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Lecture 1. Reflections on the notion of topological spaces I

The purpose of these first few lectures is to understand the notion of manifolds in various
contexts (topological, differentiable, analytic ...) For that we will start in this first lecture
by considering the case of topological manifolds.

1.1. Review of the topological manifolds

Definition 1.1.1.

(1) A topological manifold is a topological space X which possesses a open cover {Ui}i∈I
such that for each i ∈ I there exists a homeomorphism of Ui with an open set of Rni

(for a certain integer ni ≥ 0 depending on i).
(2) The category of topological manifolds is the full subcategory of that of the topological

spaces whose objects are topological manifolds. This category is denoted by Top.

Let X be a topological manifold and {Ui}i∈I a open cover as in the Definition 1.1.1 (1)
above. We put, for i and j in I, Ui,j := Ui ∩ Uj. We have a diagram of topological spaces∐

(i,j)∈I2
Ui,j ⇒

∐
i∈I

Ui,

where the first morphism sends the component Ui,j to Ui by the natural inclusion Ui,j ⊂ Ui,
and the second morphism sends Ui,j to Uj by the natural inclusion Ui,j ⊂ Uj. There also
exists a natural morphism ∐

i∈I

Ui −→ X

summing the inclusions Ui ⊂ X, which equalizes the two morphisms above. We thus obtain
a well-defined morphism

colim−−−→

 ∐
(i,j)∈I2

Ui,j ⇒
∐
i∈I

Ui

 −→ X.

The important fact is the following.

Lemma 1.1.2. The morphism

colim−−−→

 ∐
(i,j)∈I2

Ui,j ⇒
∐
i∈I

Ui

 −→ X

is an isomorphism.

Proof. The lemma says that for a topological space Y , to give a morphism f : X → Y is the
same as to give for any i ∈ I a morphism fi : Ui → Y such that (fi)|Ui,j

= (fj)|Ui,j
for any

(i, j) ∈ I2. (Exercise: work out the details). �

It is necessary to interpret the preceding lemma as follows: any topological variety is
obtained as a colimit of a diagram of open sets of Rn (for n varying). We draw from that
the following principle:

The category Top of topological manifolds is deduced from the category of open sets of Rn

(and continues maps).
We will clarify this principle later.
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1.2. Manifolds and sheaves

Let C be a full subcategory of Top whose objects are open sets of Rn (for n varying). We

denote by Pr(C) the category of presheaves of sets on C (also denoted by Ĉ). We consider
the Yoneda embedding of C

h− : Top −→ Pr(C)
X 7−→ hX ,

where the presheaf hX is defined by

hX(Y ) := HomTop(Y,X),

for any Y ∈ C ⊂ Top.

Lemma 1.2.1. The functor h− above is fully faithful.

Proof. The functor is faithful: for two morphisms f, g : X → X ′, we consider an open cover
{Ui} of X such that Ui ∈ C (this exists since X is a manifold). If hf = hg, then for any i
the two maps

hf (Ui) = hg(Ui) : Hom(Ui, X) = hX(Ui) −→ Hom(Ui, X
′) = hX′(Ui)

are equal. This means that f |Ui
= g|Ui

for any i, and so that f = g.
The functor is full: Let X and X ′ be two topological manifolds and u : hX → hX′ a

morphism of Pr(C). Let {Ui} be an open cover of X with Ui ∈ C. For any i, the morphism
u induces a map

hX(Ui) = Hom(Ui, X) −→ hX′(Ui) = Hom(Ui, X
′).

The image of the inclusions Ui ⊂ X under this map give morphisms fi : Ui → X ′ for any
i. For any i and j in I, the elements (fi)|Ui,j

∈ hX′(Ui,j) and (fj)|Ui,j
∈ hX′(Ui,j) are both

images of the inclusion morphisms Ui,j ⊂ X under the map hX(Ui,j) → hX′(Ui,j), and are
thus equal (recall: Ui,j = Ui∩Uj). Thus, the morphisms fi : Ui → X ′ glue together to define
a morphism f : X → X ′. By construction, we have hf = u. �

Lemma 1.2.1 is a good starting point, we know that Top is identified (up to equivalence)
with a full subcategory of Pr(C). We now try to characterize this subcategory.

We start by making C a Grothendieck site by declaring that a family of morphisms {Ui →
U}i∈I in C is a covering family if each morphism Ui → U is a open immersion, and if the
total map

∐
i∈I Ui → U is surjective. This defines a pre-topology on C (Exercise: check it),

whose associated topology is denoted τ .

Lemma 1.2.2. For any X ∈ Top the presheaf hX ∈ Pr(C) is a sheaf with respect to the
topology τ .

Proof. This is another way of saying that for a topological variety Y and an open cover
{Ui → Y }i∈I , to give a continuous map from Y to X is the same as to give continuous maps
fi from Ui to X such that fi and fj coincide on Ui ∩ Uj. �

Thus, Lemma 1.2.2 implies that we have a fully faithful functor

h− : Top −→ Sh(C, τ).

A sheaf isomorphism to hX is called representable by X. Generally speaking we identify the
category Top with its image in Sh(C, τ).

To characterize the image we make the following definition.
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Definition 1.2.3.

(1) A morphism f : F → G in Sh(C, τ) is a local homeomorphism if for any X ∈ C,
and any morphism hX → G, the sheaf F ×G hX is representable by Y ∈ Top, and
the morphism Y → X induced from the projection F ×G hX ∼= hY → hX is a local
homeomorphism of topological space.*

(2) A morphism in Sh(C, τ) is an open immersion if it is a monomorphism and a local
homeomorphism.

We check easily that the open immersions in Sh(C, τ) are stable under composition (Ex-
ercise: check it). We may also check that the local homeomorphisms are stable under
composition, but this requires Corollary 1.2.5 below (Exercise: check it). We also show that
a morphism of topological manifolds X → Y is a local homeomorphism of topological spaces
if and only if hX → hY is a local homeomorphism in the sense of the preceding definition
(Exercise: check it).

We then have the following proposition.

Proposition 1.2.4. A sheaf F ∈ Sh(C, τ) is representable by a topological manifold (i.e.,
F ∼= hX for a certain X ∈ Top) if there exist a family {Ui}i∈I of objects in C and a morphism
of sheaves

p :
∐
i∈I

hUi
−→ F

satisfying the following two conditions.

(1) The morphism p is an epimorphism of sheaves.
(2) For any i ∈ I the morphism Ui → F is an open immersion (in the sense of Definition

1.2.3).

Proof. Suppose F is representable by a topological manifold X. We choose an open cover
{Ui}i∈I of X with Ui ∈ C, and we consider the natural morphism

p :
∐
i∈I

hUi
−→ F ∼= hX

induced by the inclusions Ui ⊂ X. For Y ∈ C and f : Y → X, an element of hX(Y ) we
consider {f−1(Ui)}i∈I which is an open cover of Y . Furthermore, for any i ∈ I there exists
a commutative diagram

f−1(Ui) //

��

Y

��
Ui // X,

which shows that f is a locally the image of the morphism p. This implies that p is an
epimorphism of sheaves. Moreover, for Y ∈ C and for any morphism hY → hX corresponding
to an morphism f : Y → X, we have

hUi
×hX hY ∼= hUi×XY = hf−1(Ui).

As f−1(Ui) → Y is an open immersion we see that each morphism hUi
→ F is an open

immersion.
* Recall: a continuous map f : X → Y between topological spaces is a local homeomorphism if for any

x ∈ X, there exists an open neighborhood U of x in X and an open neighborhood V of f(x) in Y , such that
f induces a homeomorphism of U with V .
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Conversely, assume that F is a sheaf satisfying the two conditions in the proposition.
We reconstruct a topological space X in the following way: let {Ui} be a family of objects
in C and p :

∐
hUi
→ F a morphism as in the statement in the proposition. We put

U =
∐

i Ui ∈ Top. We note that the natural morphism∐
hUi
−→ hU

is an isomorphism in Sh(C, τ) (Exercise: check this). We consider the two projections

hU ×F hU ⇒ hU .

By hypothesis we have
hU ×F hU ⇒ hR

where R =
∐

i,j Ui,j with hUi
×F hUj

(thus each Ui,j is isomorphic to an open set of Ui and

of Uj). By Lemmas 1.2.1 and 1.2.2 the diagram

hR ⇒ hU

is the image of h of a diagram of topological manifolds R ⇒ U . We put

X := colim−−−→(R ⇒ U),

where the colimit is taken in the category of topological spaces. Note that R is an equivalence
relation on U and that X is the quotient.

We notice that X is a topological space. For that, by definition the natural morphism
U → X is surjective. Furthermore, Ui → X is an open immersion. In fact, since hUi

→ F is
a monomorphism, we have Ui,i = Ui, which implies that Ui → X is injective (Exercise: check
this). Moreover, a subset V ⊂ X is open if and only if its preimage in U over the projection
U → X is an open set. Yet, the inverse image of Ui ⊂ X over this projection is the subset∐

j Ui,j of U which is an open set. This shows that X is covered by open sets Ui ∈ C, and
therefore is a topological manifold.

It remains to show that F and hX are isomorphic. There exists a natural morphism of
sheaves

colim−−−→(hR ⇒ hU) −→ hX .

Since hU → F is an epimorphism, and that the epimorphism of sheaves are effective, we
know that that the left-hand side is naturally isomorphic to F . It therefore remains to show
that the morphism above is an isomorphism of sheaves. Since the morphism hU → hX is
also an epimorphism of sheaves (Exercise: check it), we only need to show that the natural
morphism

hR −→ hU × hXhU
is an isomorphism. Since h is faithfully flat and commutes with limits it suffices to check
that the natural morphism

R −→ U ×X U
is an isomorphism. This is true because the natural morphism Ui,j → Ui ×X Uj is an
isomorphism (this is a bijective local homeomorphism). �

Corollary 1.2.5. Let X ∈ Top, and F → X a morphism of sheaves. If there is an open
cover {Ui}i∈I of X such that for any i ∈ I the sheaf F×hX hU is representable by a topological
manifold, then F is representable by a topological manifold.
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Proof. For any i ∈ I, we choose {Vi,j}j∈J and
∐

j hVi,j → F ×hX hUi
as in Proposition 1.2.4.

We then check that ∐
i,j

hVi,j −→ F

is a morphism as in Proposition 1.2.4 (Exercise: check it). �

1.3. Quotient manifolds

Let G be a (discrete) group acting on a topological manifold X ∈ Top. By functoriality
the group G act on the sheaf hX . Recall that the action of G on X is free if for any x ∈ X
and g ∈ G we have (g.x = x) ⇒ (g = e). Recall also that the action of G on X is totally
discontinuous if any point x ∈ X possesses an open neighborhood U ⊂ X such that for any
g ∈ G we have

(g(U) ∩ U 6= ∅)⇒ (g = e).

In the following statement, we will be careful not to confuse the quotient sheaf hX/G with
the sheaf hX/G represented by the quotient space X/G.

Proposition 1.3.1.

(1) If the action of G on X is free then the quotient morphism

hX −→ hX/G

is a local isomorphism.
(2) If the action of G on X is totally discontinuous then the quotient sheaf hX/G ∈

Sh(C, τ) is [represented by] a topological manifold.

Proof. (1) Let Y ∈ C and hY → hY /G a morphism of sheaves. We must show that
hX × hX/GhY is a topological manifold. Since the quotient morphism hX → hX/G is
an epimorphism, there exists an open cover {Yi} of Y and a commutative diagram∐

i hYi
//

��

hY

��
hX // hX/G.

Corollary 1.2.5 applied to the morphism

hX ×hX/G hY −→ hY

implies that it suffices to show that each hX ×hX/G hYi is a manifold. We have

hX ×hX/G hYi ∼=
(
hX ×hX/G hX

)
×hX hYi .

Yet, hX ×hX/G hX ∼= hX × hG since it can be checked on the level of presheaves of sets
(Exercise: check it). Thus, we have

hX ×hX/G hYi ∼= hYi × hG ∼= hYi×G.

This finishes showing that hX ×hX/G hY is a topological manifold. Moreover, the morphism
of manifolds

hX ×hX/G hY −→ hY
is, after restriction to the cover {Yi}, isomorphic to the projection

hYi × hG −→ hYi .
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Since this morphism is a local homeomorphism, this implies that the morphism hX ×hX/G
hY −→ hY is a local homeomorphism.

(2) For any x ∈ X let Ux be an open neighborhood of x in X such that g(Ux) ∩ Ux = ∅
for any g 6= e in G. We consider the natural morphism

hUx −→ hX/G.

By point (1), this morphism is a composition of local homeomorphisms (hUx → hX → hX/G)
and therefore is a local homeomorphism. Furthermore, we have

hUx ×hX/G hUx
∼=
(
hUx ×hX/G hX

)
hX
hUx
∼= (hUx × hG)hX hUx ,

as we saw in the proof of point (1). Finally, we have

(hUx × hG)hX hUx
∼= h(Ux×G)×XUx .

From the choice of Ux, we have (Ux × G) ×X Ux ∼= Ux (Exercise: check it). Thus, we have
shown that the diagonal morphism

hUx −→ hUx ×hX/G hUx

is an isomorphism, or in other words the morphism

hUx −→ hX/G

is a monomorphism. This shows that for any x ∈ X the morphism

hUx −→ hX/G

is an open immersion. Since the total morphism∐
x∈X

hUx −→ hX −→ hX/G

is an epimorphism, this finishes the proof of the proposition. �

The preceding corollary implies that the quotient X/G exists also in the category Top
(because h is fully faithful), but is a stronger statement.

1.4. Criticism of manifolds

Proposition 1.3.1 is a good way to construct examples of topological manifolds by totally
discontinuous actions. However, when a group G acts freely on a manifold X but not totally
discontinuously, the quotient space X/G is in general very pathological. The quotient sheaf
hX/G has better properties (e.g. point (1) of Proposition 1.3.1), even if it is not representable
by a topological manifold.

A striking example is the following: we let the discrete group Q (for the additive law) act
on the topological space R by the morphism

R×Q −→ R
given by (x, t) 7→ x + t. We see that this action is free, but not totally discontinuous.
Furthermore, the morphism R → R/Q is not a local homeomorphism because it is not
locally injective. Finally, the quotient space R/Q has the coarse [trivial] topology (because
its open sets are the invariant open sets of R). This shows that the quotient R/Q is not a
reasonable object from a geometric point of view. In return, the quotient sheaf hR/Q seems
more interesting, because the morphism hR → hR/Q being a local homeomorphism we can
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legitimately think that hR/Q is somehow locally isomorphic to an open set of R. The sheaf
hR/Q is the very first example of a geometric space.

Definition 1.4.1. A sheaf F ∈ Sh(C, τ) is a geometric space if there exist a family of objects
{Ui}i∈I of C, and a morphism of sheaves

p :
∐
i∈I

hUi
−→ F

satisfying the following two conditions.

(1) The morphism p is an epimorphism of sheaves.
(2) For any i ∈ I the morphism Ui → F is a local homeomorphism (in the sense of

Definition 1.2.3).

Proposition 1.3.1 tells us for example that the quotient sheaf hX/G, for a free action of
G on a manifold X, is a geometric space. An example of geometric space is therefore hR/Q
described above. One other example is hR/(Z + αZ), with α ∈ R−Q.

The geometric space form a full subcategory of Sh(C, τ). This category will be studied in
more details in the following lecture.
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Lecture 2. Reflections on the notion of topological spaces II

In the previous lecture we saw how the category of topological manifolds could be recon-
structed from the category C of open sets of Rn. To be more precise we used the category
C as well as two additional structures: the topology τ , and the notion of local homeomor-
phism. In this lecture we formalize this, and we explain how to define varieties/manifolds
and geometric spaces in an abstract context.

2.1. Geometric contexts

Let C be a category equipped with a subcanonical (pre)topology τ . By the Yoneda lemma
we identify C with a full subcategory of the category Sh(C, τ) of sheaves on C. We denote
the Yoneda embedding by

h : C −→ Sh(C, τ).

Let a class P of morphisms in C be given (i.e. P is a subset of the set C1 of morphism of
C). Recall the following notions:

(1) We say that a morphism f : X → Y in C is carrable if for any morphism Z → Y in
C, the object X ×Y Z exists in C.

(2) We say that P is stable under composition if for any two morphisms X
f−→ Y

g−→ Z we
have (f ∈ P and g ∈ P)⇒ (g ◦ f ∈ P).

(3) We say that P is stable under base change if for any cartesian square in C

X ′
f ′ //

��

Y ′

��
X

f
// Y,

we have (f ∈ P)⇒ (f ′ ∈ P).
(4) We say that P contains identities if for any object X ∈ C we have idX ∈ P.

