting patterns from the goal

Rules with indices marked for abstraction

oblige us to carry out further simplification

on the scheme, in order that they have the in-

tended ‘rewriting’ effect.

Recall NNEqInv from section 3.3—we might

use this rule to rewrite an application of NNEq

in a goal like the following:

NNEqInv

� : 8m; n :NN: 8 b :22: Prop

� n n true

m 6'n
: : : : : : : : : : : : :

� m n false

8m; n: � m n NNEq m n

8x; y:	[if NNEq x y then s else t]

Targetting infers [x=m][y=n]. The coalesced scheme is thus

� = �x; y; b : b'NNEq x y ! 	[if NNEq x y then s else t]

The boxed b tells us that we should abstract away occurrences of (NNEq x y) from the

goal. Once we have done this, we can throw the constraint away.

� = �x; y; b:	[if b then s else t]

Abstracting arbitrary terms in dependent type theory is a sensitive business—we are

not always free to replace a given subterm by a variable of the same type, because the

typing of the whole term may depend on the particular intensional properties of the

subterm being replaced. However, it is worth a try—if unsuccessful, we may leave the

constraint as it is and continue.

This rewriting technique is very powerful. The trouble caused by the intensionality

of the type theory is a real pity. Perhaps a part of the problem could be avoided with

appropriate facilities for reconstructing broken typings from propositional equalities,

as proposed by Hofmann [Hof95].

69

3.5.4 constraints in inductive proofs

Let us see how constrained schemes affect inductive

proofs. We will acquire constraints on the inductive

hypotheses, as well as those on the conclusions of

the subgoals.

Consider applying the weak induction principle3 for

� (see right) in a proof of

� : 8m; n :NN: Prop

� m m

� m n
: : : : : : : :

� m sn

8m; n: m�n ! � m n

?strict: 8x; y: sx�y ! x<y

Targetting gives � = [sx=m][y=n], so we infer the scheme (coalescing y and n):

� = �m; y: 8x:m'sx ! x<y

The corresponding subgoals are shown to the right.

The constraints which appear as hypotheses in the

subgoals, e
b

and e
s

, are ‘friendly’—they restrict the

m’s and x’s we have to deal with. The constraint

in the inductive hypothesis, e
s

, is ‘unfriendly’—it

restricts our choice of x0.

A closer examination of these constraints reveals a

more subtle but crucial distinction.

?base: 8m; x: NN

8e
b

: m'sx
x<m

?step: 8m; n: NN

8hyp : 8x0 : NN
8e

h

: m'sx0

x0<n
8x : NN
8e

s

: m'sx
x<sn

The variables appearing in these constraints come from two sources:

� the pattern variables for each case of the elimination rule, m and n above—these

become premises of the subgoals, and appear on the left-hand side of constraints

� the variables universally quantified in the scheme, x and x0 above—these become

premises of the subgoals and also parameters of the inductive hypothesis: they

appear on the right-hand side of constraints

The ‘friendly’ constraints tell us useful information about the variables which occur

as subgoal premises, whether they come from the scheme or the patterns. In chapter

3An inductively defined relation like � also has a strong induction principle—the distinction is ex-

plained in section 4.1.5.

70

5, we will see how to simplify them, solving for variables appearing on either side—

‘friendly’ constraints constitute unification problems.

In our example, let us imagine we can perform this

simplification on e
b

and e
s

, instantiating the m’s to

leave the subgoals shown.

?base0: 8x: NN

x<sx
?step0 : 8x; n: NN

8hyp: 8x0 : NN
8e

h

: sx'sx0

x0<n
x<sn

The ‘unfriendly’ constraints cannot tell us anything about the variables which occur as

subgoal premises—e
h

does not allow us to infer x. Rather, they narrow our choices for

the copies of the scheme variables (like x0) which parameterise inductive hypotheses.

That is, ‘unfriendly’ constraints can only determine variables appearing on the right-

hand side—they are matching problems.

Look back before we simplified the ‘friendly’ constraints:

we cannot find an x0 to solve the matching problem

m'sx0. However, now that we have done the unification,

a solution has become available. Inferring x for x0 we can

obtain the subgoals shown on the right.

?base00: 8x: NN

x<sx
?step00 : 8x; n: NN

8hyp: x<n
x<sn

Something interesting has happened, and we will see what it is if we present these

subgoals in natural deduction style:

base00
x<sx

step00 x<n
x<sn

This looks like a plausible recursive specification of <! In fact, what we have done

is apply the standard unfold/fold technique for logic programs [TS83, GS91] to trans-

form our goal, viewed as a specification of < in terms of �, into subgoals which give

< recursively. The unification problems in the conclusions are those which arise in

unfolding; the matching problems in the inductive hypotheses are those involved in

folding.

3.6 an elimination tactic

In this section, I shall present a tactic, eliminate, which refines a given goal by a given

elimination rule—the user is required to finger the targets, then the tactic constructs an

appropriate scheme and solves the goal, generating a subgoal for each case.

eliminate operates in five stages:

71

� preparing a proforma application of the elimination rule to arguments initially

unknown

� fingering the targets and inferring the pattern variables

� constructing a constrained scheme

� proving the goal

� tidying up

I have implemented a prototype of this tactic with much of the functionality described

here as a key component in my extension of LEGO. Of course, if I had known then

what I know now, it would have all the functionality. This section is the blueprint for

the revised version.

I shall present each stage as a little tactic. The�

induction we have just seen in the previous sec-

tion makes a useful running example. The tactic

should reproduce exactly the effect we manu-

factured by hand.

The rule we shall use and the goal we shall

prove are shown in OLEG notation on the right.

The boxed premise in the rule is the inequality

it eliminates: the boxed inequality in the goal is

the one we shall target.

��Elim: 8� : 8m; n: NN
Prop

8�

m

: 8m: NN
� m m

8�

s

: 8m; n: NN

8�

mn

: � m n
� m sn

8m; n: NN
8 L : m� n
� m n

?leGoal : 8x; y : NN
8 H : sx� y

x< y

3.6.1 preparing the application

The preparation step could be carried out for any goal to be solved by any lemma. It

is just an administrative manoeuvre, getting everything in the right place for the real

work which follows.

TACTIC: eliminate-prepare

72

elim: 8

~s :~S: R[~s]

?goal: 8~x: ~X
Y[~x]

) elim : 8

~s :~S: R[~s]

?goal� �

~x :

~X

?

~s :

~S
!app = elim~s

: R[~s]
?conc : Y[~x]
conc

The goal’s hypotheses are introduced; the

lemma’s hypotheses are inserted as unknowns.

A ‘proforma’ application of the lemma is then

manufactured and stored as a !-binding. Ulti-

mately, this application will be used to solve

conc. We must first fill in some of the~s.

The prepared application for our example is

shown on the right.

?leGoal� �x; y : NN

� H : sx� y
?� : : : :

?�

m

: : : :

?�

s

: : : :

?m; n : NN

? L : m� n
!app =�Elim � : : :L

: � m n
?conc : x< y
conc

3.6.2 fingering targets

Having installed an application of the rule in the proof of the goal, the next step is

to infer some of its arguments by targetting. We may presume that the rule has a

sequence of targets marked by its manufacturer. The user must now finger a sequence

of matching expressions to be eliminated.

We may make use of the unify tactic to do our matching, although this may be a slight

overkill. Something like the following happens:

?goal� �

~x :

~X

?

~s
1

;

~s
2

:

~S
1

;

~S
2

!app = elim~s
1

;

~s
2

: R[~s
1

;

~s
2

]

?conc : Y[~x]
conc

t[~s
2

] : T[~s
2

] target

e[~x] : E[~x] to be eliminated

)

?goal� �

~x :

~X

?

~s
1

:

~S
1

!

~s
2

=

~r[~x]
!app = elim~s

1

;

~r[~x]
: R[~s

1

;

~r[~x]]
?conc : Y[~x]
conc

T[~r[~x]] �
=

E[~x]
t[~r[~x]] �

=

e[~x]

73

That is, targetting tries to match terms and types. If successful, some of the rule’s

arguments~s
2

will be inferred as~r[~x]. Others,~s
1

, will not be inferred. The two kinds do

not have to be bound in separate clumps—it is just easier to write down that way.

If a rule has more than one target, we will have to repeat

this step for each.

In our example, we successfully match H to L. Matching

the types also infers m and n.

!m = sx
!n = y
!L = H
!app=�Elim � : : :H

: � sx y

Now, if an elimination rule is particularly complicated, its later structure may be com-

puted from earlier arguments inferred by targetting. The instantiated type of app may

reduce, revealing more premises to be inferred. The tactic should create holes for these

and add them to the application. Computation may also reveal more targets. Incorpo-

rating this possibility, the real behaviour of the targetting step is as follows

TACTIC: eliminate-target

?goal� �

~x :

~X

?

~s
1

;

~s
2

:

~S
1

;

~S
2

!app = elim~s
1

;

~s
2

: R[~s
1

;

~s
2

]

?conc : Y[~x]
conc

t[~s
2

] : T[~s
2

] target

e[~x] : E[~x] to be eliminated

)

?goal� �

~x :

~X

?

~s
1

:

~S
1

!

~s
2

=

~r[~x]

?

~s
3

:

~S
3

!app0= elim~s
1

;

~r[~x];~s
3

: R0

[

~x;~s
1

;

~s
3

]

?conc : Y[~x]
conc

T[~r[~x]] �
=

E[~x]
t[~r[~x]] �

=

e[~x]

R[~s
1

;

~r[~x]] . 8~s
3

:

~S
3

: R0

[

~x;~s
1

;

~s
3

]

Observe that not only have the ~s
2

been inferred and turned into !-bindings, but some

~s
3

have appeared as a result of computation. The proforma application is extended

accordingly.

74

3.6.3 constructing the scheme

If the targetting phase has left the state as shown,

the tactic may proceed to construct the elimination

scheme. The scheme variable, �, has been uncovered

and the patterns, ~p[~x], have been inferred. The task is

now to compute �. We must put the analysis of section

3.5 into practice.

Recall that the basic scheme is manufactured by ab-

stracting all the premises and constraining the indices

to equal the instantiated patterns.

?goal� �

~a :

~A

�

~x :

~X

?� : 8

~ı:~I[~a]
U

!app = elim~r
: �

~p[~x]
?conc : Y[~x]
conc

Correspondingly, the tactic begins by building a basic

scheme, copying the non-parametric premises ~x from the

goal and constraining all the indices. A premise a is con-

sidered parametric exactly when it occurs in the type of �.

The tactic may fail at this point if the goal being addressed

is too ‘big’ for the universe over which the rule eliminates.

?�� �

~ı :

~I[~a]

8

~x
0

:

~X
8

~e :

~ı' ~p[~x
0

]

Y[~x
0

]

The remainder of this phase prunes the basic scheme down to something less clumsy,

wherever this is possible. Of course, in a real implementation, we would try to save

work by approaching the desired scheme more directly, but I suspect that ‘pruning the

basic scheme’ gives a clearer exposition. There are two passes:

� For decreasing4
j, remove 8x0

j

from the scheme if it is redundant, ie

if x
j

2

~r (x
j

has been targetted : : :)

and x
j

62

~p[~x] (: : : but is not being ‘inspected’ in the patterns : : :)

and x
j

62

~X;Y[~x] (: : : or depended on by the rest of the goal)

� For increasing5
k, try to simplify constraint 8e

k

: i
k

' p
k

[

~x]

There are two simplifications to check for: in order,

– coalescence

if p
k

is some x0
j

(index constrained to equal fresh variable : : :)

and I
k

�

=

X
j

(: : : of same type)

then replace x0
j

by i
k

, remove 8x0
j

from scheme

Strictly, we should then rename i
k

to x0
j

, keeping the name from the goal,

but that would make this presentation more complex than it already is.

4Later redundant premises must not be used as excuses to retain earlier redundant premises.
5Simplifying earlier constraints may unify the types of later constraints.

75

– abstraction for rewriting

When i
k

is marked for abstraction with 8 i
k

in the type of �, try replacing

all occurrences of p
k

in the scheme by i
k

. If the result is well-typed, discard

e
k

, otherwise leave the scheme alone.

Once simplification is complete, the pruned scheme is made accessible by changing

the ?� to !�. The type of app can then reduce.

In our example, the basic scheme is more complex than

it needs to be. Reflecting the ‘proof irrelevant’ nature of

inductive relations, the H0 is redundant. Furthermore, we

may remove e
n

by coalescence.

?�� �m; n : NN
8x0; y0: NN
8H0

: sx0 � y0

8e
m

: m' sx0

8e
n

: n' y0

x0 < y0

The pruned scheme is exactly the one we came up with

when we did this example by hand. The type of app

reduces accordingly.

!� = �m; y0: NN

8x0 : NN
8e

m

: m' sx0

x0 < y0

!app=�Elim � : : :H
: 8x0 : NN
8e

m

: sx' sx0

x0 < y

I summarise the behaviour of this phase as a tactic step:

TACTIC: eliminate-scheme

?� : 8

~ı:~I[~a]
U

!app= elim : : :

: �

~p[~x]

)

!� = �

~ı :

~I[~a]

8

~x
0

p

:

~X
0

p

8

~e
p

:

~ı
p

'

~p
p

[

~x
0

p

]

Y0

[

~ı;~x
0

p

]

!app= elim : : :

: 8

~x
0

p

:

~X
0

p

8

~e
p

:

~p
p

[

~x
p

]'

~p
p

[

~x
0

p

]

Y0

[

~p[~x];~x
0

p

]

The ~x
0

p

are what remain of the ~x
0

after pruning—~x
p

is the corresponding

76

selection from ~x.

The~e
p

are what remain of the~e after pruning, equating a pruned sequence

of indices~ı
p

to a pruned sequence of patterns ~p
p

[

~x
0

p

].

Recall that the conclusion we are trying to prove is Y[~x]: by construction,

Y0

[

~p[~x];~x
p

] � Y[~x]

3.6.4 proving the goal

TACTIC: eliminate-goal

!app = elim~r

: 8

~x
0

p

:

~X
0

p

8

~e
p

:

~p
p

[

~x
p

]'

~p
p

[

~x
0

p

]

Y0

[

~p[~x];~x
0

p

]

?conc : Y[~x]

)

!conc= app ~x
p

(refl~p
p

[

~x
p

])

: Y[~x]

This phase proves conc from app by instantiating the

premises abstracted in the scheme with their ‘originals’,

making the constraints reflexive and the return type the

desired Y[~x].

The effect on our example is shown on the right.

!app =�Elim � : : :H
: 8x0 : NN
8e

m

: sx' sx0

x0 < y
!conc= app x (refl sx)

: x< y

3.6.5 tidying up

TACTIC: eliminate-tidy

?goal� �

~x :

~X
!� = : : :

?

~sub :

~S
!

~s =

~r[~x]

!app = elim �

~sub~r[~x]
!conc= app ~x

p

(refl~p
p

[

~x
p

])

conc

)

?

~sub0 : 8~x
d

:

~X
d

:

~S

!goal= �

~x: ~X

elim : : : (

~sub
0

~x
d

) : : :

77

Each sub
i

0 proves S
i

generalised over the ~x
d

it depends on.

Firstly this phase cuts the !-bindings for inferred arguments ~s, and also �, app and

conc.

The task is then to shuffle the subgoals—the rule arguments not inferred by targetting—

outside the proof of goal. This is done by discharging the �s through them, so that they

are generalised over only what their types depend on (as opposed to raising the ?s,

which would generalise over everything regardless). Typically, this will re-abstract the

fixed parameters.

Once the ?s are outside the �s, the retreat tactic moves them outside the binding of

goal. At this point, smart implementations try to �-reduce the proof of goal. Finally,

goal is solved, becoming a !-binding.

In our example, the subgoals do not depend on any of the premises, so no generalisation

is necessary. The final subgoals and proof term are as follows:

?sub
1

: 8m; x0: NN
8e : m' sx0

x0 < m
?sub

2

: 8m; n: NN
8hyp : 8x0: NN

8e : m' sx0

x0 < n
8x0 : NN

8e : m' sx0

x0 < sn
!leGoal= �x; y: NN

�H : sx� y
�Elim (�m; y0: 8x0:m'sx0 ! x0<y0)

sub
1

sub
2

sx y H
x (refl sx)

: 8x; y: NN
8H : sx� y

x< y

3.7 an example—NNEq

We have built our hammer—let us bang in a few nails. I propose to synthesise the NNEq

function described earlier in the chapter, and to prove some useful theorems about it.

We will make use of the eliminate tactic for both programming and proof.

78

NNEq is a recursive function on NN, so the starting point for

the development will be NN’s elimination rule, NNElim, which

doubles as the traditional induction principle and its primitive

recursion operator.

NNElim

� : 8n :NN: Type

� 0

� n
: : : : : :

� sn

8 n : NN : � n

The sequence of work is then as follows:

� Use NNElim to build an implementation of

NNEq corresponding to the obvious functional

program.

NNEq 0 0 = true
NNEq sm 0 = false

NNEq 0 sn = false
NNEq sm sn = NNEq m m

� Use NNElim again to prove NNEq’s recursion induction principle:

NNEqRecI

� : 8m; n :NN: 8 b :22: Prop

� 0 0 true � 0 sn false � sm 0 false

� m n b
: : : : : : : : : :

� sm sn b

8m; n: � m n NNEq m n

� Use NNEqRecI to prove a more con-

venient elimination rule for NNEq—

the inversion principle suggested

earlier in the chapter.

NNEqInv

� : 8m; n :NN: 8 b :22: Prop

� n n true

m 6'n
: : : : : : : : : : : : :

� m n false

8m; n: � m n NNEq m n

� Use NNEqInv to show that NNEq satisfies its equa-

tional specification, given here as ‘introduction

rules’.

NNEq x x' true

x 6' y
NNEq x y' false

79

3.7.1 constructing NNEq

Let us implement NNEq by a nested recursion, on the first argument and then the second.

PROGRAM: NNEq

!NNEQ= �m; n :NN: 22
?NNEq : 8m; n :NN:NNEQ m n

satisfying

NNEq 0 0 = true
NNEq sm 0 = false

NNEq 0 sn = false
NNEq sm sn = NNEq m m

DEVELOPMENT

The above goal is shown with a box around our first target. Note the !-binding which

replaces the return type of NNEq with a more informative alias.

See how the return type of NNEq looks a bit like the left-hand side of a pattern matching

definition? We can find our target m there. eliminate it with NNElim!

We now have a base case and a step case.

Note the way the return types have picked

up the patterns corresponding to the case

analysis.

In the base case, we are ready to elimi-

nate the second argument, n, again with

NNElim.

?NNEq
0

: 8n: NN
NNEQ 0 n

?NNEq
s

: 8m : NN
8rec: 8n: NN

NNEQ m n
8n : NN
NNEQ sm n

!NNEq = NNElim (�m: 8n:NNEQ m n)
NNEq

0

NNEq
s

We can now ‘fill in the right-hand sides’ by in-

troducing the premises, then refining by true

for NNEq
00

and false for NNEq
0s

.

?NNEq
00

: NNEQ 0 0
?NNEq

0s

: 8n : NN

8rec: NNEQ 0 n
NNEQ 0 sn

!NNEq
0

= NNElim (�n:NNEQ 0 n)
NNEq

00

NNEq
0s

The step case is kept neat by introducing m

and its associated recursive call before elim-

inating n with NNElim. Note that the type

of the recursive call tells us which argument

patterns it is good for.

?NNEq
s

� �m : NN
�rec : 8n: NN

NNEQ m n
?NNEq

s

: 8n: NN
NNEQ sm n

NNEq
s

80

We solve NNEq
s0

with false. For NNEq
ss

, we

introduce the premises and refine by the re-

cursive call rec n.

?NNEq
s0

: NNEQ sm 0

?NNEq
ss

: 8n : NN
8rec0: NNEQ sm n

NNEQ sm sn
!NNEq

s

= NNElim (�n:NNEQ sm n)
NNEq

s0

NNEq
ss

�

We have built our first function with eliminate!

3.7.2 proving NNEqRecI

There is a standard technique for proving the recursion induction principle for a func-

tion. We fix an arbitrary scheme � indexed by the function’s arguments and result type.

We also assume that � is preserved by each ‘introduction rule’, ie recursive equation.

We then prove that � holds for any arguments and the corresponding result—this proof

has exactly the same recursive structure as the function itself. Discharging the fixed

assumptions will give us the general rule.

THEOREM: NNEqRecI

�� : 8m; n :NN: 8b :22: Type

��

00

: � 0 0 true

��

0s

: 8n :NN: � 0 sn false
��

s0

: 8m :NN: � sm 0 false
��

ss

: 8m; n: NN

8b : 22
8hyp : � m n b
� sm sn b

?NNEqRecI: 8m; n: NN
� m n (NNEq m n)

81

PROOF

For our NNEq example, we fix � and assume

it is preserved by each of the four equations.

We are left proving � m n (NNEq m n) for

any m and n, where before we computed

NNEQ m n. We eliminate with NNElim in ex-

actly the same places.

�� : 8m; n :NN: 8b :22: Type

��

00

: � 0 0 true

��

0s

: 8n :NN: � 0 sn false
��

s0

: 8m :NN: � sm 0 false
��

ss

: 8m; n: NN

8b : 22
8hyp : � m n b
� sm sn b

?NNEqRecI: 8m; n: NN
� m n (NNEq m n)

I will show one base case and the step case.

Once elimination has instantiated the arguments

of NNEq appropriately, it reduces in each sub-

goal, making them vulnerable to the assump-

tions constructed with exactly that purpose. The

base cases follow directly.

?NNEqRecI
00

: � 0 0 (NNEq 0 0)

. � 0 0 true

Similarly, the conclusion of the step

case reduces to the conclusion of the

relevant assumption, �
ss

, with b suit-

ably instantiated.

rec n computed the recursive call

in the construction of the function.

Here, rec n fills in the premise of �
ss

to complete the proof.

�rec : 8n: NN

� m n (NNEq m n)
?NNEqRecI

ss

: 8n : NN
8rec0: � sm n (NNEq sm n)
� sm sn (NNEq sm sn)
. � sm sn (NNEq m n)

Discharging the subgoals proves the general rule we want. �

Let us mark NNEqRecI as targetting (NNEq m n), and by default abstracting it.

This proof method gives a recursion induction principle for many of the functions we

can build in OLEG—it mimics exactly their construction. In effect, it packages up the

sequence of eliminations which made the function, so that they can be used at one

stroke in proofs of its properties.

82

3.7.3 proving NNEqInv

The proof of NNEqInv by NNEqRecI is a good example of deriving an inversion prin-

ciple from a recursion induction principle. It illustrates a technique which I shall use

relentlessly in similar circumstances for the rest of this thesis.

The proof of recursion induction principles is relatively simple. They directly describe

the computational behaviour of the function in question, so we should not be surprised

to find that the computational mechanism of the underlying calculus does all the hard

work. Recall that in each subgoal of the inductive proof, the conclusion reduces to

exactly what is proven by the corresponding premise.

Contrarily, inversion principles often cut against the computational grain, characteris-

ing the extensional properties of functions, rather than the mechanism by which they

operate. The key to proving them is not to fix their schemes as �-bindings outside the

induction, but rather to let them vary inside the induction. This means that the inductive

hypotheses are themselves inversion principles—we use inversion, not computation, to

simplify the inductive steps.

THEOREM: NNEqInv

?NNEqInv: 8� : 8m; n :NN: 8b :22: Type

8�

t

: 8m :NN: � m m true

8�

f

: 8m; n : NN
8uneq: m 6'n
� m n false

8m; n: NN

� m n NNEq m n

PROOF

We fix nothing in the context and eliminate by NNEqRecI, abstracting (NNEq m n).

The scheme generated by eliminate is abstracted

over the scheme of the rule we are trying to prove.

Observe that the original (NNEq m n) in the con-

clusion has been replaced by b.

�m; n: NN
�b : 22
8� : 8m; n :NN: 8b :22: Type

8�

t

: 8m :NN: � m m true
8�

f

: 8m; n : NN

8uneq: m 6'n
� m n false

� m n b

The recursion induction gives us directly the three base cases and the step case. Again,

one base case is sufficently representative.

83

In this off-diagonal case, the recursion

induction has already filled in the an-

swer false. Hence, introducing the

premises and refining by �
f

, we are left

proving 0 6'sn. This is not difficult, as

we shall see in chapter five.

?NNEqInv
0s

: 8n : NN

8� : 8m; n :NN: 8b :22: Type

8�

t

: 8m :NN: � m m true

8�

f

: 8m; n : NN
8uneq: m 6'n
� m n false

� 0 sn false

The step case is more entertaining. We do not know whether to use �
t

or �
f

, because

we do not yet know what b is. However, the inductive hypothesis is an elimination rule

telling us about m, n and b. I have called the scheme 	 to reduce confusion.

?NNEqInv
ss

� �m; n : NN
�b : 22

�hyp : 8	 : 8 m ; n :NN: 8 b :22: Type

8

t

: 8m :NN:	 m m true
8

f

: 8m; n : NN

8uneq: m 6'n
	 m n false

	 m n b

�� : 8m; n :NN: 8 b :22: Type

��

t

: 8m :NN: � m m true
��

f

: 8m; n : NN

8uneq: m 6'n
� m n false

?NNEqInv
ss

: � sm sn b
NNEqInv

ss

Introducing everything, we may now eliminate the conclusion with hyp, abstracting

all the indices. No targetting is necessary as the patterns are fully instantiated. The

generated scheme abstracts m, n and b:

	 = �m; n; b: � sm sn b

We are left with two subgoals, each with the equality decided:

?NNEqInv
sst

: 8m :NN: � sm sm true
?NNEqInv

ssf

: 8m; n : NN

8uneq: m 6'n
� sm sn false

84

These follow respectively from �

t

and �

f

without much difficulty, completing the

proof. �

As with NNEqRecI, mark NNEqInv as targetting (NNEq m n) and by default abstracting

it.

3.7.4 proving the ‘introduction rules’

THEOREM: NNEqtrue

?NNEqtrue: 8m: NN

NNEq m m ' true

PROOF

Eliminating with NNEqInv introduces a constraint because the target is diagonalised:

� = �m; n :NN: �b :22: m'n ! b'true

Both subgoals are easy.

?NNEqtrue
t

: 8m: NN

8e : m'm
true' true

?NNEqtrue
f

: 8m; n : NN

8uneq: m 6'n
8e : m'n
false' true

�

THEOREM: NNEqfalse

?NNEqfalse: 8m; n : NN
8uneq: m 6'n

NNEq m n ' false

PROOF

Eliminating with NNEqInv, both subgoals are even easier.

85

?NNEqfalse
t

: 8m : NN

8uneq: m 6'm
true' false

?NNEqfalse
f

: 8m; n : NN
8uneq : m 6'n
8uneq0: m 6'n
false' false

�

86

Chapter 4

Inductive Datatypes

This chapter gives a formal definition of the class of inductive datatypes and families

with which we shall work in OLEG. I shall broadly follow Luo’s choice of which defi-

nitions to admit, and show how their elimination and computation rules are generated

[Luo94]. Goguen has checked that the usual metatheoretic properties such as strong

normalisation continue to hold for ECC extended with this notion of datatype [Gog94].

Basically, we shall have the datatypes and families arising from strictly positive

schemata, as proposed by Coquand, Paulin-Mohring and Dybjer [CPM90, Dyb91].

These are the datatypes of COQ, LEGO and ALF. Induction and recursion over them

will be provided by means of the traditional elimination rules, which do exactly one

step of case analysis, attaching an inductive hypothesis to each recursive subterm so ex-

posed. Each type is equipped with an ‘elimination constant’ whose type codes up the

elimination rule—computation is then added by associating the appropriate contrac-

tion schemes (or �-reductions) with these constants. Elimination rules for inductively

defined relations were first formulated by Martin-Löf in [M-L71b].

This is the exactly the presentation described in Luo’s book [Luo94] and implemented

in LEGO[Pol94] by Claire Jones. COQ has basically the same datatypes, but separates

the ‘inversion’ and ‘recursion’ aspects of elimination by providing a Case construct

for the former and a Fix construct for the latter. Fix is carefully checked to ensure

that recursive calls are made only on terms which are guarded by constructors and

hence strictly smaller than the term being decomposed.

The Case/Fix presentation is much the neater one, for two reasons:

� Even if there is a particular argument on which I wish my function to do recur-

sion, that is no reason to suppose it is the first argument on which it should do

case analysis. Sometimes I want to look at another argument first, and then, per-

87

haps in not all of the cases arising, to decompose the recursive argument. The

conventional eliminator ties the two notions together inappropriately.

� The conventional eliminator only facilitates recursion after exactly one construc-

tor has been stripped away. The Fix operator allows recursion on any subterm

exposed by Case. This serves a more useful purpose than merely to admit in-

efficient definitions of the Fibonacci function. Working interactively, we do not

need to predict so precisely in advance the inductive structure you require.

Eduardo Giménez showed the conservativity and confluence of Case and Fix in

[Gim94]. He showed strong normalisation for the Calculus of Constructions extended

with lists in this style [Gim96], and there seems no reason to suppose this does not

extend to other types. Intuitively, �-reductions make a sound like the clanking of a

giant metal cog in a ratchet. However deeply under skyscraping storeys of �- and

�-‘administration’ the real work may be buried, we can still hear the great machines

going clank—we know that the hands of the clock will go forward and that the bell

will ring for midnight.

This is a rather prosaic chapter in which I show how to mechanise Giménez’s argument

in OLEG. The summary, for those who would rather skip the detail, is that I equip each

datatype with two alternative elimination rules, in the sense of the previous chapter. It

is, of course, the eliminate tactic which provides the means of their construction.

At this point, I should remark that I have omitted some classes of datatype found in

LEGO and COQ. Both these systems permit mutually defined types: for example,

even and odd numbers given by a ‘zero’ constructor (which makes an ‘even’) and two

‘successor’ constructors (taking ‘even’ to ‘odd’ and ‘odd’ to ‘even’). I omit them,

not because they are awkward in principle, but because discussing them in general

terms is a notational nightmare: I have no examples in this thesis which require them.

However, all of the technology developed here for solitary inductive definitions extends

to the mutual case without any difficulty—indeed the implemented system does handle

mutual definitions. In any case, a mutual definition can always be represented as a

single inductive family of datatypes indexed by a finite type whose elements label the

branches—we might define a family Parity : 22 ! Type with Parity true containing

the even numbers and Parity false the odd numbers.

COQ also allows embedded datatypes, where an existing datatype is used as an auxil-

liary to a new datatype—for example, defining the finitely branching trees by a single

‘node’ constructor which takes a list of subtrees. This facility is both neat and labour-

saving, but it adds no extra power. As Paulin-Mohring observes in [P-M96], embedded

88

datatypes can be turned into mutual dataypes with extra branches duplicating the be-

haviour of the auxiliary types—we may define ‘finitely-branching-tree’ mutually with

‘list-of-finitely-branching-trees’.

4.1 construction of inductive datatypes

Rather than plunging at the deep end and drowning in subscripts, let us establish a

simply-typed theme, then examine variations: parameterised (or, when the parameters

are themselves types, polymorphic) types, types with higher-order constructors and

dependent inductive families, then degenerate types like relations and records.

The components of any inductive datatype definition are as follows

� The type former is the new constant which names the type or type family, eg NN,

list, vect.

� The constructors (or ‘introduction rules’) are the means of forming the canoni-

cal elements of the datatype, eg 0 and s for NN.

� The elimination rule (or ‘induction principle’) provides the mechanism for de-

composing elements of the datatype in the cause of constructing something else,

be it a proof ‘by induction’ or some recursively computed value. This rule must

be marked with a target so that eliminate can use it.

� The �-reductions animate this mechanism, defining the computational behaviour

of the elimination rule for each canonical element.

4.1.1 simple inductive datatypes like NN

Componentwise

� The type former is a constant which inhabits some universe

Ind : Type

NN is an example of such an Ind.

� The constructors are function symbols Con
1

: : : Con
c

, where for each j in

1 : : : c

89

Con
j

: 8

~a : ~A
j

: 8

~x :fIndgrj : Ind

The ~A
j

are called the non-recursive arguments because they may not refer to

Ind. Neither may they involve any universe as large as that which Ind inhabits,

in order to avoid the paradoxical embedding of a larger universe inside a smaller

one—we may usually rely on Harper and Pollack’s universal policeman [HP91]

and use the unlabelled Type regardless.

We say that Con
j

has r
j

recursive arguments. Think of elements of Ind as

tree structures made from nodes of different kinds given by the constructors, a

Con
j

node having r

j

out-edges and a label of telescope ~A
j

. Actually, there

is no need for the recursive arguments to come after the non-recursive ones,

but it makes the presentation simpler if we pretend they always do—since non-

recursive arguments cannot have types involving Ind, they may certainly always

be permuted to the front.

We may also think of constructors as introduction rules for Ind:

~a :

~A
j

x
1

: Ind : : : x
r

j

: Ind

Con
j

~a~x : Ind

The derivation trees composed from such rules correspond exactly to the tree

notion of inductive data structures mentioned above.

NN has two constructors:

0 : NN
n : NN
sn : NN

Observe also that, if Ind is to be inhabited, it will need at least one constructor

with no recursive arguments.

� Let us examine IndElim, the constant whose type gives the elimination rule

for Ind, in accordance with the general analysis of elimination rules presented

earlier.

The pattern which IndElim eliminates is the free

pattern on Ind, which matches any element of

Ind. Hence IndElim has a scheme indexed by

Ind, ie � : 8x : Ind: Type and a rule goal targetting

the element to be eliminated. 8 x : Ind : � x. The

outline of the rule is as shown.

IndElim

� : 8x : Ind: Type

?

8 x : Ind : � x

In order to build a proof of � x for an arbitrary x, we need a method for each

constructor, showing how � for its conclusion follows from � for its recursive

90

arguments—more succinctly, that each Con
j

preserves �. We may think of �

as a property which must hold wherever its argument is an Ind, hence it must

have ‘introduction rules’—the rule subgoals of IndElim—analogous to those of

Ind. Thus we manufacture the rule subgoals of IndElim from the introduction

rules of Ind by writing � p in the former wherever the latter has p : Ind:

~a :

~A
j

� x
1

: : : � x
r

j

: :

� (Con
j

~a~x)

Note that the recursive arguments ~x : fIndgrj have not disappeared entirely. The

types of the recursion hypotheses depend on them, hence we may infer that they

are themselves present as case hypotheses, and suppress them from the writ-

ten rule accordingly. Functional programmers may be more familiar with ‘fold

operators’—the cut down version, where � is a constant and the recursive argu-

ments are supplanted by the recursion hypotheses.

We now have all the pieces we need to complete the IndElim rule:

� : 8x : Ind: Type

~a :

~A
1

� x
1

: : : � x
r

1

: :

� (Con
1

~a~x) : : :

~a :

~A
c

� x
1

: : : � x
r

c

: :

� (Con
c

~a~x)

8 x : Ind : � x

Or, more inscrutably,

IndElim : 8�: Ind ! Type:

(8

~a : ~A
1

: 8

~x :fIndgr1 : f� x
i

g

r

1

i

! � (Con
1

~a~x))!
...

