
CFT and algebra in braided tensor categories.
Part I: Christoph Schweigert.

Chapter 1. Modular tensor categories and rational CFT.

Rational semi-simple conformal vertex operator algebras. Every such algebra has a rich representation
theory. Using the category of representations we can construct conformal blocks and use them to endow
the category of representations with some additional structure. In particular it will be a modular tensor
category.

De�nition. A modular tensor category is an abelian complex-linear semi-simple noetherian strict tensor
category such that the monoidal unit is simple. (Denote by I the set of representatives of classes of simple
objects.) Modular tensor category is a also a ribbon category, in particular the left and the right duals of
an object always coincide. Finally, the braiding must satisfy a non-degeneracy condition, which means that
we have an isomorphism of algebras K0(C)
Z C! End(idC).

Fact (Reshetikhin and Turaev). For any modular tensor category C there is a tensor functor tftC from
the category of cobordism decorated over C to the category of �nite-dimensional complex vector spaces. In
particular, we have a factoriation homomorphism. [See Turaev's book for its properties.] We also have a
representation of mapping class group Map(X) on tftC(X).

Chapter 2. CFT correlators.

If X is a two-dimensional oriented manifold with boundary (there is also an unoriented version). X is
called a worldsheet. Actually X is a topological manifold.

Strategy: Decorate X. Find an appropriate space of \functions" for correlators.
Holomorphic factorization. Associate to X its oriented cover X̂ (twisted double) (glue two copies of X

along their boundaries). For a disc we obtain a sphere, for a M�obius band we obtain a torus, for a torus we
obtain two tori.

Step 1. Find a decoration for X such that X̂ 2 cobordC3;2. Step 2. Now Cor(X) 2 tftC(X̂). (a) Cor(X)
is invariant under Map(X̂)�. (Modular invariance.) (b) Compatibility with factorization conditions.

Insight: Decoration data is bicategory of special symmetric Frobenius algebras in C. De�nition of
Frobenius algebra (A; �;m;�; �), where (A; �;m) is an algebra, � is a comultiplication which is a morphism
of A-bimodules. Special property: m �� = idA and � � � = (dimA)id1.

A typical worldsheet looks like a manifold with boundary and defect lines (embedded branching lines
with marked points).

A decoration maps a 2-cell to some SSFA A, a 1-cell which is a boundary maps to a left or right A-
module (depending on the orientation; A is the algebra associated to the neighboring 2-cell) and defect lines
are mapped to A1-A2-bimodules, where A1 and A2 are the algebra associated to two neighboring 2-cells.
Now we move to 0-cells. Branching points on defect lines are mapped to a morphism of A1-A3-bimodules
from D1 
A2 D2 to D3. [The other two cases of 0-cells I do not understand.]

Correlators from cobordisms. If MX is a cobordism from ; to X̂, then Cor(X) = tftC(MX)1 2 tftC(X̂).
Here MX = (X̂ � [�1; 1])=(�: t 7! �t). We have @MX = X̂.

Part II: Ingo Runkel.
Plan: (1) Bulk algebra. (2) Module categories. (3) Outlook of the logarithmic conformal �eld theory.
Recall: We have a modular tensor bicategory C. Objects are special symmetric Frobenius algebras,

morphisms are bimodules, 2-morphisms are intertwiners.
We have a functor R:C ! C+ � C� that is an adjoint to the tensor product functors C+ � C� ! C.

Here C+ = C and C� is C with the inverse braiding and the inverse twist.
Proposition: If A is a SSFA in C, then R(A) is a SSFA in C+ � C�.
De�nition: The left center of an algebra A in C is the maximal subobject Zl of A such that the obvious

condition is satis�ed. The right center is de�ned using the inverse braiding.
De�nition: The full center of a SSFA A 2 C is Z(A) = Zl(R(A)) 2 C+ � C�.
Proposition: Z(A) is a commutative SSFA in C+�C�. Zl(A)�1 and 1�Zr(A) are subalgebras of Z(A).

Z(A) =
L

i;j2I(U�i � Uj)�zi;j(A).
Theorem: The number of isomorphism classes of simple A-left modules is equal to the trace of z(A).
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Theorem (Kong-Runkel, 2007): If C is a modular tensor category and A and B are Morita-equivalent
simple SSFA, then Z(A) is isomorphic to Z(B) as algebra.

Theorem (Kong-Runkel, 2008): If C is a modular tensor category and F is a commutative simple SSFA
in C+ � C� such that dimF = dimC, then there exists a SSFA A 2 C such that F is isomoprhic to Z(A)
and T (F ) = �iAi, where Ai are simple SSFA, Morita-equivalent to each other.

Chapter 2. Module categories.

De�nition: If C and M are abelian complex linear categories and C is a tensor category, then M is
a module category over C if we have a functor M � C ! M such that the obvious (weak) associativity
conditions are satis�ed.

Examples: A monoidal category is a module over itself. If A is an algebra in C and A-mod is the right
A-module category, then we have an obvious functor given by tensor product.

Theorem (Ostrik, 2001): If C is a modular tensor category (without braiding), M is a semi-simple �nite
indecomposable (cannot be written as a direct sum of two other categories) module category over C, then
M is equivalent to the category of A-modules for some algebra A in C.

Proof: De�ne the inner hom as a right adjoint to the monoidal product.
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