We note that if P is stable under base change and contains identities then P also contains
isomorphisms (Exercise: check it. We use that commutative squares of isomorphisms are
cartesian).

We also need the following notions.

(1) A family of morphisms {Xi → X} in C is a P-covering if every morphism Xi → X
belongs to P and furthermore the morphism∐

i

hXi
−→ hX

is an epimorphism of sheaves.
(2) A family of morphisms {Xi → X} in C is a P-open covering if it is a P-covering and

furthermore every morphism Xi → X is a monomorphism.
(3) We say that P is local to the topology τ the following two conditions are satisfied.

(a) Let f : X → Y be a morphism in C such that there exists a covering family
{Yi → Y } such that every induced morphism fi : X ×Y Yi → Y belongs to P.
Then f ∈ P.
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(b) Let f : X → Y be a morphism in C such that there exists a P-covering family
{Xi → X} such that every induced morphism Xi → [Y ] belongs to P. Then
f ∈ P.

(4) We say that the tripe (C, τ,P) is compatible with finite sums if the following three
conditions are satisfied.
(a) The category C possesses finite sums.
(b) For any finite family of objects {Xi}i∈I in C the family of morphisms{

Xj −→
∐
i∈I

Xi

}
j∈I

is a P-covering.
(c) The finite sums are disjoint in C: for any finite family of objects {Xi}i∈I in C,

the sum X :=
∐

i∈I Xi, and for any (j, k) ∈ I2 we have

Xj ×X Xk
∼= ∅ if j 6= k Xj ×X Xj

∼= Xj
*.

(d) For any X ∈ C, if there exist two sheaves F and G such that hX ∼= F qG, then
there exists Y ∈ C such hY ∼= F .

(5) We say that the morphisms in P have open images if for any morphism f : X → Y
of P, there exists a family of morphisms {X ′i → Y } of P satisfying the following two
conditions.
(a) The morphisms X ′i → Y are monomorphisms.
(b) The morphisms of sheaves hX → hY and

∐
i hX′i → hY have the same image.

(6) We say that the morphisms in P are locally carrable if for any morphism f : X → Y
in P, there exists a P-open covering {Xi → X}i∈I such that each morphism Xi → Y
is carrable.

We finally arrive at the key definition of this lecture.

Definition 2.1.1. A geometric context is given by the a category C, a (pre)topology τ on
C, and a class of morphism P in C, which satisfy the following conditions.

(1) The topology τ is subcanonical.
(2) The morphisms of P are locally carrable.
(3) P is stable under composition and base change, contains identities, and is local for

the topology τ .
(4) The triple (C, τ,P) is compatible with finite sums.
(5) The morphisms of P have open images.

It is important to note right away the following fact that will be used implicitly in the
sequel.

Lemma 2.1.2. If (C, τ,P) is a geometric context, then the Yoneda embedding

h : C −→ Sh(C, τ)

commutes with finite sums.

*The condition here means that the diagonal morphism of Xj in Xj ×X Xj is an isomorphism
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Proof. For a family of finite objects {Xi}i∈I in C, the sum X :=
∐

iXi, we must show that
the natural morphism ∐

i∈I

hXi
−→ hX

is an isomorphism of sheaves. For that we show that it is an epimorphism and a monomor-
phism.

To show that this is a monomorphism, we use that we have(∐
i

hXi

)
×hX

(∐
i

hXi

)
∼=

∐
(i,j)∈I2

(
hXi
×hX hXj

)
.

Since the sums are disjoint in C we find that(∐
i

hXi

)
×hX

(∐
i

hXi

)
∼=
∐
i

hXi
,

which implies that the morphism
∐

i∈I hXi
→ hX is a monomorphism.

The fact that
∐

i∈I hXi
→ hX is an epimorphism is true by condition (b) of the definition

of being compatible with finite sums. �

To fix the ideas, here are some examples of geometric contexts (Exercise: verify that they
really satisfy the conditions of Definition 2.1.1).

(1) We take for C the category of topological spaces. The topology τ is the usual topol-
ogy: a family of morphism of topological spaces {Xi → X}i∈I is covering if for any
i the morphism Xi → X is an open immersion and if the morphism

∐
iXi → X is

surjective. For P we take the local homeomorphisms.
(2) We take for C the full subcategory of that of topological spaces consisting of finite

disjoint sums of open sets of Rn (for n varying). The topology τ is the usual topology
as above, and similarly P is like above the class of local homeomorphisms.

(3) We take C and τ as in Example (2) above. For P we take the class of topological
submersions. We say that a continuous map f : X → Y is a topological submersion
if there exist an open cover {Ui} of X, open sets Vi of Y , and commutative diagrams

Ui
ui //

qi
��

Vi × Rni

pi
��

X // Y,

where ui are homeomorphisms, and qi and pi are natural morphisms Ui ⊂ X and
Vi × Rni → Vi ⊂ Y .

(4) We define a category C as follows: the objects are finite disjoint unions of open sets
of Rn (for n varying). The morphisms are the maps C∞ (i.e. infinitely differentiable).
The topology τ on C is always the usual topology: a family of morphism of C,
{Xi → X}i∈I is covering if for any i the morphism Xi → X is C∞ open immersion (i.e.
is injective and the differential is bijection at any point of Xi) and if the morphism∐

iXi → X is surjective. For P we take the class of local diffeomorphisms (i.e. the
C∞ map whose differential is bijection at any point).

(5) We take C and τ as in Example (4) above. For P we take the class of C∞ submersions
(i.e. C∞ map which has a differential surjective at any point).
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(6) We define a category C as follows: the objects are finite disjoint unions of open sets of
Cn for n varying. The morphisms are the holomorphic functions (i.e. C∞ and whose
differential at any point is a C-linear map). For P we take the smooth holomorphic
maps (i.e. holomorphic and whose differential is surjective at any point).

2.2. Varieties

We fix a geometric context (C, τ,P) in the sense of Definition 2.1.1.

Definition 2.2.1.

(1) Let X ∈ C. A morphism of sheaves f : F → hX is an open immersion if it is a
monomorphism and there exists a family of morphisms {Xi → X} in P such that the
image of f is equal to that of the morphism

∐
i hXi

→ hX .
(2) A morphism of sheaves f : F → G is an open immersion if for any X ∈ C and any

morphism hX → G, the induced morphism

F ×G hX −→ hX

is an open immersion in the sense above.

We note that the condition (5) of the definition of geometric contexts (cf. previous lecture)
implies that one can assume that each morphism Xi → X is also a monomorphism in the
preceding definition.

One shows that the open immersions are stable under composition and base change (Ex-
ercise). One also shows that for two sheaves F and G the natural morphism F → F qG is
an open immersion (Exercise: use that (C, τ,P) is compatible with finite sums).

Definition 2.2.2. A sheaf F ∈ Sh(C, τ) is a variety (with respect to the context (C, τ,P))
if there exist a family of objects {Ui}i∈I in C and a morphism p :

∐
i∈I hUi

→ F satisfying
the following two conditions.

(1) The morphism p is an epimorphism of sheaves.
(2) For any i ∈ I the morphism hUi

→ F is an open immersion.

The data of objects Ui and of morphisms p :
∐

i∈I hUi
→ F is called an open atlas of F .

The category of varieties is the full subcategory of the category Sh(C, τ) of sheaves con-
sisting of varieties.

Each geometric context described at the end of the previous section thus gives rise to a
notion of variety. Here is what the notion of varieties in these contexts, numbered as in the
previous section (Big exercise: show these assertion by drawing inspiration from the previous
lecture which treats the context (2)).

(1) The category of varieties in this context is equivalent to that of topological spaces.
(2) The category of varieties in this context is equivalent to that of topological varieties

(this has been shown in the previous lecture).
(3) The category of varieties in this context is equivalent to that of topological varieties

(we note that the open immersions are the same as for the previous case, despite that
the class P is different).

(4) The category of varieties in this context is equivalent to that of differentiable varieties
(of C∞-class).

(5) The category of varieties in this context is equivalent to that of differentiable varieties.
(6) The category of varieties in this context is equivalent to that of complex varieties.
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2.3. Geometric spaces

To be able to define geometric spaces we must first extend the notion of morphisms in P
of objects of C to all the sheaves, like we have done for the notion of local homeomorphism.

Definition 2.3.1.

(1) A morphism f : F → G in Sh(C, τ) is representable (by a variety) if for any object
X ∈ C and any morphism hX → G the fiber product F ×G hX is a variety.

(2) A morphism f : F → G in Sh(C, τ) possesses the property P (we also say belong
to P) if it is representable and if for any object X ∈ C and any morphism hX → G
there exists an open atlas

p :
∐
i∈I

hUi
−→ F ×G hX

such that each induced morphism hUi
→ hX corresponds to a morphism Ui → X

belonging to P.

We note the following important lemma. It shows in particular that the preceding notion
of morphisms in P is compatible with the notion already existing in C.

Lemma 2.3.2.

(1) An open immersion in Sh(C, τ) is in P.
(2) Let X ∈ C and F → hX a morphism of sheaves. We assume that there exists a

covering family {Xi → X} satisfying the following conditions.
(3) (a) Each morphism Xi → X is a monomorphism and is in P.

(b) For any i the sheaf F ×hX hXi
is a variety.

Then the sheaf F is a variety.
(4) The morphisms in P in the sense of Definition 2.3.1 are stable under composition

and base change.
(5) Let f : X → Y be a morphism in C. Then f is in P if and only if the morphism

hf : hX → hY is in P in the sense of Definition 2.3.1.
(6) A morphism f : X → Y induces an open immersion hf : hX → hY if and only if f

is in P and if it is a monomorphism in C.
Proof.

(1) Let f : F → G be an open immersion. Let X ∈ C, hX → G a morphism, and
consider the induced morphism

F ′ := F ×G hX −→ hX .

There then exists a family of morphisms {Xi → X} in P such that F ′ is identified with
the image of the morphism

∐
i hXi

→ hX . Using the fact that the morphisms in P have
open images, we may furthermore assume that each hXi

→ hX is a monomorphism.
Using the fact that the morphisms in P are locally carrable we may also assume
that the morphisms Xi → X are carrable in C. The morphisms hXi

→ hX factorize
through F ′. Moreover, one easily sees (Exercise) that each morphism hXi

→ F ′ is an
open immersion. Since the morphism p :

∐
i hXi

→ F ′ an epimorphism by hypothesis,
this implies that F ′ is a variety. Moreover, p :

∐
i hXi

→ F ′ is an open atlas such
that hXi

→ hX is in P. This shows that f is in P.
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(2) Put Fi := F ×hX hXi
. For any i there exists an open atlas

∐
j Vi,j → Fi. We then

check that the total morphism ∐
i,j

Vi,j −→ F

is an open atlas
(3) Exercise (using point (2)).
(4) Let f : X → Y be in C. First assume that f is in P. Let Z → Y be a morphism in

C. We must start by showing that the sheaf hX ×hY hZ is representable by a variety.
For this we use that the morphisms in P are locally carrable. There thus exists a
P-open covering {Xi → X}, such that each sheaf hXi

×hY hZ is representable by an
object Ui of C. By point (2) this shows that hX ×hY hZ is a variety. Moreover, the
induced morphisms Ui → Z are in P, because the morphisms of P are stable under
base change. This shows that f is well in P.

(5) can be deduced from (4) and the fact that a morphism f in C is a monomorphism if
and only if the morphism hf is a monomorphism in Sh(C, τ). �

Definition 2.3.3. A sheaf F is a geometric space if there exists a family of objects {Ui}i∈I
in C and a morphism p :

∐
i∈I hUi

→ F satisfying the following two conditions.

(1) The morphism p is an epimorphism of sheaves.
(2) For any i ∈ I the morphism hUi

→ F belongs to P.

The data of objects Ui and of morphisms p :
∐

i∈I hUi
→ F is called an atlas of F .

The category of geometric spaces is the full subcategory of the category Sh(C, τ) of sheaves
consisting of geometric spaces.

A variety is of course a geometric space (because the open immersions are also morphisms
in P).

We end with the following proposition, which presents geometric spaces as certain quotient
of varieties by equivalence relations.

Proposition 2.3.4. Let F be a geometric space. Then, there exist a sheaf X, and an
equivalence relation R ⊂ X ×X satisfying the following conditions.

(1) The sheaves X and R are varieties. The sheaf X is a disjoint union of objects of C
(i.e. X ∼=

∐
hUi

, with Ui ∈ C).
(2) The two morphisms R ↪→ X ×X → X are in P.
(3) The sheaf F is isomorphic to the quotient sheaf of X by the relation R

F ∼= X/R := colim−−−→(R ⇒ X).

Proof. We choose an atlas

p :
∐
i

hUi
−→ F.

We set X :=
∐
hUi

and R := X ×F X. Since the morphism p is an epimorphism we have

F ∼= colim−−−→(X ×F X ⇒ X),

which shows the condition (3). To show (1), we write

R = X ×F X ∼=
∐
i,j

hUi
×F hUj

.
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This shows that R is a disjoint union of varieties and so a variety. Finally, since each
morphism hUi

→ F is in P, we have that each projection

hUi
×F hUj

−→ hUi

is in P. This implies the condition (2). �
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Lecture 3. Schemes and algebraic spaces I

3.1. Reminders on rings and modules

[...]
The A-modules and morphisms of A-modules form a category denoted by A-Mod.
Let f : A→ B be a morphism of rings, we define a [restriction of scalars] functor

c

[...] One can show that the functor F possesses a left adjoint

A-Mod −→ B-Mod
M 7−→ B ⊗AM.

[...]
We denote by Comm the category of commutative rings. [...]
We end with the notation

Aff := Commop

Moreover, the identity functor Aff → Commop is denoted by Spec. Thus, a morphism of
commutative rings A→ B is formally the same as a morphism SpecB → SpecA in Aff.

3.2. Flat morphisms

Definition 3.2.1. A morphism of commutative rings A→ B is flat if the functor

B ⊗A − : A-Mod −→ B-Mod

is exact.

We start by noting that since the categories of modules are abelian categories and that
the functor B ⊗A − is left adjoint (or right exact), the functor

B ⊗A − : A-Mod −→ B-Mod

is exact if and only if it preserves kernels. This is often the criterion that we use.
The general properties of flat morphisms are the following.

Lemma 3.2.2.

(1) The flat morphisms are stable under compositions.
(2) If

A
f //

��

A′

��
B

f ′
// B”

is a cocartesian diagram in Comm, and if f is flat then f ′ is flat (i.e. the flat
morphisms are stable under cobase change).

Proof. [...] �

Exercise: For any commutative ring A, show that the natural inclusion morphism A ↪→
A[X] is a flat morphism. The same for the morphism A[X] → A[X] that sends X to X2.
Show that the morphism A[X]→ A which sends X to 0 is not flat.
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Definition 3.2.3. A morphism of commutative rings A→ B is faithfully flat if the functor

B ⊗A − : A-Mod −→ B-Mod

is exact and conservative (i.e. exact and furthermore (B ⊗AM ∼= 0)⇒ (M ∼= 0)).

The general properties of faithfully flat morphism are the same as those of flat morphisms.

Lemma 3.2.4.

(1) The faithfully flat morphisms are stable under compositions.
(2) If

A
f //

��

A′

��
B

f ′
// B”

is a cocartesian diagram in Comm, and if f is faithfully flat then f ′ is faithfully flat
(i.e. the flat morphisms are stable under cobase change).

Proof. Same method as for Lemma 3.2.2 (Exercise: fill in the details). �

Exercise: For any commutative ring A, show that the natural inclusion morphism A ↪→
A[X] is a faithfully flat morphism. The same for A[X] → A[X] that sends X to X2. Show
that the inclusion morphism Z→ Q is flat but not faithfully flat.

Definition 3.2.5. A family of morphisms in Aff

{SpecAi −→ SpecA}i∈I
is a faithfully flat and quasi-compact covering ( fpqc for short) if the following conditions
are satisfied:

(1) The set I is finite.
(2) For any i ∈ I the morphism A→ Ai is a flat morphism.
(3) The morphism A→

∏
i∈I Ai is faithfully flat.

Exercise: Show that the condition (3) above implies the condition (2) (Exercise: one can
use that there exists an equivalence of categories

(∏
i∈I Ai

)
-Mod ∼=

∏
i∈I(Ai-Mod).

Lemma 3.2.6. The fpqc coverings defined in Definition 3.2.5 defines a Grothendieck (pre)topology
on Aff.

Proof. This is deduced from Lemmas 3.2.2 and 3.2.4. �

Definition 3.2.7. The Grothendieck topology on Aff whose covering families are the fpqc
coverings is called the fpqc topology.

We end the subject with the following lemma.

Lemma 3.2.8. The fpqc topology is sub-canonical.