(8

~a : ~A
c

: 8

~x :fIndgr1 : f� x
i

g

r

1

i

! � (Con
c

~a ~x))!

8 x : Ind : � x

For the natural numbers, then, we get

NNElim : 8�:8n :NN: Type:

(� 0)!

(8n :NN: (� n)! � sn)!

8 n : NN : � n

NNElim

� : 8n :NN: Type

� 0

� n
: : : : : :

� sn

8 n : NN : � n

91

� Those of us given to a skeptical disposition would be unlikely to accept the va-

lidity of IndElim if we did not see how to plug the proofs of its rule subgoals

together to build an inhabitant of � for any particular x which we might make

from Ind’s constructors. This process is represented in our type theory by the

�-reductions associated with Ind. By this means we imbue IndElim with a com-

putational meaning, allowing us to evaluate recursive functions over Ind.

We add an �-reduction for the effect of IndElim on each constructor:

IndElim �

~

� (Con
j

~a~x);
�

�

j

~a ~x
n

IndElim �

~

� x
i

o

r

j

i

For the natural numbers, we get two such rules:

NNElim � �

z

�

s

0 ;
�

�

z

NNElim � �

z

�

s

sn ;
�

�

s

n (NNElim � �

z

�

s

n)

Given the type former and constructors for a simple inductive datatype, the elimination

rule and �-reductions can be computed in a straightforward way.

4.1.2 parameterised datatypes like list

It is not hard to represent datatypes such as lists of natural numbers via the above

mechanism:

NNlist : Type NNnil : NNlist
n : NN t : NNlist

NNcons n t : NNlist

However, it seems much preferable to define lists once, polymorphically and instantiate

that definition for each type of element we encounter than to define a new list type

for every element type. That is, we should be able to define lists in a way which is

parameterised by the choice of element type, allowing us to write the functions which

operate on arbitrarily-typed lists once and for all. For each A : Type, list A should be

the simple inductive datatype of lists of A elements. Such entities are sometimes called

‘families of inductive datatypes’, because each element of the family is an inductive

datatype.

This kind of parameterisation is very simple—once the parameters have been instanti-

ated, they are fixed for the entire inductive definition—constructors, elimination rule,

the lot. For a given parameter telescope ~p :

~P, then, we need merely bind it parametri-

cally to each of the defined constants and rewrite rules, correspondingly replacing each

C by C~p wherever they are applied.

Hence

92

� type former

Ind : 8

~p :~P: Type

� constructors

Con
j

: 8

~p :~P: 8~a : ~A
j

: 8

~x :fInd~pg
r

j

: Ind~p

(or as an introduction rule)

~a :

~A
j

x
1

: Ind~p : : : x
r

j

: Ind~p
Con

j

~a~x : Ind~p

� elimination rule

� : (Ind~p)! Type

~a :

~A
1

� x
1

: : : � x
r

1

: :

� (Con
1

~p~a~x) : : :

~a :

~A
c

� x
1

: : : � x
r

c

: :

� (Con
c

~p~a~x)

8 x : Ind~p : � x

(or as a type)

IndElim : 8

~p :~P: 8�:(Ind~p)! Type:

(8

~a : ~A
1

: 8

~x :fInd~pg
r

1

: f� x
i

g

r

1

i

! � (Con
1

~p~a~x))!
...

(8

~a : ~A
c

: 8

~x :fInd~pg
r

c

: f� x
i

g

r

c

i

! � (Con
c

~p~a~x))!

8 x : Ind~p : � x

� �-reductions

IndElim~p �

~

� (Con
j

~p~a~x);
�

�

j

~a ~x
n

IndElim~p �

~

� x
i

o

r

j

i

The family of datatypes, list, is thus given by

list A : Type nil A : list A
h : A t : list A
cons h t : list A

93

listElim

� : (list A)! Type

� (nil A)

h : A � t
: : : : : : : : : : : : :

� (cons h t)

8 l : list A : � l

listElim A � �

n

�

c

(nil A) ;

�

�

n

listElim A � �

n

�

c

(cons h t) ;
�

�

c

h t (listElim A � �

n

�

n

t)

Note that I suppress the parameter A when writing cons h t, because it can be inferred

from the type of h, conversely leaving it visible in list A and nil A. In general, I shall

avoid mentioning parameters wherever convenient.

4.1.3 datatypes with higher-order recursive arguments, like ord

So far, each of the datatype constructors we have seen has a fixed number of recursive

arguments—in the tree metaphor, a fixed number of out-edges to smaller subtrees.

One might choose to see these as a family of out-edges indexed by a finite set, and

proceed to wonder whether any other types might be acceptable for indexing recursive

arguments. And yes, any small enough type (telescope) can be used to index a recursive

argument, as long as it does not involve the type being defined1, giving us the increased

power of higher-order recursive arguments addressing infinite families of subterms.

Higher-order recursive arguments are thus functions returning elements of the in-

ductive datatype. The elimination thus rule has higher-order recursion hypotheses—

functions returning proofs of �.

For example, we may construct a type of ordinal numbers which supplements the

‘zero’ and ‘successor’ constructors with the ‘supremum’ of a possibly infinite family

of smaller ordinals:

zero : ord
x : ord

suc x : ord
f : NN ! ord
sup f : ord

The sup constructor takes a family of ordinals indexed by NN, admitting a notionally

transfinite structure.2 The corresponding subgoal in the elimination rule gives access

1a restriction known as strict positivity
2Of course, NN ! ord has only countably many inhabitants.

94

to a family of recursion hypotheses:

ordElim

� : 8x :ord: Type

� zero

� x
: : : : : : : : : : :

� (suc x)

8n :NN: � (f n)
: : : : : : : : : : : : : :

� (sup f)

8 x : ord : � x

How can we compute over such a type? The sup branch expects a family of proofs

of � for the image of its functional argument—we may manufacture such a family by

�-abstracting over the recursive call:

ordElim��

z

�

s

�

sup

(sup f);
�

�

sup

f (�n :NN:ordElim��

z

�

s

�

sup

(f n))

In the same way, we can allow constructors of an arbitrary inductive datatype to have

families of recursive arguments, with the elimination rule acquiring families of recur-

sion hypotheses:

� type former

Ind : Type

� constructors

Con
j

: 8

~a : ~A
j

: 8

~f :
n

8

~h
i

:

~H
i

: Ind
o

r

j

i

: Ind

(or as an introduction rule)

~a :

~A
j

f
1

: 8

~h
1

:

~H
1

: Ind : : : f
r

j

: 8

~h
r

j

:

~H
r

j

: Ind

Con
j

~a~f : Ind

� elimination rule

� : Ind ! Type

: : :

~a :

~A
j

8

~h
1

:

~H
1

: � (f
1

~h
1

) : : : 8

~h
r

j

:

~H
r

j

: � (f
r

j

~h
r

j

)

: :

� (Con
j

~a~f) : : :

8 x : Ind : � x

(or as a type)

95

IndElim : 8�: Ind ! Type:

(8

~a : ~A
1

: 8

~f :
n

8

~h
i

:

~H
i

: Ind
o

r

1

i

:

n

8

~h
i

:

~H
i

: � (f
i

~h
i

)

o

r

1

i

! � (Con
1

~a~f))!

...

(8

~a : ~A
1

: 8

~f :
n

8

~h
i

:

~H
i

: Ind
o

r

c

i

:

n

8

~h
i

:

~H
i

: � (f
i

~h
i

)

o

r

c

i

! � (Con
c

~a~f))!

8 x : Ind : � x

� �-reductions

IndElim �

~

� (Con
j

~a~f);
�

�

j

~a~f
n

�

~h
i

:

~H
i

: IndElim �

~

� (f
i

~h
i

)

o

r

j

i

4.1.4 dependent inductive families like the fins

Let us now extend the notion of inductive datatypes to include inductively defined

indexed families of types as in [Dyb91].

For example, consider the finite sets. For any n, it is not hard to define a simple type

with n elements. Types such as 00, 11 and 22 are commonplace. However, our choice

of n is at the meta-level, and we must define each type separately. How much more

useful if we could define fin : NN ! Type, enabling us to reason at the object level about

arbitary finite sets. Of course, fin 0 had better be empty, and we can make fin sn by

inventing a ‘new’ element, then embedding all the ‘old’ elements of fin n. That is, fin

is a mutually defined family of datatypes with constructors:

fz n : fin sn
x : fin n

fs x : fin sn

By convention, I choose to think of these sets growing in a ‘push-down’ fashion. The

new element introduced by fz is ‘zero’, while the old elements are embedded by a

‘successor’ function. By a deBruijn influenced predisposition, I see the newest as the

closest and lowest in number. Note that we may leave n as an implicit argument to fs.

fin has a family of elimination rules with a family of schemes

� : 8n :NN: (fin n)! Type

We form the rule subgoals by demanding that � n holds wherever fin n is inhabited—

that is, we select the scheme corresponding to the relevant branch of the mutual defini-

tion. Hence, finElim

96

finElim

� : 8n :NN: (fin n)! Type

� sn(fz n)

� n x
: : : : : : : : : : :

� sn (fs x)

8n :NN: 8 x : fin n : � n x

with computational behaviour

finElim � �

fz

�

fs

sn (fz n) ;
�

�

fz

n
finElim � �

fz

�

fs

sn (fs x) ;
�

�

fs

x (finElim � �

fz

�

fs

n x)

fin is thus an inductively defined family of types—the instances of the family are not

inductive datatypes taken in isolation; only collectively do they form a mutual inductive

definition. Contrast this with a family of inductive datatypes such as list, where each

member, eg list NN is an inductive datatype in its own right.

In the light of this example, let us generalise to dependent inductive families,

Fam : 8

~ı :~I: Type

The constructors now take recursive arguments from and return values in any instance

of the type family being defined, that is any Fam ~t for terms ~t :

~I. Thus, in the

‘introduction rule’ style, we get

~a :

~A x
1

: Fam~t
1

: : : x
r

: Fam~t
r

Con ~a ~x : Fam~t
con

The scheme of FamElim must be indexed over the entirety of the types being defined,

that is

� : 8

~ı :~I: (Fam~ı)! Type

Recall that the ‘free telescope’ notation abbreviates this to � : Fam ! Type.

The rule subgoals demand that for all~ı, �~ı holds wherever Fam~ı is inhabited; more

succinctly that � holds wherever Fam is inhabited. Hence we get FamElim:

97

� : Fam ! Type

: : :

~a :

~A �

~t
1

; x
1

: : : �

~t
r

; x
r

: :

�

~t
con

; (Con ~a~x) : : :

8

~ı; x :Fam: �

~ı; x

Observe that there is still only one targetter: unifying term and type gives enough

information to infer an inhabitant of Fam.

The reduction rule for each constructor is thus:

FamElim �

~

�

~t
con

; (Con ~a~x) ;
�

�

con

~a~x
n

FamElim �

~

�

~t
j

; x
j

o

r

j

4.1.5 inductively defined relations like <

Inductively defined relations bear a strong resemblance to dependent inductive families

of datatypes. However, their presentation is differently motivated: inductive relations

are families of propositions and their role is in reasoning rather than computation—

they sit outside the domain of programs and data characterising aspects of it.

Propositions are types, and the terms which inhabit them constitute proofs. An induc-

tive relation’s inhabitants are built by constructor functions, just like a datatype—we

may think of these constructors as inference rules—but their elimination rules do not

inspect proofs explicitly in terms of their constructors.

Technically, the difference between inductive relations and datatypes is manifested in

two ways:

� the type formers of an inductive relation range over the impredicative universe

Prop, and correspondingly, the schemes of their elimination rules are also fami-

lies of propositions

� inductive relations are proof irrelevant—the apertures of their elimination rules

abstract the indices of the relation, but not the proofs themselves, hence the rule

cases never identify the constructors to which they correspond

We shall need at least one relation which can interfere with computation, and that is

'. We use ' to represent constraints in the elimination process for datatypes as well

98

as relations, and hence we must allow it to eliminate over Type as well as Prop. Indeed,

this is not the only way in which ' does not fit the presentation of inductive relations

given here. It is treated specially, and gets the next chapter to itself. For the moment,

let us consider inductive relations for reasoning.

Many dependent datatypes have relational analogues. For example, the fin family cor-

responds to the ‘less than’ relation:

< : 8m; n :NN: Prop

There are two introduction rules for <:

<new
n < sn

<old m< n
m < sn

The names of the rules are really the constructor symbols, but taking them to the side

emphasises the proof irrelevant nature of relations. This leaves us free to write propo-

sitions with no prefixed proofs in the introduction rules.

Compare m < n with fin n. m < 0 is clearly empty. For each sn, <new proves that n

is the ‘new’ thing only just smaller, whilst <old lifts the proofs for those m’s already

smaller than n: exactly as fz creates the ‘new’ element of each finite set and fs embeds

the ‘old’ ones.

The elimination rule OLEG provides for< is sometimes known as its strong induction

principle, <Elim:

<Elim

� : 8m; n :NN: Prop

� n sn

m < n � m n
: : : : : : : : : : : : : : : :

� m sn

8m; n :NN: 8 H : m<n : � m n

Note that the scheme is indexed only over the two numbers, not the proof that the

first is less than the second. Correspondingly, the targetted H does not occur in the

goal patterns, nor do the constructor symbols<new and<old appear in the subgoals.

Consequently, the step case hypothesis m < n is no longer implicitly given by the in-

ductive hypothesis, so we must write it explicitly if we mean it to be there. As a matter

99

of fact, we can choose to omit it from the rule, obtaining the weak induction princi-

ple. The two are equivalent given an appropriate notion of conjunction, but the strong

version is more useful in practice: it is generally preferable to discard unnecessary

hypotheses than to reconstruct necessary ones.

It is not clear to me why inductively defined relations should be equipped with com-

putational behaviour: computation belongs within the realm of datatypes, and any of

these inductive relations over which computation is desired can easily be redefined as a

dependent family. On the other hand, in the sense that computation explains induction,

it should be possible to equip relations with reduction rules which are meaningful, if

not desirable. For <, we get

<Elim � �

new

�

old

n sn (<new n) ;
�

�

new

n
<Elim � �

new

�

old

m sn (<old H) ;

�

�

old

H (<Elim � �

new

�

old

m n H)

With < to guide us, here is the general treatment:

� proposition former

Rel : 8~ı :~I: Prop

� inference rules (constructors)

~a :

~A x
1

: Rel~t
1

: : : x
r

: Rel~t
r

Rule ~a~x : Rel~t
rule

� elimination rule (strong induction principle)

� : 8

~ı :~I: Prop

: : :

~a :

~A Rel~t
1

: : : Rel~t
r

�

~t
1

: : : �

~t
r

: :

�

~t
rule

: : :

8

~ı; H :Rel: �~ı

� �-reductions

RelElim �

~

�

~t
rule

(Rule ~a ~x) ;
�

�

rule

~a~x
n

RelElim �

~

�

~p
i

x
i

o

r

i

100

4.1.6 record types

We can represent (dependent) record types as a degenerate case of inductive datatypes.

A simple datatype Rec with one constructor rec which has no recursive arguments is

just a tupling wrapper for the non-recursive arguments, or fields, as we might like to

call them.

The typical type former and constructor are as follows:

� type former

Rec : Type

� constructor (singular)

~field :

~A

rec ~field : Rec

The ‘official’ field names ~field are significant in that they allow us to adopt a more

conventional named-tuple notation as syntactic sugar—I write X =) Y to indicate

that X is a sugared notation for Y:

D

~field =

~t
E

=) rec~t

This presumes that the sequence of names ~field determines which of the defined record

types is intended. Underneath the layer of sugar, the names of fields are irrelevant.

Having established this syntax, the elimination and computation rules become

� elimination rule RecElim

� : Rec ! Type

~t : ~A
: : : : : : : : : : : : : : :

�

D

~field =

~t
E

8 x : Rec : � x

� �-reduction

RecElim � �

D

~field =

~t
E

;

�

�

~t

101

These record types do not come ready-equipped with projections. Instead, their elim-

ination rules require a function of the fields: introducing the arguments effectively

extends the local context with �-bindings for the fields. That is, RecElim has a sim-

ilar behaviour to pattern-matching for named tuples, SML’s ‘open’ for structures or

Pascal’s ‘with : : : do’ construct. Underneath the �s, you are entitled to place any well-

typed expression you choose, involving as many or as few fields as you like.

In an interactive, analytical setting, eliminating by RecElim is preferable to projection

because it is more focused on the goal. Also, a single elimination exposes all of the

fields together, where projection gives you but one at a time. To me it seems a rather

more honest account, especially when there may be type dependency between fields.

Understanding records by atomising them into fields in spite of the structure which

weaves them together is a bit like understanding London in terms of discrete hinter-

lands for each tube station. Plenty of people (including me) navigate London on that

basis, but they are not the Londoners.

Let us nonetheless define the projections with the conventional notation (�):field
i

. Type

dependency requires us to do so in order—earlier projections appear in the types of

later ones.

Presuming we have defined (�):field
1

: : : (�):field
n

, (�):field
n+1

is

(�):field
n+1

= RecElim

(�R :Rec: f[R:field
i

=field
i

]g

n

i

A
n+1

)

(�

~a : ~A: a
n+1

)

: 8R :Rec: f[R:field
i

=field
i

]g

n

i

A
n+1

I refer to this use of ‘.’ as ‘spot’ because I think of it as an ugly thing which I wish to

distance from the ‘dot’ used for binding. ‘dot’ marks a scope which may contain any

well-typed expression whose identifiers have been explained. ‘spot’ only allows the

name of a field. Let us apply generous makeup to hide our acne. If R : Rec, we may

write

R[~x]:t =) !

~x = R: ~field :

~A: t

This syntactic sugar abbreviates a bunch of !-bindings which open the record with our

chosen local names. The dot introduces the scope of the bindings—we may naturally

have anything we like under it. Let us abbreviate further, in the case where the chosen

names are the ‘offical’ ones:

R:t =) R[~field]:t

102

If t happens to be a field name, we recover the effect of projection. However, if R =

hx = 3; y = 5; z = 7i, then R:x � y � z = 105.

There is a superficial resemblance between this ‘opening’ notation and the ‘explicit

environments’ of Sato, Sakurai and Burstall [SSB99]. However, their treatment prop-

agates environments through the term structure in the manner of explicit substitutions,

rather than giving them the ‘action at a distance’ effect of !-binding. I have imple-

mented these ‘first class local definition’ records as an experimental extension to LISP

[McB92].

4.2 a compendium of inductive datatypes

This section defines formally a number of familiar datatypes as used in this thesis and

in everyday functional programming. Its purpose is partly to consolidate the material

of the previous section, but mostly to confine to one contiguous portion of this thesis a

lot of boring definitions.

Some finite types, see table 4.1, are standard equipment: 00 (‘empty’), 11 (‘unit’) and 22

(‘bool’). The constructor } is pronounced ‘void’.

Let us also have disjoint sums, +, and, specifically, maybe: table 4.2.

A dependent family, often to be found in the examples of this thesis are the vectors,

vect: table 4.3. Note the suppression of inferrable arguments.

4.3 abolishing �-types and reinventing them

Luo supplies dependent pairs, or �-types, as basic features of ECC, equipped with first

and second projections. However, with our facility for datatypes, it seems preferable

to present pairing as a parameterised record type. Also, pairs might as well acquire the

apparatus we shall shortly build for other datatypes.

� record former

B : A ! Type
� B : Type

� fields

1 : A

2 : B 1

103

00 : Type 11 : Type 22 : Type

} : 11 true : 22

false : 22

Table 4.1: standard finite types

L;R : Type
L+R : Type

X : Type

maybe X : Type

l : L
inL l : L+R

r : R
inR r : L+R

x : X
yes x : maybe X no : maybe X

Table 4.2: + and maybe

A : Type n : NN
vectA n : Type

vnilA : vectA 0
h : A t : vectA n

vcons h t : vectA sn

Table 4.3: vectors

104

intro-� raise-�

?x: �y: S
T

x

)

?y: S
?x: T
hy; xi

?y: S
?x: T
u

)

?x: �y: S
T

x:[1=y][2=x]u

Table 4.4: tactics for �-types in goals

The only penalty we risk paying is slightly clumsy syntax, but it is in our power to

sugar this problem away. Let us have lots.

�x : S: T =) � (�x :S: T) � is a fake binding operator

S�T =) � : S: T the usual special case

hs; ti =) h1 = s; 2 = ti unlabelled pairs

�fg

0

=) 11 empty telescope gives unit type

�

~S;T =) �x
1

: S
1

: : : :�x
n

: S
n

: T nonempty telescope gives �-type

fg

0

�

=) } empty sequence gives void

h

~s; ti =) hs
1

; h: : : hs
n

; ti : : : ii nonempty sequence gives pair

There is no conflict between using � both for binding and as an operator which turns

telescopes into the types of tuples, represented as pairs nested to the right. Also, we

still have the dot-notation from record types as sugar for �Elim. Our cunning choice

of field names gives us the familiar (�):1 and (�):2 projections as a special case.

We should equip OLEG with the tactics for dragging ?-bindings through our fake �-

bindings. See table 4.4. Both are replacements. Applied recursively, intro-8 and intro-

� turn a goal full of 8s and �s into a partial proof full of �s and ?s. Correspondingly,

raise-� combines with raise-8 to allow multiple subgoals to retreat from a partial

contruction as a single outstanding proof obligation.

4.3.1 the blunderbuss tactic

intro-� caters for �-types in goals, allowing us to solve them piecewise. What about

�-types in hypotheses? Although we usually try to curry them away wherever possible,

we do still find �-types in inductive hypotheses, for example, when the original goal

was to compute a pair.

105

It is awkward to exploit such hypotheses with tactics such as LEGO’s Refine which

are specifically geared to use functional information. I therefore propose the following

‘blunderbuss’ tactic,3 which will search inside � as well as under 8: . .

TACTIC: blunderbuss

This tactic tries to use some s to solve a goal by a depth-

first search strategy. The nodes of the search tree are

given by !-bindings of proofs to try. Initially, the root

node is set to s.

!root= s : S
?goal : G

At each !node = s :S, starting with root, blunderbuss behaves as follows:

� try to unify node with goal—if successful, stop, otherwise : : :

� reduce S to weak head-normal form

� generate subnodes by the type-directed methods given in table 4.5

and try blunderbuss with each in turn—blunder-refl subnodes are

tried before blunder-8 subnodes

We recover exactly LEGO’s Refine tactic if we only have blunder-8. However, now

we can just as well blunder under a �.

I have taken this opportunity to sneak in blunder-refl. Recall that when eliminate

generates a constrained scheme, the equations generated appear as a matching problem

in any inductive hypotheses which may arise. blunder-refl is intended to make it easier

to exploit such hypotheses whenever the matching problem has an obvious solution.

Hence, whenever an equational premise is required, blunderbuss tries to unify the two

sides in order to supply a refl proof. If this fails, then blunder-8 introduces the premise

as normal. It would be very unusual if making a possible unification turned out to be

an unfortunate choice.

The construction of the ‘guarded fixpoint’ operator in the next section uses a style of

hypothesis for whose exploitation blunderbuss is exactly the right tactic.

3A blunderbuss is an old-fashioned kind of gun with a barrel which opens out like a horn. It fires

almost anything at almost everyone in a wide spread. The phrase ‘blunderbuss tactics’ is used to describe

the technique of throwing everything you have got at a problem in the hope that something will work.

106

blunder-refl

�

?y� P

2

6

6

6

6

6

6

6

4

!node= s
: 8x: t' t0

B
...

?goal : G
p

3

7

7

7

7

7

7

7

5

) �

0

?y� P0

2

6

6

6

6

6

4

!sub = s (refl t)
: [refl t=x]B
...

?goal : G
p

3

7

7

7

7

7

5

t and t0 unify, ie

� v �

0

�

0

 P v P0

�

0

;

�P
0

` t �
=

t0

blunder-8

�

?y� P

2

6

6

6

6

6

6

6

4

!node= s
: 8x: A

B
...

?goal : G
p

3

7

7

7

7

7

7

7

5

) �

?y� P

2

6

6

6

6

6

6

6

4

?x : A
!sub = s x

: B
...

?goal : G
p

3

7

7

7

7

7

7

7

5

blunder-�

�

?y� P

2

6

6

6

6

6

6

6

4

!node= s
: �x: A

B
...

?goal : G
p

3

7

7

7

7

7

7

7

5

) �

?y� P

2

6

6

6

6

6

6

6

4

!sub
1

= s:1 : A
!sub

2

= s:2
: [sub

1

=x]B
...

?goal : G
p

3

7

7

7

7

7

7

7

5

Table 4.5: blunderbuss search methods

107

4.4 constructing Case and Fix

This section shows how to derive two alternative eliminators for each datatype, corre-

sponding to the Case and Fix operators in COQ.

4.4.1 case analysis for datatypes and relations

From the elimination rule given for a datatype or relation,

we may construct a ‘sawn-off’ version which embodies the

notion that we may reason about an arbitrary inhabitant of

the type by considering each of the possibilities for its outer-

most ‘head’ constructor, but without any recursive informa-

tion. For NN, we get NNCase.

NNCase

� : 8n :NN: Type

� 0

n : NN
: : : : : :

� sn

8 n : NN : � n

This construction builds theorem and proof together by a technique which I call hubris:

we proudly attempt to prove a blatantly false claim and fail, turning the remaining

subgoals into premises, just like a lecturer leaving the bits he has forgotten how to do

as exercises for the students. The trick is to postpone the remaining ?-bindings at the

outside level, turning them into �-bindings, and then to discharge them.

CONSTRUCTION: case analysis

Suppose we have a inductive family

Fam : 8

~ı :~I: U
i

where ~ı are the indices (as in dependent datatypes or relations)

U
i

is the universe the family of types inhabits

We need only consider indices, fixing the parameters of families like list

and vect for the whole construction.

This family will have an elimination rule FamElim

� : 8

~z: U
e

subgoals

8

~y; y :Fam: �

~p

where ~z inhabits a prefix of Fam
~p is the corresponding prefix of ~y; y
U

e

is the universe over which the family of types eliminates

108

For our inductive definitions, the subgoals ~� have conclusions which are

applications of �.

Let us boldly fix a � and attempt to

prove

This is patently untrue, but never

mind, eliminate using FamElim.

�

�� : 8

~z: U
e

?FamCase: 8~y; y : Fam

�

~p

Note that the holes may not appear so

neatly ordered, but no matter.

The subgoals ~

� correspond to the

constructors of the datatype.

?

~

� : : : :! � : : :

?

~s :

~S
!FamCase= FamElim � : : :

: 8

~y; y : Fam

�

~p

For each �

i

, we divide its hypotheses into

case data~c and inductive hypotheses ~rec
�

.

?�: 8

~c :

~C
8

~rec
�

: : : :! � : : :

�

~q[~c]

For our inductive definitions,

nothing is permitted to depend

on the inductive hypotheses.

Hence we may remove them with

delete-unused.

Having modified the subgoals in

this way, let us postpone them.

The state is now as shown.

�

�� : 8

~z: U
e

�

~

� : 8

~c: �~q[~c]

�

~s :

~S
!FamCase= FamElim � : : :

: 8

~y; y : Fam

�

~p

Finally, we may discharge the

assumptions, recovering the case

analysis principle as we might ex-

pect it.

!FamCase= ��: 8

~z: U
e

�

~

� : 8

~c: �~q[~c]

�

~s : ~S
FamElim � : : :

: 8� : 8

~z: U
e

8

~

� : 8

~c: �~q[~c]

8

~s :

~S

8

~y; y : Fam

�

~p

It is not hard to see that the following reductions hold

FamCase �

~

�

~ı; (Con
j

~x) . �
j

~x

109

4.4.2 the guarded fixpoint principle

Before giving the construction of the elimination rule which performs the job of COQ’s

Fix construct, let us look at an example which motivates both the need for it and the

manner in which it is done.

It is that famous old troublemaker: the Fibonacci func-

tion, which is used for counting rabbits, drawing at-

tractive rectangles and making Euclid’s algorithm go

as slowly as possible:

fib 0 = s0
fib s0 = s0
fib ssn =

plus (fib n) (fib sn)

Let us see what goes wrong if we just blunder in with NNElim,

trying to mimic this definition. Here is the initial state, with

the return type decorated by !-binding, so we can see what is

happening.

!Fib= � :NN:NN

: NN ! Type

?fib : 8n: NN
Fib n

Let us eliminate n.

Again, the !-binding tracks the arguments. We can certainly

fill in fib
0

. Now watch what happens when we eliminate

again to split the successor case:

?fib
0

: Fib 0
?fib

s

: 8n : NN
8fib

n

: Fib n
Fib s n

The Fib s0 case is fine, but for double-successor,

disaster has struck! We have our Fib sn safely

enough, but what has happened with Fib n? It has

appeared, all right, but in the wrong place—we have

no hope of accessing it.

?fib
s0

: 8fib
0

: Fib 0
Fib s0

?fib
ss

: 8n : NN
8hyp: 8fib

n

: Fib n
Fib sn

8fib
sn

: Fib sn
Fib ssn

Of course, the classic definition of the Fibonacci function is famous for its abominable

run-time.4 The traditional remedy is to write a linear recursion computing a pair of

successive values. In [BD77], Burstall and Darlington transform the above definition

into the following more efficient form:

fib 0 = s0
fib s0 = s0

fib ssn = (fibss n)[u; v]:plus u v
fibss 0 = <s0,s0>

fibss sn = (fibss n)[u; v]:<v,plus u v>

4Exercise: compute this.

110

By design, the auxiliary function fibss computes exactly the information required to

complete the double-successor case, and it does so by a one-step recursion. The main

function is thus reduced to a case analysis.

In [Gim94], Giménez effectively generalises this technique to an encoding of recursion

on guarded arguments, and it this technique which I present below.

DEFINITION: guarded

� if Con is a datatype constructor with non-recursive arguments~a and

recursive arguments~r, then each r
i

is guarded5 (by Con) in Con~a~r

� if r is guarded in s and s is guarded in t, then r is guarded in t

The idea is to introduce an intermediate data structure which

stores for each input the recursive values we need to compute

the output. We may code this up as an elimination rule:

� : 8n :NN: Type

Aux
�

n
: : : : : : : : :

� n

8 n :NN : � n

Once we have applied this rule, case analysis on n allows us to split the subgoal into

cases for the separate patterns we wish to treat: for each pattern p, we must prove � p

using the information supplied in Aux
�

p.

Of course, to prove this rule, we shall have to be able to show

8n :NN: Aux
�

n

This proof will go by recursion on n: we must generate the auxiliary information for

sn from the corresponding information for n. Just as in the Fibonacci function, we may

carry over any information we need to keep, together with computing the new value in

exactly the same way as the ‘main’ function does.

What should Aux
�

be? Different depths of recursion necessitate different amounts of

auxiliary information. For Fibonacci, we may choose

Aux
Fib

0 = 11
Aux

Fib

s0 = 11

Aux
Fib

ssn = (Fib n)�(Fib sn)

5more carefully, if r
i

is a higher-order recursive argument of type 8~h :

~H: , then it is r
i

~h which is

guarded, for any ~h

111

Stylish users may choose to develop their auxiliary data structure as they develop their

function, for each follows the case analysis of the other.

More generally, we may give a single auxiliary structure suitable for all occasions.

Giménez defines it inductively for a parametric �:

NNAuxData
�

0
� n NNAuxData

�

n
NNAuxData

�

sn

For each datatype, the auxiliary mimics the constructors and recursion pattern. Each

recursive argument is decorated with a � proof, so that for each element of the original

type, the auxiliary stores � for all its proper subterms. Proofs of

8n :NN: (NNAuxData
�

sn)! � n

then go by case analysis on NNAuxData, at the same time splitting the NN-patterns and

surfacing the recursions for the exposed subterms.

My treatment differs only pragmatically, in that I compute the auxiliary structure rather

than defining it inductively.

NNAux � 0 = 11

NNAux � sn = (� n)�(NNAux � n)

As case analysis feeds NNAux constructor expressions, it unfolds like one of those wal-

lets for people with too many credit cards, revealing the proofs of � for the exposed

subterms. The blunderbuss tactic can be used to extract the required hypothesis, pro-

vided it can be identified from its type.

Let us try to prove

8n :NN: NNAux � n

by induction on n. The base case is trivial. The step case is

8n :NN: (NNAux � n)! NNAux � sn

which reduces to

8n :NN: (NNAux � n)! (� n)�(NNAux � n)

112

We can clearly establish the second component of the pair. This leaves the requirement

8n :NN: (NNAux � n)! � n

Again using the ‘hubris’ technique, we may postpone and dis-

charge this subgoal, we have the auxiliary generation lemma

NNAuxGen:

8n :NN: (NNAux � n)! � n
8n :NN:NNAux � n

and hence the elimination rule NNFix.

NNFix

� : 8n :NN: Type

NNAux � n
: : : : : : : : : : :

� n

8 n :NN : � n

I shall give the general construction for simple types, then discuss extensions.

CONSTRUCTION: guarded fixpoint

Consider an inductive family of datatypes

with c constructors as shown right.

The ~a are non-recursive and the ~x are r
j

recursive arguments. Let IndElim be its

standard elimination rule.

Ind : Type

~a :

~A
j

~x : fIndg
r

j

Con
j

~a~x : Ind

Let us fix the components to be

supplied by the user and make

holes for the components to be

supplied by machine. A !-

binding IndAUX helps us track

the development of IndAux.

�� : 8x : Ind: Type

!IndAUX = �x : Ind: Type

?IndAux : 8x: Ind

IndAUX x
�body : 8x : Ind

8aux: IndAux x
� x

?IndAuxGen : 8x: Ind

IndAux x
?IndFix :

8 x : Ind
� x

We may immediately prove IndFix with

IndFix = �x : Ind: body x (IndAuxGen x)

Now let us eliminate the x in both the auxiliary and its generator, aquiring

a subgoal for each constructor. One is enough to illustrate the point, and

reduces the subscript terror.

113

?IndAux
con

: 8

~a : ~A
8

~x : fIndgr

8

~T: fIndAUX x
i

g

r

i

IndAUX (Con ~a~x)
!IndAux = IndElim IndAUX IndAux

con

: : :

?IndAuxGen
con

: 8

~a: ~A
8

~x: fIndg
r

8

~t : fIndAux x
i

g

r

i

IndAux
con

~a~x~t
!IndAuxGen = IndElim IndAux IndAuxGen

con

: : :

To build IndAux
con

, we introduce the arguments and return the iterated �

of pair-types collecting, for each recursive argument x
i

, both � x
i

and T
i

,

which the lovely let-binding reminds us is really IndAux x
i

.

