I Topological Field Theories, Quantum Groups, and Geometric Langlands By Jacob Lurie (MIT) May 26, 2009

Notation:

- G: reductive alg. group over \mathbb{C} , G^{\vee} its Langlands dual (e.g. $G = GL_n = G^{\vee}$)
- X: alg. curve over \mathbb{C} .
- $\operatorname{Bun}_G(X)$ (*G*-bundles on *X*)
- $Loc_G(X)$ (*G*-bundles on X with connections)

Conjecture (Geom. Langlands): $\operatorname{QCoh}(\operatorname{Loc}_G(X)) \cong \mathcal{D}\operatorname{-mod}(\operatorname{Bun}_G(X))$. Local systems

 $\operatorname{Loc}_G(X) \simeq_{\operatorname{anal.}} (BG)^X \simeq ((\pi_1(X) \to G)/\operatorname{conj.})$

Remark I.1. On $\operatorname{Bun}_G(X)$ there is a canonical line bundle, called det. \rightsquigarrow gives a twisted version $\mathcal{D} - \operatorname{mod}_c(\operatorname{Bun}_G)$ (twist by the *c*-th power of det).

Quantum Geometric Langlands: $\mathcal{D} - \text{mod}_c(\text{Bun}_G) \cong \mathcal{D} - \text{mod}_{-\frac{1}{c}}(\text{Bun}_{G^{\vee}})$ TFT

Recall: definition of Bord_n (symmetric monoidal (∞, n) -category)

Definition I.2. An (extended) TQFT is a \otimes -functor $\text{Bord}_n \to \mathcal{C}$, where \mathcal{C} is another $\otimes (\infty, n)$ -category.

Definition I.3. If *M* is a *m*-manifold $m \leq n$, then an *n* framing of *M* is a trivialization $TM \oplus \underline{\mathbb{R}}^{n-m} \simeq \underline{\mathbb{R}}^n$

Theorem I.4 (Framed Cobordism Hypothesis).

 $\operatorname{Fun}^{\otimes}(\operatorname{Bord}_{n}^{\operatorname{fr}}, \mathcal{C}) \curvearrowleft O(n) \simeq "n-dualizable \ objects \ in \ \mathcal{C} " \curvearrowleft O(n) \quad Z \mapsto Z(\operatorname{pt})$

Theorem I.5 (Non-framed Cob-Hyp.).

 $\operatorname{Fun}^{\otimes}(\operatorname{Bord}_{n}^{\operatorname{fr}}, \mathcal{C}) \simeq "n-dualizable \ objects \ in \ \mathcal{C}" \quad Z \mapsto Z(\operatorname{pt})$

Example of a 2-category: Alg: (objects: \mathbb{C} -algebras, morphisms: bimodules, 2-morphisms: maps of bimodules). Every object of Alg is 1-dualizable and it is 2-dualizable iff it is semi-simple \rightsquigarrow boring!

Example of a $(\infty, 2)$ -category: dgAlg (objects: dg-C-algebras, morphisms dg-bimod. 2morph.: maps of dg-bimod. 3-morph.: chain homotopies). Every objects in dgAlg is 1-dualizable and it is 2-dualizable iff it is a smooth and proper dg-algebra.

To increase the "category level": replace dg-vector spaces by dg-categories and an additional associative product.

Definition I.6. Braid: $(\infty, 4)$ -category with

objects: braided monoidal dg-categories

morph.: monoidal dg-categories

2-morph.: dg-categories

3-morph.: functors

4-morph.: nat. transfromations

... and so on...

Relation to the representation category $\operatorname{Rep}_q(G)$ of a quantum group ...(missed something)... by dualizability, $\operatorname{Rep}_q(G)$ gives a 3d theory $Z : \operatorname{Bord}_3 \to \operatorname{Braid}$ with

$$Z(\Sigma) = \bigotimes_{x \in \Sigma} \operatorname{Rep}_a(G)$$

for Σ a closed surface.

Example I.7. $q = 1 \Rightarrow \operatorname{Rep}_q(G) = \operatorname{Rep}(G)$ and

$$\otimes_{x\in\Sigma} \operatorname{Rep}(G) \cong \operatorname{QCoh}(BG^{\Sigma})$$

 $Z(S^2)\simeq$ higher Drinfeld center of ${\rm Rep}_q(G).$ Now S^2 has two incarnations in alg. geom:

- $S^2 \cong \mathbb{P}^1 \Rightarrow \mathcal{D}(\operatorname{Bun}_G(\mathbb{P}^1))$
- $S^2 \cong D^2 \coprod_{\dot{D}^2} D^2 \Rightarrow G[[t]] \backslash G((t)) / G[[t]]$

 $\operatorname{Gr}_G = G((t))/G[[t]]$ (affine Grassmannian) $\mathcal{D}(\operatorname{Bun}(D^2 \coprod_{\dot{D}^2} D^2)) \cong \mathcal{D}(\operatorname{GR}_G)^{G[[t]]}$ (Spherical Hecke Category or Satake Category)

There is a gemoetric Satake isomorphism (Mirkovic-Vilones) $\mathcal{D}_c(\mathrm{Gr}_G)^{G[[t]]} \simeq \text{trivial if } c$ is generic

 $\mathcal{D}(Gr)$ is "like" a braided moniodal category. $Gr_G(x, y) = \{G - \text{bundles trivialized on} X - \{x, y\}\} \simeq \{Gr \times Gr \text{ if } x \neq y\}$ or $\{Gr \text{ if } x = y\}$

 $\mathcal{D}_c(\mathrm{Gr}_G)$ can be simplified in two ways:

- Consider G((t))-equivariant \mathcal{D} -modules, which is by Kazhdan-Luztik equivalent to $\operatorname{Rep}_{a}(G)$.
- Take a full subcategory of "Whittake" objects, which also is equivalent to $\operatorname{Rep}_{q'}(G^{\vee})$

$$\otimes_{x \in X}$$
 Whit $\leftarrow \mathcal{D}_c(\operatorname{Bun}_G(X)) \to \otimes_{x \in X} KL$

where \rightarrow is fully faithful

Table of analogies:

Topological (Betti)	alg./geom.	physics (Kapuskin-
	(de Rham)	Witten)
$\operatorname{QCoh}(BG^X)$	$\operatorname{QCoh}(\operatorname{Loc}_G(X)) \cong \mathcal{D}$ –	The geom. Langlangs
	$mod(Bun_G(X))$	corresp. comes from an
		equivalence of 4d-TFTs
		(n = 4: super Yang-
		Mills in the GL -twist for
		$G \text{ and } G^{\vee})$
$q = e^{2\pi i c}$	twisting parameter $c \in \mathbb{C}$	$c \text{ or } \mathbb{C}/(1,c)$
Comes from a TQFT?:		
Yes (for a boring \mathcal{C})	No (but the same corre-	Maybe (with a very in-
	sponding structures)	teresing \mathcal{C})
$q \mapsto e^{\frac{4\pi}{\log(q)}}$	$c \mapsto \frac{1}{c}$	
$\operatorname{Rep}_{q}(G)$	$\mathcal{D}(\mathrm{Gr}_G^c)$	