Proof. We note that all representable presheaves on Aff are sheaves is equivalent to that for
any faithfully flat morphism A→ B the natural morphism

A −→ lim←− (B ⇒ B ⊗A B)

is an isomorphism (Exercise: check this).
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So let u : A→ B be a faithfully flat morphism. Since the functor B⊗A− commutes with
finite limits (by flatness), and is conservative (by faithful flatness), it is enough to show that
the morphism

A −→ lim←− (B ⇒ B ⊗A B)

induces an isomorphism

B ⊗A A ∼= B −→ lim←− (B ⊗A B ⇒ B ⊗A B ⊗A B) .

[...] �

3.3. Smooth and étale morphisms

For more details on this section we refer to the first exposé of [1], or in Paragraphs 2.1
and 2.2 of [2].

Let C0 ∈ Comm. We recall that a square zero extension of C0 is the data of a morphism
p : C → C0 in Comm which satisfies the following two conditions:

• The morphism p is surjective.
• If x ∈ Ker p then x2 = 0.

The fundamental example of a square zero extension is the morphism

A[X]/(X2) −→ A

which sends X to 0. It is called a trivial square zero extension. This is denoted by

A[ε] := A[X]/(X2),

and ε ∈ A[ε] is by definition the class of X. Thus, any element of A[ε] can be written in the
form a+ b · ε with a and b in A.

To better understand the square zero extension we may consider the following example.
Let A := C[X1, ..., Xn]/(P1, ..., Pr) be a commutative C-algebra of finite type. Let x : A→ C
correspond to a point x ∈ Cm such that Pj(x) = 0 for any j. The data of a commutative
diagram

C //

��

C[ε]

��
A x

//

>>

C
corresponding to the data of a vector b ∈ Cn such that Pj(x+ b · ε) = 0 for any j. Now, since
ε2 = 0 we have

Pj(x+ b · ε) = Pj(x) +
∑
i

bi ·
∂Pj
∂Xi

(x) · ε =
∑
i

bi ·
∂Pj
∂Xi

(x) · ε.

Thus, the data of a commutative diagram as above is equivalent to the data of a vector
b ∈ Cn satisfying ∑

i

bi ·
∂Pj
∂Xi

(x) = 0,

or in turn to the data of a tangent vector to the variety of equations P1, ..., Pr at point x.

Definition 3.3.1.



20 BERTRAND TOËN

(1) A morphism A → B in Comm is formally smooth (resp. formally étale) if for any
C0 ∈ Comm, any square zero extension C → C0, and any commutative diagram in
Comm

A //

��

C

��
B // C0

there exists a (resp. a unique) morphism B → C in Comm such that the diagram

A //

��

C

��
B //

>>

C0

commutes.
(2) A morphism in Comm is smooth (resp. étale) if it is formally smooth (resp. formally

étale) and of finite presentation*.

Lemma 3.3.2. The smooth and étale morphisms are stable under composition and base
change in Aff.

Proof. Exercise. �

The following proposition gives one way to construct examples of étale morphisms.

Proposition 3.3.3. Let F ∈ A[X] be a polynomial, and consider the natural morphism

A −→ A[X]/(F ) = B.

Then, the morphism A→ B is formally étale if and only if the derivative polynomial F ′(X)
becomes invertible in B.

Proof. [...] �

An important corollary of the preceding proposition is that an algebraic extension of fields
K → L is an étale morphism if and only if it is separable.

Another immediate consequence of the preceding proposition is that for any commutative
ring A and any f ∈ A, the morphism A→ Af := A[X]/(f ·X − 1) is étale. Exercise: check
this directly by applying the definition.

We also cite the following fact without proofs.

Proposition 3.3.4.

(1) A morphism A → B is smooth if and only if B is isomorphic as an A-algebra to
A[X1, ..., Xn]/(P1, ..., Pm), where Pi ∈ A[X1, ..., Xn] are such that the ideal generated
by the minors of order m×m of the matrix (∂Pi/∂Xj(X))i,j is B.

* We recall that a morphism of commutative rings A→ B is of finite presentation if B is isomorphic as
A-algebra to an A-algebra of the form A[X1, ..., Xr]/(P1, ..., Pr).
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(2) A morphism A→ B is smooth if and only if there exist an fpqc cover {ui : B → Bi}
and commutative diagrams

B ui
//

��

Bi

A //

OO

A[X1, ..., Xni
]

vi

OO

where all morphisms ui and vi are étale.
(3) The smooth (and in particular étale) morphisms are flat.

To finish we pose the following definition.

Definition 3.3.5. A morphism in Aff is an Zariski open immersion if it is an étale morphism
and a monomorphism.

We warn that we demand the morphism be monomorphism in Aff. In terms of rings this
means that A → B is a Zariski open immersion if it is an étale morphism and if for any
C ∈ Comm the induced morphism

Hom(B,C) −→ Hom(A,C)

is injective (i.e. that A→ B is an epimorphism in Comm).
Exercise: show that a smooth monomorphism in Aff is also étale. Show that the étale

morphism A→ Af considered above is a Zariski open immersion. One can also show that a
flat monomorphism of finite presentation is also is also étale (we will not do it).

3.4. The algebro-geometric context

We now define a geometric context (C, τ,P) as follows.

(1) The category C is the category Aff opposite to the category of commutative rings.
(2) We define an étale topology (ét) on Aff by setting a family {SpecAi → SpecA} of

morphisms in Aff an étale covering if it is an fpqc covering and if all morphisms
A→ Ai are étale. (cf. Proposition 3.3.4 (3)).

(3) The class P is by definition the class of smooth morphisms (lisse).

Theorem 3.4.1. The definition above defines a geometric context.

Proof. [...] �

Definition 3.4.2. The varieties (resp. geometric spaces) with respective to the geometric
context (Aff, ét, lisse) of Theorem 3.4.1 are called schemes (resp. algebraic spaces).
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Lecture 4. Schemes and algebraic spaces II

Recall that the category Aff opposite to that of commutative rings is equipped with the
étale topology ét. We simply denote by Sh(Aff) the category of sheaves on (Aff, ét). In the
previous lecture we have defined three full subcategories

{Affine schemes} ⊂ {Schemes} ⊂ {Algebraic spaces} ⊂ Sh(Aff).

In this lecture we give some examples of affine schemes, schemes, and algebraic spaces.
We also give examples of sheaves which are not algebraic spaces, but are geometric in some
sense.

4.1. Some properties of morphisms

We recall the notions of smooth morphisms and ètale between affine schemes given in
Lecture 3. The following definition gives some notions of morphisms between schemes and
algebraic spaces. We will see more of them in the following course on stacks and algebraic
spaces.

Definition 4.1.1.

(1) A morphism F → G in Sh(Aff) is representable by a scheme (resp. by an algebraic
space, resp., by an affine scheme) if for any affine scheme X and any morphism
X → G, the sheaf F ×G X is a scheme (resp. an algebraic space, resp. an affine
scheme). A morphism representable by an affine scheme is also called an affine
morphism.

(2) A morphism F → G in Sh(Aff) is smooth (resp. étale) if it is representable by
an algebraic space and if furthermore for any affine scheme X and any morphism
X → G, there exist an atlas {Ui} of F ×G X such that the composite morphisms
Ui → X are smooth (resp. étale) morphisms.

(3) A morphism F → G in Sh(Aff) is an open immersion if it is an étale monomorphism.
(4) A morphism F → G in Sh(Aff) is a closed immersion if it is an affine morphism

and if furthermore for any affine scheme X = SpecA and any morphism X → G,
the morphism of affine schemes

F ×G X ∼= SpecB −→ SpecA

corresponds to a surjective morphism of rings A→ B.

One can verify that the preceding notions are stable under base change and composition
(Exercise. One will use Proposition 4.1.2 (1) below to show that the representable morphisms
are stable under composition). We will also see that the notion of étale morphism above is
compatible with the definition in Lecture 3. (Exercise. One will be inspired by Lemma 2.3.2
(4) about the case of smooth morphisms).

Proposition 4.1.2.

(1) Let X be a scheme (resp. an algebraic space) and F → X a morphism in Sh(Aff).
Suppose that there exists an open atlas (resp. an atlas) {Ui} of X such that for any i
the sheaf Ui×X F is a scheme (resp. an algebraic space). Then F is a scheme (resp.
an algebraic space).

(2) All three full subcategories of Sh(Aff) consisting of affine schemes, of schemes, and
of algebraic spaces are stable under finite limits and arbitrary sums.
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(3) Let F → G be a morphism representable by a scheme (resp. an algebraic space,
resp. an affine scheme). If G is a scheme (resp. an algebraic space, resp. an affine
scheme), then so is F .

Proof. Exercise. �

4.2. Examples of schemes

4.2.1. The affine line. We consider the functor

Affop = Comm −→ Set
A 7−→ A,

which sends an affine scheme X = SpecA to the underlying set of the ring A (again denoted
by A). This functor is representable by the affine scheme

A1 := SpecZ[T ]

called the affine line. In fact, for any commutative ring A we have a bijection functorial in
A

A ∼= HomAff(SpecA,A1) = HomComm(Z[T ], A).

Explicitly, [...]. We also use the following notations (for A ∈ Comm)

An := (A1)n ∼= SpecZ[T1, ..., Tn],

An
A := An × SpecA ∼= SpecA[T1, ..., Tn].

The scheme An
A is called the affine space of dimension n over A. If we denote by by X :=

SpecA we also use the following notation

An
X := An ×X = An

A.

4.2.2. The multiplicative group. We consider the functor

Affop = Comm −→ Set
A 7−→ A×,

which sends an affine scheme X = SpecA to the set A× of invertible elements of the ring A.
This functor is representable by the affine scheme

Gm := SpecZ[T, T−1],

and is called the multiplicative group (Exercise: check that Gm indeed represents the functor
above.)

4.2.3. The linear group. We consider the functor

Affop = Comm −→ Set
A 7−→ A×,

which sends an affine scheme X = SpecA to the set GLn(A) of n × n invertible matrices
with coefficients in A. This functor is representable by the affine scheme

GLn := SpecZ[Ti,j]
[
det(Ti,j)

−1
]

1≤i,j≤n ,

which is called the general linear group (of rank n). We have GL1 = Gm.
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4.2.4. Complementary open. Let A ∈ Comm be a fixed commutative ring, I an ideal of
A, X := SpecA, and Y := SpecA/I a closed subscheme of X. We define a subfunctor U
of X as follows: for any B ∈ Comm, U(B) is the subset of X(B) consisting of morphisms
A → B such that B ⊗A A/I = B/IB = 0. The functor U is representable by a scheme,
which we call the complementary open of X and denote symbolically by X − Y . In fact, let
{fi} be a family of generator of I. For any i, we consider Ufi = SpecAfi together with the
morphism

Ufi −→ X

induced by the natural morphism A → Afi . We then see that each morphism Ufi → X
factorizes through U ⊂ X. We moreover show that the total morphism∐

i

Ufi −→ U

is an open atlas of U . Indeed, the fact that Ui → X is an open immersion implies that
the morphism Ui → U is also an open immersion. It therefore remains to show that the
morphism ∐

i

Ufi −→ U

is an epimorphism of sheaves. For that, let B ∈ Comm, and SpecB → U a morphism. We
need to find a covering family {SpecBj → SpecB}, and for any j an index i (which depends
on j) and a commutative diagram

SpecBj
//

��

SpecB

��
Ui // U.

The morphism SpecB → U correspond to a morphism of rings u : A→ B such that IB = B.
We can therefore write 1 =

∑
i bi · u(fi), where the bi are in B and all but a finite number of

them are zero. We then consider the family{
SpecBu(fi) −→ SpecB

}
where i runs through the subset of indices i such that bi 6= 0. We clearly have the commu-
tative diagrams

SpecBj
//

��

SpecB

��
Ui // U.

Each morphism SpecBu(fi) → SpecB is an open immersion, and it therefore remains to show
that the functor

B-Mod −→
∏(

Bu(fi)-Mod
)

is conservative. For that, let M be a B-module such that M ⊗B Bu(fi) = 0 for any i. For
m ⊂ B a maximal ideal, there exists an index i0 such that u(fi0) /∈ m. Therefore, the
localization morphism B → Bm factorizes through Bu(fi0 ). We then have

M ⊗B Bm
∼=
(
M ⊗B Bu(fi0 )

)
⊗Bu(fi0

)
Bm = 0.

This being true for any maximal ideal m of B, we have M = 0.
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Note that the proof above shows that X − Y is the union of subsheaves Ufi ⊂ X, and in
particular is an open subsheaf of X. Therefore, the inclusion morphism X − Y ↪→ X is an
open immersion.

The existence of the scheme X−Y is generalized when X is an algebraic space and Y ↪→ X
a closed immersion: we define X − Y to be the subfunctor of X consisting of morphisms
SpecB → X which are such that SpecB×X Y = ∅. We then check, with the aid of the case
where X is an affine scheme, that the inclusion morphism X−Y ←↩ X is an open immersion
and in particular is representable. This implies that X − Y is an algebraic space.

We will be careful that even if X and Y are affine, the scheme X − Y is in general non-
affine. For example, A2 − 0 (which corresponds to A = Z[X, Y ] and I = (X, Y )) is not
affine. We can see this in the following manner. For any scheme X, we can consider the
set O(X) := Hom(X,A1). Since the scheme A1 represents a sheaf of commutative rings, the
set O(X) naturally inherits a structure of commutative rings. Furthermore, if X = SpecA
is affine, then we have a natural isomorphism A ∼= O(X). We can write A2 − 0 as an
amalgamated sum in Sh(Aff)

Gm ×Gm
//

��

Gm × A1

��
A1 ×Gm

// A2 − 0.

(Exercise: check this.) Applying the functor X 7→ O(X) we find a cartesian diagram of rings

O(A2 − 0) //

��

Z[X,X−1, Y ]

��
Z[X, Y, Y −1] // Z[X,X−1, Y, Y −1].

which implies that O(A2 − 0) ∼= Z[X, Y ]. Therefore, if A2 − 0 was affine, we would have
A2 − 0 ∼= A2, which is not true (we can for example compare their complex points and use
the fact that C2 − 0 is not homeomorphic to C2).

4.2.5. Projectives spaces. We fix an integer n ≥ 1. For a commutative ring A ∈ Comm,
we define Pn(A) to be the set of A-submodules L ⊂ An+1 which satisfies the following two
conditions:

(1) There exists an A-submodule P ⊂ An+1 such that An+1 = L⊕ P .
(2) For any field K and any morphism A→ K we have dimK(L⊗A K) = 1.

For an morphism A → B in Comm we define a map Pn(A) → Pn(B) which, to an A-
submodule L ⊂ An+1, associates L⊗A B ⊂ Bn+1 (note that the condition (a) above implies
that L ⊗A B is a B-submodule of Bn+1). We must think of L ∈ Pn(A) as a family of lines
in An+1 parametrized by SpecA.

We now show that the functor Pn thus defined is a scheme. To do that, for any integer
1 ≤ j ≤ n + 1, we consider Uj(A) ⊂ Pn(A) the subset of L ⊂ An+1 which are such that
the projection onto the jth factor induces an isomorphism L ∼= A. As A traverses through
Comm, this defines a subfunctor Uj ⊂ Pn.

We start by showing that for j fixed the inclusion morphism Uj ↪→ Pn is an open immersion.
For that, let SpecA→ Pn be a morphism corresponding to an A-submodule L ⊂ An+1. The
subfunctor Vj := SpecA×Pn Uj ⊂ SpecA is described as follows: an element of SpecA(B) is
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in Vj(B) if it corresponds to a morphism A→ B such that the j-th projection L⊗AB → B
is an isomorphism. Note that as L →A B and B are projective B-modules of rank 1, the
morphism p : L⊗A B → B is an isomorphism if and only if it is a surjective morphism. In
fact, if it is surjective, we have L⊗AB ∼= B⊕Ker(p), and the condition (b) above implies that
Ker(p)⊗B B/m = 0 for any maximal ideal m of B. The Nakayama lemma then implies that
Ker(p) = 0. Thus, Vj := SpecA×Pn Uj ⊂ SpecA is identified with the subfunctor of SpecA
consisting of morphisms A → B such that the j-th projection L ⊗A B → B is surjective.
Write I ⊂ A for the image of the j-th projection L→ A. This is an ideal of A, corresponding
to a closed subscheme of SpecA, and we see by definition that its complementary open is Vj.
From this we see that Vj is a scheme, and furthermore Vj ⊂ SpecA is an open immersion.
This shows that the morphism Uj ↪→ Pn is an open immersion.

It remains to show that the total morphism∐
j

Uj −→ Pn

is an epimorphism of sheaves. For that, we use the following lemma.