For IndAuxGen
con

, we introduce the arguments and return the corre-

sponding iterated tuple of pairs, passing on the accumulated proof t
i

and

adding the next layer, computed by body.

!IndAux
con

= �

~a : ~A
�

~x : fIndg
r

�

~T: fIndAUX x
i

g

r

i

�f(� x
i

)�T
i

g

r

i

!IndAuxGen
con

= �

~a: ~A
�

~x: fIndg
r

�

~t : fIndAux x
i

g

r

i

fhbody x
i

t
i

; t
i

ig

r

i

�

!IndAuxGen = IndElim IndAux IndAuxGen
con

: : :

Cutting IndAUX and the proofs of the subgoals, then discharging the fixed

hypotheses, we are left with

114

!IndAux = : : :

: 8�: 8x : Ind: Type

8x : Ind

Type

!IndAuxGen= : : :

: 8� : 8Ind :x: Type

8body: 8x : Ind
8aux: IndAux x
� x

8x : Ind
IndAux~x

!IndFix = : : :

: 8� : 8x : Ind: Type

8body: 8x : Ind
8aux: IndAux x
� x

8 x : Ind

� x

� : 8x : Ind: Type

IndAux � x
: : : : : : : : : : : : :

� x

8 x : Ind : � n

The following conversions hold:

IndAux � (Con ~a~x) �
=

�f(� x
i

)�(IndAux � x
i

)g

r

i

IndAuxGen � f (Con ~a~x) �
=

hfhIndFix � f x
i

; IndAuxGen � f x
i

ig

r

i

i

IndFix � f x �

=

f (IndAuxGen � f x) x

For dependent families Fam, we have exactly the same construction, replacing Ind by

Fam or some Fam~ı as appropriate:

115

�� : 8

~x :Fam: Type

!FamAUX = �

~x :Fam: Type

!FamAux
con

= �

~a : ~A
�

~x : fFam~s
i

g

r

i

�

~T: fFamAUX~s
i

; x
i

g

r

i

�f(�

~s
i

; x
i

)�T
i

g

r

i

!FamAux = FamElim FamAUX FamAux
con

: : :

�body : 8

~x : Fam
8aux: FamAux ~x
�

~x

!FamAuxGen
con

= �

~a: ~A
�

~x: fFam~s
i

g

r

i

�

~t : fFamAux~s
i

; x
i

g

r

i

fh(body~s
i

; x
i

t
i

); t
i

ig

r

i

�

!FamAuxGen = FamElim FamAux FamAuxGen
con

: : :

!FamFix = �

~x :Fam: body ~x (FamAuxGen ~x)

If we have higher-order recursive arguments, we must abstract the pairs over them:

!IndAux
ho

= : : :

�x : 8~h : ~H: Ind

: : :

�T: 8~h : ~H: IndAUX (x ~h)

� : : :8

~h : ~H: (� (x ~h))�(T ~h)
!IndAuxGen

ho

= : : :

�x: 8~h : ~H: Ind
: : :

�t : 8~h : ~H: IndAux (x~h)
D

: : : �

~h : ~H:
D

(body (x~h) (t~h)); (t~h)
EE

Now that we have built these useful elimination rules, let us move on to consider the

technology we need to solve the constraints which arise when we use them for depen-

dent subfamilies.

116

Chapter 5

Equality and Object-Level Unification

This chapter examines different notions of propositional equality in Type Theory, to-

gether with the forms of equational reasoning they support.

In particular, I shall give a formal treatment of the ' predicate which I have been ex-

ploiting glibly until now: it is merely a convenient packaging of Martin-Löf’s identity

type together with the ‘uniqueness of identity proofs’ axiom proposed by Altenkirch

and Streicher [Str93]. The reason for reformulating equality in this way is to improve

the treatment of equality for sequences of terms in the presence of type dependency.

Once we have a definition of equality we can work with, the task is then to build

a tactic, simplify, which solves first-order constructor form equations appearing as

premises to goals. To achieve this, we will need to construct still more machinery for

each inductive datatype:

� a proof that constructors are injective and disjoint

� a disproof of cyclic equations like n'sn

117

5.1 two nearly inductive definitions of equality

5.1.1 Martin-Löf’s identity type

a; b : A
a=b : Prop

a : A
refl= a : a=a

idElim A a � �

re

a (refl= a) ;
�

�

re

idElim

� : 8b :A: (a=b)! Type

� a (refl= a)

8b :A: 8 q : a=b : � b q

idElim is known in the business as ‘J’, for historical reasons.

We may easily prove that this equality is

substitutive in the usual sense.

The proof fixes � and the proof of the

single case, then applies eliminate with

idElim. The generated scheme makes no

use of the equation’s proof—idSubst is

‘proof irrelevant’.

idSubst

� : A ! Type

� a
8b :A: 8 q : a=b : � b

It will prove convenient to have some sugar for applications of idSubst:

� substitution

[q]�= s =) idSubst A a � s b q
q : a=b s : � a

[q]�= s : � b

� coercion

[q]=s =) [q]
�T:Type: T
= s

q : S=T s : S
[q]=s : T

The computational behaviour of idSubst follows from that of idElim:

[refl= a]�= t . t

118

5.1.2 uniqueness of identity proofs

Altenkirch and Streicher suggest that = should be equipped

with the additional elimination rule shown, together with its

computational behaviour.

idUnique A a � �

re

(refl= a) ;
�

�

re

idUnique

� : (a=a)! Type

� (refl= a)
8 q : a=a : � q

This rule is sometimes known in the business as ‘K’, largely because it comes after

‘J’.1

For a given element type, A, the aperture of idElim, ie the space of equations over

which its scheme must range is two dimensional: A�A. However, idUnique’s

scheme ranges only over the diagonal. Of course, it is only the diagonal which is

inhabited.

Hofmann and Streicher have shown that idUnique is not derivable from idE-

lim[HoS94]. On the other hand, Streicher adds that idElim is unnecessary if idSubst

and idUnique are taken as axiomatic: we may first use idSubst to replace b by a, say,

then idUnique to reduce the remaining arbitrary proof of a=a to (refl= a). Effectively,

we divide the idElim process into two phases: the proof irrelevant phase (idSubst)

reduces the = family to its inhabited subfamily of reflexive equations, so the proof

relevant phase (idUnique) need only be concerned with that restricted case.

5.1.3 ', or ‘John Major’ equality

It is now time to reveal the definition of ', the ‘John Major’ equality relation.2 John

Major’s ‘classless society’ widened people’s aspirations to equality, but also the gap

between rich and poor. After all, aspiring to be equal to others than oneself is the

politics of envy. In much the same way, ' forms equations between members of any

type, but they cannot be treated as equals (ie substituted) unless they are of the same

type. Just as before, each thing is only equal to itself.

1Aficionados of the trombone might fondly imagine that the two rules are named after legendary jazz

duo J.J. Johnson and Kai Winding. I do not propose to pour cold water on this explanation.
2John Major was the last ever leader of the Conservative Party to be Prime Minister (1990 to 1997)

of the United Kingdom, in case he has slipped your mind.

119

a : A b : B
a'b : Prop

a : A
refl a : a'a

eqElim A a � �

re

a (refl a) ;
�

�

re

eqElim

� : 8a0 :A: (a'a0)! Type

� a (refl a)

8a0 :A: 8 l : a'a0 : � a0 l

Observe that eqElim is not the elimination rule which one would expect if ' was

inductively defined.

The ‘usual’ rule eliminates over all the

formable equations, and it is quite use-

less: it cannot be used to substitute

two values of the same type because the

scheme must be abstracted over an arbi-

trary type.

eqIndElim

� : 8B :Type: 8b :B: (a'b)! Type

� A a (refl a)

8B :Type: 8b :B: 8 e : a'b : � B b e

By contrast, eqElim eliminates only over the subfamily where the two types are the

same, the ‘type diagonal’: of course, all the inhabitants lie in this subfamily.

5.1.4 equality for sequences

The reason for adopting ' rather than = when working with dependent types can be

seen clearly when we attempt to extend the notion of equality to cover not just two

terms in a type but two sequences of terms in a telescope. Suppose we have~r;~s : ~T for

some ~x-telescope ~T. We may not, in general, state the equality of sequences~r and~s as

r
1

=s
1

; r
2

=s
2

; : : : (�)

since r
2

: T
2

[r
1

] while s
2

: T
2

[s
1

], and these may be different.

There is, of course, nothing to stop us writing

r
1

's
1

; r
2

's
2

; : : :

which will henceforth be abbreviated as the telescopic equation~r'~s.

We may correspondingly abbreviate the sequence of reflexivity proofs

(refl r
1

); (refl r
2

); : : :

120

by refl~r.

Let us not stop at that: in fact, we may prove substitutivity and uniqueness for tele-

scopic equations.

CONSTRUCTION: telescopic substitution

For each natural number n, we may derive

a substitution principle for telescopic equa-

tions of length n.

The reduction behaviour will be as follows:

eqSubst
n

� :

~T ! Type

�

~r

8

~s :~T: 8 ~e : ~r'~s : �~s

eqSubst
n

~T~r � �

re

~r (refl~r) . �
re

The construction is by recursion on n, effectively iterating eqElim.

The zero case is proved by the polymorphic identity func-

tion. Clearly the reduction behaviour is correct.

eqSubst
0

� : Type

�

�

Now, assuming we have al-

ready constructed eqSubst
n

,

let us construct eqSubst
n+1

.

eqSubst
n+1

� : T; ~T ! Type

� r;~r

8s;~s :T; ~T: 8 e;~e : r;~r's;~s : � s;~s

Fixing T; ~T, r;~r, � and the proof of � r;~r, we

have the goal shown. ?goal: 8s;~s : T; ~T
8 e ;~e: r;~r's;~s
� s;~s

Now, e is a proof that r's, where both have type T, hence we may elimi-

nate e by eqElim. The generated scheme includes all the~s and~e:

�s :T: � :r's: 8~s :~T: 8~e :~r'~s: � s;~s

Note that, as nothing depends on e, the proof relevance of eqElim is not

necessary for this construction, just as in the construction of idSubst from

idElim.

121

The elimination leaves with the subgoal

shown.

Note that (T; ~T) r is just [r=x]~T, which is

exactly the telescope of~r.

?subgoal: 8~s : (T; ~T) r
8

~e :

~r'~s
� r;~s

Now that~r and~s have the same telescope, we may eliminate the remaining

~e by eqSubst
n

: the scheme is just � r. This leaves us with the subgoal

� r;~r, a proof of which we fixed in the context.

From the �-reduction associated with eqElim and then the inductive hy-

pothesis, we may deduce that

eqSubst
n+1

T; ~T r;~r � �

r

r;~r (refl r); (refl~r) .

eqElim T r (: : :) (eqSubst
n

: : :) r (refl r) : : : .

eqSubst
n

((T; ~T) r)~r (� r) �
r

~r (refl~r) .

�

r

Observe that the same proof structure also

yields substitutivity in the other direction.

Although the roles of ~r and ~s are reversed,

we may still fix the ~r and abstract over

the ~s (the right hand sides) as required by

eqElim.

eqSubstLR
n

� :

~T ! Type

�

~s
8

~r :~T: 8 ~e : ~r'~s : �~r

CONSTRUCTION: telescopic uniqueness

For each natural number n, we may derive a

substitution principle for telescopic equations of

length n.

The reduction behaviour will be as follows:

eqUnique
n

� :

~t'~t ! Type

� (refl~t)

8

~e :~t'~t : �~e

eqUnique
n

~T~r � �

re

~r (refl~r) . �
re

This construction also proceeds by recursion on n, again with polymorphic

identity as the base case. The step case is slightly more subtle than for

eqSubst.

Suppose we have already constructed eqUnique
n

: let us construct

eqUnique
n+1

.

122

This time we fix everything except the proofs

of the equations. ?goal: 8 e ;~e: t;~t't;~t
� e;~e

We have little choice but to eliminate e with eqElim. Perforce, this intro-

duces equational constraints in the scheme:

�s :T: �l0 : t's: 8e;~e : t;~t't;~t: (s't)! (l0'e)! � e;~e

Neither of these constraints is disposable, since e definitely occurs in the

goal, and, in general, we may expect t to occur (implicitly) in the types of

the~e.

Consequently, the subgoal we get is as

shown.

We may discard e0, then eliminate E with

eqSubst
1

.

?subgoal: 8e;~e: t;~t't;~t
8e0 : t't

8 E : refl t'e
� e;~e

Now we are ready to appeal to

eqUnique
n

, with scheme � (refl t). ?subgoal: 8 ~e :~t'~t
� (refl t);~e

This turns the remaining~e into (refl~t), so that the fixed proof of � (refl t)

completes our obligations.

As far as the reduction behaviour is concerned, forgive me if I omit the de-

tail. The construction successively applies elimination rules for equations

which reduce to their single subgoals when those equations are instantiated

with reflexivity. Consequently, each eqUnique
n

inherits this behaviour.

It is not impossible to build a notion of telescopic equality with substitution using =, but

it is considerably more cumbersome. The method forces each equation to typecheck,

by explicit appeal to the substitution operator for the prefixed equations. That is, we

need the first n operators in order to formulate a telescopic equation of length n +

1, let alone establish its own substitutivity. Furthermore, in order to make the step

in the construction, it is not sufficient simply to substitute for the first equation with

idSubst, but rather we must eliminate it with idElim, not only substituting the terms,

but also instantiating the proof with reflexivity, allowing the substitutions repairing the

remainder of the equations to reduce. By adopting', we achieve at least this telescopic

extension without acquiring proof relevant dirt under our fingernails.

123

5.1.5 the relationship between = and '

Having argued for the practicality of using ' instead of = when working with depen-

dent types, I nonetheless feel obliged to point out that the two are equivalent—provided

we mean = equipped with idUnique. Let me now give the mutual construction. First,

the easy direction:

CONSTRUCTION: = from '

This is so easy that I will just tell you the answers—by construction, = is

just telescopic equation for telescopes of length 1.

!= = �A : Type

�a; b: A
a'b

: 8A : Type

8a; b: A
Prop

!refl= = refl
: 8A: Type

8a : A
a=a

!idSubst = eqSubst
1

: 8A : Type

8a : A
8� : A ! Type

8� : � a
8b : A
8 e : a=b
� b

!idUnique= eqUnique
1

: 8A : Type

8a : A
8� : a'a ! Type

8� : � (refl= a)
8 e : a=a
� e

Furthermore, the reduction behaviour for idSubst and idUnique is ex-

actly that for eqSubst
1

and eqUnique
1

.

The other direction is the interesting one.

CONSTRUCTION: ' from = with idUnique

Let us assume we have = and construct:

124

?' : 8A: Type

8a : A
8B : Type

8b : B
Prop

?refl : 8A: Type

8a : A
a'a

?eqElim: 8A : Type

8a : A
8� : 8a0 :A: a'a0 ! Type

8� : � a (refl a)
8a0 : A
8 e : a'a0

� a0 l

Let us first make a little abbreviation:

cell =) �A : Type: A

cell packages up a typed term. The idea is that ' is just = for cells:

!' = �A: Type

�a : A
�B : Type

�b : B
hA; ai= hB; bi

!refl= �A: Type

�a : A
refl= hA; ai

This makes the elimination rule

?eqElim: 8A : Type

8a : A
8� : 8b: A

8e: hA; ai= hA; bi
Type

8� : � a (refl= hA; ai)
8b : A
8 e : hA; ai= hA; bi
� b e

If we could only deduce a=b from e, we would be most of the way there.

For that, we need a proof that equal cells have equal second projections.

125

The equivalence of idUnique and equality of second projections from

dependent pairs is folklore knowledge, but I shall do the work nonetheless.

It is even difficult to state the equality of the second projections, because

they are not of convertible types—we must use the substitutivity of equal-

ity to make a type coercion.

The lemma we need is as shown. Let us

claim it globally and work on the main

goal.

Observe that

sproj e : 8q :A=A: ([q]=a)=b

?sproj: 8Aa;Bb: cell
8e : Aa=Bb
Aa[A; a]
Bb[B; b]
8q : A=B
([q]=a)=b

so that

sproj e (refl= A) : a=b

Let us exploit this discovery. Introducing

all the hypotheses, this is the goal we now

must solve.

!ab = sproj e (refl= A)

: a=b
?goal : � b e

As the type of e contains b, it is wise to

reabstract it:

We may now eliminate ab by

idSubst.

! ab = sproj e (refl= A)

a=b
?goal0 : 8e0: hA; ai= hA; bi

� b e0

!goal : goal0 e

Now e0 is a reflexive equation!

We may eliminate it by idUnique.
?subgoal: 8e0: hA; ai= hA; ai

� a e0

The subgoal we acquire follows

from �. ?immediate: � a (refl
eq

hA; ai)

All that remains is to prove sproj. Firstly, we eliminate the equation on

the cells, e with idSubst.

126

Although the two pairs unpacked by the bind-

ing sugar are the same, we have two names for

each projection. We can clear this up by elimi-

nating Aa, reducing the projections and cutting

the sugared !-bindings.

?same: 8 Aa : cell

Aa[A; a]
Aa[B; b]
8q : A=B
([q]=a)=b

Now we may use idUnique to remove the reflex-

ive q. ?open: 8A: Type

8a : A
8q : A=A
([q]=a)=a

The remaining subgoal has exactly the type of refl=!

?refl: 8A: Type

8A: a
a=a

As far as reduction behaviour is concerned, first observe that

sproj (refl= hA; ai) (refl= A)

�

=

(refl= a)

This is because sproj eliminates in succession the first equation, the cell,

then the second equation, and all three are in constructor form. Conse-

quently, when eqElim is applied to (refl a), the computed equality proof

ab turns out to be (refl= a). Since both these equations are reflexive, both

the idSubst and idUnique steps reduce as required.

5.2 first-order unification for constructor forms

A typical application of an elimination rule with scheme variable � : 8

~ı :~I: Type will

engender a scheme

� = �

~ı: 8~x:~ı'~t[~x]! 	

Correspondingly, cases of form

~y :

~Y
: : : : : : :

�

~s[y]

127

yield subgoals in the proof of form

8

~y: 8~x:~s[y]'~t[~x]! 	

The equational constraints constitute a unification problem: if there is no solution,

then the goal follows vacuously; if there is a most general unifier, we may use it to

instantiate the ~y and ~x.

Suppose, for example, we wish to write the ‘vector tail’

function, whose type prevents application to a null vec-

tor:

?vtail: 8n: NN

8v: vect (sn)

vect n

Note that I have fixed the element type A to avoid clutter.

Eliminating v with vectCase creates a constrained scheme

�i :NN: �x :vect i: 8n :NN: 8v :vect (sn): i'sn ! x'v ! vect n

The corresponding subgoals are as shown.

The vtailvnil subgoal features the impossible

premise that zero equals a successor, whilst in

the vtailvcons case the equations conveniently con-

strain the type of the tail to be the return type of the

function.

?vtailvnil : 8n : NN

8v : vect (sn)
8e

1

: 0'sn
8e

2

: x'v
vect n

?vtailvcons: 8m: NN

8h : A
8t : vect m
8n : NN

8v : vect (sn)
8e

1

: sm'sn
8e

2

: x'v
vect n

If we could solve these unification problems, we would

be left with this goal.

?vtailvcons: 8n: NN
8h: A
8t : vect n
vect n

We would then introduce the arguments and return the tail.

The task does seem to hinge on solving the unification problems generated in the course

of elimination. In [McB96], I presented a tactic (‘Qnify’) for solving such problems,

provided the terms comprised constructor forms in simple datatypes. I shall largely

follow that treatment, extending the same procedure to dependent datatypes.

128

5.2.1 transition rules for first-order unification

The ‘Qnify’ tactic operates by successively eliminating from the goal hypothetical

equations between constructor forms:

8

~x: s't ! �

DEFINITION: constructor form

t is a constructor form over variable set V if either

� t 2 V

� t � con~t

where each t
i

is a constructor form over V

In the above goal, suppose s and t have the same type and are constructor forms over

the ~x. We may distinguish six possibilities by the following decision table:3

s ' t x cheese~t

x identity if x 2~t then cycle

y coalescence else substitution

chalk~s apply conflict

cheese~s symmetry injectivity

For each of these six kinds of constructor equation, there is an elimination rule. They

are shown in table 5.1

These six rules, once we have proven them, will constitute the transition rules of a

unification algorithm which is complete for the following class of problem:

DEFINITION: constructor form unification problem

A constructor form unification problem is a goal of form:

8

~x:~s'~t ! �[

~x]

where the ~s and ~t are sequences of constructor forms over ~x

inhabiting some telescope T

3chalk and cheese are constructors as different as chalk and cheese.

129

identity

� : Type

�

x'x ! �

coalescence

� : T ! Type

� x
8y :T: y'x ! � y

cycle

� : Type

x'cheese~t ! �

x 2~t

substitution

� : T ! Type

� cheese~t

8x :T: x'cheese~t ! � x

x 62~t

conflict

� : Type

chalk~s'cheese~t ! �

injectivity

� : Type

~s'~t ! �

cheese~s'cheese~t ! �

Table 5.1: elimination rules for constructor form equations

130

Since s
1

; t
1

: T
1

, the leading equation has both sides the same type, so that exactly one

of the above rules must apply (using symmetry if necessary). We must also check that

each of these rules preserves this structure.

LEMMA: transition rules preserve problem structure

Given a constructor form unification problem

8

~x: 8e;~e :s;~s't;~t: �[~x]

eliminating e by the appropriate transition rule either solves the goal or

leaves a subgoal which is also a constructor form unification problem.

PROOF

Let us check, rule by rule:

� identity

Before, we have

?before: 8~x: ~X
8e : x

i

'x
i

8

~e :~s'~t
�

where x
i

;

~s; x
i

;

~t : ~T. Afterwards, we have

?after: 8~x: ~X

8

~e :~s'~t
�

where~s;~t : ~T x
i

. Since the variable set is unchanged,~s and~t are still constructor

forms.

� coalescence and substitution

Up to a permutation of the goal (performed by the elimination tactic) we start

with

?before: 8~x: ~X
8x: T

1

8e : x't

8

~y: ~Y[x]

8

~e :~s[x]'~t[x]
�[x]

131

where x 62 t and x;~s; t;~t : ~T After elimination, we have

?after: 8~x: ~X

8

~y: ~Y[t]

8

~e :~s[t]'~t[t]
�[t]

Although, x has vanished from the variable set, it has been replaced by construc-

tor form t which does not contain x. As for the remaining problem,~s[t];~t[t] : ~T t.

� cycle and conflict

There are no subgoals.

� injectivity

Before:

?before: 8~x: ~X

8e : cheese~s
0

'cheese~t
0

8

~e :~s'~t
�

where (cheese~s
0

);

~s; (cheese~t
0

);

~t : ~T. Now, the type of constructor cheese

must be

8

~y :~Y: T[~y]

with~s
0

;

~t
0

:

~Y. After elimination:

?after: 8~x : ~X

8

~e
0

:

~s
0

'

~t
0

8

~e :~s'~t
�

Certainly, the problem still consists of constructor forms over the~x. Furthermore,

both~s
0

;

~s and~t
0

;

~t inhabit the telescope (~y :

~Y); (~T (cheese~y)).

�

Now we have checked that each transition rule preserves the structure of constructor

form unification problems, the next step is to put them together to make a unification

algorithm.

132

5.2.2 an algorithm for constructor form unification problems

The algorithm is very straightforward: it consists of repeatedly applying the transition

rule appropriate to the leading equation until either the goal is proved outright or no

equations remain.

From the above lemma, it is clear that if one step leaves a subgoal, the next step can

be made. However, we must still show that unification terminates and computes most

general unifiers:

DEFINITION: unifier, most general unifier

If~s'~t is a constructor form unification problem over ~x and � is a substitu-

tion from the ~x to terms over some ~x
0

, then � is unifer of~s'~t if �~s � �

~t.

In addition, � is a most general unifier or mgu of ~s'~t if any unifier of

~s'~t can be factorised � � �, where � is a substitution on the ~x
0

.

LEMMA: unification terminates

For all constructor form unification problems, the sequence of transition

rule applications determined at each stage by the leading equation is finite.

PROOF

I shall use the traditional proof: we may establish a well-founded ordering on unifica-

tion problems, being the lexicographical ordering on the following three quantities:

� the number of variables ~x

� the number of constructor symbols appearing in the problem

� the number of equations in the problem

We may then check case by case that each transition rule either terminates directly or

reduces this measure.

� cycle and conflict terminate directly

� coalescence and substitution decrement the number of variables

� injectivity preserves the number of variables but reduces the number of con-

structor symbols

133

� identity preserves the number of variables and the number of constructor sym-

bols, but reduces the number of equations

�

LEMMA: unification correct

For any initial goal which is constructor form unification problem

8

~x:~s'~t ! �[

~x]

either~s and~t have no unifier, in which case the algorithm proves the goal,

or there is a subset ~x
0

�

~x and a substitution � from the ~x to constructor

forms over the ~x
0

such that � is a mgu of~s with~t and the algorithm yields

subgoal

8

~x
0

: �[�

~x]

PROOF

It is enough to check that at each step of the problem, either

� the goal has been proven and there is no unifier, or

� the goal is of form

8

~x
0

:

~s
0

'

~t
0

! �[�

~x]

such that a most general unifier � of remainder ~s
0

'

~t
0

induces a most general

unifier � � � of~s'~t

This invariant holds initially, with accumulator � the identity substitution. If it holds

finally with no goal, there was no unifier. Otherwise it holds finally with the empty

remainder whose mgu is the identity substitution, so the accumulator is the mgu of

~s'~t.

Case by case, then:

� cycle and conflict prove the goal in cases where there is no unifer

� identity and injectivity change neither the accumulator nor the unifiers of the

remainder

134

� coalescence and substitution

remainder accumulator

before x;~s
0

't;~t
0

�

after [t=x]~s
0

'[t=x]~t
0

[t=x] � �

Suppose � is a mgu of the remainder after the transition. It is enough to show

that � � [t=x] is a mgu of the remainder beforehand, with the invariant forcing

� � [t=x] � � to be a mgu of~s'~t.

Clearly � � [t=x] unifies x;~s
0

't;~t
0

.

Now suppose � also unifies x;~s
0

't;~t
0

. Then � = � � [t=x], because

– � � [t=x]x = � t = �x by hypothesis

– � � [t=x]y = �y when y 6= x

Hence � unifies [t=x]~s
0

'[t=x]~t
0

and can thus be factorised � � �. But � = � � [t=

x] = � � � � [t=x]. Thus � � [t=x] is most general as required.

�

I feel I should make some comment on these proofs, not that there is anything unusual

about them, quite the reverse. I have deliberately given a conventional ‘measure’ proof

of termination, by way of comparison with the structurally recursive algorithm I shall

exhibit later as an example of programming with dependent datatypes.

Now that we have an algorithm which exploits the transition rules, it remains only to

construct proofs of them. identity is trivial. coalescence and substitution are just

applications of eqSubst
1

. conflict, injectivity and cycle all require some work.

Before I give the constructions, I want to draw attention to the computational aspect

of the proofs built by the unification algorithm: we shall need this technology to build

programs as well as proofs. If the algorithm generates

?soFar : 8~x
0

:

~s
0

'

~t
0

! �[�

~x]
!start = : : :

: 8

~x:~s'~t ! �[

~x]

we shall need the computational behaviour (for arbitrary ~x
0

)

start �~x (refl �~s) �
=

soFar ~x
0

(refl~s
0

)

135

Recall that the elimination tactic supplies refl proofs for the constraints. When an

elimination rule with associated reductions is applied to a constructor-headed target,

it reduces to one of the subgoal proofs, like start, and the refls are passed for the

subgoal’s constraint arguments—this must allow the subgoal proof to reduce to its

simplified version soFar, and ultimately to the value the user has supplied for that

case.

Once again, we may check this property stepwise. identity is implemented by a �-

abstraction with the appropriate �-behaviour, while coalescence and substitution ex-

ploit the established reduction of eqSubst
1

. For conflict and cycle there is nothing to

prove, but we must pay attention in the case of injectivity.

5.2.3 conflict and injectivity

Consider an inductive family of datatypes

Fam : 8

~ı :~I: Type

with n constructors

Con
i

: 8

~z :~Z
i

: Fam~t
i

[

~z]

We have already seen how to compute the case analysis principle FamCase:

� : Fam ! Type

: : :

~z :

~Z
i

: : : : : : : : : : : : : :

�

~z; (Con
i

~z) : : :

8

~t :Fam : �

~t

Let us now use FamCase to prove conflict and injectivity theorems for this class of

datatype.

The conventional way to prove injectivity for the constructors of simple datatypes is

to define a suite of predecessor functions for each argument of each constructor and

use the fact that equality respects function application. This is the presentation used in

[CT95, McB96]. We cannot do this in general for dependent types, as it is not always

136

possible to supply dummy values for predecessor functions applied to constructors

for which they were not originally intended. It is my contention, in any case, that

predecessor functions are immoral: the whole idea of pattern matching is to expose

the ‘predecessors’ locally to each constructor case—we should never apply techniques

appropriate for one constructor only to arbitrary elements of a type.

Fortunately, the computational power of dependent type theory comes to our rescue.

Instead of proving n2 Peano-style conflict or injectivity theorems, we may manufacture

a single ‘Peano concerto’ which eliminates any constructor-headed equation, comput-

ing the appropriate rule by case analysis.

CONSTRUCTION: Peano concerto

We begin by establishing the structure of the development: we wish to

compute the Peano theorem appropriate to a given pair of elements, then

prove it for an equal pair of elements:

?FamPEANO: 8

~x: Fam

8

~y: Fam
Type

?FamPeano : 8

~ı :

~I
8x : Fam~ı
8y : Fam~ı
8 e : x'y
FamPEANO~ı; x~ı; y

Note that it is perfectly reasonable to prove the theorem only for x and y in

the same instance of the family Fam~ı, because this is exactly the situation

in which the theorem will be used: eliminating the leading equation in a

unification problem, where both terms have the same type.

Looking first to the ‘statement’ problem, FamPEANO, we may eliminate

each of ~x and ~y by FamCase, giving n2 subgoals, of two varieties.

In the first ‘off-diagonal’ kind, we are asked to compute the conflict theo-

rems for unlike constructors Con
i

and Con
j

?FamPEANO
ij

: 8

~x: ~Z
i

8

~y: ~Z
j

Type

We simply introduce all the premises and supply the rather useful elimina-

tion rule

137

� : Type

�

After all, an equation with unlike constructors at the head is very unlikely

to be true.

More interestingly, on the diagonal, we must compute the injectivity theo-

rems for like constructors

?FamPEANO
ii

: 8

~x: ~Z
i

8

~y: ~Z
i

Type

Fortunately, the case analysis has exposed the predecessors we need, so all

we do is pair them off. Introducing the ~x and ~y, we supply the rule

� : Type

~x'~y ! �

�

Crucially, the reduction behaviour of FamCase really means that

FamPEANO~x; (Con
i

~x
0

)

~y; (Con
j

~y
0

)

�

=

FamPEANO
ij

~x
0

~y
0

Now let us show that the rule we have assigned to each kind of constructor-

headed equation really holds if the equation does. Recall the goal

?FamPeano: 8~ı :

~I
8x : Fam~ı
8y : Fam~ı
8 e : x'y
FamPEANO~ı; x~ı; y

We have quite a choice of things to eliminate here, but by far the most

useful is the equation e. Applying eqSubst
1

, we are left with

?FamPeano
like

: 8

~ı :~I
8x: Fam~ı

FamPEANO~ı; x~ı; x

138

By eliminating the equation, we have restricted our attention exclusively

to the diagonal, sparing ourselves the trouble of considering the untrue

equations, let alone deducing their untrue consequences.

Now we may eliminate x with FamCase, yielding n subgoals

?FamPeano
i

: 8

~z: ~Z
i

FamPEANO~t
i

[

~z]; (Con
i

~z)~t
i

[

~z]; (Con
i

~z)

Reducing FamPEANO, now that its case analyses have been fed con-

structor symbols, we obtain

?FamPeano
i

: 8

~z :

~Z
i

8� : Type

8hyp: 8~e:~z'~z
�

�

From here, we simply introduce all the hypotheses and prove � with

hyp (refl~z).

Checking the reduction behaviour, we find

FamPeano~ı; (Con
j

~x)~ı; (Con
j

~x) (refl (Con
j

~x)) �
=

FamPeano
like

~ı; (Con
j

~x) �
=

FamPeano
j

~x �

=

��:Type: �hyp :~x'~x ! �: hyp (refl~x)

This ensures that the identity transition decomposes refl proofs as required

for its use in programs.

Note the critical use of targetting in making this rule applicable. It is not obvious that

8

~ı :~I: 8x; y :Fam~ı: x'y ! FamPEANO~ı; x~ı; y

is an elimination rule, but that does not stop us unifying the targetter with a candidate

equation. If the equated terms have constructor heads, then the instantiated rule will

reduce, revealing the scheme variable and subgoals we would normally expect.

Although the unification algorithm only requires us to prove the Peano theorems for

two elements of a particular instance Fam~ı, and that is the construction I have given

139

above, it is nonetheless possible to prove the stronger theorem which operates on any

two sequences in Fam:

FamStrongPeano : 8

~x;~y :Fam:

~x'~y ! FamPEANO ~x ~y

If we eliminate all but the last equation, we have reduced the problem to FamPeano!

It is possible to use this theorem to eliminate a constructor-headed equation from any-

where in a telescopic problem, not just at the front. This can improve the efficiency of

unification: if we can see a conflict later in the telescopic equation, we can solve the

goal without first hacking through the earlier stages of the problem. Such measures are

not necessary when everything is in constructor form, but increase our efficacy for the

wider class of problems polluted by non-constructor terms. It is much more difficult

to work with inductive families involving indices which are not in constructor form.

Such problems are beyond the technology developed in this thesis—I shall discuss

them briefly in section 5.2.5.

5.2.4 cycle

Showing that cycles do not occur in our inductive datatypes is quite a subtle business.

Even proving

?nNotSn: 8n: NN
n'sn ! ?

requires quite a lot of technology. Let us do it. Eliminating n,

?0NotS0 : 0's0 ! ?

?SnNotSSn: 8n : NN
8hyp: n'sn ! ?

8e : sn'ssn
?

Applying unification (without cycle elimination) to both subgoals, we can at least sim-

plify the two constructor-headed equations via the NNPeano theorem. This eliminates

the 0 case by conflict, while injectivity leaves us with an immediate step:

?easy: 8n : NN
8hyp: n'sn ! ?

8e : n'sn
?

140

In fact, we can follow the same structure for any number of s’s, but this is only because

the natural numbers are deceptively symmetrical. Watch what happens if we throw in

a spare successor constructor, t, (making type NN0

) and try to prove

?nNotSTn: 8n: NN0

n'stn ! ?

Induction on n yields 0 and t cases which perish by conflict. The s case is as follows:

?SnNotSTSn: 8n : NN0

8hyp: n'stn ! ?

