When formulated in the language of *sieves*, descent for an *n*-category valued presheaf G over a cover $Y \to X$ is controlled by the *n*-category of *n*-functors from Y to G, after Y is conceived as a presheaf itself.

As n grows beyond very small values, realizing this idea requires a choice of formalization of ∞ -category in order to make sense of n-functors and their higher homotopies. Ross Street has given a definition of the descent ∞ -category in the context of presheaves with values in *strict* ∞ -categories, but without explicitly relating that definition to the notion of ∞ -functors from the cover regarded as a sieve to the ω -presheaf in question.

The following is a remark on how Street's definition of descent can be regarded as being a formalization of ∞ -functors from sieves into ω -presheaves.

Let C be some site and assume that all covers $\pi : Y \to X$ are regular epimorphisms, so that the corresponding simplicial C-objects $Y^{\bullet} := (\cdots Y \times_X Y \times_X Y \xrightarrow{\pi_1} Y \times_X Y \xrightarrow{\pi_2} Y)$ exist.

Let $Spaces := Sets^{C^{op}}$ be the category of presheaves on C and notice that ω -categories internal to Spaces are the same as ω -category-valued presheaves on C

$$\omega$$
Categories(Spaces) $\simeq \omega$ Categories^{Cor}

Fix some cosimplicial ω -category

$$O: \Delta \rightarrow \omega \mathsf{Categories}(\mathsf{Spaces})$$

and consider the induced ω -nerve $N : \omega$ Categories(Spaces) \rightarrow SimplicialSpaces and its left adjoint F : SimplicialSpaces $\rightarrow \omega$ Categories(Spaces), the free ω -category with respect to O of a simplicial space S

$$F(S) := \int^{[n] \in \Delta} O([n]) \cdot S^n \, .$$

Street chooses the orientals for O, though I think one should keep in mind that these give the right answer for descent only in the case that the ω -category valued presheaves for which one considers descent happen to take values in ω -groupoids. More generally I think one should take O([n]) to be for instance the free ω -groupoid on the *n*-simplex, which is denoted $\Pi(\Delta^n)$ by Ronnie Brown (the fundamental ω -groupoid of the standard *n*-simplex regarded as a filtered space with the canonical filtering).

For my main point below this issue is secondary, it becomes relevant when we want to form F(N(A)) for an ω -groupoid A and regard that as a cofibrant replacement (wrt the folk model structure) of A, which is related to the notion of descent but shall not further concern me here, except for the observation that for A an ω -category, strict ω -functors out of cofibrant replacements of A are the same as weak (pseudo) ∞ -functors out of A. For (n = 2)-categories it is a theorem by Lack that this notion of pseudo functor reproduces the known one.

With that in mind, the ω -category valued presheaf (the sieve) which corresponds to (a suitable replacement of) the cover $Y \to X$ should be

$$F(Y^{\bullet}) = \int^{[n] \in \Delta} O(\Delta^n) \cdot Y^{[n+1]}$$

and for $G: C^{\text{op}} \to \omega$ Catgegories an ω -category valued presheaf the corresponding descent ω -category should be

$$\operatorname{Hom}_{\omega \operatorname{Cat}(\operatorname{Spaces})}(F(Y^{\bullet}), G)$$
.

Using the fact that the contravariant Hom takes colimits to limits this is

$$\cdots \simeq \int_{[n] \in \Delta} \operatorname{Hom}(O([n]) \cdot Y^{[n+1]}, G) \,.$$

Then using the Hom-adjunction (essentially the definition of the tensor \cdot appearing here) this is

$$\cdots \simeq \int_{[n] \in \Delta} \operatorname{Hom}(O([n]), \operatorname{Hom}(Y^{[n+1]}, G)).$$

Finally with Yoneda this becomes

$$\cdots \simeq \int_{[n] \in \Delta} \operatorname{Hom}(O([n]), G(Y^{[n+1]})).$$

But this last expression (my thanks to Dominic Verity for discussion of this point) is indeed equivalent to Street's definition of the descent ω -category

$$\cdots \simeq \operatorname{Desc}(Y, G)$$
.