Lemma 4.2.1. Let {Uj → F} be a finite family of open immersions in Sh(Aff). Then, the
morphism ∐

i

Ui −→ F

is an epimorphism if and only if for any field K the induced morphism∐
i

Ui(K) −→ F (K)

is surjective.

Proof. We first show that the necessity. Let K be a field and SpecK → F a morphism.
There then exists an open atlas {SpecKi → SpecK}, and we have commutative diagrams

Ui // F

SpecKi
//

OO

SpecK.

OO

Now, since K → Ki is a monomorphism in Comm, the morphism x 7→ x ⊗ 1 induces an
isomorphism Ki

∼= Ki⊗K Ki. This implies that Ki is of dimension 1 as K-vector space, and
thus K ∼= Ki.

Next we show the sufficiency. We start by using that a morphism f : F → G is an
epimorphism if and only if for any X ∈ Aff and any morphism X → G the morphism
F ×GX → X is an epimorphism (Exercise: check that.) This reduces the lemma to the case
where F is an affine scheme SpecA. In this case Uj are schemes (as open sets of SpecA) (we
use here the necessity already demonstrated). Now write

{Ui = SpecAi −→ F = SpecA}
for the family. Let M be a nonzero A-module. The A-module M contains an A-submodule
of the form A/I for a proper ideal I. Let m be a maximal ideal of A containing I, and note
that the hypothesis implies that the morphism A→ A/m factorizes through Ai → A/m for
a certain index i. Write mi for a maximal ideal of Ai that contains the kernel of Ai → A/m,
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write the morphism u : A→ Ai, and therefore u−1(mi) = m. Thus, the ideal IAi is contained
in mi and therefore Ai/IAi 6= 0. Since A→ Ai is flat we have a monomorphism

A/I ⊗A Ai = A/IAi ↪−→M ⊗A Ai
and thus M ⊗A Ai 6= 0. This finishes showing that {Ui = SpecAi → F = SpecA} is a
covering family. �

According to the lemma it suffices to show that for any field K the morphism∐
i

Ui(K) −→ Pn(K)

is surjective. But a point of Pn(K) corresponds to a vector subspace L ⊂ Kn+1 of dimension
1. There therefore exists an index j such that the j-th projection L → K is nonzero and
therefore an isomorphism.

This ends the proof that Pn is a scheme. We remark that each open subscheme Vj ⊂ Pn
is isomorphic to An (Exercise: check it. To a point L ⊂ An+1 of Vj we will correspond the
image of 1 ∈ A ∼= L in An under the projection that forgets the j-th factor). We can also
see that Pn is not affine. In fact, for n = 1 we have a cocartesian diagram in Sh(Aff)

Gm
//

��

V1
∼= A1

��
V2
∼= A1 // P1,

which by applying the functor X 7→ O(X) gives a cartesian diagram of rings

O(P1) //

��

Z[X]

b
��

Z[Y ] a
// Z[T, T−1],

where the morphism a sends Y to T and b sends X to T−1. We also find O(P1) ∼= Z. If
P1 was affine it would be isomorphic to SpecZ, which is not the case because for example
P1(Z) is not reduced to a point.

4.3. Examples of algebraic spaces

A general procedure of construction of algebraic spaces is given by the following proposi-
tion. For that, we recall that a scheme in groups is a group object in the category of schemes
(i.e. a sheaf in groups on Aff whose sheaf in underlying sets is a scheme). Similarly, for S a
scheme, a scheme in groups on S is a group object in the category of schemes over S (it is
therefore a sheaf in groups on the site Aff/S whose sheaf of underlying sets is a scheme).

Proposition 4.3.1. Let k be a commutative ring and S := Spec k. Let G be a scheme in
groups that is affine and smooth over S, which acts on a scheme X. We assume that the
morphism

G×X −→ X ×X
produces by the action by the second projection is an isomorphism (i.e. that the action is
fixed-point free). Then the quotient sheaf X/G is representable by an algebraic space.
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Proof. We will show that the natural morphism

X −→ X/G

is representable and smooth. This implies the result because an atlas {Ui} of X will give by
composition an atlas of X/G.

Let SpecA → X/G be a morphism. There exists an étale covering {A → Ai}, and we
have commutative diagrams

X // X/G

SpecAi //

OO

SpecA.

OO

We have

X ×X/G SpecAi ∼=
(
X ×X/G X

)
×X SpecAi ∼= (G×X)×X SpecAi ∼= G× SpecAi.

By Proposition 4.1.2 (1) this implies that X×X/GSpecA is an algebraic space. Furthermore,
we see that the projection X ×X/G SpecA→ SpecA becomes, after base change to SpecAi,
isomorphic to the natural projection

G× SpecAi −→ SpecAi.

This shows that the morphism X → X/G is representable by an algebraic space and is
smooth. We end by applying the technical lemma below, which we will prove later in the
course on algebraic stacks. �

Lemma 4.3.2. Let X = SpecA, and {SpecAi → SpecA} an étale covering. Let F → X be
a morphism in Sh(Aff) such that for any i the sheaf F ×X SpecA is an affine scheme. Then
F is representable by an affine scheme.

Although Proposition 4.3.1 gives a way simply enough to construct examples of algebraic
spaces, it is not easy to explicitly construct an algebraic space which is not a scheme. We
can consult Example 3.4.2 of Appendix B of [3] for one such example.

4.4. Non-representable examples

We have seen that the quotient of a scheme by an affine group scheme and smooth étale
group scheme and representable by an algebraic space when the action is fixed-point free.
We may legitimately ask the question of the representability of such a quotient when the
action is no longer fixed-point free. It turns out that, as we expect, a quotient by an action
with fixed point is no longer representable in general. To convince ourselves we consider the
very simple example below.

We take X := A1 the affine line and G = Z/2 which acts on A1 by x 7→ −x. Clearly, for
A ∈ Comm, the action of G on A1(A) = A is a 7→ −a. We claim that the quotient sheaf
X/G is not a scheme nor an algebraic space. In fact, we could show (we will not do so)
that if X/G is an algebraic space then it is necessarily an affine scheme. This affine scheme
satisfies then

X/G ∼= SpecO(X/G).

Now, since O(X/G) = Hom(X/G,A1), the universal property of quotient gives

O(X/G) = {P ∈ Z[T ]|P (T ) = P (−T )} ⊂ Z[T ].
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In other words, the morphism of affine schemes X → X/G corresponds tu the morphism of
rings

Z[U ] −→ Z[T ]

which sends U to T 2. Thus, if X/G is an algebraic space we find that the morphism

X = A1 −→ X/G ∼= A1

induced by x 7→ x2 locally has sections in the étale topology.
To see that it is not the case we proceed as follows. For x : SpecZ→ X a point of X, we

define
TxX := Homx(SpecZ[ε], X),

where the right-hand side designates the subset of morphisms SpecZ[ε] → X whose com-
position with SpecZ → SpecZ[ε] is equal to the morphism x. The set TxX is called the
tangent of X at x (we will talk about this later). We can easily check that if f : X → Y is
an étale morphism then the induced morphism TxX → Tf(y)Y is bijective (Exercise). This
implies in particular that our morphism

X = A1 −→ X/G ∼= A1

which locally has sections for the étale topology is such that the induced morphism

T0A1 −→ T0A1

is surjective. Now, we can explain this morphism as being the zero morphism between
T0A1 ∼= Z (Exercise). This leads to a contradiction.
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Lecture 41⁄2. Supplements on schemes and algebraic spaces

In this lecture we cite in bulk some facts concerning schemes and algebraic spaces. We
will not give proofs which are in line with the statements we have seen but which would take
too much time. We refer to [1, 3, 5] for the details and for further references.

41⁄2.1. The underlying Zariski space

In this section we fix an algebraic space X.

41⁄2.1.1. Back to the Zariski open sets. Recall we have showed that for all closed immer-
sion Y ↪→ X the subfunctor X − Y of X was an open subfunctor and therefore defining a
Zariski open set X − Y ↪→ X (see Example 4 of Lecture 4).

Proposition 41⁄2.1.1. For all open immersion U ↪→ X there exists a closed immersion
Y ←↩ X such that U = X − Y . �

The preceding proposition seems natural but the proof is not immediate given the defini-
tion of open immersions that we have adopted.

Exercise: Use Proposition 41⁄2.1.1 to show that a Zariski open set U of X := SpecA is
a (possibly infinite) union of open sets of the form Xf := SpecAf (where Af is the ring A
localized at f ∈ A).

41⁄2.1.2. The set of points. We consider the set E(X) of pairs (K, x), where K is a field
and x ∈ X(K) is a point of X with values in K. We define an equivalence relation on E(X)
as follows: (K, x) is equivalent to (K ′, x′) if there exist a field L and morphisms i : K ↪→ L,
j : K ′ ↪→ L such that i(x) = j(x′) (as elements of X(L)). Exercise: check that this defines
an equivalence relation on E(X).

Definition 41⁄2.1.2. We define the set of points of X as the quotient set E(X)/R where R
is the relation defined above. We denote it by |X|.

Exercise: show that when X = SpecA the set |X| is in natural bijection with that of the
prime ideals of A.

The construction X 7→ |X| is (contravariantly) functorial in X, and naturally defines a
functor from the category of algebraic spaces to that of sets.

Exercise: Show that if |X| = ∅ then X = ∅ (we will show that if {Ui → X} is an atlas
then the induced map ∐

i

|Ui| −→ |X|

is surjective, and then we will treat the case where X is an affine scheme).

41⁄2.1.3. The locally ringed space (|X|,OX). We define a topology on the set |X| as
follow: a subset U ⊂ |X| is an open set if there exists an open subfunctor V ⊂ X such that
U = |V | (as subset of |X|). In other words, U is the set of points of X represented by pairs
(K, x) with x ∈ V (K) ⊂ X(K).

Exercise: check that this defines a topology on |X|. When X = SpecA show that the
open sets of the form Xf := SpecAf form a base of this topology.

Definition 41⁄2.1.3. The set |X| equipped with the topology defined above is called the Zariski
space underlying X. It is simply denoted by |X|.
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Remark: Proposition 41⁄2.1.1 shows that the closed sets in |X| are of the form |Y | ⊂ |X|
for a closed immersion Y ↪→ X.

We assume for the moment that X is a scheme. We remark then that a base of the
topology on |X| is given by the open sets of the form |U | ⊂ |X|, where U ↪→ X is an open
immersion with U an affine scheme (Exercise: check it, we note that this is false for X an
algebraic space that is note a scheme). We then define a sheaf OX of commutative rings on
|X| by putting

OX(U) := A

where A ∈ Comm is such that U ∼= SpecA. This defines a sheaf OX on the open sets of a
base of the topology on |X| and therefore by extension on |X| entirely.

Definition 41⁄2.1.4. The topological space |X| equipped with sheaf OX is called the locally
ringed space underlying the scheme X.

We note that the preceding definition is valid only when X is a scheme. When X = SpecA
we can show that the ringed space (|X|,OX) is isomorphic to the space (SpecA,OSpecA) as
defined in [3] for example.

41⁄2.2. The small étale topos

We return to the general case where X is an algebraic space. As Definition 41⁄2.1.4 no
longer makes sense, we will look for a palliative to the ringed space (|X|,OX).

41⁄2.2.1. The locally ringed topos (Xét,OX). We denote Et/X the category of étale mor-
phisms U → X with U an affine scheme (and morphisms which commute with the projection
ontoX). This is a full subcategory Sh(Aff)/X of sheaves onX, and it inherits a Grothendieck
topology induced by that on Sh(Aff). Clearly, a family of morphisms

Ui //

  

V

��
X

is covering in Et/X if the family of morphisms of schemes {Ui → V } is an étale covering.

Definition 41⁄2.2.1. The site Et/X is called the small étale site of X. Its associated topos
Sh(Et/X) is called the small étale topos of X. It is also denoted by Xét.

We have on Et/X a sheaf of commutative rings, denoted by OX , that to an object U =
SpecA → X associates the ring A (Exercise: check that this defines a sheaf of rings on
Et/X). We thus obtain a ringed topos (Xét,OX), which is a palliative to ringed space
(|X|,OX) when X is a general algebraic space. It should be noted, however, that when X
is a scheme, (|X|,OX) and (Xét,OX) are not equivalent objects.

The following example shows that the topos Xét is in general not equivalent to the topos
of a topological space (and therefore not equivalent to topos of sheaves on |X|).

We consider X = Spec k, where k is a field. We denote ksep/k its separable closure and
G := Aut(ksep/k) its Galois group. The group G is a topological group with the Krull
topology, for which the open subgroups are of the form Aut(ksep/k′) ⊂ G for k′ a separable
finite extension of k. So we can show that the topos Sh(Et/X) is equivalent to the category of
continuous G-sets, that is the sets E with an action of G such that the morphism G×E → E
is continuous (or equivalently such that the stabilizer of any point x ∈ E is an open subgroup
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in G). For example, when k = R, we find that Sh(Et/X) is equivalent to the category of sets
with a Z/2 action (i.e. the involution). This shows that the topos Sh(Et/X) and Sh(|X|) are
already not equivalent when X is the spectrum of a field, because we always have |X| = ∗ and
therefore Sh(|X|) ∼= Set (and we can see that Set is equivalent to the category of continuous
G-sets for G trivial).

41⁄2.3. Quasi-coherent sheaves

We just saw the definition of ringed topos (Xét,OX). We can then consider the category of
OX-modules on Et/X, which we will denote by O-Mod(Xét). Similarly, when X is a scheme
we have the category of OX-modules on |X|, which we denote by O-Mod(X). By restriction
of the site Et/X to the site of the space |X|, we find a restriction functor

O-Mod(Xét) −→ O-Mod(X)

(Exercise: fill in the details). This functor is not an equivalence in general. There, however,
are subcategories on which it induces an equivalence.

Recall that an object M ∈ O-Mod(Xét) is given by a OX(U)-module M(U) for any object
U → X, and a commutative diagram

V

  

f // U

~~
X

for any morphism M(U)→M(V ) that is OX(U)-linear and functorial in f

Definition 41⁄2.3.1. An object M ∈ O-Mod(Xét) is called quasi-coherent if for any mor-
phism

SpecB

##

f // SpecA

{{
X

in Et/X the induced morphism

M(SpecA)⊗A B −→M(SpecB)

is an isomorphism.
The full subcategory of O-Mod(Xét) consisting of quasi-coherent objects are denoted by

QCoh(X).

Exercise: show that for any commutative ring A the category QCoh(X), where X =
SpecA, is naturally equivalent to the category A-Mod of A-modules.

Proposition 41⁄2.3.2. The restriction functor

O-Mod(Xét) −→ O-Mod(X)

induces an equivalence between QCoh(X) and its essential image in O-Mod(X). �
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41⁄2.4. Properties of morphisms

41⁄2.4.1. Properties of finiteness.
Definition 41⁄2.4.1.

(1) An algebraic space X is quasi-compact if there exists an atlas {Ui → X}i∈I with I
finite.

(2) A morphism of algebraic spaces f : X → Y is quasi-compact if for any affine scheme
Z and any morphism Z → Y the algebraic space X ×Y Z is quasi-compact.

(3) A morphism of algebraic spaces f : X → Y is locally finitely presented if for any
affine scheme Z and any morphism Z → Y , there exists an atlas {Ui → X ×Y Z}
such that each induced morphism Ui → Z is a finitely presented morphism (of affine
schemes).

(4) A morphism of algebraic spaces f : X → Y is finitely presented if it is locally finitely
presented and quasi-compact.

(5) An algebraic space X is locally noetherian if there exists an atlas {Ui → X} with
Ui = SpecAI and each Ai is a noetherian ring.

(6) An algebraic space X is noetherian if it is locally noetherian and quasi-compact.

Exercise: show that the classes of morphisms defined above are stable under base change
and composition. Also show that if f : X → Y is locally finitely presented and if Y is locally
noetherian, then X is also locally noetherian.

One important property of a noetherian algebraic spaceX is that its underlying topological
space is noetherian (i.e. that each descending chain of closed sets are stationary). (Exercise:
check it). In particular, we can deduce that any closed set of |X| is a finite union of irreducible
closed sets (a closed set is irreducible if it is not a nontrivial union of two closed sets). Thus,
|X| is itself a finite union of irreducible closed sets, which we call the irreducible components
of X.

41⁄2.4.2. Separated and proper morphisms.

Definition 41⁄2.4.2.

(1) A morphism of algebraic spaces f : X → Y is separated if the diagonal morphism
X → X ×X is a closed immersion.

(2) A morphism of algebraic spaces f : X → Y is proper if it is finitely presented,
separated, and if for any affine scheme Z and any morphism Z → X ×Y Z, the
induced morphism

|X ×Y Z| −→ |Z|
is a closed morphism of topological spaces.