8e : sn'stsn
?

Injectivity yields

?tricky: 8n : NN
0

8hyp: n'stn ! ?

8e : n'tsn
?

Oh dear! We have the wrong inductive hypothesis! The extra s appeared at the very

inside, rotating the cycle: it is only because one successor usually looks much like

another that these theorems are so easy for NN.

In order to prove the result in this style, we must first strengthen it:

?noCycleST: 8n: NN0

(n'stn ! ?)�(n'tsn ! ?)

By including not just the st cycle, but also all its rotations, we will have more to do:

there will be work in both successor cases, although one is enough to show what hap-

pens:

?noCycleST
s

: 8n : NN0

8hyp: (n'stn ! ?)�(n'tsn ! ?)

(sn'stsn ! ?)�(sn'tssn ! ?)

141

The right conjunct follows by conflict. The left reduces by injectivity:

?repaired: 8n : NN0

8hyp: (n'stn ! ?)�(n'tsn ! ?)

n'tsn ! ?

The rotated conclusion follows by projecting the appropriately rotated conjunct of the

inductive hypothesis.

This technique can be generalised to arbitrary cycles in arbitrary datatypes. The draw-

back is that (up to rotation), we need a new theorem for every cycle pattern. This leaves

us little choice but to generate them on the fly.

A slightly more cunning technique, arising from a conversation with Andrew Adams,

is mentioned in [McB96]. It constructs for a given cycle pattern x'p[x] 4 in some type

Ind a quotient function quotp : Ind ! NN

quotp p[x] = s(quotp x)
quotp = 0

Applying quotp to both sides of the cycle, we get

(quotp x)'s(quotp x)

We have already seen a disproof of that!

While the guarded recursion principles we have constructed for each datatype make

these functions relatively easy to manufacture—indeed I have implemented this

technique—we have still not escaped from the burden substantial on-the-fly construc-

tion work, cycle by cycle.

Remember, though, that in cycle x'p[x], p[x] is a constructor form, and hence we can

compute by structural recursion on it: perhaps there is a way to compute the proof we

want. Unfortunately, though, there is no way to test whether we have decomposed as

far as a non-canonical symbol like x: our programs have no access to the decidable

conversion relation of the type theory which describes them.

Nonetheless, we can adopt blunderbuss tactics: for any element x of a datatype, we

can construct the property of ‘not being a proper subterm of x’ in such a way that when

x has a constructor head, the property reduces to a product explicitly enforcing ‘not

4Without loss of generality, assume p[x] has fresh variables in argument positions off the ‘cycle-path’.

142

being any of the exposed subterms’. The idea works in the same as the auxiliary data

structure with which we earlier constructed guarded recursion. In fact, the predicate

we need is just an instance of that structure.

We may define this property for NN, together with its non-strict counterpart as follows:

!NNUnequal= �x; y: NN

x'y ! ?

!NNNotPSub= �x: NN
NNAux (NNUnequal x)

!NNNotSub = �x; y: NN
(NNUnequal x y)�(NNNotPSub x y)

with conversion behaviour

NNNotPSub x 0 �

=

11

NNNotPSub x sn�
=

NNNotSub x n
�

=

(NNUnequal x n)�(NNNotPSub x n)

NNNotPSub x y is thus inhabited exactly when x is not a proper subterm of y, whilst

NNNotSub x y adds the requirement x 6'y to indicate that x is not any subterm of y.

NNNotPSub x y unfolds computationally to reveal a proof that x is not equal to any

guarded subterm of y. Observe, for example,

NNNotPSub x ssx �

=

(NNUnequal x sx)�
(NNUnequal x x)�(NNNotPSub x x)

Suppose we can prove

8x; t :NN: x't ! NNNotPSub x t

Then for any hypothetical proof of x'p[x], we have a proof of NNNotPSub x p[x],

which will expand to a product containing

NNUnequal x x

from which contradiction the goal should surely follow.

The first step in the proof is to eliminate the equation, leaving the highly plausible

?cycle: 8x: NN

NNNotPSub x x

143

You could be forgiven for hoping that we might get a cheap proof by the NNAuxGen

theorem we have already built, but sadly, that only proves NNAux� when � is a constant

and all we have to do at each stage is pass on the accumulated information, adding just

the new layer. Here, the scheme varies over the recursion, so we must be more cunning.

Our next move is unsurprising: induction on x.

?cycle
0

: NNNotPSub 0 0
?cycle

s

: 8x : NN

8xh: NNNotPSub x x
NNNotPSub sx sx

The base case is trivial as its type reduces to 11. Unfortunately, the step is genuinely dif-

ficult: NNNotPSub fixes its first argument, so there is no way, as things stand, that we

can reduce the conclusion to the inductive hypothesis. Some intelligent strengthening

will be necessary. First reduce the conclusion to its non-strict expansion:

?cycle
s

: 8x : NN

8xh: NNNotPSub x x
NNNotSub sx x

We must prove that if x is not a proper subterm of itself, sx is certainly not a subterm.

We can see that if sx were a subterm, x would be a proper subterm, nomatter what

is on the right hand side. Let us make the corresponding generalisation. That is, we

introduce the hypotheses, create a hole for the more general version of the goal, then

use it to solve the original:

?cycle
s

� �x : NN
�xh : NNNotPSub x x
?gen: 8y : NN

8xNPy: NNNotPSub x y
NNNotSub sx y

gen x xh

Why is this a good move? Well, we have fixed the first argument of the predicates, and

we are now free to let the second vary in an induction on y which corresponds to the

computational behaviour of NNNotPSub.

144

?gen
0

: 8xNP0: NNNotPSub x 0
NNNotSub sx 0

?gen
s

: 8y : NN
8yh : 8xNPy: NNNotPSub x y

NNNotSub sx y
8xNPsy: NNNotPSub x sy

NNNotSub sx sy

Applying a little computation, the base case becomes

?gen
0

: 8xNP0: 11

(NNUnequal sx 0)�11

This is easily proven, with a little help from NNPeano.

Reducing the step case, we get

?gen
s

: 8y : NN
8yh : 8xNPy: NNNotPSub x y

NNNotSub sx y
8xNPsy: (NNUnequal x y)�(NNNotPSub x y)
(NNUnequal sx sy)�(NNNotSub sx y)

The implication between the two right conjuncts is exactly given by the inductive hy-

pothesis. As for the left conjuncts, expanding the conclusion’s NNUnequal gives us a

proof of sx'sy from which we must prove ?. NNPeano exposes a proof of x'y, for

which we have a disproof at the ready.

Having established this property for the natural numbers, there is always the nagging

suspicion that we have exploited in some hidden way the symmetry of that datatype,

just as we would be wary of generalising to all triangles a property which held in the

equilateral case. When there is only one step constructor, with only one recursive

argument, the issue of whether phenomena behave conjuctively or disjunctively can

become blurred. However, in this case, everything fits together perfectly.

CONSTRUCTION: cycle

Consider type former

145

Ind : Type

and c constructors

~a :

~A ~x : fIndg
r

Con
i

~a~x : Ind

Note that I really should write r
i

, as the number of recursive arguments

may vary from constructor to constructor. However, the proof will be even

less readable if I start subscripting superscripts.

We may define the inequality property

IndUnequal = �x; y : Ind: x'y ! ?

We can then add the proper subterm relation

IndNotPSub = �x : Ind: IndAux (IndUnequal x)

and the non-strict subterm relation

IndNotSub = �x; y : Ind:

(IndUnequal x y)�(IndNotPSub x y)

The computational behaviour of these definitions is as one would hope:

IndNotPSub x (Con
j

~a ~y) �
=

�

�

IndNotSub x y
k

	

r

k

We may now prove the cycle theorem:

?IndCycle: 8x; t : Ind

8 e : x't
IndNotPSub x t

First, we eliminate the equation, leaving

?IndCycle0

: 8x: Ind
IndNotPSub x x

Next, we eliminate the x.

?case
i

: 8

~a: ~A
i

8

~x: fIndgr

8

~h: fIndNotPSub x
k

x
k

g

r

k

IndNotPSub (Con
i

~a~x) (Con
i

~a ~x)

146

The conclusion expands, yielding a product

?case
i

: 8

~a: ~A
i

8

~x: fIndg
r

8

~h: fIndNotPSub x
k

x
k

g

r

k

�fIndNotSub (Con
i

~a~x) x
k

g

r

k

Now we come to the strengthening step. The conclusion we are trying to

show is r-fold now. The trick is to prove each separately, abstracting away

the right hand x
k

in r separate lemmas:

?case
i

� �

~a :

~A
i

�

~x : fIndg
r

�

~h : fIndNotPSub x
k

x
k

g

r

k

?

~lem:

8

>

>

>

>

<

>

>

>

>

:

8y : Ind
8xNPy: IndNotPSub x

k

y
IndNotSub (Con

i

~a~x) y

9

>

>

>

>

=

>

>

>

>

;

r

k

hflem
k

x
k

h
k

g

r

k

i

The proof of each lemma is again inductive. We apply IndElim, Thus for

each of the r, lemmas, we acquire c constructor cases:

?lem
j

: 8

~a
0

:

~A
j

8

~y : fIndg
r

8

~h :

8

<

:

8xNPy
l

: IndNotPSub x
k

y
l

IndNotSub (Con
i

~a~x) y
l

9

=

;

r

l

8xNPc: IndNotPSub x
k

(Con
j

~b~y)

IndNotSub (Con
i

~a~x) (Con
j

~b~y)

Now, a little computation is in order:

?lem
j

: 8

~a
0

:

~A
j

8

~y : fIndg
r

8

~h :

8

<

:

8xNPy
l

: IndNotPSub x
k

y
l

IndNotSub (Con
i

~a~x) y
l

9

=

;

r

l

8xNPc: �
�

(IndUnequal x
k

y
l

)�(IndNotPSub x
k

y
l

)

	

r

l

� : IndUnequal (Con
i

~a ~x) (Con
j

~b~y)
�

�

IndNotSub (Con
i

~a~x) y
l

	

r

l

147

Firstly, each

IndNotSub (Con
i

~a~x) y
l

follows by h
l

applied to the proof of

IndNotPSub x
k

y
l

projected from xNPc.

Secondly, we must establish

IndUnequal (Con
i

~a ~x) (Con
j

~b~y)

That is, we must prove

(Con
i

~a ~x)'(Con
j

~b~y)! ?

so we apply IndPeano. If the constructors are different (i 6= j), the goal

is proved at once, otherwise i = j and we must show

~a'~b ! ~x'~y ! ?

But look! xPNc contains proofs for each l of

IndUnequal x
k

y
l

We may select the proof of x
k

'y
k

from the injected equations, and the

proof of

IndUnequal x
k

y
k

from xPNc establishing a contradiction and completing the construction.

Let me remark only briefly on the extension to dependent families. For

Fam : 8

~ı :~I: Type

the appropriate notion of inequality is

FamUnequal = �

~x;~y :Fam: (

~x'~y)! ?

We can then construct FamNotPSub and FamNotSub as before:

FamNotPSub = �

~x :Fam: FamAux (FamUnequal ~x)

FamNotSub = �

~x;~y :Fam: (FamUnequal~x~y)�(FamNotPSub~x~y)

148

Since all three of these take two sequences in Fam, rather than two elements in some

Fam~ı, no problem arises in the strengthening step: we are free to abstract away the

whole right hand sequence, ensuring the induction is on the entire family.

As for the equational reasoning, suppose we are trying to prove some inequality

~x; x'~y; y ! ? where both sequences inhabit Fam, with both x and y constructor-

headed. Rather than trying to unify the ~x and ~y, we may apply the ‘strong’ version of

the Peano theorem directly to the telescopic equation, solving the goal in the case of

different constructors, and exposing the equations of the predecessors if the construc-

tors are the same.

In effect, then, the construction scales up without any difficulty from elements of sim-

ple types to sequences in some Fam.

This construction also generalises easily to datatypes which use higher-order construc-

tors to represent infinitely-branching structures. When the higher-order arguments ap-

pear as hypotheses they may simply be fixed, so that they may be used as the appro-

priate witnesses for higher-order arguments in goal positions. However, it is not easy

to exploit this proof automatically, as it is undecidable whether an infinitely-branching

structure contains a cycle. Suppose we have a hypothetical ordinal x, together with a

function f : NN ! ord which yields x for input 37. If we have a hypothesis

x'sup f

we acquire a proof of ordNotPSub x (sup f), which expands to uncover a proof of

8n :NN: x'f ! ? but the machine has no reliable way of guessing that 37 is the right

number to expose the contradiction. Of course, if we know which branches a cycle

takes, we can still apply ordCycle by hand.

5.2.5 a brief look beyond constructor form problems

There is nothing which restricts our use of dependent families to indices in constructor

form. More complex indices lead to more complex unification problems, and the gen-

eral case is inevitably undecidable. There are two ways in which such problems can

arise, and they are not mutually exclusive:

� Non-constructor-form indices may appear in the type of a constructor. For ex-

ample, we might define sized binary trees, stree : NN ! Type as follows:

empty : stree 0
X : stree x Y : stree y

node X Y : stree s(plus x y)

149

� Non-constructor-form indices may appear in the type of an argument over which

case analysis is to be performed. For example, we might wish to write

vprefix : 8A :Type: 8m; n :NN: 8v :vectA (plus m n): vectA m

The tractability of such problems, even by hand, depends on the types of the non-

constructor-form expressions:

� Many problems involving the comparison of types or functions are simply be-

yond us. On the one hand, we do not have theorems such as conflict at the level

of types—we cannot disprove NN'22. On the other hand, the intensionality of '

prevents us from solving even such simple higher-order problems as

8f :NN ! NN: (8x :NN: f x' sx) ! : : :

Even though the extensional behaviour of f is completely determined, there are

many intensionally distinct terms which exhibit that behaviour.

� Equations within datatypes involving defined functions like plus are less trou-

blesome, especially if we have equipped those functions with derived elimination

rules which do constructor-based analysis of the return values.

Let us examine the example of vprefix. Induction on v will leave subgoals containing

unsolved equational problems, such as the vnil case:

?vprefix
n

: 8A :Type: 8m; n :NN: 8v :vectA (plus m n):

0'(plus m n) ! vnil'v ! vectA m

Case analysis on m will get us out of this predica-

ment, but only because we know how plus works.

A more cunning approach is to address the trou-

blesome plus directly, constructing vprefix with

plus’s recursion induction principle, shown on the

right. Note that the plus symbol is completely ab-

sent from the cases.

plusRecI

� : 8x; y; z :NN: Type

� 0 y y

� x y z
: : : : : : : : : :

� sx y sz

8x; y :NN: � x y plus x y

Targetting the (plus m n) in goal vprefix yields subgoals:

150

?vprefix
z

: 8A :Type: 8n :NN: 8v :vectA n: vectA 0

?vprefix
s

: 8A :Type: 8m; n; z :NN:

(8v0 :vectA z: vectA m) !

8v :vectA sz: vectA sm

The remaining indices are in constructor form!

I draw two conclusions from this discussion. Firstly, dependently typed program-

ming with non-constructor-form indices is difficult—a principled machine treatment

is a long way off. Secondly, for hand treatments of such problems, derived elimination

rules describing the behaviour of non-constructor functions are of considerable benefit.

151

Chapter 6

Pattern Matching for Dependent Types

We are now in a position to build tools for programming with dependent datatypes.

In this chapter, I shall first discuss the interactive development of programs. How-

ever, I believe it also important to consider the translation of functional programs from

the conventional equational style into real OLEG terms based on the elimination rules

primitive for each datatype.

Why should we be interested in these programs? Some people like to write programs,1

and raw type theory is hard to write, especially as it must record explicitly the unfica-

tion attendant to the elimination of dependent datatypes. That is why we get machines

to do it.

I am an enthusiastic advocate of the analytic style of programming afforded by proof

editors. For me, the key point is that the search for programs is carried out in a struc-

tured space of partial objects constrained to make sense: the machine performs most

of the bookkeeping and checks for type errors locally and incrementally.

Synthesising programs in the conventional way involves unconstrained search amongst

arbitrary sequences of potential gibberish for completed objects which a compiler ei-

ther accepts or rejects. The incremental programming afforded by interactive declare-

before-use environments common in the ML community is almost entirely useless

because it is incremental from the bottom up: it requires the details to be presented

before the outline and thus supports only the kind of lonely obsessiveness that gives

programming a bad name. The module system offers some compensation, at a coarse

granularity.

The trouble with raw type theory is not that it is hard to write, but that it is hard to

read. Even if a program is generated with machine help, it is still a good thing if

1Others are merely paid to do it.

152

we can represent it in a way which is comprehensible to humans. Sequences of tactic

applications are not especially informative and, in any case, run counter to the demands

of a good user interface.

I hope, therefore, you will agree that it is good to have a high-level representation

for synthesised proofs and programs which nonetheless exposes the analysis both by

which it operates and by which it can be constructed. Pattern matching notation has

been with us for three decades in theory and in practice [Bur69, McB70]. Perhaps it

is because I have been brought up in these old ways that I am so slow to change, but

I still prefer equational presentations of programs to this newfangled ‘pointer derefer-

encing’ or whatever it is the young people do these days. One side effect of a concise

and readable notation is that we can still write programs on the backs of quite small

envelopes.

What do these programs look like? Let us simplify matters for the time being, and

consider only solitary functions:

f : 8

~x :~S: T
f ~s

1

= t
1

...
...

...

f ~s
n

= t
n

Each~s
i

will contain some ‘free’ variables~y :

~Y
i

which are really universally quantified.

f may not appear in any of the ~s
i

. Both f and the ~y may appear in t
i

. It is, of course,

impossible to guess the ~Y
i

for arbitrary ~S and ~s
i

, although it is not hard to imagine

classes of problem for which it is routine. Let us assume they are also supplied by the

programmer, but nonetheless omit them informally when unremarkable.

What do we mean by such a program? I suggest that we mean to determine the type

and the intensional behaviour of the defined symbol f. It is not enough that the program

should determine for each closed input~s : ~S a unique output t: that is merely to describe

the extension of a function—to give equations which must cover all the cases and

be true. The programs must also reflect a deterministic and terminating computation

mechanism, even on open terms, and taking canonical inputs to canonical outputs. That

is, the equations must have computational, not just propositional force. The programs

must decode internally into combinations of abstractions, applications, case analysis

and terminating recursion. This requirement is reflected to a considerable extent in

the task of translating such programs in terms of the effective computational behaviour

primitive to OLEG datatypes.

153

A common notion of pattern matching from functional programming with simple types

requires the patterns (the~s
i

above) to be in constructor form, nonlinear, exhaustive and

disjoint. This is not sufficient to guarantee the intensional behaviour required here.

The classic counterexample (due, as far as I know, to Berry) is the three juror majority

function:

majority : verdict ! verdict ! verdict ! verdict
majority innocent innocent innocent = innocent

majority guilty innocent z = z
majority innocent y guilty = y
majority x guilty innocent = x
majority guilty guilty guilty = guilty

Now, imagine you are in a low-budget remake of the Henry Fonda film, ‘Twelve Angry

Men’, entitled ‘Three Mildly Peeved Men’, and your task is to find out what the ma-

jority verdict is. The three jurors do not each know what the others think, so the only

way you can gain any information is to ask them individually for their verdicts: you

cannot ask ‘should you have the casting vote’. Represent what you know by a pattern:

initially, you know nothing, so the pattern is

x y z

When you ask a question, of the first juror, say, your state of knowledge divides in two

possibilities

innocent y z

guilty y z

Based on this choice, you can adopt different strategies of questioning, ultimately giv-

ing you a set of possibilities from each of which you draw a conclusion. Does Berry’s

collection of patterns represent a set of such possibilities, arising from a conditional

questioning strategy? No: each juror appears undeclared in at least one pattern, and at

least two jurors must declare in order to determine the answer.

The following shorter and intensionally realisable function has the same extensional

behaviour:2

majority : verdict ! verdict ! verdict ! verdict
majority innocent innocent z = innocent

majority innocent guilty z = z
majority guilty innocent z = z
majority guilty guilty z = guilty

2It also has an advantage in some cases if you are the third juror and prone to moments of angst.

154

Extensional presentations of functions are not useless: they are merely non-

computational. It is highly desirable, at times, to give such extensional properties in

specifications of functions. The question is then whether they can be transformed into

intensional programs, preserving the extensional requirements.

The fact that intensionally realisable patterns arise from such questioning strategies

militates strongly in favour of the analytic view of programming: generating pat-

terns by case splitting not only guarantees their computational meaningfulness, but

also gives some guidance to the way we think about problems in the first place.3

Generating coverings of patterns by splitting is central to Thierry Coquand’s charac-

terisation of pattern matching for dependent types [Coq92], as implemented in ALF

[Mag94]. It is worth taking the time to review this now, not only to place the work of

this chapter in its wider context, but also because it is in his meta-level footsteps that I

have followed with my object-level treatment.

6.1 pattern matching in ALF

Coquand proposes to admit functions defined in pattern matching style directly to the

type theory as constants with reduction rules given by the equations provided they sat-

isfy certain safety conditions, more stringent than necessary, but nonetheless allowing

considerable freedom of expression. For

f : 8

~x :~S: T

8

~y :~Y
1

: f ~s
1

= t
1

...
...

...

8

~y :~Y
n

: f ~s
n

= t
n

he demands

no nesting : for each f~r in any t
i

, f does not occur in any r
j

guarded recursion : for some j and every i, every recursive f~r in t
i

has r
j

guarded in

s
ij

covering : the~s
i

form a covering of ~S, in the sense to be defined below

3When teaching students ML, I have so frequently found myself asking ‘What do you do with the

empty list? What do you do with h cons t?’ that it has become something of a mantra, for me, if not for

them.

155

The definition of covering captures the notion of successive case-splitting. We shall

first need a definition of such a split or elementary covering—this we iterate to yield

covering.

DEFINITION: elementary covering

The~s
i

form an elementary covering of ~Y if there is an argument position

j such that

� s
ij

is constructor-headed for each i

� for any argument sequence~r with r
j

constructor-headed, there is ex-

actly one i and instantiation of the ~y :

~Y
i

which makes~s
i

�

=

~r

Note that, in particular, sequences with different constructors heading the jth argu-

ment must be covered by different patterns, and that all possible constructors must be

covered: we have just asked the jth argument to reveal which constructor is at its head.

DEFINITION: covering

� the free pattern4
~y :

~S is a covering of ~S

� if~s
i

(over ~y :

~Y
i

) is an elementary covering of ~S and~r
ij

(over~z :

~Z
ij

)

are coverings of the ~Y
i

, then the [~r
ij

=

~y]~s
i

also form a covering of ~S

Which coverings we can build interactively depends on which elementary coverings

we can recognise as such—this is where unification comes in. Let us suppose that we

have a family of types Fam, and that we wish to form an elementary covering of some

telescope

~y :

~Y; y : Fam~s;~y
0

:

~Y
0

by case-splitting on y. Fam has constructors

~x :

~X
i

Con
i

~x : Fam~t
i

so the possible cases are those where the~s unify with the~t
i

, the flexible variables being

~x :

~X
i

;

~y :

~Y.

We apply an appropriate unification algorithm, such as the constructor unification from

last chapter, getting one of three responses

4my term

156

� a most general unifier �
i

from variables ~x :

~X
i

;

~y :

~Y to terms over some~z :

~Z

� indication that there is no unifier

� failure due to ambiguity or getting stuck

If the unification is conclusive for each constructor case, then our elementary covering

has one pattern for each mgu �
i

, given by

�

i

~y; (Con
i

�

i

~x);~y
0

(over ~z :

~Z;~y
0

: �

i

~Y
0

)

We can now build coverings by starting with the free pattern and repeatedly applying

case-splitting, as allowed by the unification. Note that unification is a meta-level notion

here: it must be sound with respect to the computational equality. Apart from that, we

can make it as clever or as stupid as we like. Constructor unification is already quite

generous—this is essentially what the implementation of ALF provides.

Programming then proceeds in a type-directed way, building a covering for the argu-

ment telescope of a function, then filling in the right-hand sides by refinement, allowing

recursive calls, provided the appropriate termination check is satisfied.5

It is not hard to see that all the �-reductions so far presented in this thesis fall into this

class of definable function (provided we make the appropriate straightforward exten-

sion for mutually defined functions on mutually defined datatypes): the elimination

rules for datatypes have been constructed to yield elementary coverings of them, with

one-step guarded recursion. In fact, we do not even need the unification algorithm to

handle conflict, injectivity or cycles: coalescence and substitution are enough for the

datatype �-reductions, and we must add identity if we wish to support eqElim.

What about the other way around? If we fix on constructor form unification as that

which informs the case-splitting process, then we may follow this treatment at the

object-level.

6.2 interactive pattern matching in OLEG

This section contains the main metatheoretic result of this thesis: it proves that func-

tions which can be manufactured interactively in ALF can be manufactured interac-

tively in OLEG. Furthermore, the simulation is at an intensional level—the functions

5In the original ALF implementation, this was left as a moral obligation, but Coquand’s criterion

above is not hard to enforce.

157

we manufacture from OLEG elimination rules have the same computational behaviour

as those defined directly in ALF.

Before we can progress to the theorem, we must examine computation with elimination

rules in more detail.

6.2.1 computational aspects of elimination

Suppose a function f can be given in terms of another g as follows:

f = �

~x : ~X: g~s

What can we infer about the computational behaviour of f from that of g?

This is a very common situation. If g is an elimination rule and we construct f by

eliminating some of its arguments with g, this is exactly the structure which f will take.

If g has a reduction behaviour given by �-reductions or a pattern matching function in

the Coquand style, we may be able to infer the corresponding behaviour for f. For

example, we have already seen how to construct NNCase from NNElim in this way:

how does NNCase reduce when it is fed constructor-headed numbers? It is not hard to

check that it inherits the appropriate behaviour from NNElim:

NNCase � �

0

�

s

0 �

=

�

0

NNCase � �

0

�

s

sn �

=

�

s

n

Similarly, if we want to implement the pattern matching version of plus by means of

NNElim, we need to be sure that the defining equations are intensionally recoverable.

In particular, we need to show that any recursive calls to NNElim in the implementation

can be replaced by recursive calls to plus convertible to them. We can achieve this

by a process of unfold/fold transformation on functional programs which respects the

computational equality of OLEG.

Let us consider unfolding first.

Suppose g is given by a pattern matching program

g : 8

~y :~S: T

g~s
i

= t
i

(over pattern variables ~y :

~Y
i

)

158

From the definition of f, we can infer the lengthened equation

f~x �

=

g~s (any ~x :

~X)

For each~s
i

, there are two possibilities

�

~s is at least as long as~s
i

�

~s is shorter than~s
i

In the former case, we may split ~s as ~r;~r
0

, so that ~r;~s
i

:

~S. If � is a substitution from

~x;~y to terms over~z :

~Z which unifies~s
i

and~r, then we have

f �~x �

=

g �(

~r;~r
0

) � g �

~s
i

; �

~r
0

�

=

(�t
i

) �

~r
0

(over ~z :

~Z)

In the latter case, it is~s
i

which we split as~r;~r
0

so that~s;~r : ~R, where ~R is a prefix of ~S.

If � is a unifying substitution, then we have

f �~x �

=

g �

~s � g �

~r

and therefore

f �~x; �~r
0

�

=

g �(

~r;~r
0

) � g �

~s
i

�

=

�t
i

Note that we may not, in general, pad out the application of f before the unification,

because f~x may not have functional type until the ~x have been instantiated.

Folding is more straightforward. If we know that

f~x �

=

r where ~x is the free pattern, and

f~s �
=

t[�r] (over ~y :

~Y)

then

f~s �
=

t[f �~x] (over ~y :

~Y)

I have not explained where these substitutions � come from,6 but I do not have to:

unfolding and folding are a pair of techniques by which we can derive new intensional

equations from old ones. I do not propose to use them to construct pattern matching

programs, but rather to confirm their intensional status. For example, the program plus

may be written in pattern matching notation

6Perhaps you can guess.

159

plus 0 y = y
plus sx y = s(plus x y)

This quite clearly falls within Coquand’s class of definable functions. We have already

seen plus defined somewhat less perspicuously in OLEG:

plus = NNElim (�x :NN:NN ! NN)

(�y :NN: y)
(�x :NN: �plus

n

:NN ! NN: �y :NN: s(plus
n

y))

We can check that the pattern matching equations hold intensionally for the OLEG

definition. First unfolding with respect to each �-reduction of NNElim:

plus 0 = �y :NN: y
plus sx = �y :NN: s(NNElim : : : x y)

Folding with respect to the OLEG definition:

plus 0 = �y :NN: y
plus sx = �y :NN: s(plus x y)

Lengthening:

plus 0 y = y
plus sx y = s(plus x y)

We have checked our implementation of the pattern matching program!

In fact, we can use lengthening, unfolding and folding to check all the dervived com-

putation laws in this thesis, and we shall use them in particular to ensure the intensional

validity of the pattern matching programs we shall shortly construct.

Of particular interest is the computational effect of case analysis followed by unifica-

tion.

Suppose we face the goal

?f: 8~x :~S: T

where S
i

is some Fam ~p, with the ~p in constructor form. Let Fam have constructors

160

~z :

~Z
j

Con
j

~z : Fam ~p
j

Eliminating x
i

by FamCase yields, in general:

!�= �

~y: Fam

8

~x: ~S
8

~e : ~y' ~p; x
i

T
...

?f
j

: 8

~z: ~Z
j

8

~x: ~S
8

~e : ~p
j

; (Con
j

~z)' ~p; x
i

T
...

!f = �

~x: ~S
FamCase � : : : f

j

: : :

~p; x
i

(refl~p); (refl x
i

)

Now let us apply the unification algorithm to f
j

. Either there is no unifier, in which

case we have no need of a computational explanation, or there is a most general unifier

�

j

. In this case, the new subgoal looks like

?f0
j

: 8

~y: ~Y
j

�

j

T

Furthermore, having found �
j

, we may also unfold the definition of f with respect to

FamCase, discovering that for all ~y

f �
j

~x �

=

f
j

�

j

~z; �
j

~x; (refl �
j

(

~p; x
i

))

�

=

f0
j

~y

The latter conversion holds by the computational properties of the proof term generated

by the unification algorithm established in the previous chapter.

This shows us that case analysis with constructor form unification really does corre-

spond intensionally to Coquand’s case-splitting step. We are now in a position to prove

a crucial metatheorem.

161

6.2.2 conservativity of pattern-matching over OLEG

THEOREM: conservativity of pattern-matching over OLEG

Suppose

f : 8

~x :~S: T

8

~y :~Y
1

: f ~s
1

= t
1

...
...

...

8

~y :~Y
n

: f ~s
n

= t
n

is an admissible program according to the characterisation of the previous

section, with

� the~s
i

(over ~y :

~Y
i

) a covering of ~S built interactively by case-splitting

with constructor form unification

� recursive calls structurally smaller on the rth argument

Then there is an OLEG term f : 8~x :~S:T satisfying for each i, for any~y :

~Y
i

,

f~s
i

�

=

t
i

PROOF

Let us present the main problem as one of theorem proving. We must prove goal

?f: 8~x :~S: T

However, we must check that however we implement f, it satisfies the computational

laws intended by the pattern matching equations.

One of the key aspects of this construction is justifying the recursive calls. We can help

ourselves in this regard if we give them highly distinctive types. As they stand, they

just have whatever type it is the function returns for the given arguments, which might

be something dull. We can introduce a much more informative type as follows

?G : 8

~x :~S: Type

?call : 8

~x :~S: (G ~x)! T

?return : 8

~x :~S: T ! G ~x

?g : 8

~x :~S:G ~x

!f = �

~x :~S: call (g~x)

162

What has happened? I have defined f in terms of g, a function which returns elements

of an as yet unknown ~S-indexed Type-family, G. Of course, G is going to turn out to

be �~x :

~S: T, in the style of the decorative !-bindings from previous chapters, but for

now, it remains obscure: we transfer values between T and G ~x by means of a pair of

unknowns call and return, both of which will turn out to be the identity function. As

things stand, though, the type of a call to g identifies precisely its arguments—when

we wish to make a recursive call, we, and also the blunderbuss tactic, shall be able to

find the hypothesis we need just by looking at its type!

The next step is to eliminate the rth argument of g with the appropriate guarded recur-

sion principle. Suppose S
r

is Fam ~p, where Fam is a dependent family of datatypes.7

The guarded recursion principle we need is thus FamFix. Eliminating, we obtain the

scheme

� = �

~z :Fam: 8

~x :~S: ~z'~p; x
r

! G ~x

In fact, this scheme will have had its constraints optimised in the usual way—there will

be none at all if Fam is a simple type. Let us nonetheless consider the general case.

The immediate subgoal is

?g
guarded

: 8

~z : Fam

8recs: FamAux �~z

8

~x :

~S
8

~e :

~z' ~p; x
r

G ~x

Intensionally speaking, unfolding the definition of g with respect to FamFix tells us

that

g ~x �

=

FamFix � g
guarded

~p; x
r

~x (refl~p; x
r

)

�

=

g
guarded

~p; x
r

(FamAuxGen � g
guarded

~p; x
r

)

~x (refl~p; x
r

)

The subgoal constraints require exactly that the ~x are well typed arguments of g, so

they reduce by unification to

?g
free

: 8

~x :

~S
8recs: FamAux � ~p; x

r

G ~x

7We may consider any parameters fixed.

163

That is, we have the same goal as before, but with the addition of the auxiliary premise

which is ready to unfold revealing the available recursive calls as we split x
r

into

cases—it may not be the last argument, as shown here, but its position is immaterial.

Note also that the computational behaviour of terms generated by unification gives

g~x �

=

g
free

~x (FamAuxGen � g
guarded

~p; x
r

)

Now we replay the interactive case-splitting process which justified the covering ~s
i

.

Splitting an argument means eliminating it by the case analysis rule for its datatype,

then applying the unification tactic to the subgoals. Because the unification tactic im-

plements the same unification algorithm as that which justifies the elementary covering

induced by the split, we know we will achieve exactly the same effect.

We are left with subgoals corresponding to the covering

?g
i

: 8

~y :

~Y
i

8recs: FamAux � ~p
i

; s
ir

G~s
i

What is more, we know that case analysis with unification has the right intensional

effect, so that

g~s
i

�

=

g
i

~y (FamAuxGen � g
guarded

~p
i

; s
ir

)

It is time to fill in the right-hand side. Let us introduce the premises and refine by

return:

?g
i

� �

~y :

~Y
i

�recs: FamAux � ~p
i

; s
ir

?r
i

: [

~s
i

=

~x]T
return~s

i

r
i

t
i

is the expression we want to supply for r
i

, but it may contain some recursive f~z
j

, so

we cannot just refine by it. We must replace those applications by calls to fresh holes

of type G~z
j

first. Since there is no nesting, we may write them in any order, although

if nesting was permitted, we would still be able to choose an order. I shall only write

one of them in.

164

?g
i

� �

~y :

~Y
i

�recs: FamAux � ~p
i

; s
ir

?g
ij

: G~z
j

return~s
i

t
i

[: : :call g
ij

: : :]

Where are we to find these elements of G ~z
j

? From recs, of course! Since z
jr

is, by

assumption, structurally smaller than s
ir

, and must have some type Fam ~p
ij

, the type

FamAux � ~p
i

; s
r

expands to a product containing �

~p
ij

; z
jr

, ie

8

~x :~S: ~p
ij

; z
jr

'

~p; x
r

! G~x

Let us project this out and call it r. Because g~z
j

is well typed, we can find a matching

substitution which solves the constraints. Hence we may form

r~z
j

(refl~p
ij

; z
jr

) : G~z
j

and thus instantiate g
ij

.

In point of fact, blunderbuss with recs is enough to solve g
ij

, because it solves re-

flexive equations and searches through �-types. Since G~z
j

is uniquely the type of the

recursive call on those arguments, there is no way the search can come back with the

wrong value.

Let us check that this type-directed folding really finds the recursive call. The point is

that

FamAuxGen � g
guarded

~p
i

; s
ir

�

=

D

: : :

D

FamFix � g
guarded

~p
ij

; z
jr

; : : :

E

: : :

E

Projecting this out and applying it as shown above gives

FamFix � g
guarded

~p
ij

; z
jr

~z
j

(refl~p
ij

; z
jr

)

Compare this with the definition of g above: it folds (by the matching substitution) to

g~z
j

Hence we know that for all ~y

165

g~s
i

�

=

return t
i

[: : :call (g~z
j

) : : :]

All that remains is to solve and cut G, call and return as suggested earlier. We find

that f ~x is exactly g ~x. Hence (trivially unfolding and folding), the calls and returns

disappear and the g’s turn into f’s. As required, for each i and all ~y :

~Y
i

f~s
i

�

=

t
i

[: : : f~z
j

: : :]

�

6.2.3 constructing programs

A man bought a full size replica of Michelangelo’s ‘David’. He put it in

his back garden and invited his friends round to see.

‘It’s just a big block of white marble.’ said they.

His reply: ‘I haven’t unwrapped it yet.’

The above theorem makes use of the guarded recursion, case analysis and unification

technology from the previous two chapters to ‘replay’ the justification of a pattern

matching function known to lie within Coquand’s class of admissible definitions. We

had the advantage of knowing the equations in advance, and indeed the derivation of

the covering—we merely had to check that we could build a term with the right type

and computational behaviour. As we shall shortly see, this is only a slight advantage—

we can use essentially the same technique and construct the pattern equations as we

go.

I propose to supply a collection of tactics for programming. As well as performing

theorem-proving actions on the OLEG state, these tactics will create and manipulate

associated pattern-matching programs in such a way that they are always justifiable by

Coquand’s criteria and, once the holes are filled, intensionally correct.

By way of a running example, I propose to construct vlast, the function which extracts

the last element of a nonempty vector. Let us fix and suppress the element type A.

vlast : 8n :NN: 8x :vect sn: A

I shall not tell you what the pattern matching program is, for the point is to unwrap it.

We begin with a goal

166

?goal: 8n :NN: 8x :vect sn: A

Here is a tactic which indicates that a given goal should be regarded as a programming

problem.

TACTIC: program

?goal: 8x
1

: S
1

...

8x
r

: Fam ~p
...

8x
n

: S
n

T[~x]

)

?F : 8

~x :~S: Type

?call : 8

~x :~S: (F~x)! T[~x]

?return : 8

~x :~S: T[~x]! F~x

!� = �

~z: Fam

8

~x: ~S
8

~e :~z' ~p; x
r

F~x

?f
0

: 8

~x :

~S
8recs: FamAux � ~p; x

r

F ~x

!f = �

~x :~S: FamFix � f
0

~x (refl~p; x
r

)

!goal = �

~x :~S: call (f~x)

[f
0

] f~x = ? (

~x :

~S)

PROOF

The tactic

program n x
r

turns goal, which must have at least n premises, into a programming problem. goal is

solved by appeal to a function f of arity n, recursive on its rth argument.

As before, the more informative type family F is introduced, together with call and

return, then x
r

is eliminated with the relevant guarded recursion theorem. This leaves

us filling in the body of the function f
0

. Associated with f
0

is a pattern matching equa-

tion labelled [f
0

], with its pattern variables listed in parentheses, which describes the

aspects of f’s behaviour for which f
0

accounts. The left-hand side of this equation is f~x,

indicating that f
0

describes the effect of f for any arguments matching the free pattern

~x—that is, any arguments at all. The right-hand side is a placeholder ?, indicating that

we have not yet decided what f returns for arguments matching ~x.

167

As we split the goal f
0

to yield subgoals for specific constructor cases, so we shall

split the equation [f
0

] into the corresponding equations with more instantiated patterns.

These equations constitute the pattern matching program we are building, and we

shall maintain the invariant that their patterns constitute a covering in accordance with

Coquand’s definition. This is trivially the case for [f
0

]. �

By the way, if the program is not recursive, let us allow the omission of the x
r

from the

tactic call. Correspondingly, we do not need to apply the guarded recursion theorem.

The type of f
0

is then the same as that of f. The rest of the techique is unaffected.

Now, vlast is structurally recursive on either of its arguments, so it is immaterial which

we choose. I shall pick the vector. Let us see the effect of the tactic:

?Vlast : 8n :NN: 8x :vect sn: Type

?call : 8n :NN: 8x :vect sn: (Vlastn x)! A
?return : 8n :NN: 8x :vect sn: A ! Vlastn x
!� = �m: NN

�y : vect m
8n : NN
8x : vect sn
8e

1

: m' sn
8e

2

: y' x
Vlastn x

?f
0

: 8n : NN
8x : vect sn
8recs: vectAux � n x

Vlastn x
!vlast = �n :NN: �x :vect sn: vectFix � f

0

sn x (refl sn) (refl x)
!goal = �n :NN: �x :vect sn: call (vlastn x)

[f
0

] vlastn x = ? (n : NN; x : vect sn)

Now that we know how to start the process, we must figure out how to build coverings.

TACTIC: split

168

?f
i

: 8

~y :

~Y
i

8recs: FamAux � ~p
i

; s
ir

F~s
i

[f
i

] f~s
i

= ? (

~y :

~Y
i

)

)

?f
j

: 8

~z :

~Z
j

8recs: FamAux � �

j

(

~p
i

; s
ir

)

F �
j

~s
i

...

[f
j

] f �
j

~s
i

= ? (

~z :

~Z
j

)

...

where y
k

: Fam
0

~r

and Con
j

: 8

~x : ~X: Fam0

~t

and �

j

is a most general unifier (from ~y;~x to terms over ~z) of ~r; y
k

and

~t; (Con
j

~x), both in Fam
0

PROOF

The tactic

split y
k

performs a case split on y
k

in subgoal f
i

, yielding a bunch of subgoals f
j

. The equation

for f
i

is split correspondingly into equations for the f
j

.

As above, we eliminate y
k

in subgoal f
i

via the case analysis principle for Fam
0

and

then apply unification. The tactic succeeds provided unification in each case either

shows that there is no unifier or finds a mgu �

j

. The resulting collection of mgus

justifies the new covering, and it also justifies the unfoldings which show that f
i

~s
i

reduces in each case to f
j

�

j

~s
i

.

The invariant that the patterns of the equations associated with the subgoals form a

covering is maintained. �

In our example, we shall certainly need to split on the vector x. There is no way to

make a nonempty vector with vnil, so only the vcons case survives:

169

?f
c

: 8n : NN
8h : A
8t : vect n
8recs: �t

rec

: 8m: NN
8x : vect sm
8e

1

: n' sm
8e

2

: t' x
Vlastm x

vectAux � n t
Vlast n (vcons h t)

[f
c

] vlastn (vcons h t) = ? (n : NN; h : A; t : vect n)

Note that the wallet of recursions has unfolded by one step, showing us the recursive

call we could make for t, but for the fact that it is not known to be nonempty. The effect

of our informative retyping has been to make the conclusion of f
c

tell us the patterns in

the corresponding equation.

We must make one more split before we can finish the job. If this were simply typed

programming, we would split t to see whether h is the last element or not. However,

we do not need to destructure t—splitting n will tell us all we need.

?f
cz

: 8h : A
8t : vect 0

8recs: �t
rec

: 8m: NN
8x : vect sm
8e

1

: 0' sm
8e

2

: t' x
Vlastm x

vectAux � 0 t
Vlast 0 (vcons h t)

?f
cs

: 8n : NN

8h : A
8t : vect sn
8recs: �t

rec

: 8m: NN
8x : vect sm
8e

1

: sn' sm
8e

2

: t' x
Vlastm x

vectAux � sn t
Vlast sn (vcons h t)

[f
cz

] vlast0 (vcons h t) = ? (h : A; t : vect 0)

[f
cs

] vlastsn (vcons h t) = ? (n : NN; h : A; t : vect sn)

170

Observe that in the former case, there is no way the matching problem can ever be

solved to allow access to a recursive call, whilst in the latter, the way is clear.

Having split as far as is necessary, we should like to fill in the right-hand sides.

TACTIC: return

?f
i

: 8

~y :

~Y
i

8recs: FamAux � ~p
i

; s
ir

F~s
i

[f
i

] f~s
i

= ? (

~y :

~Y
i

)

)

!f
i

= �

~y :

~Y
i

�recs: FamAux � ~p
i

; s
ir

return t0
i

[f
i

] f~s
i

= return t0
i

(

~y :

~Y
i

)

PROOF

Given

return t
i

we may, as before, form t0
i

by replacing the recursive calls f~z by calls to holes of type

F~z. If these calls are structurally smaller at argument r, we will once again be able to

solve these holes by appeal to appropriate projections from recs.

The structural condition ensures that the new equation is acceptable, and the same

argument as that in the above theorem shows that it holds intensionally. �

Our example has two cases. For the singleton, the value should just be the head. return

h gives us

!f
cz

�h : A
�t : vect 0
�recs: �t

rec

: 8m: NN
8x : vect sm
8e

1

: 0' sm
8e

2

: t' x
Vlastm x

vectAux � 0 t
return h

[f
cz

] vlast0 (vcons h t) = return h (h : A; t : vect 0)

In the case with the nonempty tail, we make the recursive call

171

return vlastn t

This becomes

?f
cs

: �n : NN
�h : A
�t : vect sn
�recs: �t

rec

: 8m: NN
8x : vect sm
8e

1

: sn' sm
8e

2

: t' x
Vlastm x

vectAux � sn t
?v

t

: Vlastn t
return (call v

t

)

A quick search reveals the appropriate recursion

!v
t

= recs:1 n t (refl sn) (refl t)

justifying the equation

[f
cs

] vlastsn (vcons h t) = return (call (vlastn t))

(n : NN; h : A; t : vect sn)

We can tell when a program is finished—once all the placeholding ?s have gone. We

may now solve F, call and return as in the previous case. This leaves us with a real

term f whose intensional behaviour corresponds to the associated equational program,

which satisfies Coquand’s conditions by construction.

Our example becomes

vlast0 (vcons h t) = h

vlastsn (vcons h t) = vlastn t

This is a rather subtle way to write vlast which makes crucial use of the extra indexing

information. Naı̈vely erasing the indices in the hope of recovering a function over

ordinary lists yields

172

last (cons h t) = h

last (cons h t) = last t (�)

This is clearly not the right function, or indeed a function at all.

Of course, we could have split t and built the usual

vlast0 (vcons h vnil) = h

vlastsn (vcons h (vcons h0 t)) = vlastn (vcons h0 t)

I do not wish to embark on a discussion of the relative merits of these two programs—I

will merely point out that computation on the indices of a type behaves differently from

computation on the type directly, and sometimes interestingly so.

The combined effect of these tactics is to allow a similar style of interactive program

development to that available in ALF—not only can we build the same programs, but

we can do so in the same way.

However, this is not enough. Having built these programs, how do we store them?

For OLEG, the representation of the program is still a ghastly term involving guarded

recursion, case analysis and unification, all painstakingly recorded. Why can’t we

just write the pattern matching equations down? The construction of programs in this

section has relied on knowing more than just the equations—we have also exploited the

justification that the equations satisfy Coquand’s conditions, and we have recovered a

process for building those justifications interactively.

In the next section, I consider how much we can do with just the equations.

6.3 recognising programs

The question asked in this section is ‘for which pattern matching programs can we

recover the justification?’. Sadly, as we shall see, the answer is not ‘all of them’.

Nonetheless, it is worth analysing at what point the problem becomes undecidable,

with a view to building a system where we can store enough information to allow

the recovery. The aim is to describe a class of recognisable programs. I have made

some progress in this direction, although there is work still to be done. I feel some

discussion of the problem is worthwhile, not least because the techniques described

here are sufficient to recognise all the examples in this thesis, which will save me the

trouble of describing the construction.

173

Our existing tactical presentation of program construction will be of assistance to us.

We have built ourselves a structural editor for acceptable programs. Let us now imagine

this editor being used not by humans but by a mechanical recogniser whose task is to

take a set of pattern matching equations and build the program. This echoes the view

I have taken of the constructions with which we may equip our datatypes—they make

use of the tools we have developed for theorem-proving, ie the structural editing of

OLEG terms. I know relatively little about writing compilers, but it seems to me that a

promising first move is to build a structural editor for the target language.

The three tactics from the previous section divide recognition into three phases:

� identify an argument position on which the recursion in the program is guarded

(and apply program)

� show that the patterns form a covering (by applying split)

� fill in the right-hand sides (with return)

The first and third of these are easy. We may simply check each argument position

in turn for one which satisfies the guardedness condition before applying program.

Meanwhile, return codes up exactly the operation we need. It is the second phase,

checking the covering, where undecidability creeps in.

6.3.1 recursion spotting

Given a goal

?goal: 8~x :~S: T

and a pattern matching program of arity n

f
i

~s
i

= t
i

(

~y :

~Y
i

)

It is easy to check for recursive calls to f in the t
i

. It is also easy to find for each equation

the set R
i

of argument positions which satisfy the guardedness condition. We may say

that non-recursive equations are guarded in all their argument positions. Coquand’s

criterion requires that the intersection of the R
i

be nonempty. If so, we may apply the

program tactic for any of the indicated positions.

174

It is possible that this procedure will yield a choice of positions. While any of them will

do, we may still have a preference. For example, structurally recursive programs over

vects or fins are necessarily also guarded on their natural number indices. It does not

really matter which we choose, but I would prefer the recursion to be on the datatypes

themselves, rather than the indices, as this produces a justification which seems to me

more intuitive.

Now we have found r, we may apply

program n x
r

This leaves us with subgoal f
0

and its associated equation

[f
0

] f ~x = ? (

~x :

~S)

Now, let us relate the program equations we are trying to construct with the asso-

ciated equations in the current state of the construction. I call the latter the cover-

ing equations because their patterns are guaranteed to form a covering. In particular,

we are certain that each program equation is covered by exactly one of the covering

equations—only one of the covering patterns may be instantiated to give each program

pattern.

For each covering equation, we may collect the program equations it covers—this is

just a first-order matching problem. There are three possibilities:

� there is one equation, and it is covered exactly, meaning that the covered equa-

tion also covers its coverer—the patterns are the same, up to renaming of vari-

ables and return is now applicable

� there is at least one covered equation, but none covered exactly, so splitting will

be necessary

� there are no equations covered—this means either that the program is incom-

plete, or that there is nothing to cover—an undecidable type inhabitation prob-

lem

Let us look at each case in turn.

6.3.2 exact problems

If we have reached the stage where a covering equation

175

[f
i

] f~s
i

= ? (

~y :

~Y
i

)

exactly covers a program equation

f~s
i

= t
i

(

~y :

~Y
i

)

then we may apply tactic

return t
i

We know that the guarded recursive calls will be available to us, so we complete this

branch of the justification.

6.3.3 splitting problems

We have a covering equation

[f
j

] f~s
j

= ? (

~y :

~Y)

which covers several program equations

f �
i

~s
j

= t
i

(

~y
i

:

~Y
i

)

where �
i

is a (matching) substitution from the ~y to terms over the ~y
i

.

Each time we split a covering equation, we introduce at least one more constructor

symbol into its patterns (since patterns may be nonlinear, replacing a pattern variable

by a constructor form may add more than one constructor symbol to the pattern). We

may exploit this property to measure how far away the program equations are from be-

ing covered exactly. In order for a matching to exist, a program equation must contain

at least as many constructor symbols as the covering equation, so we may simply count

the excess.

Suppose f
j

covers equation i and is then split into several cases, one of which, f
k

say,

covers i also. We know the constructor excess of equation i over f
k

is strictly less than

that over f
j

, because the f
k

patterns contain more constructor symbols. Hence, we may

keep splitting problems until they become exact or empty and be sure that the process

will terminate.

Which split should we make? In order to see this, we must expand each of the program

equations in terms of f
j

. We know

176

f �
i

~s
j

�

=

f
j

�

i

~y h: : : i

where the tuple is just the collection of accessible recursive call values

If there is a y
k

such that each �

i

y
k

is constructor-headed, then y
k

is a candidate for

splitting. If that split is successful, constructor symbols will appear at y
k

, yielding

simpler subproblems.

Ideally, everything will be in constructor form, splits will always yield solvable unifi-

cation problems, so we may split any of the candidates and carry on. Which candidate

should we choose? I would suggest we prefer candidates higher up the type depen-

dency hierarchy, as these may induce splits in other arguments by unification. For

example, if we are building a covering of the vects, splitting a vector will automati-

cally split its length into 0 and s cases, while merely splitting the length will leave us

with work still to do on the vector.

Even if there are awkward non-constructor expressions involved, there will only be

a finite number of candidates at any stage, so we may keep trying to split until one

works. It is conceivable that, in an impure world, splitting something too early may

yield unsolvable unfication problems later. For the sake of argument, we may con-

sider the recogniser to be nondeterministic—any justification will do. This is far from

satisfactory, but it is safe.

6.3.4 empty problems

We have a subgoal

?f
i

: 8

~y :~Y
i

: 8recs : : : : : F~s
i

but no program equations to give us a clue what should go on the right-hand side,

or how to do any further case splitting. This either means that the programmer has

forgotten a case, or else one of the Y
ij

is empty, and there is morally no need to explain

what should happen, as the case cannot arise.

Types can be empty for arbitrarily subtle reasons—the type inhabitation problem is

undecidable. Even if we restrict everything in sight to constructor forms, we will still

be able to code up the halting problem as a datatype inhabitation question (see table

6.1). Some empty types, such as the simple type with one step constructor and no

base constructors, require an inductive argument to prove them empty. Others may

177

eventually disappear after enough case splitting, but there is no way of telling how

much is required.

If we cannot be totally clever, can we be totally stupid? That is, can we reject these

problems out of hand? Unfortunately not. The elimination rule for the 00 type has no

�-reductions and thus corresponds to an empty program—if we are to recognise the

recursion operators provided for datatypes as bona fide programs, we shall have to be

able to solve some empty problems.

Having rejected trying zero and infinity steps of case splitting, the only other intuitively

plausible option is one. Let us try one case split on each argument in turn, and if any

proves the goal, we have success. Otherwise, the problem is too hard and we fail to

recognise the program. This is enough to allow us to ignore cases with arguments in

types like 00, fin 0 and so on. The idea is that a type is obviously empty if there is no

constructor-headed expression which inhabits it.

Effectively, the programmer must deal with non-obviously empty types explicitly, by

calling subprograms which eliminate them. If we construct a program interactively

which takes several steps of splitting to dispose of a type, we may represent the last

step by an obviously empty subprogram which gets called from the last case where

a pattern existed. This effectively records the splitting process used to dismiss the

type. If we find ourselves repeating ourselves, perhaps we should be able to register

commonly used emptiness proofs in such a way that they are tried along with splitting

whenever an empty problem is encountered.

It is conceivable that one search path through checking a covering may lead to only

obvious empty problems, while another may lead to a non-obvious empty problem.

Once again, we may save ourselves by crude nondeterminism. Whether we can do

better remains to be seen.

6.4 extensions

I feel I should make brief mention of a number of obvious extensions to the class of

programs we should be willing to consider, none of which is particularly controversial.

6.4.1 functions with varying arity

In simply typed languages, we are not used to seeing functions with varying arity.

Certainly, the use of curried functions is commonplace, but there is nothing serious

178

� basic datatypes

start : state halt : state
� � � other states

blank : symbol
� � � other symbols

left : move right : move

� describing the machine

transition = state�symbol�state�symbol�move
transitions = list transition

tape = (tsil symbol)�symbol�(list symbol)
configuration = state�tape

(tsil is the type of lists built by adding elements at the right-hand end with the

constructor snoc. I overload nil.)

� list membership (for any element type A)

h : A t : list A
find h t : member h (cons h t)

h : A T : member x t
seek h T : member x (cons h t)

� updating the tape (update : tape ! move ! tape ! Type)

s : symbol r : list symbol
lblank s r : update hnil; s; ri left hnil;blank;cons s ri

l : tsil symbol t; s : symbol r : list symbol
lmove l t s r : update hsnoc l t; s; ri left hl; t;cons s ri

l : tsil symbol s : symbol
rblank l s : update hl; s;nili right hsnoc l s;blank;nili

l : tsil symbol s; t : symbol r : list symbol
rmove l s t r : update hl; s;cons t ri right hsnoc l s; t; ri

� one step (step : transitions ! configuration ! configuration ! Type)

tr : member hq; s; q0; s0; di trs u : update hl; s0; ri d tape
do tr u : step trs hq; hl; s; rii hq0; tapei

� halting problem (halts : transitions ! configuration ! tape ! Type)

trs : transitions tape : tape
stop trs tape : halts trs hhalt; tapei tape

step : step trs X Y halts : halts trs Y tape
go step halts : halts trs X tape

Table 6.1: coding the halting problem

179

happening that ��-equivalence cannot explain. There seems to be little motivation for

allowing functions to be defined with arity varying between pattern equations.

By contrast, there are some dependently typed functions for which such a relaxation in

the syntax would be of genuine benefit. These tend to arise when we write one function

to compute types involved in another. For example

Sum : NN ! Type

Sum 0 = NN

Sum sn = NN ! Sum n

sum : 8n :NN: Sum n

sum 0 = 0

sum s0 x = x

sum ssn x y = sum sn (plus x y)

The first argument of sum is the number of subsequent arguments, and the function

computes their sum. You might well point out that I could make the arities uniform

by �-abstraction, but that is because I am not doing any pattern matching on the newly

exposed arguments. Of course, in any case I can always introduce subprograms, but

why should I have to?

You might also suspect that such functions are uncommon in practice, and thus not

worth the trouble. There are three things to say to that:

� Dependently typed programming is still in its infancy—we do not know which

techniques will turn out to be common in practice.

� This is the kind of technique which is used somewhat less frivolously in strong

normalisation proofs—we compute a meta-level function type from an object-

level function type, then we compute the appropriate metal-level function to in-

habit it.

� This sort of behaviour is already supported in as industrial a programming lan-

guage as C. The remarkably common printf command takes a formatting

string, followed by arguments appropriate to the fields to be printed—you hope.

Of course, there is no check to see that it makes sense. C compilers do not blink

twice at

printf(‘‘%s%s%s’’);

180

but the effect is seldom benign. Dependent types sanitise these rather frightening

functions.

We may accommodate this behaviour by adjusting the definition of covering to allow

lengthening of pattern sequences by fresh pattern variables, provided the result type

beforehand is functional. These extended patterns may then be split as before. Each

lengthening can, of course, be replaced by a call to a subprogram in order to recover

the uniform arity of the original. The treatment of recursion is as before. Recursive

calls can be recognised provided they have at least the arity of the pattern to which the

guarded recursion principle was applied. Longer sequences of arguments can be cut in

two, leaving a recursive call of the right length which is then applied further.

6.4.2 more exotic recursion

While it is sufficient to facilitate functions which are only recursive on one argument

position, it is nonetheless convenient to allow more complex structures to be built into

a single function, rather than forcing the programmer to break them up. The traditional

example is Ackermann’s function:

ack : NN ! NN ! NN

ack 0 n = sn

ack sm 0 = ack m s0

ack sm sn = ack m (ack sm n)

The recursion in this function is lexicographic in the sense that either the first argument

decreases structurally, or else it stays the same, but the second argument decreases. It

can be split into a pair of Coquand-accepted primitive recursive functionals as follows:

ack
sm

: (NN ! NN)! NN ! NN

ack
sm

ack
m

0 = ack
m

s0

ack
sm

ack
m

sn = ack
m

(ack
sm

ack
m

n)

ack : NN ! NN ! NN

ack 0 = s

ack sm = ack
sm

(ack m)

What has happened here? For a start, the main ack function has been �’d into a

functional. This enables the sm case to be delegated to the auxiliary function ack
sm

.

181

This receives as an argument the function ack m, available by structural recursion—it

is thus free to apply this function, as well as making its own guarded calls.8

Would not all but the most die-hard of origami programmers9 prefer to write the lex-

icographic version? In fact, we already have the tools to construct it interactively—

suppose we have reached the following stage:

?Ack : 8m; n :NN: Type

?call : 8m; n :NN: (Ack m n)! NN

?return : 8m; n :NN:NN ! Ack m n
!ack

0

= �recs: 11

�n : NN
sn

?ack
s

: 8m : NN

8recs: (8n :NN:Ack m n)�(NNAux : : : m)

8n : NN

Ack sm n
!ack = NNFix : : :

The recs argument gives us access to guarded recursion on the first argument. We may

now add guarded recursion on the second (for the same first argument) by eliminating

n with NNFix, fixing m and recs:

?ack
s

: 8m : NN
8recs : (8n :NN: Ack m n)�(NNAux : : : m)

8n : NN
8recs0: NNAux (Ack sm) n
Ack sm n

Case splitting on n now gives us

8We would not need to pass ack
m

explicitly through the recursion if we could define ack
sm

locally

to the successor case of ack.
9An origami programmer only uses pattern matching to define fold operators.

182

?ack
s0

: 8m : NN
8recs : (8n :NN:Ack m n)�(NNAux : : : m)

8recs0: 11
Ack sm 0

?ack
ss

: 8m : NN

8recs : (8n :NN:Ack m n)�(NNAux : : : m)

8n : NN

8recs0: (Ack sm n)�(NNAux (Ack sm) n)
Ack sm sn

For the ack
s0

case, we may project the appropriate component of recs. Looking at

ack
ss

in more detail, the nested right-hand side translates by call and return to

?ack
ss

: �m : NN

�recs : (8n :NN:Ack m n)�(NNAux : : : m)

�n : NN
�recs0: (Ack sm n)�(NNAux (Ack sm) n)
?rec

1

: Ack sm n
?rec

2

: Ack m (call rec
1

)

return (call rec
2

)

rec
1

is solved from recs0 and rec
2

is solved from recs. The definition is complete.

We can build quite complex structures with multiple eliminations by guarded

recursion—more even than lexicographic recursion on a number of argument posi-

tions. For example, we may define a function on lists of trees which at each recursion

replaces the head tree by its subtrees—some steps may make the list longer, but the

decomposition of the head tree guarantees termination.

The question of how to extend the class of recognisable pattern matching programs

into this more exotic territory is an important and interesting one. Much attention has

already been paid to the simply typed case, for example, in Manoury and Simonot’s

‘ProPre’ [MS94] system. Further, Cristina Cornes has equipped COQ with a substantial

package translating equational programs with relatively interesting recursive structure

into constructor guarded fixpoint expressions [Cor97].

Further investigation is beyond the scope of this thesis. However, I shall nonetheless

write such equational programs in the following chapter, since they are shorter and

clearer than their expanded versions where each recursion has its own subfunction.

When I do so, I shall always be careful to point out the justification, imagining that we

are deriving the function interactively.

183

Chapter 7

Some Programs and Proofs

We have now developed substantial technology for constructing dependently typed

functional programs, and also for reasoning about them. Let us now put that technology

to work.

In the course of this chapter, I offer some examples which I believe illustrate the ad-

vantages afforded by working with more informative types. We shall see new versions

of old programs which are tidier and easier to prove correct. We shall see applications

of our elimination rule technology which aid program discovery as well as verification.

Hopefully, we shall see sense.

Later, I shall focus on the manipulation of syntax as a programming domain which

shows off to great effect the expressive power of dependent pattern matching. In par-

ticular, I shall construct and prove correct a first-order unification algorithm which has

the novel merit of being structurally recursive.

7.1 concrete categories, functors and monads

In the examples which follow, we shall examine methods of working with syntax via

dependently typed functional programming. The behaviour of the functions we shall

develop fits neatly into a categorical treatment, so it is worthwhile building some tools

for packaging these functions and their properties categorically.

We shall not need any particularly heavy category theory, which is just as well, as far

as I am concerned. For a substantial formalisation of category theory, see [SH95]. In

fact, we may restrict our attention to concrete categories—those whose objects can

be interpreted as a family of types and whose arrows can be interpreted as functions

between types in the family.

184

7.1.1 records for categories

So, what shall we say is a category?

The idea is not that objects are types and arrows functions, but that both are data which

can be interpreted as such. Imagine we are modelling a programming language cate-

gorically: we might have OLEG datatypes representing the types and functions of that

language, together with translations which model those types and functions as OLEG

types and functions. Those datatypes give us the objects and arrows of a concrete

category, and the translations their interpretations.

Let us fix the types of objects and arrows.

O : Type

�: O ! O ! Type

Now, let us define a record type Concrete to contain the things we must supply to

have a meaningful category:

�:8S :O: S � S
�:8R; S;T :O: (S � T) ! (R� S) ! (R� T)

[[�]]:O ! Type

[[�]]:8S;T :O: (S � T) ! [[S]] ! [[T]]
RespI:8S :O: 8s : [[S]] : [[�S]] s' s

RespC:8R; S;T :O: 8f :S � T: 8g :R� S: 8r : [[R]] : [[f � g]] r' [[f]] ([[g]] r)

I think it is safe to overload [[�]]. Confusion between the interpretations of objects and

arrows will not arise in these examples.

Saunders MacLane [Mac71] defines a concrete category to be a category equipped

with a faithful functor into Set. That is, the interpretations must not only preserve

identity and composition, but must also embed the objects and arrows in Set. I have

given no such condition. It begs the question ‘what is the appropriate equality on

objects and arrows?’.

In type theory, as in marriage, fidelity comes down to the way you see things. OLEG’s

intensional equality is too discriminating to be useful here. I propose to consider two

arrows the same if their interpretations are extensionally equal: interpretations are thus

trivially faithful. Consequently, it makes little sense to consider the category sepa-

rately from the functor which interprets it—the functor properties are how we know

the category has the traditional absorption and associativity laws with respect to this

extensional notion of equality.

185

Correspondingly, if f; g : S � T, let us make the abbreviation

f � g =) 8s : [[S]] : [[f]] s' [[g]] s

The usual absorption and associtivity properties

f � �� f
� � g� g

(f � g) � h� f � (g � h)

all follow by reflexivity.

Discharging the parameters, we have our notion of category. I shall typically write

Concrete �

to mean a category for a given notion of arrow, leaving the object type implicit.

For any type family Fam : O ! Type, we may define

�

Fam = �S;T :O: Fam S ! Fam T : O ! O ! Type

We may easily define an operation [�] on such families such that

[Fam] : Concrete
�

Fam

with objects interpreted via Fam and arrows, identity and composition as themselves.

This is the usual notion of functions between types in a family, represented within our

defined class of category.

In particular, if we let Type be the identity function on Type, then [Type] is the category

of OLEG types.

As a special case, we may pretend any type T is a 11-indexed type family and manufac-

ture the one-object category [T] of its endofunctions.

We will encounter categories whose arrows are not represented directly as OLEG func-

tions. A rather glib example is the Concrete
�

NN whose arrows live in NN (actually,

11 ! 11 ! NN, but never mind), with n interpreted as plus n. The identity is 0, the

composition is plus, and hence the property that interpretation respects composition is

just associativity.

186

7.1.2 records for functors

A functor takes objects and arrows from one category to objects and arrows of another,

preserving identity and composition. We can certainly write these requirements down

as a parameterised record.

Let us fix source and target categories, then open them:

Os

: Type

�

s

: Os

! Os

! Type

Cs

: Concrete �

s

Ot

: Type

�

t

: Ot

! Ot

! Type

Ct

: Concrete �

t

Cs

[�

s

; �

s

; [[�]]

s

; [[�]]

s

;RespI
s

;RespC
s

] Ct

[�

t

; �

t

; [[�]]

t

; [[�]]

t

;RespI
t

;RespC
t

]

Relative to these, let us define a record type Functor with fields

Fo:Os

! Ot

Fa:: : : (S �s T) ! (Fo S)�t

(Fo T)
PresEq:: : : f � g ! Fa f � Fa g

PresI:: : : Fa �

s

S � �

t

(Fo S)

PresC:: : : Fa (f �s g) � (Fa f) �t (Fa g)

Note that I have left out some human-inferrable universal quantifiers for the sake of

readability.

The extra condition—preservation of extensional equality of arrows—is necessary. It is

possible for two extensionally equal source arrows to be distinguished computationally,

and hence mapped to different arrows in the target category, unless we expressly forbid

it.

Of course, when writing functor types, I shall suppress all the details and just leave

Functor Cs Ct.

By way of example, every polymorphic1 type family has an associated functor. It

would be nice if these were manufactured automatically. I shall outline the functor for

maybe.

1in the ML sense

187

maybeF : Functor [Type] [Type]

maybeF = h Fo = maybe

Fa = �S;T :Type: �f :S ! T: �x :maybe S:
x

yes s yes (f s)
no S no T

PresEq = : : :

PresI = : : :

PresC = : : : i

This functor just lifts functions to their exception-propagating images. I use a ‘table’

notation for case expressions: the column heading x indicates what is being analysed,

underneath it are the patterns, and to the right are the corresponding return values—

this notation is easily interpreted by pattern matching. The three remaining fields may

easily be proven by inverting Fa, ie case analysis on the maybe-typed argument

implicit in the extensional equations.

Finally, one irritating aspect of intensional type theory is that we may have to work

with several implementations of, extensionally speaking, the same function. Suppose

we have another candidate Fa
0

for the arrow part Fa of a given functor, with the same

type and extensional behaviour. It would be really annoying if we had to redo the

proofs of the properties for the functor with Fa replaced by Fa0

, but fortunately, we

may make this argument once and for all.

The point is that the functor properties concern only the extensional behaviour of Fa,

so we may construct a function sameFunctor which takes our source functor, Fa0

and a proof that Fa and Fa0

have the same extension, returning the functor with Fa0

on

arrows and all the same properties. I shall not give the details here—they amount only

to unremarkable rewriting.

7.1.3 records for ‘concrete’ monads

The formalisation of monads I shall give is a ‘concrete’ version of the Kleisli triple

presentation due to Manes [Man76], which he showed equivalent to the convention

definition [Mac71] by an endofunctor T with natural transformations � and �.