Exercise: check that the proper and separated morphisms are stable under base change
and composition.

Proposition 41⁄2.4.3. The morphism Pn → SpecZ is proper. �

The preceding proposition allows us to construct of proper morphisms. In fact, any mor-

phism X → Y factorizes into X
j−→ Y × Pn p−→ Y , where j is a (finitely presented) closed

immersion and p the natural projection is a proper morphism. Such morphisms are called
projective.
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41⁄2.4.3. Flat, smooth and étale morphisms.

Proposition 41⁄2.4.4. A finitely presented morphism f : X → Y between algebraic spaces
is smooth (resp. étale) if and only if it is flat, and if for any field k and any morphism
Spec k → Y the induced morphism X ×Y Spec k is smooth (resp. étale). �

We will also note the following complementary fact.

Proposition 41⁄2.4.5. Let k be a field. A morphism k → A is étale if and only if A is
isomorphic, as a k-algebra, to a finite product of fields

∏
ki, where ki/k is a finite separable

extension. �

41⁄2.4.4. Covering criteria. The following criteria is very useful to construct atlas. We
have already used it to show that Pn is a scheme.

Proposition 41⁄2.4.6. Let {fi : Xi → Y } be a family of locally finite presented morphisms
between algebraic spaces. Assume that each fi is an open immersion (resp. a smooth mor-
phism). Then, for the induced morphism∐

i

fi :
∐
i

Xi −→ Y

to be an epimorphism of sheaves (for the étale topology) it is necessary and sufficient that
for any field k (resp. for any separably closed field k), the induced map∐

i

fi(k) :
∐
i

Xi(k) −→ Y (k)

is surjective. �

41⁄2.5. Algebraic varieties over a field

For this section we denote by k a field.

Definition 41⁄2.5.1. An algebraic variety over k is a scheme X equipped with a morphism
X → Spec k that is finitely presented.

For any schemeX, there exists a closed subschemeXred ↪→ X, called the reduced subscheme
of X. This is the smallest closed subscheme Y of X such that X−Y = ∅. When X = SpecA
we have Xred := SpecAred, where Ared = A/ rad(A), where rad(A) is the ideal of nilpotent
elements in A.

Suppose for now that X is an algebraic variety over k. We consider that Xred is again an
algebraic variety. The scheme Xred is noetherian, and therefore is a finite union of irreducible
components Xred =

⋃
Zi. Each Zi being irreducible, we see that any nonempty Zariski open

set of Zi is dense. Furthermore, if SpecAi ↪→ Zi is one such Zariski open set, the ring Ai is
integral (we use here that Zi is reduced and irreducible). We consider its field of fractions

K(Zi) := Frac(Ai)

which we see is independent of the choice of open set SpecAi ↪→ Zi.

Definition 41⁄2.5.2. Let X be an algebraic variety and keep the notations above. The integer

di := DimTrkK(Zi)

is called the dimension of X along the component Zi.
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We recall that DimTrkK(Zi) designates the transcendence degree of the field extension
K(Zi)/k.

Exercise: show that Pn is irreducible and that its dimension is n.
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Lecture 5. Stacks I

We recall that for a category C and a subset W ⊂ C1 of morphisms in C, a localization
of C along W is a category W−1C together with a functor l : C → W−1C such that for all
category D, the functor

l∗ : Hom(W−1C,D) −→ Hom(C,D)

is fully faithful and its essential image consists of functors C → D sending W to the isomor-
phisms in D. We show that a localization always exists and is unique up to equivalence.

5.1. Homotopy theory of groupoids

We consider the case where C = Gpd is the category of groupoids (i.e. its objects are the
groupoids and its morphisms are functors between groupoids). We denote by W the subset
of equivalences of groupoids (i.e. the functors which are equivalences of categories) and we
seek to describe the category W−1Gpd.

Definition 5.1.1. The homotopy category of groupoids is the localized category W−1Gpd.
It is denoted by Ho(Gpd). The set of morphisms in Ho(Gpd) between two objects A and B
will be denoted by [A,B].

Denote by [Gpd] for now the category whose objects are groupoids, and for two groupoids
A and B the set of morphisms from A to B in [Gpd] is by definition the set of isomorphism
classes of functors from A to B (i.e. the set of isomorphisms of the category Hom(A,B)). We
have a natural projection p : Gpd→ [Gpd], which is identities on objects and the canonical
projection on the sets of morphisms. Exercise:* describe the composition of morphisms in
[Gpd].

Theorem 5.1.2. The natural projection

p : Gpd −→ [Gpd]

is a localization of Gpd along W . Thus, p induces a natural equivalence

Ho(Gpd) ' [Gpd].

Proof. We start by noting that for all category D the functor

p∗ : Hom([Gpd], D) −→ Hom(Gpd, D)

is fully faithful. In fact, as p is surjective on objects the functor p∗ is faithful (Exercise:�

check that). Furthermore, as p is surjective on the sets of morphisms the functor p∗ is also
full (Exercise:� check that).

* [RC]: Let [f ] : A → B and [g] : B → C be morphisms in [Gpd], represented by f : A → B and
g : B → C, respectively. Then we define [g] ◦ [f ] = [g ◦ f ]. It remains to show that if f ∼= f ′ and g ∼= g′, then
g ◦ f ∼= g ◦ f ′ ∼= g′ ◦ f ′; this is easily checked.

� [RC]: Fix F,G : [Gpd]→ D. Let τ, σ : F → G be two natural transformations such that τ ◦ p = σ ◦ p,
and we want to show that τ = σ. But any object in [Gpd] has the form p(A) for some groupoid A, and
τp(A) = τA ◦ p = σA ◦ p = σp(A), so τ = σ.

� [RC]: Let us adopt the notations of the previous footnote. Given a natural transformation τ : F ◦ p→
G ◦ p, we want to define a natural transformation τ : F → G such that τ ◦ p = τ . Given any object p(A)
in [Gpd], define τp(A) to be τA; the surjectivity of p on the sets of morphisms guarantees that τ defines a
natural transformation.
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It remains to show that the functor F : Gpd → D which sends the morphisms in W to
isomorphisms in D is in the essential image of p∗. By definition of the category [Gpd], the
functor F factorizes through the canonical projection Gpd → [Gpd] if and only if F (f) =
F (g) for two isomorphic functors f, g : A → B between groupoids. Therefore, let f and g
be two such functors, and we show that F (f) = F (g).

Denote by ∆
1

the groupoid with two objects 0 and 1 and a unique isomorphism between

0 and 1. We see that there exists a functorial bijection between the set of functors ∆
1 → A

and the set of isomorphisms in A. Choose a natural isomorphism γ : f → g. The natural
transformation γ defines a morphism of groupoids

h : A×∆
1 −→ B

so that there exists a commutative diagram of groupoids

A

i0
��

f

##
A×∆

1 h // B

A

i1

OO

g

;;

where i0 : A → A ×∆
1

is the functor id×{0} and i1 : A → A ×∆
1

is the functor id×{1}.
(Exercise:* describe in detail the functor h in terms of γ). Denote by q : A ×∆

1 → A the
projection onto the first factor. We have q ◦ i0 = q ◦ i1 = id. Furthermore, i0 ◦ q and i1 ◦ q
are both naturally isomorphic to the identity functor of A ×∆

1
. The functors q, i0 and i1

are therefore equivalences of categories. By hypothesis on the object F ∈ Hom(Gpd, D), we
therefore find F (i0) = F (i1) = F (q)−1. Thus, we have

F (f) = F (h) ◦ F (i0) = F (h) ◦ F (q)−1 = F (h) ◦ F (i1) = F (g). �

Corollary 5.1.3. The natural functor

j : Set −→ Gpd −→ Ho(Gpd),

which sends a set to the corresponding discrete groupoid, is fully faithful and has a left adjoint

π0 : Ho(Gpd) −→ Set.

Proof. We define π0(A) as the set of isomorphism classes of objects in A. Theorem 5.1.2
allows us to easily check that j is fully faithful and that π0 is its left adjoint. �

Exercise:� Let G and H be two groups. We denote by BG (resp. BH) the groupoid with
a unique object and G (resp. H) the automorphism group of that object. Describe the set
[BG,BH] of morphisms from BG to BH in the category Ho(Gpd).

* [RC]: Write η for the unique isomorphism in ∆
1

from 0 to 1. Fix a morphism θ : a→ a′ in A, then h
sends (θ, 0) to f(θ), (θ, 1) to g(θ), and (θ, η) to g(θ) ◦ γa = γa′ ◦ f(θ).

� [RC]: A morphism in Hom(BG,BH) between f, f ′ ∈ HomGpd(BG,BH) ∼= HomGrp(G,H), which is
a natural transformation that is necessarily a natural isomorphism, consists of a morphism in BH, which
corresponds to an element h ∈ H, such that f ′(g) ◦ h = h ◦ f(g) for any g ∈ G. Therefore, [BG,BH] ∼=
HomGrp(G,H)/ ∼H , where ∼H denotes the conjugation by elements in H.
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5.2. Homotopy theory of diagrams of groupoids

Let I be a category, and consider the category Hom(I,Gpd) of functors from I to Gpd
(also called the category of I-diagrams of Gpd). Let F,G : I → Gpd be two I-diagrams.
We say that a morphism

f : F −→ G

in Hom(I,Gpd) is an equivalence if for any object i ∈ I, the induced morphism

fi : F (i) −→ G(i)

is an equivalence of groupoids. The notion of equivalence defines a subset WI of morphisms
in Hom(I,Gpd).

Definition 5.2.1. The homotopy category of I-diagrams of groupoids is W−1
I Hom(I,Gpd).

It is denoted Ho(Hom(I,Gpd)). The set of morphisms between F and G in W−1
I Hom(I,Gpd)

is denoted [F,G].

The generalization of Theorem 5.1.2 to the case of diagrams of groupoids requires the
introduction of the notion of weak morphisms between objects of Hom(I,Gpd). For that,
we denote, for any F ∈ Hom(I,Gpd) and any morphism u : i → j in I, uF∗ : F (i) → F (j)
the functor induced by u. Note that by definition we have (uF ◦vF )∗ = uF∗ ◦vF∗ and idF∗ = id.

Definition 5.2.2. Let F,G : I → Gpd be two I-diagrams of groupoids. A weak morphism
f : F → G consists of the following data:

(1) For any object i ∈ I, a functor of groupoids

fi : F (i) −→ G(i).

(2) For any morphism u : i→ j in I, a natural transformation

γfu : uG∗ ◦ fi −→ fj ◦ uF∗ .

We assume furthermore that γfid = id.

We demand moreover that these data satisfies the following condition: for any pair of mor-
phisms i

u−→ j
v−→ k in I, the two natural transformations(

vG∗ ◦ γfu
)
◦
(
γfv ◦ uF∗

)
: (v ◦ u)G∗ ◦ fi = vG∗ ◦ uG∗ ◦ fi

vG∗ ◦γ
f
u−−−−→ vG ◦ fj ◦ uF∗

γf
v ◦u

F
∗−−−−→ fk ◦ vF∗ ◦ uF∗ = fk ◦ (v ◦ u)F∗

γfv◦u : (v ◦ u)G∗ ◦ fi −→ fk ◦ (v ◦ u)F∗

are equal* (
vG∗ ◦ γfu

)
◦
(
γfv ◦ uF∗

)
= γfv◦u.

* [RC]: In other words, the diagram of functors of groupoids

F (i)
fi //

uF
∗
��

G(i)

uG
∗
��

F (j)
fj //

vF∗
��

G(j)

vG∗
��

F (k)
fk // G(k)

commutes up to unique natural transformations.
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Let F , G and H be three I-diagrams of groupoids, and f : F → G and g : G → H two
weak morphisms. We define the composite weak morphism g ◦ f : F → H by the following
data:

(1) For any object i ∈ I
(g ◦ f)i := gi ◦ fi : F (i) −→ H(i).

(2) For any morphism u : i → j in I, we have natural transformation γg◦fu is defined as
the composition

γg◦fu : uH∗ ◦ gi ◦ fi
γgu◦fi−−−→ gj ◦ uG∗ ◦ fi

gj◦γfu−−−→ gj ◦ fj ◦ uF∗ .
Clearly,

γg◦fu =
(
gj ◦ γfu

)
◦ (γgu ◦ fi) .

Exercise: check that this composition is associative and unitary.

Definition 5.2.3. Let F,G : I → Gpd be two I-diagrams of groupoids, and f, g : F → G
two weak morphisms. A natural transformation between f and g is the data of, for each
object i ∈ I, a natural transformation

φi : fi −→ gi

such that for any morphism u : i→ j in I we have

uG∗ ◦ φi = φj ◦ uF∗ .

The preceding definition allows us to define for two I-diagrams of groupoids F and G as
above a category Homlax(F,G), whose objects are the weak morphisms and the morphisms
are the natural transformations (Exercise: describe the composition of morphisms in this
category). We see that the category Homlax(F,G) is a groupoid (Exercise: check it). The
composition of weak morphisms described above defines a functor

Homlax(F,G)× Homlax(G,H) −→ Homlax(F,H).

For F andG fixed, we denote by Hom(F,G) the full subcategory of Homlax(F,G) consisting
of weak morphisms f such that γfu = id for any morphism u in I. These morphisms are
also the morphisms of I-diagrams (i.e. the morphisms between F and G in the category
Hom(I,Gpd)), and will be called the strict morphisms.

We define a category [Hom(I,Gpd)], whose objects are the I-diagrams of groupoids, and
whose morphisms are the isomorphism classes of weak morphisms. Since a morphism of
I-diagrams of groupoids is also a weak morphism (for which γu = id for any u), we have a
natural functor

Hom(I,Gpd) −→ [Hom(I,Gpd)],

which is the identity on the set of objects.

Theorem 5.2.4. The natural functor

Hom(I,Gpd) −→ [Hom(I,Gpd)]

induces an equivalence

Ho (Hom(I,Gpd)) −→ [Hom(I,Gpd)].

Proof. This is a similar proof, although a little more complicated than that of Theorem 5.1.2.
We will not give it. �
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Exercise: Let I be a groupoid and F : I → Gpd a constant functor with value in a fixed
groupoid A ∈ Gpd. Determine the groupoids Hom(∗, F ) and Homlax(∗, F ) of strict and
weak morphisms of constant I-diagrams from a point to F . Thereof deduce that the natural
functor

Hom(I,Gpd) −→ Ho(Hom(I,Gpd))

is not surjective on morphisms (i.e. that there exist weak morphisms non-isomorphic to
strict morphisms).

We end this section with the following important fact.

Proposition 5.2.5. A weak morphism F → G of I-diagrams of groupoids represents an
isomorphism in Ho(Hom(I,Gpd)) if and only if for any i ∈ I the functor

fi : F (i) −→ G(i)

is an equivalence of groupoids.

Proof. We choose for any i ∈ I an inverse functor gi : G(i)→ F (i), and natural isomorphisms

αi : fi ◦ gi ⇒ id, βi : gi ◦ fi ⇒ id .

We then show that there exists a unique structure of weak morphisms on gi (i.e. γg) and
unique isomorphisms of weak morphisms

α : f ◦ g ∼= id, β : g ◦ f ∼= id

compatible with those already chosen for any i (Exercise: fill in the details). �

5.3. Homotopy limits

Let I be a category and denote by Gpd→ Hom(I,Gpd) the functor that sends a groupoid
A to the constant I-diagram with value A. It induces a functor on the localizations

c : Ho(Gpd) −→ Ho(Hom(I,Gpd)).

The following statement is a corollary to Theorem 5.1.2.

Corollary 5.3.1. The preceding functor c : Ho(Gpd) −→ Ho(Hom(I,Gpd)) has a right
adjoint

Holim←−−−
I

: Ho(Hom(I,Gpd)) −→ Ho(Gpd).

Proof. For F ∈ Ho(Hom(I,Gpd)) we put

Holim←−−−
I

F = Homlax(c(∗), F ),

where ∗ is the groupoid that is reduced to a point and Homlax(c(∗), F ) is the groupoid of
weak morphisms from c(∗) to F .

Clearly, an object x of Holim←−−−I F is the following data:

(1) For any object i ∈ I an object xi ∈ F (i).
(2) For any morphism u : i→ j in I an isomorphism γxu : uF∗ (xi)→ xj. We assume that

γxid = id.