DEFINITION: Kleisli triple

A Kleisli triple (T; �; hj)2 on a category C is given by

2
hj is pronounced ‘bind’.

188

� a function T from C-objects to C-objects

� an object-indexed family of morphisms � 2 C(X; TX), interpreting

the elements of X in its T -image

� a family of functions hj, indexed by a pair of objects X; Y , from

C(X; TY) to C(TX; TY)

satisfying the equations

� �hj = id

� (fhj) � � = f

� ((fhj) � g)hj = (fhj) � (ghj)

The Kleisli category arising from such a structure has the same objects

as C, and X to Y arrows given by the C(X; TY). � gives each object its

identity, and the composition � is

f � g = fhj � g

Consequently, ��� gives a functor from C to the Kleisli category, and �hj gives a functor

from the Kleisli category to the image of C under T . The composition of the two is

thus a functor which does T to objects.

The presentation of monads given below is based on the idea of a functor which is split

into � � � (below ji�) and �hj.

Given two concrete categories and a functor, we may describe what it means to be a

concrete monad which splits that functor. Let us keep the same target and source

categories opened as above and fix further

F : Functor Cs Ct

Let us open F with the names given by the fields.

A concrete monad splitting F captures a class of ‘diagonal arrows’, S & T (S;T : Os),

which are interpreted in [[S]]s ! [[Fo T]]t. These will be the arrows of the Kleisli

category, and they must be equipped with a notion of composition � which behaves

under interpretation like the composition in the Kleisli category.

Think of the maybeF functor, viewing yes as packaging data and no as representing

an error condition. Arrows in the source category are ‘reliable’ functions acting on

189

actual data; arrows in the target category are ‘error-aware’ functions—they may han-

dle errors or create them. The functor takes reliable functions to ‘error-propagating’

functions—they will give actual output for actual input and transmit error conditions.

A ‘diagonal arrow’ is an unreliable function—it accepts actual data, but may result in

an error. A monad splitting maybeF characterises a class of these unreliable functions

such that

� every reliable function f has an unreliable image (which just packages the output

with yes) given by jif

if f : S ! T then jif : S ! maybe T

� every unreliable function g in the class has an error-aware image (which propa-

gates input errors, but may make new output errors) given by ghj

if g : S ! maybe T then ghj : maybe S ! maybe T

� the combination jifhj does the same thing to source arrows as maybeF

if f : S ! T then jifhj : maybe S ! maybe T

More formally, let us fix the carrier type for diagonal arrows

&: Os

! Os

! Type

and collect the relevant details in a record type Monad with fields

ji�:: : : (S �s T) ! S & T
�hj:: : : (S & T) ! (Fo S)�t

(Fo T)
�:: : : (S & T) ! (R & S) ! (R & T)

[[�]]:: : : (S & T) ! [[S]]s ! [[T]]t

MonadI:: : : [[fhj]]t ([[ji�sS]] s)' [[f]] s
MonadC:: : : [[f � g]] r' [[fhj]]t ([[g]] r)

Split:: : : jifhj � Fa f
FrontEq:: : : f � g ! jif � jig
FrontC:: : : ji(f �s g) � (jif) � (jig)

BackEq:: : : f � g ! fhj � ghj
BackC:: : : (f � g)hj � (fhj) �t (ghj)

This may look like a lot of stuff, but remember that the diagonal arrows might not

be represented functionally—they might be something really concrete like association

lists. The operations ji�, �hj and � should be viewed as syntactic. We have to ensure that

they have the right semantics. Of course, if they are just functions and their interpreta-

tion is application, then this is very easy to do.

190

The maybeF functor has trivial functional representations of arrows source and target.

For the corresponding maybeM : Monad maybeF, we take the diagonal arrow

type to be S ! maybe T and the interpretation as application. ji� just composes yes

on the back of its argument whilst �hj is defined by case analysis:

fhj (yes s) = f s

fhj (no S) = no T

Composition is defined in accordance with the requirement on its interpretation:

(f � g) r = fhj (g r)

As for the properties

� MonadI, MonadC and FrontC hold by reflexivity.

� Split and BackC hold by case analysis then reflexivity.

� FrontEq holds, rewriting by the premise.

� BackEq holds by case analysis, then reflexivity in the no case and rewriting by

the premise in the yes case.

There is a function which constructs the (concrete) Kleisli category for a given concrete

monad.

Kleisli : Monad &! Concrete &

The Concrete so constructed has operations:

�

k

S = ji�

s

S

�

k

= �

[[S]]k = [[Fo S]]t

[[f]]k = [[fhj]]t

Observe

191

��

�

k

S

��

k

s' [[ji�

s

S]]
k s (definition of �k)

' [[ji�

s

Shj]]
t s (definition of [[�]]

k

)

' [[Fa �

s

S]]
t s (Split)

'

hh

�

t

(Fo S)

ii

t

s (PresI)

' s (RespIt)

��

f �k g
��

k

r' [[f � g]]k r (definition of �k)

' [[(f � g)hj]]t r (definition of [[�]]
k

)

' [[(fhj) �t (ghj)]]
t

r (BackC)

' [[fhj]]t ([[ghj]]t r) (RespCt

)

' [[f]]k ([[g]]k r) (definition of [[�]]
k

)

7.2 substitution for the untyped �-calculus

In this section, I shall develop the technology to give a monadic [Man76, Mog91] pre-

sentation of substitution for terms with binding—in particular, the untyped �-calculus

with de Bruijn indices [deB72]. Bellegarde and Hook [BH94] suggest the following

datatype, which Altenkirch and Reus [AR99] describe as ‘heterogeneous’, and Bird

and Paterson [BP99] describe as ‘nested’.

X : Type

Lam X : Type

x : X
var x : Lam X

s; t : Lam X
app s t : Lam X

t : Lam (maybe X)

lam t : Lam X

This datatype relativises terms to an arbitrary type of variables.3 It can be defined in

SML, but recursion over it is necessarily polymorphic and hence unavailable. However,

Haskell now allows functions over such datatypes, so long as their types are supplied

explicitly.

In such languages, terms may not appear in types—this apartheid policy is advisable

because the terms often engage in such criminal activities as nontermination. Hence, if

we want to make some kind of indexed family, the indices must themselves be types.

This presentation works by using maybe as a kind of type-level s, corresponding

to the idea that there is some number of variables and that abstraction introduces one

more. Also, Lam 00 is a type of closed terms. However, this hacked-up type-level

3In fact, our scheme of definitions restricts the variable type to inhabit a smaller universe than the

terms over it.

192

NN has only introduction rules: no computation on indices is available. Fortunately,

substitution is structural on terms.

We need no such Group Areas Act. In our system, terms are as trustworthy as types.

We can use the NN God invented, and then fin to make sets of variables.

n : NN
Lam n : Type

x : fin n
var x : Lam n

s; t : Lam n
app s t : Lam n

t : Lam sn
lam t : Lam n

Lam n is the type of �-terms with n free variables. Later, we shall see operations on

syntax which are made structural by the availability of recursion on this index.

Placing these types in our categorical setting, we have

[fin] : Concrete

�

fin

[Lam] : Concrete

�

Lam

The objects in these categories are elements of NN, interpreted via fin and Lam respec-

tively. The arrows are function spaces interpreted by application. Hence we effectively

abbreviate:

m�f n =) fin m ! fin n

m�L n =) Lam m ! Lam n

In this section, we shall be looking to build a functor

Rename : Functor [fin] [Lam]

which, for every arrow on a variable space in [fin], gives us the operation on terms from

[Lam] over those variables renaming them as indicated. The object part of the functor

is just the identity on NN. We may then view functions in the type

m & n =) fin m ! Lam n

as simultaneous substitutions from m variables to terms over n variables and seek a

monadic implementation

193

SubstM : Monad Rename &

Note that Rename is not an endofunctor, as in the conventinal notion of monad, but

we can still think of splitting it in a monadic way. The consequent Kleisli category will

thus interpret substitutions as functions from terms over one set of variables to terms

over another.

Before we can work with terms, we need some basic tools for working with variables

in the de Bruijn style.

7.2.1 lift, thin and thick

de Bruijn’s insight was to see a variable not just as an indentifier, but as a reference to a

binding. Variable indices count outwards through the �-bindings, 0 for the most local,

1 for the next and so on. For example,

�f: �x: f x becomes ��1 0

Every time we go under a binder, the new variable is 0 and the old ones get incre-

mented. We may represent this distinction by the constructors of the fin family.

Now, suppose we have a renaming—an arrow f : m �

f n. In order to apply such a

renaming across a term, we must explain what to do with the expanded variable space

under a lam—it must affect only the free variables embedded by fs, leaving the newly

bound fz variable alone.

f0 : sm�f sn

f0 (fz m) = fz n
f0 (fs x) = fs (f x)

This is a recognisable program.

Discharging over arbitrary n, m and f, we obtain the functional lift which takes any

such f to the appropriate f0. I suppress the boring arguments when I apply it.

lift : 8m; n :NN: 8f :fin m ! fin n: fin sm ! fin sn

lift f (fz m) = fz n
lift f (fs x) = fs (f x)

lift gives us the arrow part of the functor

194

Lift : Functor [fin] [fin]

Lift = h Fo = s

Fa = lift
PresEq = : : :

PresI = : : :

PresC = : : : i

There is a recursion induction principle for lift which we may regard as generated

automatically from its equational definition. lift is not a recursive function, so it is

perhaps more informative to call it an inversion principle liftInv:

m; n : NN
f : m �f n
� : fin sm ! fin sn ! Type

� (fz m) (fz n) � (fs x) (fs (f x))

8x :fin sm: � x lift f x

The three functor properties left elliptic above follow easily by inversion. I shall show

PresC and leave the other two to your imagination.

?PresC: 8r; s; t: NN
8f : s�f t
8g : r�f s
8 x : fin sr

lift (f � g) x' lift f lift g x

Inverting the boxed lift application, we acquire two subgoals

?PresC
z

: 8r; s; t: NN
8f : s �f t
8g : r �f s
8x : fin sr
lift (f � g) (fz r)' lift f (fz s)

?PresC : 8r; s; t: NN
8f : s �f t
8g : r �f s
8x : fin r
lift (f � g) (fs x)' lift f (fs (g x))

195

The two conclusions then reduce respectively to

fz t' fz t

fs (f (g x))' fs (f (g x))

As you can see, these are both reflexive.

We can use lift to define an important class of renamings—the thinnings. These add

a new variable to the set, but not necessarily at the top.4 If there are n old variables,

there are sn choices for the new variable x. thin x is the renaming which shuffles the

old variables in around the new one, without changing their order.

The idea is, morally:

thin x y = y, if y < x
y + 1, if y � x

In particular, thin x y 6= x.

Now, if the new variable is fz n, then thinning is just the fs embedding. Otherwise, it is

a lifted thinning!

thin : 8n :NN: fin sn ! (n �f sn)

ie

thin : 8n :NN: fin sn ! fin n ! fin sn
thin (fz n) = fsn

thin (fs x) = lift (thin x)

Thinning provides us with an alternative view of finsn. Every variable is either the new

one, x, or an embedded old one, thin x y for some y : fin n. We may imagine a partial

inverse to thin which makes the distinction, with the following extensional behaviour:

thick : 8n :NN: fin sn ! fin sn ! maybe (fin n)

thick x (thin x y) ' yes y
thick x x ' no (fin n)

thick is a refinement of the decidable equality for the finite sets—it not only tells us

whether two elements differ, but also in what way.

We can get some help writing thick if we try to prove the above pair of equational laws

(for a common abstracted x) by recursion induction on thin, as defined in the obvious

way. We thus seek:

4‘Thinning’ is a liquid metaphor.

196

?thick : 8n : NN
8x; y: fin sn

maybe (fin n)
?thick

i

: 8 n : NN
8 x : fin sn
�thick

y

: 8y: fin n

thick x (thin x y)' yes y
thick x x' no (fin n)

The abstraction of x outside both equations allows them to be transformed simultane-

ously. The induction yields subgoals:

?thick : 8n : NN
8x; y: fin sn
maybe (fin n)

?thick
iz

: 8n : NN
�thick

y

: 8y: fin n
thick (fz n) (fs y)' yes y

thick (fz n) (fz n)' no (fin n)
?thick

is

: 8n : NN

8x : fin sn
8f : fin n ! fin sn
8hyp : �thick

y

: 8y: fin n
thick x (f y)' yes y

thick x x' no (fin n)
�thick

y

: 8 y : fin sn

thick (fs x) lift f y ' yes y

thick (fs x) (fs x)' no (fin sn)

We now know how to thick at fz n. We can gain further information about the fs case

by inverting the lift. Allowing that we can do this inside the �-binding by appropriate

algebraic manipulation, we obtain

197

?thick
is

: 8n : NN
8x : fin sn
8f : fin n ! fin sn
8hyp : �thick

y

: 8y: fin n
thick x (f y)' yes y

thick x x' no (fin n)
�thick

y

: �thick
sz

: thick (fs x) (fz sn)' yes (fz n)
8y : fin n
thick (fs x) (fs (f y))' yes (fs y)

thick (fs x) (fs x)' no (fin sn)

Stripping away the excess notation, we have certainly found the base cases to our

function:

thick (fz n) (fz n) = no (fin n)
thick (fz n) (fs y) = yes y
thick (fs x) (fz sn) = yes (fz n)
: : :

We have also found out some useful information about the step case. It must satisfy:

V

8y :fin n: thick x (f y)' yes y
thick x x' no (fin n)

V

8y :fin n: thick (fs x) (fs (f y))' yes (fs y)
thick (fs x) (fs x)' no (fin sn)

Effectively, each branch of the conclusion propagates the result of the corresponding

recursive call: yes stays yes and no stays no5. That is, the recursive value is passed

on by the appropriate monadic lifting jifsnhj. Hence the whole program is

thick (fz n) (fz n) = no (fin n)
thick (fz n) (fs y) = yes y
thick (fs x) (fz sn) = yes (fz n)
thick (fs x) (fs y) = jifsnhj (thick x y)

By construction, this satisfies the three base case equations and reduces the step case

to

V

8y :fin n: thick x (f y)' yes y
thick x x' no (fin n)

V

8y :fin n: jifsnhj (thick x (f y))' yes (fs y)
jifsnhj (thick x x)' no (fin sn)

5Matthew 5:37

198

This holds by rewriting the conclusions with the hypotheses. The desired extensional

introduction rules have thus been satisfied. The corresponding non-computational in-

version rule, thickInv, is the real prize:

n : NN
x : fin sn
� : fin sn ! maybe (fin n) ! Type

� x (no (fin n)) � (thin x y) (yes y)

8y :fin sn: � y thick x y

thickInv tells us that there are two possible outcomes from thick and under what

circumstances they arise. Fixing ‘new variable’ x, then any y is either x (in which case

thick returns no) or an ‘old variable’ thinned (in which case thick identifies it). It is

a very useful rule, because it effectively performs a constructor case analysis on the

output of the function. We will see just why this is so helpful later on.

Can you guess how we prove this rule? That’s right: by thick’s recursion induction

principle, making sure to keep � in the scheme, so that any inductive hypotheses are

themselves elimination rules. We start with

?thickInv: 8 n : NN
8 x : fin sn
8� : fin sn ! maybe (fin n) ! Type

8�

n

: � x (no (fin n))
8�

y

: 8y: fin n
� (thin x y) (yes y)

8y : fin sn

� y thick x y

I have indicated by boxing how the recursion induction scheme is abstracted. We

acquire three base subgoals, corresponding to the base cases of the function, and their

conclusions all follow directly from �

y

(off the diagonal) or �
n

(for x = y = (fz n)).

It is on the step subgoal where you should concentrate any remaining interest you can

muster.

199

?thickInv
ss

: 8n : NN
8x; y: fin sn
8y0 : maybe (fin n)
8hyp: 8� : fin sn ! maybe (fin n) ! Type

8�

n

: � x (no (fin n))
8�

y

: 8y: fin sn
� (thin x y) (yes y)

� y y0

8� : fin ssn ! maybe (fin sn) ! Type

8�

n

: � (fs x) (no (fin sn))
8�

y

: 8y: fin sn
� (thin (fs x) y) (yes y)

8y : fin sn

� (fs y) (jifsnhj y0)

We are not yet in a position to use either �
n

or �
y

, because we do not yet know which

applies. In the conclusion, the computation is blocked at the point where jifsnhj is

applied to y0, the result of the recursive call, not yet in constructor form. However,

case analysis on the result of the recursive call is exactly the effect of the inductive

hypothesis. Eliminating with the indicated scheme, we obtain:

?thickInv
ssn

:

8�

n

: � (fs x) (no (fin sn))

� (fs x) (jifsnhj (no (fin n)))

?thickInv
ssy

:

8�

y

: 8y: fin sn
� (thin (fs x) y) (yes y)

8z : fin n
� (fs (thin x z)) (jifsnhj (yes z))

The lifted fs now reduces, propagating the two cases correctly. Both conclusions now

follow from the indicated hypotheses. The elimination rule holds.

In fact, the way the inductive step was proven shows us how this rule is useful in the

wider setting. Applying this rule unblocks computations which are waiting to do case

analysis on the result of a call to thick, and these are very common. For example, we

may define the following function:

200

[� 7! �] : 8n :NN: 8x :fin sn: 8t :Lam n: (sn & n)

[x 7! t]y =

thick x y
no (fin n) t

yes y0 var y0

[� 7! �] (pronounced ‘knockout’) generates a substitution (function from variables to

terms) which removes x, replacing it by a term t over the ‘remaining variables’. A

source variable y other than x, ie a (thin x y0), is mapped to the y0 given by removing

x from the variable set without reordering the others.

When proving properties of [� 7! �], we will see it reduce to the case analysis on thick.

At this point, elimination by thickInv has exactly the effect required to unblock the

computation. We are interested in what comes out of thick, so the more conventional

elimination of what goes in is a clumsy way to proceed.

Now that we have the tools to work with variables, let us turn our attention to terms.

7.2.2 the substitution monad splits the renaming functor

We have already decided that the object part of the functor Rename is just the identity

on NN. It is also fairly clear that a renaming becomes a substitution just by composing

var on the back, ie

jif x = var (f x)

Hence var is the identity for substitution.

The remaining programming consists of the arrow part of Rename and the �hj opera-

tion of SubstM—the effect on terms.

It is fairly clear that we shall have

fhj (var x) = f x (a monad law)

fhj (app s t) = app (fhj s) (fhj t)
...

It is not so clear how to push f under a binder. We need something like

...

fhj (lam t) = lam (f0

�

� t)

201

where f0 is the lifting of f which takes the source bound variable to (a reference to) the

target bound variable, and whose behaviour on the free variables respects that of f.

Now, we have already defined lift to lift renamings. How do we lift substitutions? The

bound/free case analysis on the source variable is easy enough. We know what to do

with the bound variable, otherwise the case analysis also tells us which ‘old’ variable

f should be applied to. The latter yields a term over the old variables, which must

then be renamed to the free variables in the target set. Now, we know that the variable

renaming is just fsn, but we need this lifted to terms. That is, we need something like

slift f (fz m) = var (fz n)

slift f (fs x) = jifsnhj (f x)

However, it is �hj which we are trying to define, and applying it recursively to the result

of f is not structural.

One solution is to define the renaming Fa operation in advance—we already know how

to lift renamings:

Fa f (var x) = var (f x)

Fa f (app s t) = app (Fa f s) (Fa f t)

Fa f (lam t) = lam (Fa (lift f) t)

Once we have this, we can define slift with Fa fsn for jifsnhj, leaving us free to define �hj

in terms of it.

As Altenkirch and Reus point out, this involves writing two very similar functions

over terms, where one nonstructural function would do. Of course, the nonstructural

function saves three lines of code at the expense of a well-founded induction on an

ordering which they must exhibit and prove satisfactory. They suggest that, turning a

blind eye to the proof obligations, the nonstructural function is preferable, expressing

the vague hope that the carpet under which they are sweeping the actual work will one

day become magic.

As it happens, no carpets are necessary, magic or otherwise. �hj and Fa can be imple-

mented with a single structurally recursive function, provided it is made sufficiently

parametric. Suppose that for some type family T we have a function

f : fin m ! T n

We can map this function across terms, provided we know

202

� how to convert f output from T n to terms Lam n

� how to represent variables in T n

� how to lift functions between fin sets and T sets

We already know how to do these things when T is fin, so we have renaming—we can

then build the three operations for use when T is �: . .

In fact, we will have an easier time proving the monadic behaviour of substitution if we

take this opportunity to generalise lifting from inserting new variables at fz to inserting

them anywhere—thick and thin make this just as easy to implement. We only ever

use thick on variables, so the ‘how to lift’ requirement becomes ‘how to thin’.

The goal is

�T : NN ! Type

�vT : 8n :NN: fin n ! T n
�TLam: 8n :NN: T n ! Lam n
�thinT : 8n :NN: 8x :fin sn: T n ! T sn
?map : 8m; n: NN

8f : fin m ! T n
8t : Lam m
Lam n

Subject to these parameters, we may first build lifting for T from the thinning parame-

ter:

liftT : 8m; n :NN: 8x :fin sm: 8x0 :fin sn: 8f :fin m ! T n: fin sm ! T sn

liftT x x0 F y =

thick x y
no (fin m) vT x0

yes y0 thinT x0 (f y0)

x is the ‘new’ source variable and x0 is the corresponding target variable. The lifted

function uses thick to distinguish new from old, and either embeds x0 via vt or thins

the result of f with thinT.

The map function may now be written

map f (var x) = TLam (f x)

map f (app s t) = app (map f s) (map f t)

map f (lam t) = lam (map (liftT (fz m) (fz n) f) t)

203

Once the parameters are discharged, we may take:

Fa = map fin �f var thin

thinLn x = Fa (thin x)

�hj = map Lam var �L thinL

Note that the notion of lifting used in renaming

liftT fin �f var thin (fz m) (fz n)

is extensionally the same as the lift function we defined earlier. This follows easily by

inverting the thick contained in liftT. It therefore inherits all the same functor properties

via sameFunctor.

Our task is now to plug these into the relevant functor and monad. I am afraid to say

that a little forward planning at this point will pay dividends later. I will motivate it

as best I can. Both Functor and Monad require the extensional equality of arrows

to be respected: conditions which will apply to both Fa and �hj. Since these are both

implemented by map, it is worth proving this property for map while the parameters

are still abstracted. The goal is

?mapEq: 8m; n: NN

8f;g : fin m ! T n
8hyp : 8x: fin m

f x' g x
8 x : Lam m
map f x' map g x

You will, I hope, be unsurprised to learn that the technique I recommend is recursion

induction on map. Either map will do—I have chosen the second. Three subgoals,

one at a time:

?mapEq
v

: 8m; n: NN
8f;g : fin m ! T n
8hyp : 8x: fin m

f x' g x
8x : fin m

TLam (f x)' TLam (g x)

204

Rewrite by hyp. Next : : :

?mapEq
a

: 8m; n : NN

8f;g : fin m ! T n
8hyp : 8x: fin m

f x' g x
8s; t : Lam m
8s0; t0 : Lam n
8shyp: 8f : fin m ! T n

8hyp: 8x: fin m
f x' g x

map f s' s0

8thyp:
app (map f s) (map f t)' app s0 t0

If we plug hyp into shyp, we can turn (map f s) into s0. The same thing happens with

(map f t). In fact, all the inductive proofs (implicitly) on Lam we shall encounter

in this thesis have an app case whose proof is ‘rewrite by the inductive hypotheses’.

From now on, I shall omit them.

Of course, the real interest is in the lam case:

?mapEq
l

: 8m; n: NN
8f;g : fin m ! T n
8hyp : 8x: fin m

f x' g x
8t : Lam sm
8t0 : Lam sn
8thyp: 8f : fin sm ! T sn

8hyp: 8x: fin sm
f x' liftT (fz m) (fz n) g x

map f t' t0

lam (map (liftT (fz m) (fz n) f) t)' lam t0

Now, equation respects function application, so we may strip off those �s. The conclu-

sion is now

map (liftT (fz n) (fz m) f) t' t0

and this is ripe for the inductive hypothesis, leaving us with

205

?hyp0: 8x: fin sm
liftT (fz m) (fz n) f x' liftT (fz m) (fz n) g x

Expanding liftT, we find this is really

?hyp0: 8x: fin sm
thick (fz m) x

no (fin m) vT (fz n)
yes y thinT (fz n) (f y)

=

thick (fz m) x
no (fin m) vT (fz n)

yes y thinT (fz n) (g y)

The computation is blocked by the two thick applications, but we know how to invert

them. Indeed, since they have the same arguments, we may invert them simultaneously.

Of course, in this instance, a case analysis on x would have the same effect, but that is

only because we are thickening at (fzn), and we know how thick is implemented—we

want the effect of inversion, so we do inversion. We are left with two cases:

?case
n

: vT (fz n)' vT (fz n)

?case
y

: 8y: fin n
thinT (fz n) (f y)' thinT (fz n) (g y)

The first is reflexive; the second becomes so after rewriting with hyp. We have proven

mapEq and may now discharge the parameters.

Let us prove that renaming is functorial—we have already supplied Fo and Fa. It

remains to prove the properties. PresEq is just a special case of mapEq.

The PresI property gives us the goal

?PresI: 8m: NN

8t : Lam m

Fa �

f

m t' t

Here, at last, my devotion to recursion induction comes unstuck. The trouble is

twofold:

� The scheme for map recursion induction is abstracted over different source and

target objects and here they are unified. The elimination tactic will supply a

constraint to resolve this, but it is a little clumsy.

206

� The scheme is abstracted over an arbitrary renaming, but we are concerned with

a very particular one. Again the tactic will give us a constraint—that the function

is intensionally equal to �f . We will only have extensional equality, so the proof

will not go through.

There is still much work to do to come to an understanding of the correct manipulation

of constraints for this kind of inductive proof. In the meantime, let us do structural

induction on t! The var and app cases are easy.6 Here is lam:

?PresI
l

: 8m : NN
8t : Lam sm

8thyp: Fa �

f

sm t' t

lam (Fa (liftT : : : (fz m) (fz m) �

f

m) t)' lam t

We may introduce the hypotheses and strip off the lams. This leaves us with : : :' t.

The inductive hypothesis looks a bit like that, so let us try transitivity (or rewriting

backwards).

?PresI0
l

: Fa (liftT : : : (fz m) (fz m) �

f

m) t' Fa �

f

sm t

Now we get a bonus for proving mapEq in advance. The goal asks us to show that

two renamings do the same thing to a term t. If we apply mapEq, it is enough to show

that they agree at every variable:

?same: 8x: fin sm

liftT : : : (fz m) (fz m) �

f

m x' �

f

sm x

But liftT : : : (fz m) (fz m) has the same functor properties as lift, including preservation

of identity—exactly the goal here.

Next, PresC:

?PresC: 8t; r; s: NN
8f : s�f t
8g : r�f s
8 x : Lam r

Fa (f �f g) x' Fa f Fa g x

6Trust me, I’m doing the proof as I write this.

207

Recursion induction is once more our friend. Eliminating the boxed application, we

again find easy var and app cases. The lam case is very similar to that in the previous

proof:

?PresC
l

: 8t; r; s: NN

8f : s�f t
8g : r�f s
8x : Lam sr
8x0 : Lam ss
8hyp : 8t: NN

8f: ss�f t
Fa (f �f (liftT : : :g)) x' Fa f x0

lam (Fa (liftT : : : (f �f g)) x)' lam (Fa (liftT : : : f) x0)

Once again, strip the lams, apply transitivity with the inductive hypothesis on the right,

and then mapEq, leaving:

?PresC
l

: 8x: fin sr
liftT : : : (f �f g) x' liftT : : : f (liftT : : :g x)

Quelle surprise! The property that the lifting functor preserves composition! Renaming

is a functor!

Now let us turn to showing that substitution is monadic. We have already supplied ji�

(composition with var) and �hj. Since the representation of & is functional, we inter-

pret these arrows by application. We may also supply directly the Kleisli � demanded

by MonadC:

f � g x = fhj (g mx)

MonadI reduces to reflexivity and MonadC is true by construction. FrontEq fol-

lows because var respects equality whilst BackEq is an instance of mapEq. FrontC

is reflexive. Only Split and BackC require any real work.

Split says

?Split: 8m; n: NN
8f : m�f n

8 t : Lam m

jifhj t' Fa f t

208

We can prove this with exactly the same plan as before. Recursion induction leaves

easy var and app cases. The lam case reduces by the same strategy as before to

?Split
l

: 8x: fin sm
liftT : : : thinL (fz m) (fz n) (jif) x' var (liftT : : : thin (fz m) (fz n) f x)

That is, composing var and lifting must commute. Both liftTs, on expansion, are

blocked at (thick (fz m) x). Inverting thick leaves two trivial subgoals.

BackC starts the same way:

?BackC: 8r; s; t: NN
8f : s & t
8g : r & s
8 x : Lam r

(f � g)hj x' fhj ghj x

But after the usual story, the lam case is reduced to

?BackC
l

: 8x: fin sr
liftT : : : (f � g) x' liftT : : : f (liftT : : :g x)

This says that lifting for substitutions must respect composition—we only know this

result for renamings. We can boil the goal down a little further by expanding the outer

liftTs and inverting their blocked thicks. This give us two cases: one for the newly

bound variable, just a reflexive equation, indicating that it is correctly propagated by

lifting; the other, for the free variables, is still awkward.

?BackC
l

: 8x: fin r
thinL (fz t)(fhj (g x))' (liftT : : : f)hj (thinL (fz s) (g x))

This is a special case of the last lemma we need to prove—a crucial fact about the

relationship between thinning and substitution:

209

?thinSubst: 8m; n: NN
8x : fin sm
8x0 : fin sn
8f : m & n

8 t : Lam m

thinL x0 fhj t ' (liftT : : : x x0 f)hj (thinL x t)

That is, substituting then thinning has the same effect as thining first, then applying the

lifted substitution.

There is no point inventing a new proof plan when an old one will do. var and app

are easy as before. Modulo the need to switch between a liftTed thin and a lifted thin

(ie another thin), we can again reduce the lam case to an equation involving blocked

liftTs which we simplify by inversion, leaving us with the free variable case:

?thinSubst
l

: 8y: fin m
thinL (fs x0) (thinL (fz n) (f y))' thinL (fz sn) (thinL x0 (f y))

Now thinL is just renaming via thin, so what we really have is

?thinSubst
l

: 8y: fin m
Fa (lift (thin x0)) (Fa (fsn) (f y))' Fa (fssn) (Fa (thin x0) (f y))

We may rewrite both sides by the property that renaming preserves composition (back-

wards):

?thinSubst
l

: 8y: fin m
Fa ((lift (thin x0)) �f fsn) (f y)' Fa (fssn �

f

(thin x0)) (f y)

But all the lift does is shuffle fs through (thin x0). The two sides of the equation are

intensionally the same. We have proven that substitution is monadic.

7.3 a correct first-order unification algorithm

This is the main example of dependently typed functional programming in this thesis.

210

I propose to study unification for ‘trees with holes’. The algorithm is a variation on the

theme which goes back to Alan Robinson [Rob65]. It is the program implementing the

algorithm which is new, and which benefits from the dependent type system in a way

which is just not available in the simply typed world, even with the remarkable higher-

order polymorphic extensions which are becoming available in the more upmarket sorts

of programming language. Here we shall make critical use of the fact that our types

depend on data—real data with elimination as well as introduction rules.

Just as with Lam, let us represent variables via fin, but since trees have no binding, we

may fix the number of variables as a parameter of the type.

� formation rule

n : NN
tree n : Type

� constructors

x : fin n
var x : tree n leafn : tree n

s; t : tree n
fork s t : tree n

� elimination rule

n : NN
� : tree n ! Type

� (var x) � leafn

� s � t
: : : : : : : : : : : :

� (fork s t)

8 t : tree n : � t

We may construct the renaming functor and substitution monad for tree following

much the same path as for Lam, but without the work required to cope with binding.

For this section, let us have

m�t n =) tree m ! tree n

m & n =) fin m ! tree n

Rename : Functor [fin] [tree]

SubstM : Monad Rename &

SubstK = Kleisli SubstM

Within this framework, we may equip substitutions with the preorder induced by prior

composition:

211

f � g � g

The task of unifying some s; t : tree m is to find (an n and) an arrow f : m & n such

that

fhj s = fhj t

if any exists, and in particular, to find one which is maximal with respect to the above

ordering.

Unification is thus an optimisation problem, and it is worth spending a little time think-

ing about such problems in general, before proceeding with this particular example.

7.3.1 optimistic optimisation

Unification is just one example of a problem involving optimisation with respect to a

conjunction of constraints. I should like to draw your attention to a particular class of

constraint which makes such problems vulnerable to a reassuringly naı̈ve technique—

optimism.

That is, we begin by guessing that the optimum is the best thing we can think of. Then,

as we encounter each constraint in turn, we continue to think the best that it allows,

reducing our current guess by only so much as is necessary. Once we have worked our

way through all the constraints, it is to be hoped that our final guess, however battered

by bitter experience, is genuinely optimal.

This hope holds true if each constraint has the property that once a solution has been

found, anything smaller remains a solution. Let us call such constraints downward-

closed, or closed for short. This property of constraints gives the underlying rationale

to the transformation of recursive optimisation algorithms which relativises them to

an accumulating solution—a technique which has already found its way into the auto-

mated synthesis of (parts of) a unification algorithm in [ASG99].

We can give a record type characterising such properties for arrows ordered by compo-

sition. Fixing a category and a source object S, we may represent a closed constraint

on S out-arrows as inhabitants of the record type Closed S with fields:

Why:8T: (S � T) ! Type

ClosedEq:8T: 8f;g :S � T: f � g ! Why f ! Why g

Closure:8T: 8g :S � T:Why g ! 8U: 8f :T� U:Why f � g

212

Note the extra condition that the constraint must not distinguish extensionally equal

arrows. This is the price of allowing functional representations of arrows in intensional

type theory.

We may further define what it means to be maximal with respect to such a constraint.

Fixing and opening a ClosedS record, and also fixing a target T and an arrow f : S �

T, we may collect the relevant conditions in a record Maximal f with fields:

Holds:Why f

Factors:8U: 8g :S � U:Why g ! �h : T � U: g � h � f

That is, f must be a solution, and every other solution g must be smaller than f, with a

witness h such that g � h�f. We may easily prove that maximality respects extensional

equality of arrows.

Next, let us define an operator which conjoins closed constraints.

AND : 8S: 8P;Q :Closed S:Closed S

AND hWhy = P;ClosedEq = PEq;Closure = PCli
hWhy = Q;ClosedEq = QEq;Closure = QCli

= hWhy = �T: �f: (P f)�(Q f); : : : i

The proofs of the properties are unremarkable.

The optimistic strategy at each constraint P extends an accumulated guess g by enough

of an f that P:Why f � g holds. We may regard this as effectively constraining the

witnesses f to the existence of solutions to P bounded by g. The constraint on f is

closed provided P is. Let us therefore construct an operator

Bound : 8S;T: 8g :S � T:Closed S ! Closed T

Bound g hWhy = P;ClosedEq = PEq;Closure = PCli
= hWhy = �U: �f :T� U: P f � g; : : : i

Again, the properties are easily proven.

We are now ready to prove the optimist’s lemma:

?Optimist: 8R; S;T : O
8clP; clQ: Closed R
8g : R� S
8gMax : Maximal P g
8f : S � T
8fMax : Maximal (Bound g P) f
Maximal (AND P Q) (f � g)

213

This is the key step in the correctness proof for the optimistic strategy. It tells us that a

conjunction (AND P Q) may be optimised by extending the optimum g for P with just

enough f to satisfy Q. The proof is not very difficult, which is one of the reasons why

I like it.

First, let us unpack the definitions by the elimination rules for the argument records

and introduce the hypotheses:

�R; S;T : O
�P : : : :

�PEq : : : :

�PCl : : : :

�Q : : : :

�QEq : : : :

�QCl : : : :

�g : R� S
�gHolds : P g
�gFactors : 8U : O

8k : R� U
8Pk: P k
�h : S � U

k � h � g
�f : S � T
�fgHolds : Q f � g

�fgFactors: 8U : O
8k : S � U
8Qkg: Q k � g

�h : T� U
k � h � f

?max : Maximal (AND P Q) (f � g)

We may also attack the goal with the introduction rules for records and implications:

?Pfg : P f � g
?Qfg: Q f � g
�U : O
�k : R� U
�Pk : P k

�Qk : Q k
?h : T� U
?kEq: k � h � (f � g)

214

Now, Q f � g is already known to hold, and P f � g follows by PCl from gHolds, so

we have certainly found a solution to the composite problem. It remains to show the

optimality by expressing the hypothetical solution k as some h � f � g.

The proof successively exploits the optimality of the solution to each subproblem.

Firstly, we use gFactors to acquire for some h0

: S � U

k � h0 � g

By QEq, we now know that Q h0 � g, hence fgFactors gives us an h : T� U with

h0

� h � f

We supply this h as the witness, for we have

k � h0 � g � (h � f) � g � h � (f � g)

as required.

Note that the proof does not make use of QCl. In effect, we can optimise with respect

to a collection of constraints all but one of which are downward-closed, as long as we

address the non-closed constraint last—it is not a freedom we shall need.

The Optimist lemma allows us to solve a complex closed constraint by recursively

decomposing it into an equivalent conjuction of simpler closed constraints, each of

which we address in turn, accumulating the solution. Accordingly, we shall need a

book equivalence on closed constraints

Equiv : 8S:Closed S ! Closed S ! Type

Equiv hWhy = P; : : : i hWhy = Q; : : : i

= 8T: 8f :S � T: (P f ! Q f)�(Q f ! P f)

together with a proof EquivMax that for equivalent constraints an arrow maximising

one also maximises the other—this is easy.

Lots of algorithms follow the optimistic strategy, from finding the largest element of a

nonempty list of numbers to principal type inference for ML. Let us see how it works

for unification.

215

7.3.2 optimistic unification

A unifier for s; t : treem is a substitution f : m & n subject to the constraint fhj s' fhj t.

We may thus consider the computation of most general unifiers to be an optimisation

problem over the Kleisli category SubstK induced by the substitution monad. Fortu-

nately for us, the constraint is downward-closed. We may construct

Unifies s t : Closed m

Unifies s t = hWhy = �n: �f: fhj s' fhj t; : : : i

The two properties are easily proven. Extensional equality of arrows in SubstK means

exactly that they have the same effect on terms. Downwards closure follows from the

fact that the interpretation of arrows in the Kleisli category—substitution—respects

composition.

It is easy to provide the justification for the structural decomposition of rigid-rigid

problems:

Equiv (Unifies (fork s
1

t
1

) (fork s
2

t
2

))

(AND (Unifies s
1

s
2

) (Unifies t
1

t
2

))

We may represent out-arrows from m by a dependent pair

from m =) �n : NN:m & n

We might well guess that the type of the unification algorithm should be

mgu : 8m: 8s; t : tree m:maybe (from m)

The adoption of the optimist strategy means defining mgu in terms of a subfunction

bmgu computing unifiers which are most general relative to an accumulated bound.

bmgu : 8m: 8s; t : tree m: from m ! maybe (from m)

The identity substitution is the biggest substitution in the composition ordering, so we

take

mgum s t = bmgu s t hm; �i

216

Note that for any given s and t this function is an arrow in the Kleisli category of

the maybe monad—we already know how to propagate unification failures correctly.

This suggests a functional definition of bmgu, with the rigid-rigid cases given by:

bmgu leafm leafm = �f: yes f

bmgu leafm (fork s t) = �f: no (from m)

bmgu (fork s t leafm = �f: no (from m)

bmgu (fork s
1

t
1

) (fork s
2

t
2

) = (bmgu t
1

t
2

) � (bmgu s
1

s
2

)

...

So far, this is structural on terms. The trouble comes once we encounter a variable.

How do we unify a variable with a tree, relative to a nontrivial bounding guess g?

The traditional approach is to unload the accumulator g, and we may easily prove the

lemma Unload

Equiv (Bound g (Unifies s t)) (Unifies ghj s ghj t)

Unfortunately, applying the substitution blows up the terms, so the corresponding re-

cursive program is not structural. This is where you might think we need to impose

an external termination ordering or accessibility argument which exploits the fact that,

although the substitutions blow up the terms, they do get rid of variables. In fact, this

is not the case.

7.3.3 dependent types to the rescue

Incidentally, I have just noticed that Augustsson and Carlsson’s paper [AC99] also

contains a section with this title—I expect it to become traditional.

Now, we certainly need to exploit the property that the accumulated substitution gets

rid of variables as it blows up terms. Every development of unification in the literature7

does this externally to the program, by means of a more or less ad hoc termination

ordering. This invariably requires an auxiliary function to count the distinct variables

in a term and an auxiliary lemma which relates the value of this function before and

after a substitution subject to the occur check.

That is to say, a vital component of the sense made by the unification algorithm has

been absent from every one of its implementations until now—understandably, because

the data structures which manifest that sense have not been available until now. The

7or at least those which care about termination

217

point is that by explaining terms as built over a finite context of variables, we have

equipped them with exactly the natural recursive behaviour which we need. To count

the number of variables in a term is to make a posterior phenomenon of what is, at

least to structural linguists [Sau16], a prior requirement for the terms to be considered

meaningful. The number of variables has finally arrived where it belongs—in the type

of terms.

Look again at the type of bmgu:

bmgu : 8m: 8s; t : tree m: from m ! maybe (from m)

This entitles us to proceed not only by structural recursion on trees, but also by struc-

tural recursion on m. I cannot stress too strongly that it is the indexing of types with

terms which allows this. Parametric polymorphism is not enough, because we cannot

compute on types. There are structural forms of computation available in our depen-

dently typed setting which just cannot be found in simply typed languages.

The recursive structure I therefore suggest is lexicographic, first on m and then on s. If

we are unifying trees over sm variables, we are entitled to make recursive calls for any

trees over m variables, however large.

Of course, the number of variables must not merely be decreasing—it must do so

in a structural way, one at a time if we are to avoid further appeals to well-founded

recursion. We have already seen how to define a substitution which gets rid of a single

variable via the [� 7! �] function. Here it is again:

[� 7! �] : 8n :NN: 8x :fin sn: 8t : tree n: (sn & n)

[x 7! t]y =

thick x y
no (fin n) t

yes y0 var y0

[� 7! �] can easily be shown to have extensional behaviour (or, thinking relationally,

introduction rules):

[x 7! t]x' t [x 7! t](thin x y)' var y

These follow directly from the established extensional behaviour of thick. The corre-

sponding inversion rule, knockoutInv, follows from thickInv:

218

knockoutInv

m : NN

x : fin sm
t : tree m
� : fin sm ! tree m ! Type

� x t � (thin x y) (var y)
� y [x 7! t]y

If our accumulator is a composition of [� 7! �]s, we may apply it one step at a time

whenever we reach a variable. In fact, this is not merely a structural way to do unifica-

tion, but also quite an efficient one. Of course, we must constrain the accumulator to

take this form, and the easiest way to do this means abandoning our functional repre-

sentation of substitution in favour of a more concrete ‘association list’ treatment.

Let us then define the following datatype

� formation rule
m; n : NN

alist m n : Type

� constructors
aniln : alist n n

x : fin sm t : tree m g : alist m n
acons x t g : alist sm n

This datatype is a combination of a conventional association list and the � relation.

It is definable in ALF, COQ and OLEG, but not in Agda or Cayenne because of its

nonlinear base constructor type.

We may equip it with

� a composition which behaves like append for association lists and transitivity for

�

f z anil = f

f z (acons x t g) = acons x t (fzg)

� an interpretation via [� 7! �] into SubstK

anil J = �

(acons x t f) J = (f J) � [x 7! t]

Correspondingly, we may manufacture a concrete category AList : Concrete alist

with

219

� = anil

� = z

[[m]] = tree m
[[g]] = g Jhj

There is trivially a functor from AList to SubstK which does J to arrows, because the

interpretations of arrows in source and target are the same.

It is amongst the arrows of AList that I propose we search for unifiers, although we

should still show that any most general f computed yields a most general f J in SubstK.

Correspondingly, let us take

from m =) �n : NN: alist m n

and define

bmgu : 8m: 8s; t : tree m: from m ! maybe (from m)

mgu : 8m: 8s; t : tree m:maybe (from m)

mgu s t = bmgu s t anil

We now have all we need to outline a structurally recursive defininition of bmgu,

deferring the treatment of the base cases:

220

bmgum leafm leafm f = yes f

bmgum leafm (fork s t) f = no (from m)

bmgum (fork s t) leafm f = no (from m)

bmgum (fork s
1

t
1

) (fork s
2

t
2

) f =

(�f: bmgum t
1

t
2

f)hj (bmgum s
1

s
2

f)

bmgusm (var x) (var y) f =

f

anil yes (FlexFlex x y)
acons z r g ji(Extend z r)hj

(bmgum [z 7! r]hj (var x) [z 7! r]hj (var y) g)

bmgusm (var x) leafsm f =

f

anil FlexRigid x leafsm

acons z r g ji(Extend z r)hj
(bmgum [z 7! r]hj (var x) [z 7! r]hj leafsm g)

bmgusm (var x) (fork s t) f =

f

anil FlexRigid x (fork s t)
acons z r g ji(Extend z r)hj

(bmgum [z 7! r]hj (var x) [z 7! r]hj (fork s t) g)
... and the symmetric cases : : :

where

Extend z r hn;gi = hn;acons z r gi

and jiExtend z rhj is its failure-propagating image.

7.3.4 correctness of mgu

In the spirit of refinement, let us now reduce correctness of the unification algorithm to

correctness of FlexFlex and FlexRigid. We have not yet defined the latter, but we can

motivate the definition by seeing where we get stuck.

Here is the specification of mgu in the form of an inversion principle mguInv:

221

mguInv

m : NN

s; t : tree m � : maybe (from m) ! Type

NoUnifier s t
: : : : : : : : : : : : : : : : : :

� (no (from m))

f : alist m n
Maximal (Unifies s t) (f J)
: :

� (yes hn; fi)

� (mgu s t)

where

NoUnifier s t =) 8n: 8f :m & n: fhj s 6' fhj t

We can prove mguInv from an inversion principle bmguInv for bmgu:

bmguInv

m : NN
s; t : tree m
� : from m ! maybe (from m) ! Type

g : alist m n
NoUnifier g Jhj s g Jhj t
: :

� hn; fi (no (from m))

f : alist m n
g : alist n n0

Maximal (Bound (f J) (Unifies s t)) (g J)
: :

� hn; fi (yes hn0

;gzfi)

8f : from m: � f (bmgu s t f)

The proof simply expands mgu in terms of a call to bmgu which is then inverted.

This leaves bmguInv subgoals with g instantiated to anil. Recall that anil J is just

�. The properties of AList and SubstK then reduce these subgoals to those of mguInv.

The interesting work is proving bmguInv. Of course, like all our other proofs of

non-computational rules by recursion induction, the proof is by recursion induction on

bmgu keeping � universally quantified. In the subgoals involving variables, let us

also follow the program and do case analysis on the accumulated substitution. We may

classify the subgoals as follows

� rigid-rigid off-diagonal (also known as ‘conflict’)

222

Here we are trying to unify leaf with fork s t. bmgu returns no, so we must

apply the no case. This leaves us proving

?leafFork: 8n : NN

8g : alist m n
8bad: g Jhj leaf' g Jhj (fork s t)
?

Fortunately, reducing �hj pushes the substitution under the constructors, leaving

us with a hypothesis

bad : leaf' fork g Jhj s g Jhj t

The goal can thus be proven by the unification tactic from chapter 5.

� rigid-rigid on-diagonal (also known as ‘injectivity’)

Correctness for leaf with leaf is very easy.

As for (fork s
1

t
1

) and (fork s
2

t
2

), the computation reduces the goal conclusion

to

� f ((�f: bmgum t
1

t
2

f)hj (bmgum s
1

s
2

f))

If my propaganda has worked, you should now expect me to use the inductive

hypotheses to invert the recursive calls. I shall not disappoint you. This leaves

us with four subgoals.

In three of them, the unification has failed somewhere and the ultimate value is

no—the inversion will give us a proof of NoUnifier s
i

t
i

for some i. We may

use this to show that the original forks have no unifier.

Otherwise, we have substitutions h and g, together with proofs of

�gMax: Maximal (Bound (f J) (Unifies s
1

s
2

)) (g J)

�hMax: Maximal (Bound ((gzf) J) (Unifies t
1

t
2

)) (h J)

Unification has returned (hzg)zf and applying the yes case leaves us trying to

prove.

?goal: Maximal (Bound (f J) (Unifies (fork s
1

t
1

) (fork s
2

t
2

))) ((hzg) J)

By EquivMax with Unload, followed by structural decomposition and

AList:RespC this becomes

223

?goal: Maximal (AND (Unifies f Jhj s
1

f Jhj s
1

)

(Unifies f Jhj t
1

f Jhj t
2

)) ((h J) � (g J))

Applying Optimist, we acquire two subgoals

?goal
g

: Maximal (Unifies f Jhj s
1

f Jhj s
1

) (g J)

?goal
h

: Maximal (Bound (g J) (Unifies f Jhj t
1

f Jhj t
2

)) (h J)

In the former, Unload backwards lets us move f out as a bound, giving us a goal

which follows immediately from gMax. In the latter, we may shuffle the bound

inside, then apply composition laws to get

?goal
h

: Maximal (Unifies (gzf) Jhj t
1

(gzf) Jhj t
2

)) (h J)

Now, pulling out the composition as a bound, we reduce the goal to hMax.

� flexible cases with acons z r g

All of these work the same way. We have some

bmgu s t hn;acons z r gi

where either s or t is a variable. This reduces to

jiExtend z rhj (bmgu [z 7! r]s [z 7! r]t g)

Inverting the recursive call with the inductive hypothesis, we find one of two

things

– NoUnifier g Jhj ([z 7! r]hj s) g Jhj ([z 7! r]hj t)

and we must prove

NoUnifier (acons z r g) Jhj s (acons z r g) Jhj t

But (acons z r g) J is just (g J) � [z 7! r], so it is just a question of

pushing �hj through the composition.

– h such that Maximal (Bound (g J) (Unifies [z 7! r]s [z 7! r]t)) (h J)

and we must prove

Maximal (Bound ((acons z r g) J) (Unifies s t)) (h J)

The proof is easy bound shuffling and composition hacking.

224

� flex-flex base case

The computation of

bmgu (var x) (var y) anil

has reduced to

yes (FlexFlex x y)

We may safely presume a yes answer, because we are in either the ‘identity’

or the ‘coalescence’ situation, according as x equals y or not. Hence, we must

choose the yes case in the proof, leaving us with the obligation

?goal: Maximal (Bound � (Unifies (var x) (var y))) ((FlexFlex x y) J)

We may easily remove the trivial bound, yielding

?goal: Maximal (Unifies (var x) (var y)) ((FlexFlex x y) J)

Since we have not yet implemented FlexFlex, we can go no further with the

proof. Let us export this goal as the specification of FlexFlex.

� flex-rigid base cases

For these five subgoals, we are trying to unify var x with some t which is not a

variable. We may collect them all together in the following rule, expressing the

latter as a side condition:

m : NN
x : fin sm
t : tree sm
notVar : 8y :fin sm: t 6' var y
� : from sm ! maybe (from sm) ! Type

g : alist m n
NoUnifier g J x g Jhj t
: :

� hn;gi (no (from m))

f : alist m n
g : alist n n0

Maximal
(Bound (f J) (Unifies (var x) t))
(g J)

: :

� hn; fi (yes hn0

;gzfi)

� anil (FlexRigid x t)

225

We could regard this as an inversion rule specification for FlexRigid, but it is still

a little too general. For example, the hypotheses of the rule each have arbitrary

accumulators, but we know the accumulator is anil. Once we have made the

accumulator anil everywhere, we no longer need to let it vary in the scheme. Let

us tidy up a little.

m : NN
x : fin sm
t : tree sm
notVar : 8y :fin sm: t 6' var y
� : maybe (from sm) ! Type

NoUnifier (var x) t
: : : : : : : : : : : : : : : : : : : :

� (no (from m))

g : alist n n
Maximal (Unifies (var x) t) (g J)
: :

� (yes hn;gi)

� (FlexRigid x t)

The tidy version proves the untidy version because the tidy hypotheses are spe-

cial cases of the untidy ones, modulo some equational reasoning. Let us take this

as the specification of FlexRigid.

We have proven correctness of unification, contingent on correct implementation of

FlexFlex and FlexRigid. You may have noticed that we did not have to unwrap any of

the Maximals in the above proof—we merely showed that the most general unifiers

computed in the base cases were correctly propagated. It is in FlexFlex and FlexRigid

that we create the substitutions and where we shall have to do real work proving max-

imality. In order to achieve this, we must come to an understanding of variable occur-

rence.

But even now, we have seen enough to know that our unification algorithm is terminat-

ing of its own accord.

7.3.5 what substitution tells us about the occurs check

In conventional presentations of unification, the occurs check is a boolean decision,

and its role in ensuring termination is external to the program. For us, though, the

situation is somewhat different—what is to happen if there is no occurrence of (var x)

in some rigid t with which it is to be unified? We do not just substitute t itself for x.

226

We must make manifest in the program the elimination of x by computing the image

of t in the syntax with one fewer variable—t0 such that

jithin xhj t0 ' t

If we can find such a t0, then

[x 7! t0]

is a most general unifier for (var x) and t. Let us prove this lemma, as we shall need it

several times.

?Knockout: 8m: NN
8x : fin sm
8t0 : tree m

Maximal (Unifies (var x) (jithin xhj t0)) [x 7! t0]

Now, at last, we must do some real work. Introducing the Maximal record:

?holds : [x 7! t0]hj (var x)' [x 7! t0]hj (jithin xhj t0)
?factors: 8n : NN

8f : sm & n
8hyp: fhj (var x)' fhj (jithin xhj t0)
�g : m � n

f � g � [x 7! t0]

Taking holds first, notice that the left-hand side is just [x 7! t0]x, which we can rewrite

by the ‘introduction rules’ to t0. Observe that the right-hand side is a composition of

substitutions. After a little monadic tinkering, we obtain

?holds0: ji�hj t0 ' ([x 7! t0] � jithin x)hj t0

This says that two substitutions have the same behaviour at an arbitrary tree t0. By

BackEq, it is enough to prove that they behave the same at variables.

?holds0: 8y: fin m
ji� y'([x 7! t0] � jithin x) y

227

Reducing, we obtain

?holds0: 8y: fin m
var y'[x 7! t0] (thin x y)

Again, this follows by the established extensional behaviour of [� 7! �].

We have found a unifier—let us now show that any other unifier factors through it.

Introducing the assumptions and the pair:

�n : NN
�f : sm & n
�hyp: fhj (var x)' fhj (jithin xhj t0)
?g : m & n
?fac : f � g � [x 7! t0]

Let us try to prove fac first, hoping to shed some light on g. This goal also comes down

to checking that the two substitutions agree at all variables:

?fac0: 8 y : fin sm

f y' ghj [x 7! t0] y

Predictably, the next step is to invert the blocked computation with knockoutInv:

?fac
x

: f x'ghj t0

?fac
y

: 8y: fin m
f (thin x y)' g y

The latter subgoal gives us a big clue. We can prove it by taking

g = �y :fin m: f (thin x y)

We must now prove fac
x

. A little monadic massage shows g is extensionally the same

as the composition

f � jithin x

228

Making the replacement,

?fac0
x

: f x' (f � jithin x)hj t0

Unwinding the composition reduces this goal to hyp.

This is progress indeed, for all the nontrivial substitutions generated by FlexFlex or

FlexRigid will be most general unifiers by this lemma. Indeed, we are now in a posi-

tion to write FlexFlex:

FlexFlex : 8m: 8x; y :fin sm: from sm

FlexFlex x y =

thick x y
no (fin m) hsm;anili

yes y0 hm;acons x (var y0) anili

Recall that to establish correctness, we must prove

?FlexFlex
max

: 8m : NN
8x; y: fin sm

Maximal (Unifies (var x) (var y)) ((FlexFlex x y) J)

Since FlexFlex is defined with thick, it is verified by thickInv, leaving two cases

?FlexFlex
x

: 8m: NN

8x : fin sm
Maximal (Unifies (var x) (var x)) (anil J)

?FlexFlex
y

: 8m: NN

8x : fin sm
8y : fin m

Maximal (Unifies (var x) (var (thin x y))) ((acons x (var y) anil) J)

For the former, recall that anil J is the identity substitution—this clearly unifies two

equal variables, and equally clearly, every other unifier factors through it. For the latter,

interpreting the association list and tidying, we get

?FlexFlex0
y

: 8m: NN
8x : fin sm
8y : fin m
Maximal (Unifies (var x) (jithin xhj (var y))) [x 7! var y]

229

This follows from Knockout.

The role thick plays in FlexFlex is to attempt to compute the image of y in the variable

set with x removed. If this succeeds, we manufacture the corresponding knockout. If

it fails, that is because y is x and the identity substitution will do.

The analogous role in FlexRigid is played by the occurs check, seen as an attempt to

compute the appropriate ‘thickened’ tree for use in a knockout—this will fail exactly

in the case of an offending occurrence. Correspondingly, the occurs check is no longer

a boolean decision—it provides us with the witness which explains why it is safe to

substitute. More sense has appeared in the program! The type of the occur check is

check : 8m: 8x :fin sm: 8t : tree sm:maybe (tree m)

Its inversion rule should be something like:

m : NN

x : fin sm
� : tree sm ! maybe (tree m) ! Type

� (jithin xhj t) (yes t)

Occurs x t
: : : : : : : : : : : : : : : : : :

� t (no (tree m))

8t : tree sm: � t (check x t)

where Occurs is some useful means of characterising when x occurs in t.

In other words, check x is the partial inverse of jithin xhj. Hence we will implement

check x by pushing thick x through trees, with any no at a variable causing a no

overall. However, before we can really work with the occurs check, we must formalise

the notion of occurrence.

7.3.6 positions

The idea of pattern matching is to explain decomposition by inverting construction,

and I was exposed to it at such an early age that it simply refuses to wear off. We

have already seen NNEq in terms of duplication and thick in terms of thin. Since

searching for an occurrence is a kind of decomposition, I cannot help asking what the

corresponding construction might be.

230

Let us therefore identify the operation which makes an occurrence—the operation

which puts something at a given position. In order to do this, we shall need to rep-

resent positions within a tree.

Every datatype T has an allied datatype of positions or ‘one-hole contexts’ within el-

ements of T, together with an operation which puts a T in the hole. Huet gives a

beautiful construction of ‘zipper’ types which code up one-hole contexts as paths from

the hole back to the root of the term, recording the contents of other side-branches on

the way. We may equivalently, and slightly more conveniently for our purposes, re-

verse the direction and code up paths from the root to the hole. Let us therefore define

the parameterised datatype pos n of positions within n :

� formation rule n : NN
pos n : NN

� constructors
heren : pos n

there : pos n t : tree n
left there t : pos n

s : tree n there : pos n
right s there : pos n

The constructors may be interpreted as directions for finding the position from the root,

respectively ‘stop here’, ‘go left’ and ‘go right’. Consequently, the function which

puts a term at a position is

� � goes : 8n: 8there :pos n: 8it : tree n: tree n

Allow me to break with convention and write goes postfix—its definition is:

here it goes = it
(left there t) it goes = fork (there it goes) t

(right s there) it goes = fork s (there it goes)

In particular, we may now describe a term containing var x as

where (var x) goes

In order to reason about positions, it will be useful to have some other apparatus.

Indeed, we may consider goes to interpret pos n as the arrows of a category with

one object interpreted as tree n. here is the identity. Let us therefore define the

composition, which, in the spirit of the piece, I shall write as an infix operator called

then:

231

then : 8n: 8there;where :pos n: pos n

here then where = where
(left there t) then where = left (there then where) t

(right s there) then where = right s (there then where)

The definition of goes ensures the correct interpretation of here. An easy recursion

induction proves the correct interpretation of then:

(where then there) it goes' where (there it goes) goes

By the way, datatypes (eg list, NN) with a single and constant base constructor (eg nil,

0) and linear step constructors (eg cons, s) are isomorphic to their own position types.

The goes and then operations are the same (eg append, plus). This may account

for their peculiarly regular behaviour.

Returning to our tree syntax, we shall also need to push substitutions through posi-

tions. Overloading slightly:

�hj : 8m; n: 8f :m & n: pos m ! pos n

fhjherem = heren

fhj (left there t) left (fhj there) (fhj t)
fhj (right s there) right (fhj s) (fhj there)

Recursion induction on this operation gives us a proof of Coherence:

fhj (there it goes)' (fhj there) (fhj it) goes

Now, in order to prove that occurs check failure causes unification failure, we shall

need to show that the only position at which we may find a term inside itself is here:

?NoCycle: 8n : NN
8it : tree n
8there: pos n
8hyp : it' there it goes

there' here

We have seen a similar theorem before. The proof goes by induction on it, then case

analysis on there. A lot of impossible cases are removed by unification—there are

obviously no left or right positions within var x or leaf. The only real work to be

done is when there is not here and it is a fork. There are two such cases, one much

like the other, so I shall just give the proof for fork and left:

232

?NoCycle
fl

: 8n : NN
8s; t; r : tree n
8sHyp: 8there: pos n

8hyp : s' there s goes
there' here

8tHyp:
8there : pos n
8hyp : fork s t' (left there r) (fork s t) goes

there' here

The trick is to rotate the cycle. Reducing goes, hyp becomes

fork s t' fork (there (fork s t) goes) r

Unification identifies t and r and tells us that

s' there (fork s t) goes

Now, if we are careful, we can turn this into a cycle in s and apply the relevant inductive

hypothesis. Our categorical tools allow us to rewrite the above equation to

s' (there then (left here t)) s goes

The inductive hypothesis sHyp now tells us that

(there then (left here t))' here

This is manifest nonsense, but we need to make a constructor appear at the head on

the left-hand side to reveal the conflict. That is to say, a further case analysis on there,

accompanied by the unification tactic, completes the proof.

We are now in a position to fill in the last component of the unification algorithm.

7.3.7 check and FlexRigid

As suggested earlier, the check function pushes thick through a tree.

check x (var y) = jivarnhj (thick x y)
check x leafsn = leafn

check x (fork s t) =

check x s check x t
yes s0 yes t0 yes (fork s0 t0)
yes s0 no (tree n) no (tree n)

no (tree n) t0 no (tree n)

233

Now that we know how to talk about positions, we can give this function a better

inversion principle, checkInv:

checkInv

m : NN
x : fin sm
� : tree sm ! maybe (tree m) ! Type

� (jithin xhj t) (yes t) � (where (var x) goes) (no (tree m))

8t : tree sm: � t (check x t)

The proof, which I omit, is by recursion induction and inversion of the blocked com-

putations.

Now let us define FlexRigid:

FlexRigid x t =

check x t
yes t0 yes hm;acons x t0 anili

no (tree m) no (from sm)

We must show that this function satisfies its specification:

?FlexRigid
s

: 8m : NN
8x : fin sm
8t : tree sm
8notVar: 8y: fin sm

t 6' var y
8� : maybe (from sm) ! Type

8�

n

: 8occ: NoUnifier (var x) t
� (no (from sm))

8�

y

: 8n : NN
8f : alist m n
8fMax: Maximal (Unifies (var x) t) (f J)
� yes hn; fi

� (FlexRigid x t)

This we prove by expanding FlexRigid and inverting check x t, leaving two cases.

The first is

234

?FlexRigid
y

:

8t : tree m
8� : maybe (from sm) ! Type

8�

y

: 8n : NN

8f : alist m n
8fMax: Maximal (Unifies (var x) jithin xhj t) (f J)
� yes hn; fi

� (yes hm;acons x t anili

Introducing the hypotheses, refining by �
y

and unpacking the association list, we are

left proving

?FlexRigid0

y

: Maximal (Unifies (var x) jithin xhj t) [x 7! t]

This follows by the Knockout lemma.

Meanwhile, the other case of the inversion is

?FlexRigid
n

:

8where : pos sm
8notVar: 8y: fin sm

where (var x) goes 6' var y
8� : maybe (from sm) ! Type

8�

n

: 8occ: NoUnifier (var x) (where (var x) goes)
� (no (from sm))

� (no (from sm))

This time, introducing the hypotheses, refining by �
n

and expanding NoUnifier leaves

?FlexRigid0

n

: 8n : NN

8f : sm & n
8bad: fhj (var x)' fhj (where (var x) goes)

?

By Coherence, we may push f through goes, telling us

235

f x' (fhjwhere) (f x) goes

NoCycle now tells us that

where' here

reducing notVar to

8y: var x 6' var y

from which we may easily prove the goal.

7.3.8 comment

This verification of a unification is another in a long line of such developments. From

Zohar Manna and Richard Waldinger’s pioneering hand-synthesis [MW81], through

Lawrence Paulson’s machine verification in LCF [Pau85] to the more recent work in

diverse proof systems [Coen92, Rou92, Jau97, Bove99], all have faced the same inher-

ent problem of explaining a program which simply does not make the sense its maker

intended.

Critical to the correctness of the unification algorithm is the relativisation of terms to

their context of variables. Such relativised data structures occur naturally in dependent

type systems. Unification has always been structurally recursive—it is just that the

structure could not be made data until the right types came along. Now they have, and

that is something to be pleased about, and to be vocal about.

There are three delicate aspects of unification which must be handled somehow in

every treatment, and they are not entirely independent:

� the termination of the algorithm

� the propagation of a unifier computed for one part of a problem through the rest

of the problem

� the failure of unification due to failure of the occur check

The termination issue has, over the years, been separated from partial correctness with

increasing panache and aplomb, but the technique standard in the literature is well-

founded recursion over an ad hoc ordering. Manna and Waldinger [MW81] are sensible

236

enough to leave the choice of this ordering until they have extracted the conditions it

must satisfy:

‘We have deferred the choice of an ordering �
un

to satisfy the ordering

conditions we have accumulated during the proof. The choice of this or-

dering is not so well-motivated formally as the other steps of this deriva-

tion.’

The necessary ordering combines lexicographically the size of the variable set and the

structure of the problem—the different treatments manifest this in slightly different

ways. Paulson [Pau85] points out that he works rather harder than he would like to,

motivating the desire for ‘an LCF package for well-founded induction’ in order to

emulate Manna and Waldinger’s paper development more closely.

Implementations of what would otherwise be generally recursive programs in type

theory necessarily involve computation over the proof of termination. Different strate-

gies exist to minimise the impact of this unwelcome intrusion of proof into program.

Joseph Rouyer [Rou92] manages to confine the logical component to the outermost

well-founded recursion on the number of variables, the inner recursion on terms being

purely structural.

Ana Bove moves the goalposts in a pleasingly systematic way [Bove99]. Her ALF

program does its recursion over the proof of an accessibility relation constructed almost

directly from the Haskell program she wishes to import—the arguments to the program

become the indices of the relation. A single induction over this relation thus splits into

cases corresponding to the left-hand sides of the original program, while the exposed

sub-proofs give exactly the recursive calls. Of course, she still has to prove that all the

elements are accessible by well-founded lexicographic induction, but by packaging this

complicated induction into a single relation, she has not only supported the program

but also effectively acquired ipso facto its recursion induction principle—useful for

proving its properties.

Of course, my program does a similar lexicographic recursion, but it is internalised in

the data structures. I avoid an appeal to well-founded recursion on � for the number

of variables by unloading the accumulated substitutions incrementally, which is not

unreasonable as they are built incrementally, and which incidentally enables me to

delay them until they become critical.

It might perhaps be interesting to consider how much more trouble it would be to use

a normalised representation of substitution, applied all at once. However, normalising

237

substitutions is, in any case, computationally quite expensive.

Manna and Waldinger work rather hard to synthesise the accumulation of a unifier

across a list of subproblems. The idempotence of the unifier plays a pivotal role. Paul-

son’s proof is apparently simpler, but he is unforthcoming about the ‘occasional ugly

steps’. Coen [Coen92] describes this problem as the only awkward aspect of partial

correctness.

The ‘optimistic’ treatment of accumulators makes this problem rather easier to deal

with—introducing the accumulator as an extra parameter effectively strengthens the

inductive hypotheses for the subproblems in exactly the necessary manner. Armando,

Smaill and Green’s automated synthesis manages to profit from this without excessive

prompting [ASG99]. Bove also exploits an accumulating parameter with the same

benefit. As I have shown, it is a natural technique to employ when the order with

respect to which we seek an optimum is induced by some notion of composition.

As for showing there is no unifier when the occur check fails, my treatment is morally

the same as Manna and Waldinger’s, packaged slightly more categorically. It is also

slightly more concrete. The use of the datatype of positions and its attendant opera-

tions, together with thin, means that the inversion of the occur check instantiates the

investigated term with patterns capturing the relevant information, rather than present-

ing it propositionally. However, the position datatype comes into play only in the proof,

not in the program, so in this case, there is not much to choose between the two.

Nonetheless, we may one day want a unification algorithm which augments the failure

response with diagnostic information, so that a PhD student desperate for cash can have

an easier time finding the type errors in an undergraduate’s ML program. At this point,

a concrete representation of positions becomes a must. The type of check could just

as easily have been

check : 8n: fin sn ! tree sn ! tree n + pos sn

returning a witness in the case of failure. A treatment of positions is hardly wasted.

Furthermore, as Huet points out [Hue97], there is no reason why the construction of

position apparatus should not be automated for arbitrary datatypes.