�
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We demand further that for two morphisms i
u−→ j

v−→ k in I, we have

γxv ◦ vF∗ (γxu) = γxv◦u

(as morphisms (v ◦ u)Fx (xi)→ xk). The morphisms between x and y in Holim←−−−I F are simply

the family of morphisms φi : xi → yi in F (i) such that φj◦γxu = γyu◦uF∗ (φi). We check that the

groupoid of functors Hom
(
A,Holim←−−−I F

)
is in bijection with the groupoid Homlax(c(A), F )

and in a way that is functorial in A ∈ Gpd. By passing to the isomorphism classes of objects
we find a functorial bijection in A ∈ Ho(Gpd)[

A,Holim←−−−
I

F

]
∼= [c(A), F ].

This finishes the proof of the corollary.

Definition 5.3.2. Denote by I the category of the form

1

��
2 // 0.

Let F ∈ Ho(Hom(I,Gpd)) be represented by a diagram of groupoids

A1

p

��
A2 q

// A0.

The object Holim←−−−I F is called the homotopy fiber product of A1 and A2 over A0. It is denoted

Holim←−−−
I

FF =: A1 ×hA0
A2 ∈ Ho(Gpd).

Exercise: Show that the groupoid A1×hA0
A2 is naturally equivalent to the groupoid whose

objects are the triples (a1, a2, u), with ai ∈ Ai and u : p(a1)→ q(a2) an isomorphism in A0,
and the morphisms are pairs of morphisms a1 → a′1, a2 → a′2 which commute with u and u′.

Exercise*: Let H be a group and BH its classifying groupoid. Let ∗ → BH be the unique
functor. Calculate the groupoid ∗ ×hBH ∗.

Corollary 5.3.1 has also the following generalization. We consider two categories I and J ,
and the functor

cJ : Hom(J,Gpd) −→ Hom(I × J,Gpd)

which to a J-diagram of groupoids corresponds the I ×J-diagram “constant with respect to
I”. Again it induces a functor on the localizations

cJ : Ho(Hom(J,Gpd)) −→ Ho(Hom(I × J,Gpd)).

* [RC]: By the previous exercise, the object of ∗×hBH ∗ is the set of morphisms of BH, i.e. the underlying
set of H, and the only morphisms are the identities. That is, ∗×hBH ∗ is isomorphic to the discrete groupoid
corresponding to the underlying set of H.
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Corollary 5.3.3. The preceding functor cJ : Ho(Hom(J,Gpd))→ Ho(Hom(I×J,Gpd)) has
a right adjoint

Holim←−−−
I

: Ho(Hom(I × J,Gpd)) −→ Ho(Hom(J,Gpd)).

Proof. Let F ∈ Ho(Hom(I×J,Gpd)). For any j ∈ J , we consider the groupoid Homlax(c(∗), F (−, j)).
As j traverses the category J , this defines a J-diagram of groupoids which we denote
Holim←−−−I F . We check that, with the help of Theorem 5.1.2 that this object Holim←−−−I has
the required universal property

[cJ(G), F ] ∼=

[
G,Holim←−−−

I

F

]
. �

Notice that the objects of Hom(I × J,Gpd) are the I-diagrams in the category of J-
diagrams. When I is the category

1

��
2 // 0,

an object of Hom(I × J,Gpd) is given by a diagram

F1

��
F2

// F0

in Hom(J,Gpd). The object Holim←−−−I F is then denoted F1 ×hF0
F2 ∈ Ho(Hom(J,Gpd)).

Definition 5.3.4. For a diagram

F1

��
F2

// F0,

in Hom(J,Gpd), the object F1×hF0
F2 is called the homotopy fiber product of F1 and F2 over

F0.

We notice, according to the proof of Corollary 5.3.3, that the J-diagram F1 ×hF0
F2 is

described explicitly as follows:

F1 ×hF0
F2 : J −→ Gpd

j 7−→ F1(j)×hF0(j) F2(j).

5.4. The homotopy categories of prestacks and of stacks

For now, let C be a Grothendieck site.

Definition 5.4.1. The homotopy category of prestacks on C is Ho(Hom(Cop,Gpd)). It is
denoted

Ho(PrCh(C)) := Ho(Hom(Cop,Gpd)).
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The category of prestacks Ho((PrCh(C)) is a generalization of the category of presheaves
in the following sense: there exists a functor Hom(Cop, Set)→ Hom(Cop,Gpd), obtained by
composition with the functor Set → Gpd which sends a set to the corresponding discrete
groupoid. This induces a functor

i : Pr(C) −→ Ho(PrCh(C))

of the category of presheaves of sets on C to the homotopy category of prestacks.

Proposition 5.4.2. The functor

i : Pr(C) −→ Ho(PrCh(C))

is fully faithful and has a left adjoint

πpr
0 : Ho(PrCh(C)) −→ Pr(C).

Proof. We set for F ∈ Ho(PrCh(C))

πpr
0 (F ) : Cop −→ Set

defined by πpr
0 (F )(X) := π0(F (X)), where π0(F (X)) is the set of isomorphism classes of

objects in F (X). Using Theorem 5.2.4 we can show that

Hom (πpr
0 (F ), G) ∼= [F, i(G)]. �

By composing the functor i of Proposition 5.4.2 and the Yoneda embedding we find a fully
faithful functor (again called the Yoneda embedding)

C −→ Ho(PrCh(C)),

by which we identify the category C with its image in Ho(PrCh(C)). The version of the
Yoneda lemma for prestacks is stated below:

Proposition 5.4.3. For any F ∈ Ho(PrCh(C)) and X ∈ C, there exists a functorial bijec-
tion in F and X

[X,F ] ∼= π0(F (X)) = πpr
0 (F )(X),

where π0(F (X)) is the set of isomorphism classes of objects of F (X)).

Proof. It is again an application of Theorem 5.1.2. We know that [X,F ] is in natural
bijection with the set of isomorphism classes of objects in the groupoid Homlax(X,F ) of weak
morphisms of X and F . We start by checking, with the usual help of Yoneda lemma (applied
to presheaves of objects and of morphisms of F ), that there exists a natural isomorphism

Hom(X,F ) ∼= F (X).

We must therefore show that the natural inclusion

j : Hom(X,F ) −→ Homlax(X,F )

is an equivalence of groupoids. For that, we start by noticing that the groupoid Homlax(X,F )
is described as follows: An object of Homlax(X,F ) is the data for any morphism u : Y → X
in C an object xu ∈ F (Y ), and for any commutative diagram

Z
f //

v   

Y

u

��
X
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an isomorphism γf : xv → f ∗(xu) in F (Z), so that γf satisfy the usual cocycle condition:
g∗(γf )γg = γf◦g and γid = id. We then define a functor

φ : Homlax(X,F ) −→ Hom(X,F )

which to an object of Homlax(X,F ) associates xid ∈ F (X). We easily see that φ is a functor
inverse to j (Exercise: check the details). �

We now see to generalize the notion of sheaves. For that, note that for any F ∈ Hom(Cop,Gpd),
any object X ∈ C and any covering family {Ui → X}, we have a diagram of groupoids

F (X) //
∏
i

F (Ui)

d0 //

d1 //

∏
i,j

F (Ui,j)
s0oo

e0 //

e1 //

e2 //

∏
i,j,k

F (Ui,j,k)t0oo

t1oo

where the morphisms are defined as follows. [...]

Definition 5.4.4.

(1) A prestack F ∈ Ho(PrCh(C)) is a stack if for any X ∈ C and any covering family
{Ui → X} the natural morphism

F (X) −→ Holim←−−−

 F (X) //
∏
i

F (Ui)

d0 //

d1 //

∏
i,j

F (Ui,j)
s0oo

e0 //

e1 //

e2 //

∏
i,j,k

F (Ui,j,k)t0oo

t1oo


is an isomorphism in Ho(Gpd).

(2) The full subcategory of Ho(PrCh(C)) consisting of stacks is denoted Ho(Ch(C)).

We end with a decannulated version of the preceding definition.

Proposition 5.4.5. A prestack F ∈ Ho(PrCh(C)) is a stack if and only if it satisfies the
following two conditions:

(1) For any X ∈ C and any pair of objects (a, b) in F (X), the presheaf

Iso(a, b) : (C/X)op −→ Set
(u : Y → X) 7−→ HomF (Y )(u

∗(a), u∗(b))

is a sheaf on the set C/X.
(2) For any X ∈ C, any covering family {Ui → X}, any family of objects ai ∈ F (Ui),

and any family of isomorphisms in F (Ui,j)

φi,j : (ai)|Ui,j
∼= (aj)|Ui,j

satisfying

(φj,k)|Ui,j,k
◦ (φi,j)|Ui,j,k

= (φi,k)|Ui,j,k
, (φi,i)|Ui

= id,

there exists an object a ∈ F (X) and isomorphisms αi : a|Ui
∼= ai such that

φi,j = (αj)|Ui,j
◦ (αi)

−1|Ui,j
.
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Idea of proof. We start by describing the homotopy limit involved in Definition 5.4.4 by using
the formula

Holim←−−−
I

F ' Homlax(∗, F )

for any I-diagram of groupoids F . We then notice that condition (1) of the proposition is
equivalent to the fact that the functor

F (X) −→ Holim←−−−

 F (X) //
∏
i

F (Ui)

d0 //

d1 //

∏
i,j

F (Ui,j)
s0oo

e0 //

e1 //

e2 //

∏
i,j,k

F (Ui,j,k)t0oo

t1oo


is fully faithful. Similarly, condition (2) of the proposition is equivalent to the fact that this
functor is essentially surjective. �

Remarks:

(1) In practice it is the criteria given in Proposition 5.4.5 that we use to show that a
prestack is a stack. In the literature these criteria are often taken as the definition
of stack.

(2) A data {ai ∈ F (Ui), φi,j} as in Proposition 5.4.5 is called the descent data for F
relative to the covering {Ui → X}. Condition (2) of Proposition 5.4.5 is also said
“any descent data for F is effective”.

(3) In condition (2), (φi,i)|Ui
is the restriction of φi,i along the diagonal

Ui −→ Ui,i = Ui ×X Ui.
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Lecture 6. Stacks II

6.1. Examples of stacks

In this section we give some fundamental examples of stacks, as well as two procedures
of general constructions. Many examples of stacks can be constructed by using these basic
examples and these two procedures.

6.1.1. The stack of sheaves. We consider a Grothendieck site C. For any X ∈ C, we
consider the groupoid Fais(X)* of sheaves on the site C/X. For a morphism u : Y → X in
C we have a restriction functor

u∗ : Fais(X) −→ Fais(Y )

induced by the natural functor C/Y → C/X. We clearly have (u ◦ v)∗ = v∗ ◦ u∗, and
therefore X 7→ Fais defines a prestack that we naturally call the prestack of sheaves on C.

Proposition 6.1.1. The prestack Fais is a stack.

Proof. We use the criteria given by Proposition 5.4.5. Let X ∈ B, and F and G two objects of
Fais(X), that is two sheaves on C/X. The presheaf Iso(F,G) is the presheaf of isomorphisms
from F to G, which to (u : Y → X) corresponds the set of isomorphisms between u∗(F )
and u∗(G) as sheaves on C/Y . The fact that Iso(F,G) is a sheaf follows from the following
lemma.

Lemma 6.1.2. Let C be a Grothendieck site, and F and G two sheaves on C. Then the
presheaf Hom(F,G) of morphisms from F to G is a sheaf. Furthermore, the sub-presheaf
Iso(F,G) ⊂ Hom(F,G) consisting of the isomorphisms is a subsheaf.

Proof of Lemma. The fact that Hom(F,G) is a sheaf is well known. It just remains to show
that Iso(F,G) ⊂ Hom(F,G) is a subsheaf. But this is deduced easily from the fact that
being an isomorphism is a local condition (Exercise: fill in the details). ♦

Now let X ∈ C and {Ui → X} a covering family. Let Fi be the sheaves on C/Ui, and

φi,j : (Fi)|Ui,j
∼= (Fj)|Ui,j

isomorphisms satisfying

(φi,i)|Ui
= id, (φj,k)|Ui,j,k

◦ (φi,j)|Ui,j,k
= (φi,k)|Ui,j,k

.

We define a sheaf F on C/X as follows. Let Y → X be an object of C/X. We put
Yi := Y ×X Ui and Yi,j := Y ×X Ui,j. The natural morphisms Yi → Ui and Yi,j → Ui,j
determine objects of C/Ui and of C/Ui,j. By definition, the set F (Y ) is the set of families
{ai ∈ Fi(Yi)} satisfying

φi,j
(
(ai)|Yi,j

)
= (aj)|Yi,j

for any i, j. For a morphism Z
f−→ Y → X in C/X, we define a map

f ∗ : F (Y ) −→ F (Z)

by the formula f ∗(a)i := f ∗i (ai) where

fi : Zi = Z ×X Ui −→ Yi = Y ×X Ui
is the morphism induced by f . We easily check that Y 7→ F (Y ) defines a presheaf on C/X.

* [RC]: The largest subcategory of Sh(C/X) containing all objects which is a groupoid. (?)
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Let Y → Ui be an object of C/Ui. The set F (Y ) is by definition the set of families of
elements {aj ∈ Fj(Y ×Ui

Ui,j)} which satisfies

φj,k

(
(aj)|Y×Ui

Ui,j,k

)
= (ak)|Y×Ui

Ui,j,k

for any j, k. We define a map fi,Y from F (Y ) to Fi(Y ) by putting

fi,Y (a) := (ai)|Y ∈ Fi(Y ),

where we use the natural morphism Y → Yi = Y ×X Ui to restrict ai to Y . We define a
converse map gi,Y from Fi(Y ) to F (Y ) by putting

gi,Y (a)j := φi,j

(
a|Y×Ui

Ui,j

)
∈ Fj(Y ×Ui

Ui,j).

The element gi,Y (a) is well defined due to the condition φi,k = φj,k ◦ φi,j being satisfied on
C/Ui,j,k. Since (φi,i)|Ui

= id, we see that fi,Y ◦ gi,Y = id. Conversely, for a ∈ F (Y ), we have

gi,Y (fi,Y (a))j = φi,j

(
(ai)|Y×Ui

Ui,j

)
= aj.

Thus, we have gi,Y ◦ fi,Y = id.
As Y varies in the category C/Ui, the map gi,Y and fi,Y therefore define isomorphisms

inverse to each other between F |Ui
and Fi. We consider the isomorphism

fi : F |Ui
∼= Fi

of presheaves on C/Ui thus defined. Now let i and j be two indices, and Y → Ui,j an object
of C/Ui,j. We consider the diagram

F (Y )
fi,Y //

fj,Y
��

Fi(Y )

φi,jzz
Fj(Y ).

By definition we have
φi,j(fi,Y (a)) = φi,j((ai)Y ) = aj.

This almost shows condition (2) of Proposition 5.4.5, except that F must also be a sheaf.
But this is deduced immediately from the following lemma.

Lemma 6.1.3. The presheaf F thus defined is a sheaf.

Proof of Lemma. Denote by pi : C/Ui → C/X the natural functor. It induces by direct
image a functor between the categories of sheaves

(pi)∗ : Sh(C/Ui) −→ Sh(C/X)

by the formula
(pi)∗(F

′)(Y → X) = F ′ (Y ×X Ui → Ui) .

Similarly, we have a direct image functor

(pi,j)∗ : Sh(C/Ui,j) −→ Sh(C/X).

By construction, we see that F is the equalizing presheaf of the two morphisms∏
i

(pi)∗(Fi) ⇒
∏
i,j

(pi,j)∗
(
(Fi)|Ui,j

)
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where the first morphism is, on component (i, j), the projection onto (pi)∗(Fi) followed by
the restriction morphism (pi)∗(Fi)→ (pi,j)∗

(
(Fi)|Ui,j

)
(induced by the morphism Ui,j → Ui).

The second morphism is, on component (i, j), the projection onto (pj)∗(Fj) followed by the
restriction morphism (pj)∗(Fj)→ (pi,j)∗

(
(Fi)|Ui,j

)
and then the isomorphism

(pi,j)∗(φj,i) : (pi,j)∗
(
(Fj)|Ui,j

)
−→ (pi,j)∗

(
(Fi)|Ui,j

)
.

Now, all the presheaves (pi)∗(Fi) and (pi,j)∗((Fi)|Ui,j
) are the direct images of sheaves and

therefore themselves sheaves. Thus, F is a limit of sheaves and therefore it is a sheaf. ♦

The preceding lemma shows that F is a sheaf (because we saw that F |Ui
is isomorphic to

Fi), and therefore defines an element of Fais(X) which satisfies condition (2) of Proposition
5.4.5. �

6.1.2. The stack of algebraic spaces. Let Aff be the category of affine schemes, which we
regard as a Grothendieck site equipped with the étale topology. For X ∈ Aff, we consider
EspAlg(X) the full sub-groupoid of Fais(X) consisting of algebraic spaces. The correspon-
dence X 7→ EspAlg(X) is a sub-prestack of the stack of sheaves Fais(X).