Finally, I would like to comment on two ‘packaging’ aspects of the development of

unification in this thesis. Firstly, the monadic treatment both of failure-propagation

and of substitution itself seems to present the necessary equipment in a useful and

orderly way.

Secondly, the use of inversion and recursion induction principles to capture the be-

238

haviour of components lent such a regularity and tangibility to the components of the

correctness proof that I believe I have given substantial credence to the methodology

of capturing ‘leverage’ in this way. Recall, for example, how the inversion of the occur

check not only exposed the information pertinent to the two possibilities but performed

the consequent rewriting, allowing still further progress by computation. Further, the

whole effect was triggered by asking a single high-level question about a program

component

‘what can have happened in that occur check?’

rather than a low-level question about data

‘what values can that maybe (tree n) have?’

We have been able to stare at unification without going blind.

239

Chapter 8

Conclusion

What are the contributions of this thesis?

Firstly, and somewhat tangentially, it introduced OLEG, a type theory with holes which

has two advantages:

� separation of partial constructions from the core computational terms in such a

way that the partial constructions—where the holes live—behave well enough to

have the replacement property

� internalisation of the account of the holes within the judgments of the theory,

allowing the state of a theorem prover to be represented exactly by a valid context

Of course, relative to systems which explain holes with the aid of explicit substitution,

it has the disadvantage of forbidding certain interactions between holes and computa-

tion. For the work presented here, this has not troubled us at all. Admittedly, this has

not involved the kind of higher-order problem for which the banned interactions might

help.

On the other hand, the resemblance to Miller’s ‘mixed prefix’ [Mil92] treatment is

strong enough to suggest that his brand of higher-order unification might be feasible.

He too handles the interaction between holes and computation by ‘raising’ the holes to

the functionality required to ensure that the computation happens entirely within their

scope. Nonetheless, deeper exploration is needed before we can say that OLEG is a

suitable basis for sophisticated theorem proving. It is, however, an effective basis for

the tactics and mechanised constructions on which the main work of the thesis depends.

That work was to build object-level support for pattern matching on dependent

types in a conventional type theory extended with uniqueness of identity proofs. It

240

closes the problem opened by Thierry Coquand as to the status of pattern matching

[Coq92, CS93] as implemented in ALF [Mag94]: it demonstrates that uniqueness of

identity proofs is sufficient to support pattern matching where the unification underpin-

ning case analysis is for first-order constructor forms—this is the unification suggested

by Coquand and implemented in ALF. The necessity was shown by Hofmann and Stre-

icher [HoS94, Hof95].

In the course of that demonstration, I used a new ‘John Major’ formulation of proposi-

tional equality. This allows elements of different types to aspire to equality, but ensures

that they are only treated equally if they come from the same type. John Major equal-

ity is equivalent to Martin-Löf equality, but considerably more convenient in practice.

It facilitates the expression of unification problems over sequences of terms involving

type dependency, without requiring any dependency in the equations.

Consequently, I was able to extend the object-level first-order unification algorithm

presented for simply typed constructor forms in my MSc work [McB96] to the de-

pendently typed case. The necessary ‘no confusion’ and ‘no cycle’ theorems for each

family of types can be constructed automatically in a uniform way. This is the object-

level unification required to support pattern matching, and it shows that the need for

uniqueness of identity proofs is no idle coincidence.

However, following the famous dictum of Marx and Engels, it is not enough merely

to show that dependently typed pattern matching can be given meaning in an almost

conventional type theory—the point is to show that it is good for something. I hope I

have successively argued for the principle of representing relativised data in relativised

types. I believe the developments of substitution and unification in chapter seven lend

tangible credence to this argument. The unification example, in particular, demon-

strates the importance of allowing datatypes to depend on terms.

The latter may require general recursion to be abandoned for the sake of typechecking,1

but it makes more programs structurally recursive because it gives us more structures—

types indexed by terms allow computation on the indices; types indexed by types do

not.

MANTRA:

If my recursion is not structural, I am using the wrong structure.

Dependent types make sense where general recursion is made sense of, if we are lucky.

1Lennart Augustsson disagrees, as do a number of others. In my opinion they are trying to have their

cake and eat it, but they are nonetheless convinced of the advantages of cake.

241

There are many examples where the ‘right structure’ is hard to represent internally to

the program, and where an external termination argument seems the prudent course,

but the expressiveness of a dependent type system nonetheless offers the improved

prospect of principled structural alternatives. The functional programming community

ignores dependent types at its peril.

Turning from programs to their proofs, I suspect the idea of using elimination rules

to capture the behaviour of program components abstractly from their implementa-

tions to be an important one. Specifications should not only tell us what programs to

write—they should tell us what we need to know about the function when it is used.

The latter behaviour is clearly like elimination in character. The kind of second-order

rule supported by OLEG’s eliminate tactic exploits such information in a compact and

powerful way, relativised to the goal which motivates its use.

We are quite happy to specify and write programs (derived introduction rules) in an

abstract and modular fashion—we should derive the corresponding elimination rules

so that we can reason about programs in an abstract and modular fashion. We have

been trying far too long to prove properties of programs by fiddling about with the

primitive rules for data—we would never dream of writing programs that way. Henrik

Persson has also identified this style of reasoning as of considerable assistance in his

formalisation of the polynomial ring [Per99]. First-order equational specifications only

do half the job—they are inappropriate for reasoning about the usage of programs.

That is, they are good for characterising introduction behaviour, but they need to be

complemented by a more effective treatment of elimination.

I believe the technology and methodology developed in this thesis contributes not only

to the writing of programs which make sense, but to the effective exploitation of that

sense in reasoning about them.

8.1 further work

‘The world will be far better when we turn things upside down.’

(J. Bruce Glasier)

There is a great deal to be done.

Firstly, as far as the technology supporting dependently typed programming is con-

cerned, it is an important task to identify a recognisable dependently typed program-

ming language. As things stand, the equational programs we might like to write corre-

242

spond only to the deducible computational behaviour of complex proof terms—if we

want to be able to check a reloaded program, we need to reload its justification.

As I pointed out in chapter six, the problem lies in ensuring that stored programs give

a satisfactory account of their empty cases. I believe that a reasonable way to go about

this is to make the machine capable of detecting those argument types which can be

shown to be empty by one step of case analysis. If more than one step is required,

then the empty type can nonetheless be split into nontrivial constructor cases, and this

is something the program can and should record. In effect, the program must contain

enough hints to allow the reconstruction of the emptiness proof.

We might consider insisting that types be ‘filled up’ with markers indicating ‘badness’

in regions which would otherwise be empty. What implications for the expressiveness

of the type system the enforcement of this discipline would entail, it is too early to say.

However, the propagation of ‘badness’ surely involves the same work as the propaga-

tion of emptiness. It is a question of which gives the clearest treatment, and a more

explicit approach is certainly worthy of attention.

With the development of improved technology for programming with dependent types,

there is an imperative to write programs. Despite the clear argument from principle

that more precise data structures lead to tighter programs—otherwise, why have types

at all?—it is not rhetoric which changes practice but competition.

One example, close to home, which springs to mind is the development of a polymor-

phically typed strongly terminating functional programming language: parser, type

inference algorithm, interpreter. Delphine Terrasse has encoded Natural Semantics in

Coq [Ter95a, Ter95b] using a simply typed presentation of terms and types, with in-

ductively defined relations describing valid formation and typing. It seems reasonable

to hope that these latter properties can be built directly into data structures via depen-

dent types. The work of Altenkirch and Reus [AR99] and of Augustsson and Carlsson

[AC99] is already moving positively in this direction. Further, having developed first-

order unification, an ML-style type inference algorithm [DM82] seems an obvious next

step, especially as finding principal types is another optimisation problem addressable

by the optimistic strategy. Also, there are existing developments in simple types avail-

able for comparison [NN96, DM99].

However, in tandem with the continuing development of programming technology, the

development of a strong specification methodology which includes elimination as well

as introduction rules seems a task of genuine importance. The focus of that develop-

ment should be on program derivation at least as much as verification. Even at the

243

early stage reached in this thesis, we have seen a small example of elimination rules

used to transform a specification towards a program—the development of thick from

thin.

More than this, an area of interest not touched on in this thesis, but prominent in my

thinking is the use of derived elimination rules for programming itself. As a starting

point, it seems very likely that Phil Wadler’s suggestion to equip datatypes with dif-

ferent ‘views’ [Wad87] supporting different notions of pattern matching for the same

underlying type can be put on a sound footing.

The motivation for such a development is very straightforward. As a matter of course,

we write ‘derived constructors’—functions which build elements of datatypes in more

abstract patterns, reflecting the macroscopic structure of the problem at hand. We write

plus to add numbers together, snoc to add an element to the end of a list, and so forth.

It would surely be helpful to equip programmers with the means to analyse data at the

same macroscopic level.

Although a great deal of attention has been paid to developing what goes on the right-

hand side of pattern equations in a principled way, the left-hand side has long been

neglected. It is time the left came into its own. We have nothing to lose but our chains.

We have a world to gain.

244

Appendix A

Implementation

A few points about the prototype implementation:

� OLEG was implemented primarily as technology for the machine construction of

the standard theorems with which I equip datatypes, and to support the writing

of tactics at a relatively high level. The separation of partial constructions from

terms is not rigidly enforced. Further, as it uses LEGO’s unification algorithm,

the scoping conditions for solving holes are not enforced either. However, the

complete terms generated are independently checked by LEGO’s reliable type-

checker before they are trusted.

The restrictions on the positioning and behaviour of holes were not rationalised

until after the implementation was complete. Nonetheless, in all the develop-

ments I implemented, I found that I obeyed them. This gives at least anecdotal

support to the suggestion that they are, in some way, natural restrictions to make.

� The implementation of the eliminate tactic does not have the abstraction facility

described in chapter three. This still makes it entirely adequate for all the pro-

gramming in this thesis, as such abstractions are not necessary when working

with datatype elimination rules.

The tactic does not, however, support derived elimination rules for functions in

the way that it should. Although the examples using such rules have all been

implemented and machine checked, the elimination rules for functions were ap-

plied by hand.

� The invention of ‘John Major’ equality came some time after I stopped work

on the prototype. Consequently, the traditional equality (plus uniqueness) is

used. Telescopic equations are thus represented in a somewhat awkward way,

245

with each equation in the telescope coercing by all the previous ones in order

to be well typed. This significantly complicated the elimination tactic and the

unification technology, but nonetheless they work.

246

Bibliography

[AR99] Thorsten Altenkirch, Bernhard Reus. Monadic presentations of lambda-

terms using generalized inductive types. In Computer Science Logic,

1999.

[ASG99] Alessandro Armando, Alan Smaill, Ian Green. Automatic Synthesis of

Recursive Programs: The Proof-Planning Paradigm. Automated Soft-

ware Engineering, 6(4):329–356. October 1999.

[Aug85] Lennart Augustsson. Compiling Pattern Matching. In Conference Funci-

tonal Programming and Computer Architecture, 1985.

[Aug98] Lennart Augustsson. Cayenne—a language with dependent types. In

Proceedings of the International Conference on Functional Programming

(ICFP’98). ACM Press, September 1998.

[AC99] Lennart Augustsson, Magnus Carlsson. An exercise in dependent types:

A well-typed interpreter. 1999.

[Bar92] Henk Barendregt. Lambda calculi with types. In D.M. Gabbay, S.

Abramsky and T.S.E. Maibaum, editors, Handbook of Logic in computer

Science, volume 1. OUP. 1992.

[Bar99] Bruno Barras. Auto validation d’un système de preuves avec familles

inductives. PhD Thesis, Université Paris VII. November 1999.

[BH94] Françoise Bellegarde, James Hook. Substitution: A formal methods case

study using monads and transformations. Science of Computer Program-

ming, 23(2-3). 1994.

[BP99] Richard Bird, Ross Paterson. de Bruijn notation as a nested datatype.

Journal of Functional Programming. Vol. 9, No. 1, pp77–92. 1999.

[Bove99] Ana Bove. Programming in Martin-Löf Type Theory. Unification: A

non-trivial Example. Licentiate Thesis. Chalmers University of Technol-

ogy, Göteborg. In preparation.

[Bro96] Jason Brown. Presentations of Unification in a Logical Framework.

1996. D. Phil Thesis. Keble College, Oxford.

247

[BD77] Rod Burstall, John Darlington. A Transformation System for Developing

Recursive Programs. JACM, Vol. 24, No. 1, January 1997, pp44–67.

[Bur69] Rod Burstall. Proving Properties of Programs by Structural Induction.

Computer Journal, 12(1). pp41–48. 1969.

[BMS80] Rod Burstall, Dave MacQueen, Don Sannella. Hope: An Experimen-

tal Applicative Language. In Proceedings of the 1980 LISP Conference.

Stanford, California.

[Bur87] Rod Burstall. Inductively Defined Functions in Functional Programming

Languages. Journal of Computer and System Sciences. Vol. 34, Nos. 2/3,

April/June 1987, pp409–421.

[Cla78] K. Clark. Negation as Failure. Logic and Databases, editors H. Gallaire,

J. Minker, pp293–322. Plenum Press. 1978.

[Coen92] Martin Coen. Interactive Program Derivation. PhD Thesis. University of

Cambridge. 1992.

[CG99] Adriana Compagnoni, Healfdene Goguen. Typed Operational Semantics

for Higher Order Subtyping. To appear in Information and Computation.

[Coq97] Projet Coq. The Coq Proof Assistant Reference Manual, Version 6.1.

Rapport de recherche 203, INRIA. 1997.

[CPM90] Thierry Coquand, Christine Paulin-Mohring. Inductively Defined Types.

In P. Martin-Löf and G. Mints editors, Proceedings of Colog ’88.

Springer-Verlag LNCS 417. 1990.

[Coq92] Thierry Coquand. Pattern Matching with Dependent Types. In Proceed-

ings Types for Proofs and Programs, June 1992.

[CS93] Thierry Coquand, Jan Smith. What is the status of pattern matching in

type theory? In El Wintermte, pp112–114. June 1993.

[CT95] Cristina Cornes, Delphine Terrasse. Inverting Inductive Predicates in

Coq. In Types for Proofs and Programs: International Workshop TYPES

’95. Springer-Verlag LNCS 1158. June 1995.

[Cor97] Cristina Cornes. Conception d’un langage de haut niveau de

représentation de preuves. Doctoral Thesis, Université Paris VII. 1997.

[CF58] H.B. Curry, R. Feys. Combinatory Logic. Amsterdam: North Holland.

1958.

[DM82] Luis Damas, Robin Milner. Principal type schemes for functional pro-

grams. In Proceedings, 9th ACM Symposium, Principles of Program-

ming Languages, pp207–212. 1982.

[deB72] N.G. de Bruijn Lambda calculus notation with nameless dummies. Inda-

gationes mathematicae 34, pp381–392.

248

[deB91] N.G. de Bruijn. Telescopic Mappings in Typed Lambda-Calculus. Infor-

mation and Computation 91, pp189–204. 1991.

[DM99] C. Dubois, V. Menissier-Morain. Certification of a type inference tool for

ML: Damas-Milner within Coq. Journal of Automated Reasoning, Vol.

23, No. 3, pp319–346. November, 1999.

[Dyb91] Peter Dybjer. Inductive Sets and Families in Martin-Löf’s Type Theory.

Logical Frameworks, edited by G. Huet and G. Plotkin. CUP 1991.

[Gen35] Gerhard Dentzen. Untersuchungen über das logische Schliessen. Math-

ematische Zeitschrift 39, pp176–210, 405–431. 1935. (In translation,

pp68–131 of The Collected Papers of Gerhard Gentzen, edited by M.E.

Szabo, North-Holland, 1969.)

[Gim94] E. Giménez. Codifying guarded definitions with recursive schemes. Pro-

ceedings of Types 94, pp39—59.

[Gim96] E. Giménez. Un Calcul de Constructions Infinies et son Application à la

Vérification de Systèmes Communicants. Doctoral Thesis. ENS Lyon.

1996.

[Gim98] E. Giménez. Structural Recursive Definitions in Type Theory. In Pro-

ceedings of ICALP ’98. Springer-Verlag LNCS 1443. July 1998.

[Gog94] H. Goguen. A Typed Operational semantics for Type Theory. PhD The-

sis. University of Edinburgh. CST-110-94.

[GS91] P.A. Gardner, J.C. Shepherdson. Unfold/Fold Transformations of Logic

Programs. pp565—582 of Computational Logic: Essays in Honor of

Alan Robinson, edited by Jean-Louis Lassez and Gordon Plotkin, MIT

Press, 1991.

[Hal99] Thomas Hallgren. Alfa User’s Guide.

http://www.cs.chalmers.se/˜hallgren/Alfa

[HP91] Robert Harper, Robert Pollack. Type checking, universe polymorphism

and typical ambiguity in the calculus of constructions. Theoretical Com-

puter Science, 89(1). 1991.

[vHLS98] F. von Henke, M. Luther, M. Strecker. Interactive and automated proof

construction in type theory. In Bibel and Schmitt (1998), chapter 3: In-

teractive Theorem Proving.

[HoS94] Martin Hofmann, Thomas Streicher. The groupoid model refutes unique-

ness of identity proofs. Proceedings, Ninth Annual IEEE Symposium on

Logic in Computer Science. pp208–212. Paris, France. July 1994. IEEE

Computer Society Press.

[Hof95] Martin Hofmann. Extensional concepts in intensional type theory. PhD

Thesis. University of Edinburgh. CST-117-95.

249

[Hue75] Gérard Huet. A Unification Algorithm for Typed �-Calculus. Theoretical

Computer Science 1, pp27—57. 1975.

[Hue97] Gérard Huet. The Zipper. Journal of Functional Programming Vol. 7, No.

5, pp549–554. 1997

[Jau97] M. Jaume. Unification : a Case Study in Transposition of Formal Prop-

erties. In Supplementary Proceedings of the 10th International Con-

ference on Theorem Proving in Higher Order Logics: Poster session

TPHOLs’97. E.L. Gunter and A. Felty, editors. pp79–93. 1997.

[KST94] Stefan Kahrs, Donald Sannella, Andrzej Tarlecki. The Definition of Ex-

tended ML. LFCS Technical Report 94-300, University of Edinburgh.

1994.

[LP92] Zhaohui Luo, Robert Pollack. The LEGO proof development system: a

user’s manual. LFCS Technical Report 92-211, University of Edinburgh.

1992.

[Luo94] Zhaohui Luo. Computation and Reasoning: A Type Theory for Com-

puter Science. 1994. Oxford University Press.

[Mac71] Saunders MacLane. Categories for the Working Mathematician.

Springer Verlag GTM 5. 1971.

[Mag94] Lena Magnusson. The implementation of ALF—A Proof Editor based

on Martin-Löf’s Monomorphic Type Theory with Explicit Substitutiton.

PhD thesis, Chalmers University of Technology, Göteborg. 1994.

[Man76] E. Manes. Algebraic Theories. Springer-Verlag GTM 26. 1976.

[MW81] Zohar Manna, Richard Waldinger. Deductive Synthesis of the Unifi-

cation Algorithm. Science of Computer Programming, 1:5–48. North-

Holland. 1981.

[MS94] P. Manoury, M. Simonot. Automatizing Termination Proofs of Recur-

sively Defined Functions. Theoretical Computer Science, 135, pp319–

343. 1994.

[M-L71a] Per Martin-Löf. An Intuitionistic Theory Of Types. Manuscript, 1971.

[M-L71b] Per Martin-Löf. Hauptsatz for the Intuitionistic Theory of Iterated Induc-

tive Definitions. Proceedings of the Second Scandinavian Logic Sympo-

sium. North Holland. 1971.

[M-L75] Per Martin-Löf. An Intutionistic Theory Of Types: Predicative Part. In

H. Rose and J.C. Shepherdson, editors, Logic Colloquium ’74. North-

Holland. 1975.

[M-L84] Per Martin-Löf. Intuitionistic Type Theory. Bibliopolis, 1984.

250

[McB70] Fred McBride. Computer Aided Manipulation of Symbols. PhD thesis,

the Queen’s University of Belfast, 1970.

[McB92] Conor McBride, Chris McBride. POLYSEMY: LISP with ambigous pat-

tern matching and first class local definitions. Experimental implemen-

tation. 1992.

[McB96] Conor McBride. Inverting Inductively Defined Relations in LEGO.

Types for Proofs and Programs, International Worskshop TYPES ’96.

Springer-Verlag LNCS 1512. pp236–253.

[MP67] J. McCarthy, J.A. Painter. Correctness of a compiler for arithmetic ex-

pressions. Mathematical Aspects of Computer Science, pp33–41. AMS,

1967.

[McC67] John McCarthy. A Basis for a Mathematical Theory of Computa-

tion. Computer Programming anf Formal Systems, P. Braffort and D.

Hirschberg editors. North Holland Publishing Company. 1967.

[Mil91] Dale Miller. A Logic Programming Language with Lambda-Abstraction,

Function Variables and Simple Unification. Journal of Logic and Com-

putation 2/4, pp497–536. 1991.

[Mil92] Dale Miller. Unification Under a Mixed Prefix. Journal of Symbolic

Computation 14, pp321–358. 1992.

[MTH90] Robin Milner, Mads Tofte, Robert Harper. The Definition of Standard

ML. The MIT Press, 1990.

[Mog91] E. Moggi. Notions of computation and monads. Information and Com-

putation, 93(1). 1991.

[Muñ96] César Muñoz. Dependent Types with Explicit Substitutions: A Meta-

theoretical development. Types for Proofs and Programs, International

Worskshop TYPES ’96. Springer-Verlag LNCS 1512. pp294–316.

[NN96] Wolfgang Naraschewski, Tobias Nipkow. Type Inference Verified: Algo-

rithm W in Isabelle/HOL. Types for Proofs and Programs, International

Worskshop TYPES ’96. Springer-Verlag LNCS 1512. pp317–332.

[Nor88] Bengt Nordstrom. Terminating General Recursion. BIT, Vol. 28, pp605–

619. 1988.

[P-M92] Christine Paulin-Mohring. Inductive Definitions in the System Coq:

Rules and Properties. In Proceedings TLCA, 1992.

[P-M96] Christine Paulin-Mohring. Définitions Inductives tn Théorie des Types

d’Ordre Supérieur. Habilitation Thesis. Université Claude Bernard (Lyon

I). 1996.

[Pau85] Verifying the Unification Algorithm in LCF. Science of Computer Pro-

gramming, 5:143–169. North-Holland. 1985.

251

[Pau86] Lawrence Paulson. Constructing recursion operators in intutionistic type

theory. Journal of Symbolic Computation (2), pp325–355. 1986.

[Pau87] Lawrence Paulson. Logic and computation: interactive proof with Cam-

bridge LCF. Cambridge Tracts in Theoretical Computer Science, Vol. 2.

CUP. 1987.

[Per99] Henrik Persson. An Abstract Development of the Polynomial Ring in

Agda. In Type Theory and the Integrated Logic of Programs, Doctoral

Thesis. Chalmers University of Technology, Göteborg. 1999.

[Poll94] Erik Poll. A Programming Logic Based on Type Theory. Doctoral The-

sis. Technische Universiteit Eindhoven, 1994.

[Pol90] Robert Pollack. Implicit Syntax. In preliminary Proceedings, 1st work-

shop on Logical Frameworks, 1990.

[Pol94] Robert Pollack. Incremental Changes in LEGO: 1994. LFCS Report.

University of Edinburgh.

[Pra65] Dag Prawitz. Natural Deduction—A proof theoretical study. Almquist

and Wiksell, Stockholm. 1965.

[Pym90] David Pym. Proofs, Search and Computation in General Logic. PhD

Thesis. University of Edinburgh. 1990.

[Pym92] David Pym. A Unification Algorithm for the ��-Calculus. International

Journal of Foundations of Computer Science Vol. 3 No. 3, pp333–378.

1992.

[Rob65] Alan Robinson. A Machine-oriented Logic Based on the Resolution

Principle. ACM, 12:23–41. 1965.

[Rou92] Joseph Rouyer. Développement de’algorithme d’unification dans le Cal-

cul des Constructions avecs types inductifs. Technical Report 1795,

INRIA-Lorraine. November 1992.

[SH95] Amokrane Saı̈bi and Gérard Huet. Constructive Category Theory. In Pro-

ceedings of the joint CLICS-TYPES Workshop on Categories and Type

Theory, Göteborg, Sweden. 1995.

[SSB99] Masahiko Sato, Takafumi Sakurai, and Rod Burstall. Explicit Environ-

ments (Extended abstract). 1999.

[Sau16] Ferdinand de Saussure. Cours de Linguistique Générale. 1916.

[SP94] Paula Severi, Erik Poll. Pure Type Systems with Definitions. In LFCS

’94. Springer-Verlag LNCS 813, pp316–328. 1994.

[Sli97] Konrad Slind. Function Definition in Higher-Order Logic. In Theorem

Proving in Higher-Order Logics. 9th International Conference, TPHOLs

’96. Springer-Verlag LNCS 1125. August 1996.

252

[Str93] Thomas Streicher. Investigations into intensional type theory. Habilitia-

tion Thesis, Ludwig Maximilian Universität. 1993.

[Tak95] M. Takahashi. Parallel reductions in �-calculus (Revised version). Infor-

mation and Computation. 118(1), pp120–127. 1995.

[TS83] Hisao Tamaki, Taisuke Sato. A transformation system for logic programs

which preserves equivalence. ICOT TR-018. 1983.

[Ter95a] D. Terrasse. Encoding Natural Semantics in Coq. Fourth Interna-

tional Conference on Algebraic Methodology and Software Technology,

(AMAST ’95). Springer-Verlag LNCS. July 1995

[Ter95b] D. Terrasse. Vers un environnement de developpement de preuves en Se-

mantique Naturelle. PhD thesis, École Nationale des Ponts et Chaussées

(ENPC). October 1995.

[Tur95] David Turner. Elementary strong functional programming. Proceedings

of the first international symposium on Functional Programming Lan-

guages in Education. Springer-Verlag LNCS 1022. 1995.

[Wad87] Philip Wadler. Views: A way for pattern matching to cohabit with data

abstraction. 14th ACM Symposium on Principles of Programming Lan-

guages, Munich, January 1987.

253

Index

property indicators

: ‘type’, 18

= ‘value’, 18

� ‘guess’, 28

binding operators

8x : S ‘universal quantification’, 18

�x : S ‘functional abstraction’, 18,

27

!x = s :S ‘local definition’, 18, 27

?x : S ‘hole component’, 27

?x � p :S ‘hole with guess’, 27

contexts

hi ‘empty context’, 19, 28

�;B ‘context extension’, 19, 28

v ‘information order’, 32

judgments

� ` J ‘core judgment’, 19

� J ‘development judgment’,

28

computation

� ‘syntactic identity’, 18

;

� ‘contraction’, 21, 30

;

�

‘one-step reduction’, 21, 30

. ‘many-step reduction’, 20
�

=

‘conversion’, 20

� ‘cumulativity’, 21, 24

positions

� ‘trivial position’, 31

P;P0 ‘position composition’, 31
�P ‘context from position’, 31

P[p] ‘put at position’, 31

v ‘information order’, 34

[t=x] ‘substitution’, 18

telescopes
~t ‘sequence’, 47
~T ‘telescope’, 47

Fam ‘free telescope’, 50

f�g

n

i

‘iteration’, 49
~T t ‘application’, 48

4

nType ‘triangle telescope’, 50

=) ‘is sugar for’, 101

datatypes

00 ‘empty type’, 104

11 ‘unit type’, 104

22 ‘boolean type’, 104

+ ‘sum type’, 104

records
D

~field =

~t
E

‘record as tuple’, 101

R:field
i

‘projection’, 102

R:t ‘open with official names’, 102

R[~x]:t ‘open with local names’, 102

sigma types

�x : S ‘fake �-binding’, 105

� ‘non-dependent product’, 105

hs; ti ‘pair’, 105

�

~S ‘tuple type’, 105

h

~si ‘tuple’, 105

equalities

', see equality

=, see equality

concrete categories

� ‘categorical arrow’, 185

� ‘arrow composition’, 185

� ‘arrow equality’, 185

� ‘identity arrow’, 185

[[�]] ‘object/arrow interpretation’,

185

concrete monads

& ‘monad arrow’, 190

hj ‘monad bind’, 188

� ‘monad composition’, 190

ji ‘monad embed’, 190

[[�]] ‘arrow interpretation’, 190

[� 7! �] ‘knockout’, 200, 218

alist operations

z ‘alist composition’, 219

J ‘alist interpretation’, 219

254

abandon, 38

abstraction for rewriting, 60, 76

Ackermann’s function, 67, 181

alist, 219

AList category, 219

AND, 213

aperture, 55

assume, 38

attack, 39

�-reduction, 20

bindings, 17

fatuous, 18

blue plastic hammer, 43

blunderbuss, 106, 142, 165

bmgu, 217, 220

bmguInv, 222

boolean type, see 22
Bound, 213

call, 163

case analysis, 57, 108

category, see concrete category

cell, 125

check, 230, 233

checkInv, 234

Church-Rosser, 23

claim, 34, 38

Clark completion, 57

Closed, 212

closed constraint, 212

, 36

coalescence, 75

coalescence, 129, 130, 136

compatible closure

core, 20, 21

development, 30

components, 27

Concrete, 185

concrete category, 184, 185

from a family, 186

of types, 186

concrete monad, 189

conflict, 129, 130, 136

constraints, 65

friendly, 70

unfriendly, 70

constructor form, 129

unification problem, 129

constructors, 89

contexts, 19

contraction schemes

core, 20, 21

development, 30

conversion, 24

covering, 155, 156

elementary, 156

empty, 177

equations, 175

exact, 175

cumulativity, 21, 24

cut, 38

cut property, 23

cycle, 129, 130, 145

�-reduction, 20

discharge, 43, 44

downward-closed constraint, 212

eliminate, 71–78

elimination rule, 53

aperture, 55

case data, 56

case patterns, 56

cases, 56

datatype, 89

indices, 55

inductive hypotheses, 56

patterns, 55

recursive calls, 56

scheme, 55, 63–71, 75

target, 55, 61–63, 73

empty type, see 00
equality

John Major, 119

Martin-Löf, 118

propositional, 54

', 54, 119

construction from =, 124

eqElim, 119

eqIndElim, 120

eqSubst
n

, 121

eqUnique
n

, 122

=, 118

255

construction from ', 124

idElim, 118

idSubst, 118

idUnique, 119

Equiv, 215

faithful functor, 185

Fam, 97, 163

FamAux, 115, 163

FamAuxGen, 115, 163

FamCase, 108

FamElim, 97

FamFix, 115, 163

family

indexed, 50

type, 50

Fibonacci function, 110

fields, 101

fin, 96

finElim, 96

fixpoint, guarded, 110, 113

folding, 71, 159

Ford, Henry, 63

free pattern, 156

from, 216, 220

Functor, 187

functor, 187

goes, 231

guarded, 111

guarded fixpoint, 110, 113

guess, 28

halting problem, 177, 179

hole, 25

?-binding, 28

life of, 34

hubris, 108, 113

identity, 129, 130, 136

Ind, 89

IndAux, 113

IndAuxGen, 113

IndElim, 91

IndFix, 113

indentifiers, 17

indexed family, 50

induction principle

strong, 99

weak, 70, 100

inductive datatypes, 87

dependent families, 96

parameterised, 92

records, 101

simple, 89

with higher-order constructors, 94

inductively defined relations, 98

injectivity, 129, 130, 136

intro-8, 39

intro-!, 39

inversion, 57

�-reductions, 89

iterated sequence, 49

iterated telescope, 49

J rule, 118

judgments

core, 19

development, 28

justify, 38

K rule, 119

Kleisli

category, 189

triple, 188

Kleisli, 191

knockout, 200, 218

knockoutInv, 218

Lam, 193

lengthening, 159, 181

<, 71, 99

<Elim, 99

�, 57

Clark completion, 57

Clark-style inversion, 57

�Inv, 58, 64

weak induction principle, 70

!-reduction, 20

lexicographic recursion, 181

Lift, 194

lift, 194

liftInv, 195

list, 93

listElim, 57, 93

256

Major, John, 119

majority, 154

mantra

about blocking computations, 61

about contexts, 20

about decomposition, 56

about recursion, 241

about the means, 53

Maximal, 213

maybe, 104

maybeF, 187

maybeM, 191

mgu, 133

mgu, 216, 220

mguInv, 221

Monad, 190

monad, 188

most general unifier, 133

naı̈ve-refine, 40

NN, 90

NNAux, 112

NNAuxGen, 113

NNCase, 108

NNElim, 91

NNFix, 113

NNEq, 59, 78–86

introduction rules, 85

NNEqInv, 60, 83

NNEqRecI, 59, 81

NoCycle, 232

NoUnifier, 222

obviously empty, 178

optimism, 212

Optimist, 213

ord, 94

ordElim, 95

partial constructions, 27

patterns, 55

Peano

concerto, 137

postulates, 58

plus, 159

pos, 231

position information order, 34

positions, 30, 31

postpone, 38

program, 167

property, 18

propositional equality, 54

pure, 28

raise-8, 39

raise-!, 39

records, 101

opening, 102

projection, 102

regret, 34, 38

Rename, 193, 201–210

renaming, 194

replacement

fails in general, 25

for partial constructions, 31

retreat, 39

return, 163

return, 171

rhubarb, 63, 66

sameFunctor, 188

scheme, 55, 63–71, 75

sequence, 47

iterated, 49

�-types, 103

solve, 34, 38

split, 168

spot, 102

state information order, 32

states, 27

strengthening, 23

strong induction principle, 99

strong normalisation, 23

strongly normalising, 24

subject reduction, 23

SubstM, 201–210

substitution, 129, 130, 136

SubstM, 193

sum type, see +
syntactic identity, 18

syntax

core, 18

development, 27

tactic

abandon, 38

257

assume, 38

attack, 39

blunderbuss, 106

claim, 38

cut, 38

deletion, 44

discharges, 44

eliminate, 71–78

intro-8, 39

intro-!, 39

justify, 38

naı̈ve-refine, 40

permutation, 44

postpone, 38

program, 167

raise-8, 39

raise-!, 39

regret, 38

retreat, 39

return, 171

solve, 38

split, 168

try, 38

unify, 41

unify-refine, 42

target, 55, 61–63, 73

telescope, 47

application, 48

free, 50

iterated, 49

telescopic

equation, 65

substitution, 121

uniqueness, 122

terms, 17

then, 231

thick, 196–199

thickInv, 199

thin, 196

tree, 211

triangle, 50

try, 34, 38

type family, 50

type former, 89

type inference rules

core, 22, 24

development, 29

unfolding, 71, 159

unification problem, 129

unifier, 133

Unifies, 216

unify, 41

unify-refine, 42

unit type, see 11
universes, 17

Unload, 217

vect, 104

vlast

vlast, 172

vtail, 128

weak induction principle, 70, 100

258