Proposition 6.1.4. Let C be a Grothendieck site and F a stack on C. Let F0 ⊂ F be a full
sub-prestack of F (i.e. a sub-presheaf in groupoids such that F0(X) is full in F (X)). We
assume that the following property is satisfied (we then say that being in F0 is local): if x is
an object of F (X) such that there exists a covering family {Ui → X} with x|Ui

isomorphic
to an object in F0(Ui) for any i, then x ∈ F (X). Then F0 is a stack.

Proof. This is an easy application of Proposition 5.4.5. �

The preceding proposition applies to EspAlg ⊂ Fais, and Proposition 4.1.2 implies that
the prestack EspAlg is a stack.

Corollary 6.1.5. The prestack EspAlg is a stack.

We notice that the full sub-prestack Sch ⊂ EspAlg, of schemes, does not satisfy the
condition of Proposition 6.1.4. We can in fact show that Sch is not a stack for the étale
topology (i.e. that there exist descent data in Sch which are not effective in Sch, although
they are effective in EspAlg).

6.1.3. The stacks of quasi-coherent modules. We now place ourselves in the case where
C = Aff is the site of affine schemes equipped with the étale topology. We want to define a
stack which to an affine scheme SpecA associates the groupoid A− -Mod of A-modules. For
a morphism of affine schemes f : SpecB → SpecA corresponding to a morphism of rings
A→ B, we would put

f ∗ := B ⊗A − : A-Mod −→ B-Mod.

However, with these definitions, for two morphisms SpecC
g−→ SpecB

f−→ SpecA, the two
functors (f ◦ g)∗ and g∗ ◦ f ∗ are only naturally isomorphic but not equal. In fact, for an
A-module M , the C-module M ⊗A C is only naturally isomorphic to (M ⊗A B) ⊗B C but
not equal. Thus, A 7→ A-Mod is not a presheaf in groupoids.

There are two solutions to resolve this problem. We may generalize the notion of presheaf
in groupoids to a notion of weak presheaf in groupoids for which we are given isomorphisms
γf,g : (f ◦ g)∗ ∼= g∗ ◦ f ∗ satisfying a certain cocycle condition (analogous to the definition of
weak morphisms between prestacks). This is the point of view that is often considered in
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the literature (see for example [4] and [1]). A second solution is to modify the groupoid of
A-modules to a groupoid which is equivalent to it but is functorial in A (a general theorem,
called the strictification, says that this is always possible). It is this second point of view
that we will adopt.

For a commutative ring A, we therefore define a groupoid A-Mod as follows. An object
M consists of the following data:

• For any morphism of commutative rings u : A→ B, a B-module Mu ∈ B-Mod.
• For any commutative diagram of commutative rings

A
u //

v

��

B

f��
C

an isomorphism of C-modules

γMf : Mu ⊗B C −→Mv

(simply denoted by γf when M is clear).

We furthermore demand that these data satisfy the following two conditions:

• γid = id.
• For any commutative diagram of commutative rings

A

w~~
v

��

u

��
D Cg
oo B

f
oo

the following diagram commutes

(Mu ⊗B C)⊗C D
α

��

γf⊗CD// Mv ⊗C D
γg

��
Mu ⊗B D γg◦f

// Mw,

where α : (Mu ⊗B C)⊗C D ∼= Mu ⊗B D is the natural isomorphism of simplification
of tensor products (which sends (m⊗ c⊗ d) to (m⊗ g(c) · d)).

A morphism φ : M → N in the groupoid A-Mod consists of the data of an isomorphism

φu : Mu −→ Nu

for any u : A→ B, such that for any commutative diagram

A
u //

v

��

B

f��
C
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the following diagram commutes

Mu ⊗B C
γf

��

φu⊗BC// Nu ⊗B C
γf

��
Mv

φf

// Nv.

Now let f : A→ B be a morphism of commutative rings. We define a functor

f ∗ : A-Mod −→ B-Mod

in the following manner. For an object M and morphism u : B → B′, we put

f ∗(M)u := Mu◦f .

Similarly, for a commutative diagram

B
u //

v

��

B′

g}}
B′′

we put
γf
∗(M)

g = γMg : f ∗(Mu)⊗B′ B′′ = Mu◦f ⊗B′ B′′ −→ f ∗(M)v = Mv◦f .

Thus defined, A 7→ A-Mod defines a presheaf in groupoids

-Mod : Affop −→ Gpd

and therefore a prestack on Aff. This prestack is called the prestack of modules or still the
presheaf of quasi-coherent modules.

Lemma 6.1.6. The functor
A-Mod −→ A-Mod

which to an A-module M associates the A-module Mid, is an equivalence of groupoids.

Proof. [...] �

Proposition 6.1.7. The prestack -Mod is a stack.

Proof. We check the conditions (1) and (2) of Proposition 5.4.5. [...]

Lemma 6.1.8. For any commutative ring A, any fpqc covering family {A→ Ai}, and any
A-module N , the diagram

N →
∏
i

(N ⊗A Ai) ⇒
∏
i,j

(N ⊗A Ai,j)

identifies N to the equalizer of two morphisms∏
i

(N ⊗A Ai) ⇒
∏
i,j

(N ⊗A Ai,j) .

Proof of Lemma. We already see this lemma in the case where N = A (see Lemma 3.2.8).
The proof of the general case is the same. ♦

[...] �
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6.1.4. Two general criteria. We return to the case of a general Grothendieck site C.

Proposition 6.1.9. Let

F2

��
F1

// F0

be a diagram of presheaves in groupoids. If all Fi are stacks then F1 ×hF0
F2 is a stack.

Proof. We apply still Proposition 5.4.5. Denote by

p : F1 −→ F0, q : F1 −→ F0

two morphisms. Then the prestack F1 ×hF0
F2 is given by the functor which to X ∈ C

associates the groupoid F1(X)×hF0(X)F2(X) whose objects are the triples (x, y, u), with x an

object of F1(X), y and object of F2(X), and u : p(x) ∼= q(y) an isomorphism in F0(X). The
morphisms between (x, y, u) and (x′, y′, u′) are the pairs of morphisms f : x→ x′, g : y → y′

such that u′ ◦ p(f) = u ◦ q(g).
Let X ∈ C and a = (x, y, u) and b = (x′, y′, u′) two objects of F1(X) ×hF0(X) F2(X). We

then have an isomorphism of presheaves on C/X

Iso(a, b) ∼= Iso(x, x′)×Iso(p(x),q(y′)) Iso(y, y′).

Thus, Iso(a, b) is a fiber product of sheaves and therefore is a sheaf.
Now let X ∈ C and {Ui → X} is a covering family. Let (xi, yi, ui) ∈

(
F1 ×hF0

F2

)
(Ui)

and φi,j = (fi,j, gi,j) a descent data for F1 ×hF0
F2. We see that xi ∈ F1(Ui) and fi,j define a

descent data for F1 and therefore glue into an object x ∈ F1(X) equipped with isomorphisms
αi : x|Ui

∼= xi with fi,j = αj◦α−1
i on Ui,j. Similarly, yi and gi,j glue into a y ∈ F2(X) equipped

with isomorphisms βi : y|Ui
∼= yi with gi,j = βj ◦ β−1

i on Ui,j. Finally, the local morphisms

vi : q(β−1
i ) ◦ ui ◦ q(αi) : p(x)|Ui

−→ q(y)|Ui

which glue into an isomorphism v : p(x) ∼= q(y). We then see that (x, y, v) ∈ F1(X) ×hF0(X)

F2(X), and the isomorphisms

γi := (αi, βi) : (x, y, v)|Ui
∼= (xi, yi, ui)

satisfying φi,j = γj ◦ γ−1
i on Ui,j. �

Proposition 6.1.10. Let F and G be two stacks on C. We consider the prestack Map(F,G)
defined by

Map(F,G) : Cop −→ Gpd
X 7−→ Homlax(F ×X,G).

Then Map(F,G) is a stack which we call the stack of morphisms from F to G.

Proof. Exercise. �
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Lecture 7. Stacks III

Throughout this lecture we fix an arbitrary Grothendieck site.

7.1. Local equivalences and associated stacks

We recall that we have a fully faithful functor

Pr(C) −→ Ho(PrCh(C))

of category of presheaves of sets on C to the homotopy category of prestacks (see Proposition
5.4.2). This inclusion functor also has a left adjoint

πpr
0 : Ho(PrCh(C)) −→ Pr(C).

We also recall that for a prestack F , the presheaf πpr
0 (F ) sends X ∈ C to the set π0(F (X))

of isomorphism classes of objects of F (X). The Yoneda lemma (see Proposition 5.4.3) for
prestacks therefore implies that there exist functorial isomorphisms

πpr
0 (F )(X) ∼= [X,F ].

Proposition 7.1.1.

(1) A presheaf F , considered as a prestack, is a stack if and only if a sheaf.
(2) The inclusion functor

Sh(C) −→ Ho(Ch(C))

is fully faithful and has a left adjoint

π0 : Ho(Ch(C)) −→ Ho(Sh(C)).

Proof. (1) is deduced easily from Proposition 5.4.5. We define the functor π0 to be the
functor πpr

0 composed with the associated sheaf functor. �

From now on, we will always identify a presheaf with prestack it defines. Similarly, a sheaf
will be identified with the stack it defines.

Definition 7.1.2. Let F be a prestack, X ∈ C, and s ∈ F (X) an object. We define a
presheaf in groups on C/X as following

πpr
1 (F, s) : (C/X)op −→ Grp

(u : Y → X) 7−→ AutF (Y )(u
∗(s)).

The sheaf associated to πpr
1 (F, s) is denoted

π1(F, s) := a(πpr
1 (F, s)).

We immediately notice that the presheaf πpr
1 (F, s) does not depend, up to isomorphism,

on the isomorphism class of the object s ∈ F (X) (Exercise: show that an isomorphism
γ : s ∼= s′) induces an isomorphism of presheaves πpr

1 (F, s) ∼= πpr
1 (F, s′)). Thus, up to

isomorphism, the sheaf π1(F, s) does not depend on s ∈ π0(F (X)) = [X,F ].
We also notice that the construction (F, s) 7→ π1(F, s) is functorial in the pair (F, s).

More precisely, if f : F → G is a weak morphism, we have a well-defined morphism that is
functorial in f

π1(f, s) : π1(F, s) −→ π1(G, f(s)).

Definition 7.1.3. A weak morphism f : F → G of prestacks is a local equivalence if it
satisfies the following two conditions:
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(1) The induced morphism π0(F ) −→ π0(G) is an isomorphism of sheaves.
(2) For any X ∈ C and any object s ∈ F (X), the induced morphism π1(F, s) −→

π1(G, f(s)) is an isomorphism of sheaves.

Exercise: check that the local equivalences are stable under composition. Also show that
if f and g are two isomorphic weak morphisms, then f is a local equivalence if and only if g
is.

Proposition 7.1.4. Let f : F → G be a weak morphism of stacks. The following conditions
are equivalent.

(1) The morphism f is a local equivalence.
(2) For any X ∈ C, the induced morphism

fX : F (X) −→ G(X)

is an equivalence of groupoids.
(3) The morphism f is an isomorphism in Ho(Ch(C)).

Proof. We show that (1) implies (2).
We start by showing that fX is fully faithful. First of all, as F and G are stacks, for

any s ∈ F (X) the presheaf πpr
1 (F, s) and πpr

1 (G, f(s)) are sheaves (see the first condition
of Proposition 5.4.5). Thus, by hypothesis on f the functor fX induces an isomorphism
AutF (X)(s) ∼= AutG(X)(f(s)). As F (X) and G(X) are groupoids this implies that

IsoF (X)(s, t) −→ IsoG(X)(f(s), f(t))

is a bijection provided Iso(s, t) is nonempty. (Exercise: check this assertion). Thus, f is fully
faithful if and only if

(Iso(f(s), f(t)) 6= ∅)⇒ (Iso(s, t) 6= ∅)

for any s, t ∈ F (X).
Therefore let v : f(s) ∼= f(t) be an isomorphism in G(X), and we show that s and t are

isomorphic in F (X). As π0(F ) → π0(G) is an isomorphism, there exists a covering family
{Ui → X} and isomorphisms ui : s|Ui

∼= t|Ui
in F (Ui). From what we saw above, we can also

choose ui such that f(ui) = v|Ui
. On Ui,j we have

f(ui)|Ui,j
= v|Ui,j

= f(uj)|Ui,j
.

Again from what we saw above, this implies that (ui)|Ui,j
= (uj)|Ui,j

. Since ı Iso(s, t) is a
sheaf (because F is a stack), the local isomorphisms ui glue into an isomorphism u : s ∼= t.
This finishes showing that fX is fully faithful for any X ∈ C.

Now let t ∈ G(X). By hypothesis, there exists a covering family {Ui → X}, objects
si ∈ F (Ui), and isomorphisms ui : f(si) ∼= t|Ui

. Consider for any i and j the isomorphism

(uj ◦ u−1
i )|Ui,j

: f(si)|Ui,j
∼= f(sj)|Ui,j

.

By full faithfulness of f (by what we have already seen) there exist isomorphisms

φi,j : (si)|Ui,j
∼= (sj)|Ui,j

in F (Ui,j) such that f(φi,j) = (uj ◦u−1
i )|Ui,j

. Still by full faithfulness of f , we see that si and
φi,j define a descent data for F , and thus Proposition 5.4.5 implies the existence of s ∈ F (X)
that they glue. By construction, we see that f(s)|Ui

is naturally isomorphic to t|Ui
, and that

the local isomorphisms glue into an isomorphism between f(s) and t.
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Finally, (2) implies (3) by Proposition 5.2.5, and (3) implies (1) by functoriality of the
constructions F 7→ π0(F ) and (F, s) 7→ π1(F, s). �

Definition 7.1.5. Let F be a prestack. An associated stack to F is the data of a stack a(F )
and a local equivalence F → a(F ).

We cite the following theorem without proof.

Theorem 7.1.6.

(1) For any prestack F an associated stack F → a(F ) exists.
(2) If F → a(F ) is an associated stack, then for any stack G the induced morphism

[a(F ), G] −→ [F,G]

is bijective.
(3) For any diagram of prestacks

F1 ←− F0 −→ F2

there exists a natural isomorphism in Ho(Ch(C))

a
(
F1 ×hF0

F2

) ∼= a(F1)×ha(F0) a(F2). �

We deduce the following corollary from the theorem.

Corollary 7.1.7. The inclusion functor

Ho(Ch(C)) −→ Ho(PrCh(C))

admits a left adjoint
a : Ho(PrCh(C)) −→ Ho(Ch(C))

which to F associates its associated stack a(F ). �

We notice that the stack associated to a presheaf F is simply given by its associated sheaf
(since seen directly from Definition 7.1.5). Furthermore, for any prestack F and i : F → a(F )
its associated stack we have

π1(F, s) ∼= πpr
1 (a(F ), i(s)).

7.2. Quotient stacks

We now use the notion of associated stack to construct new examples of stacks: the
quotient stacks.

We start by considering a sheaf of groups G on C. We construct a prestack K(G, 1) by
putting

K(G, 1) : Cop −→ Gpd
X 7−→ B(G(X)),

where we recall that for a group H, B(H) is the group having a unique object denoted ∗
and with AutB(H)(∗) = H. Equivalently, for any groupoid A, the functors B(H)→ A are in
bijection with the pairs (x, u), where x is an object of A and u : H → AutA(x) is a morphism
of groups.

We propose to describe the stack associated to K(G, 1) which we will denote BG (this is
really confusing but it is a standard notation in the literature).

We recall that a G-torsor is a sheaf E equipped with an action (from the left) of G (i.e. a
morphism µ : G × E → E which satisfies obvious axioms) which satisfies the two following
conditions:



A MASTER COURSE ON ALGEBRAIC STACKS 55

(1) For any object X ∈ C, there exists a covering {Ui → X} such that each E(Ui) is
nonempty (in other words the morphism E → ∗ is an epimorphism of sheaves).

(2) The morphism
µ× id : G× E −→ E × E

is an isomorphism.

The G-torsors on C form a category G-Tors(C), for which the morphisms are simply the
morphisms of sheaves compatible with the action of G. We then note the following facts
(Exercise: show them).

(1) For any X ∈ C there exists a restriction functor

G-Tors(C) −→ G|X-Tors(C),

where G|X is the sheaf of groups restricted to the site C/X.
(2) If E is a G-torsor, then for any X ∈ C, there exists a covering family {Ui → X} such

that each restricted sheaf E|Ui
is isomorphic, as G|Ui

-torsors, to G|Ui
equipped with

its action by left translation.
(3) Let E be a G-sheaf such that for any X ∈ C, there exists a covering family {Ui → X}

such that each restricted sheaf E|Ui
is isomorphic, as G|Ui

-torsors, to G|Ui
equipped

with its action by left translation. Then E is a G-torsor.
(4) Any morphism of G-torsors is an isomorphism.
(5) If G is the trivial G-torsor (i.e. G equipped with its action by left translation), then

for any X ∈ C there exists a functorial isomorphism in X

G(X) ∼= AutG|X-Tors(C/X)(G|X).

We consider the prestack of G-torsors defined as follows.

G-Tors : Cop −→ Gpd
X 7−→ G-Tors(X) := G|X-Tors(C/X).

There exists a morphism of prestacks

K(G, 1) −→ G-Tors

which on X ∈ C is given by the trivial torsor G|X and the natural isomorphism

G(X) ∼= AutG|X-Tors(C/X)(G|X).

Theorem 7.2.1. The morphism

K(G, 1) −→ G-Tors

is an associated stack.

Proof. We must show on one hand that G-Tors is a stack, and on the other hand that the
morphism K(G, 1)→ G-Tors is a local equivalence.

Lemma 7.2.2. The prestack G-Tors is a stack

Proof of Lemma. We start by showing that condition (1) of Proposition 5.4.5 is satisfied.
Let X ∈ C, and E and F two objects of G-Tors(X), that is two G|X-torsors on C/X. The
sheaf IsoG(E,F ) of isomorphisms of G|X-torsors is naturally identified to the equalizer of
two morphisms

Iso(E,F ) ⇒ Iso(G× E,F ).



56 BERTRAND TOËN

The first of these two morphisms sends an isomorphism of sheaves f : E → F to the
composite

G× E µ−→ E
f−→ F,

and the second sends f to the composite

G× E id×f−−−→ G× F µ−→ F.

Since the prestack of sheaves is a stack we already know that Iso(E,F ) and Iso(G × E,F )
are sheaves on C/X. Therefore, IsoG(E,F ) is a limit of sheaves and is therefore a sheaf.

We now show that condition (2) of Proposition 5.4.5 is satisfied. For that let X ∈ C
and {Ui → X} a covering family. We are given a descent data Ei ∈ G-Tors(Ui) and
φi,j : (Ei)|Ui,j

∼= (Ej)|Ui,j
for G-Tors. By forgetting the action of G on Ei we find a descent

data for the stack of sheaves. Therefore, there exist a sheaf E on C/X and isomorphisms of
sheaves on C/Ui

αi : E|Ui
∼= Ei

such that
φi,j = (αj)|Ui,j

◦ (αi)
−1|Ui,j

.

We define morphisms
ai : G|Ui

× E|Ui
−→ E|Ui

by demanding that the following diagrams commute

G|Ui
× E|Ui

ai //

id×αi

��

E|Ui

αi

��
G|Ui

× Ei µi
// Ei,

where µi are the morphisms of the action of G. We then notice that ai glue into a unique
morphism of sheaves on C/X

a : G|X × E −→ E.

This defines a structure of G|X-sheaf on E so that the isomorphisms αi : E|Ui
∼= Ei are

isomorphisms of G|Ui
-sheaves. Thus, E is a G|X-sheaf locally isomorphic to a G-torsor, and

is therefore a G|X-torsor itself. It therefore defines an object E ∈ G-Tors(X), which with
which the isomorphism αi glue into the descent data. This ends the proof of the lemma. ♦

Lemma 7.2.3. The natural morphism

K(G, 1) −→ G-Tors

is a local equivalence.

Proof of Lemma. For any X ∈ C the morphism

K(G, 1)(X) −→ G-Tors(X)

identifies K(G, 1)(X) with the full sub-groupoid of G-Tors(X) which only contains the trivial
G|X-torsor G|X . This implies that the induced morphism

π1(K(G, 1), ∗) = G|X −→ π1 (G-Tors, G|X)
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is an isomorphism. Moreover, since all objects of G-Tors(X) are locally isomorphic to each
other (because they are all locally isomorphic to the trivial torsor), we have π0(G-Tors) ∼= ∗.
Thus, the induced morphism

π0(K(G, 1)) = ∗ −→ π0(G-Tors) ∼= ∗
can only be an isomorphism. ♦

Lemma 7.2.2 and Lemma 7.2.3 prove the theorem. �

We now propose to give a generalization of the stack BG for which we add an action of
G on a given sheaf E (the case of BG is recovered for E = ∗).

We therefore fix a sheaf E equipped with an action of G. We define a prestack K(G,E, 1)
as follows. For X ∈ C, the set of objects of the groupoid K(G,E, 1)(X) is the set E(X).
A morphism from x to y in K(G,E, 1)(X) is the data of a g ∈ G(X) such that g · x = y.
The composition of moprhisms is then defined by multiplication in G(X). For u : Y → X a
morphism in C, we have a functor

u∗ : K(G,E, 1)(X) −→ K(G,E, 1)(Y ).

This functor is just u∗ : E(X)→ E(Y ) on the set of objects and is induced by u∗ : G(X)→
G(Y ) on the set of morphisms.

Definition 7.2.4. The stack associated to K(G,E, 1) is called the quotient stack of E by
G. It is denoted [E/G].

Exercise: show that πpr
0 (K(G,E, 1)) is the quotient presheaf of E by G. Furthermore, show

that if G acts fixed-point free on E then the natural projection K(G,E, 1)→ πpr
0 (K(G,E, 1))

is an equivalence (i.e. an isomorphism in Ho(PrCh(C)). Thereof deduce that in this case
the stack [E/G] is identified with the quotient sheaf of E by G.

We end with a description of the stack associated to K(G,E, 1). So given a sheaf E
equipped with an action of G. We define a prestack B(G,E) as follows. For X ∈ C, the
objects of the groupoid B(G,E)(X) are the pairs (E0, u), where E0 ∈ G-Tors(X) is a G-
torsor on X, and u : E0 → E|X is a morphism of sheaves on C/X compatible with the action
of G|X . A morphism (E0, u)→ (E ′0, u

′) is the data of a morphism f : E0 → E ′0 of G-torsors
on X, such that u′ ◦ f = u. Moreover, for f : Y → X a morphism in C, the functor

f ∗ : B(G,E)(X) −→ B(G,E)(Y )

sends by definition (E0, u) to ((E0)|Y , u|Y ), where the morphism u|Y is the morphism induced
by restriction of C/X to C/Y .

There exists a morphism of prestacks

j : K(G,E, 1) −→ B(G,E)

defined as follows. For X ∈ C the functor

jX : K(G,E, 1)(X) −→ B(G,E)(X)

an object x ∈ E(X) to the unique G-invariant morphism of sheaves on C/X

G|X −→ E|X
(which sends the element the neutral of G|X to the point x). By considering G|X as the
trivial G-torsor on X, this gives an object of B(G,E)(X). This defines the functor jX at
the level of objects. We leave as an exercise the definition of jX at the level of morphisms
(we use that G(X) is identified with the automorphism group of trivial G-torsors on X).
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Theorem 7.2.5. The morphism

K(G,E, 1) −→ B(G,E)

is an associated stack. Thus, we have

[E/G] ∼= B(G,E).

Proof. This is essentially the same as that for Theorem 7.2.1. We leave it as an exercise. �
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Lecture 8. Stacks IV

In this lecture we place ourselves in the Grothendieck site Aff of affine schemes equipped
with the étale topology. We saw in the previous lecture that there exist a homotopy category
of prestacks Ho(PrCh(Aff)) and fully faithful functors

Sh(Aff) ↪−→ Ho(Ch(Aff) ↪−→ Ho(PrCh(Aff)).

With these functors we will thereafter identify the categories Sh(Aff) and Ho(Ch(Aff)) with
the full subcategories of Ho(PrCh(Aff)). Thus, the subcategories of Sh(Aff) consisting of
algebraic spaces, of schemes, and of affine schemes will also be identified with their essential
images in Ho(Ch(Aff)). Thus, we say that a stack F ∈ Ho(Ch(Aff)) is an algebraic space, a
scheme, or an affine scheme, if it is isomorphic in Ho(Ch(Aff)) to the image of an algebraic
space, a scheme, or an affine scheme, via the functor Sh(Aff) ↪→ Ho(Ch(Aff)).

In general, we will use the phrase a morphism of stacks (or still morphism of prestacks, or
even simply morphism) to mean a morphism in Ho(Ch(Aff)) (or even in Ho(PrCh(Aff))).
Thus, unless otherwise specified, a morphism will be an isomorphism class of weak morphisms
(see Theorem 5.2.4).

8.1. Algebraic stacks

Let f : F → G be a morphism in Ho(Ch(Aff)), X ∈ Aff, and x : X → G a morphism.
The fiber of f at x is by definition the stack F ×hGX. Assume that the morphism x : X → G
corresponds, via the isomorphism [X,G] ∼= π0(G(X)), to an object x ∈ G(X) (well-defined
up to isomorphism). Then the stack F ×hGX is described as follows. For Y ∈ Aff, an object
of (F ×hG X)(Y ) is given by a triple (z, u, α), where z is an object in F (Y ), u : Y → X
is a morphism in Aff, and α : f(z) ∼= u∗(x) is an isomorphism in G(Y ). A morphism
(z, u, α) → (z′, u, α′) is given by a morphism z → z′ in F (Y ), such that the following
diagram commutes

f(z) //

��

f(z′)

{{
u∗(x).

There is no morphism (z, u, α)→ (z′, u, α′) for u 6= u′.

Definition 8.1.1.

(1) A morphism f : F → G of stacks is representable (resp. representable by a scheme,
resp. representable by an affine scheme) if for any X ∈ Aff and for any x : X → G
the fiber of f at x, F ×hG X is an algebraic space (resp. a scheme, resp. an affine
scheme).

(2) A representable morphism f : F → G of stacks is smooth (resp. étale, resp. quasi-
compact, resp. locally finitely presented, resp. a closed immersion, resp. an open
immersion ...) if for any X ∈ Aff the induced morphism of algebraic spaces is smooth
(resp. étale, resp. quasi-compact, resp. locally finitely presented, resp. a closed
immersion, resp. an open immersion ...) in the sense of algebraic spaces.

We notice that the representable morphisms (resp. smooth representables, étale ...) are
stable under composition (Exercise). They are also stable under base change in the sense of
homotopy fiber products.
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An important property of representable morphisms is the following (it is useful to show
that a morphism is not representable).

Proposition 8.1.2. If f : F → G is a representable morphism, then for any X ∈ Aff and
x ∈ [X,F ], then induced morphism

f : π1(F, x) −→ π1(G, f(x))

is a monomorphism of sheaves.

Proof. If f is representable, then for any Y → X the groupoid (F ×hG X)(Y ) is equivalent
to a set. In particular, the automorphism groups of objects in (F ×hG X)(Y ) are trivial.

Let X ∈ Aff and x ∈ [X,F ]. Assume that there exist u : Y → X and a ∈ π1(F, x)(Y ) =
AutF (Y )(u

∗(x)) a nontrivial automorphism in the kernel of the morphism

π1(F, x)(Y ) −→ π1(G, f(x)).

We consider the object (u∗(x), u, id), which is an object in (F ×hG X)(Y ) (for the morphism
f(x) ∈ [X,G]). Furthermore, the automorphism a of u∗(x) induced by definition a nontrivial
automorphism of the object (u∗(x), u, id) in the groupoid (F ×hGX)(Y ). This implies that f
is not representable. �

Before giving the definition of algebraic stacks we need the following definition.

Definition 8.1.3. A morphism of stacks f : F → G is an epimorphism if the induced
morphism π0(F )→ π0(G) is an epimorphism of sheaves.

We notice that f : F → G is an epimorphism is an epimorphism if and only if for any
X ∈ Aff and any object x ∈ G(X) there exist a covering family {Ui → X} and objects
yi ∈ F (Ui) such that x|Ui

are isomorphic to f(yi) for any i (i.e. any object of G is locally in
the essential image of f).

Definition 8.1.4. A stack F is algebraic* if it satisfies the following two conditions.

(1) The diagonal morphism
F −→ F × F

is representable.
(2) There exist affine schemes {Ui} and a smooth and representable epimorphism

p : U =
∐
i

Ui −→ F.

Such a morphism p is called an atlas for F .

We will see that condition (2) implies condition (1). We present, however, the notion of
algebraic stacks in this form which is what we will encounter in the literature. Moreover, it
is often a custom to replace condition (1) by the following stronger condition.

(1’) The diagonal morphism
F −→ F × F

is representable, quasi-compact and separated.

As far as we are concerned, we will primarily focus on algebraic stacks F whose diagonal
morphism F → F × F is representable and affine.

We end this section with the following finiteness notions.

* In the literature we also find the terminology of Artin stack.
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Definition 8.1.5. Let F be an algebraic stack.

(1) We say that F is quasi-compact if there exists an atlas

p : U −→ F

with U an affine scheme, and if furthermore the diagonal morphism F → F × F is
quasi-compact.

(2) Let X ∈ Aff and F → X a morphism. We say that F is locally finitely presented on
X if there exists an atlas

p : U =
∐
i

Ui −→ F

with each Ui finitely presented on X.
(3) Let X ∈ Aff and F → X a morphism. We say that the stack F is finitely presented

on X if it is locally finitely presented on X and quasi-compact.
(4) We say that F is locally noetherian if there exists an atlas

p : U =
∐
i

Ui −→ F

with each Ui noetherian.
(5) We say that the stack F is noetherian if it is locally noetherian and quasi-compact.

8.2. Some elementary properties

We start with a proposition which makes Definition 8.1.4 precise.

Proposition 8.2.1. Let F be a stack. The following three conditions are equivalent.

(1) The diagonal morphism F → F × F is representable.
(2) For any affine scheme X and any x, y ∈ F (X), the sheaf Iso(x, y) is representable by

an algebraic space.
(3) For any affine scheme X and Y , and any morphisms X, Y → F the stack X ×hF Y

is representable.

Proof. To say that F → F × F is representable is equivalent to saying that for any affine
scheme X and any morphism (x, y) : X → F ×F , the stack X ×hF×F F is representable. We
see that the stack X ×hF×F F is isomorphic to the sheaf Iso(x, y). Thus (1) is equivalent to
(2).

For any affine schemes X and Y , and any morphisms X, Y → F , we have

X ×hF Y ∼= (X × Y )×hF×F F.
Thus, (1)⇒(3). Conversely, any morphism X × F × F factorizes as

X −→ X ×X −→ F × F.
Thus, we have

X ×hF×F F ∼= X ×hX×X
(
X ×hF X

)
,

and therefore (3)⇒(1). �

Proposition 8.2.2. Let F be a stack. The following two conditions are equivalent.

(1) The stack F is algebraic.
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(2) There exist affine schemes {Ui} and a representable smooth epimorphism

p : U =
∐
i

Ui −→ F.

Proof. By definition (1)⇒(2). We show that (2)⇒(1). For that we use Proposition 8.2.1 (3).
Let X and Y be two affine schemes, and x : X → F and y : Y → F two points. We

consider X ×hF Y → X, which is a morphism of sheaves (Exercise: check that the stack
X ×hF Y is equivalent to a sheaf), and we want to show that it is an algebraic space. We
then apply Proposition 4.1.2 which allows us to pass to an étale covering of X. Thus, upon
replacing X by an étale covering we may assume that the morphism X → F factorizes
through x′ : X → U . We then have

X ×hF Y ∼= X ×hU
(
U ×hF Y

)
.

Since by hypothesis U×hF Y is an algebraic space we see that X×hF Y is an algebraic space. �

We now give some general criteria to construct algebraic stacks.

Proposition 8.2.3.

(1) An algebraic space is an algebraic stack.
(2) Let f : F → G be a morphism of stacks with G an algebraic stack. We assume that

there exists an atlas
{Ui −→ G}

such that each F ×hG Ui is an algebraic stack. Then F is an algebraic stack.
(3) Let F1 → F0 ← F2 be a diagram of algebraic stacks. Then F1 ×hF0

F2 is an algebraic
stack.

(4) Let f : F → G be a representable morphism. If G is algebraic then so is F .

Proof. Exercise (inspired by the analogous facts for algebraic spaces). �

We end this section with the construction of algebraic stacks as quotient stacks.

Proposition 8.2.4. Let G be an algebraic space smooth over ∗ = SpecZ. Let X be an
algebraic space on which G acts. Then the quotient stack [X/G] is an algebraic stack.

Proof. We start with a general lemma on quotient stacks. For that we recall that there exist
natural morphisms

X −→ K(G,X, 1) −→ [X/G].

Lemma 8.2.5. Let Y → [X/G] be a morphism with Y an affine scheme, corresponding to
a diagram

Y ←− E −→ X

with E → Y a G|Y -torsor. Then the stack Y ×[X/G] X is identified with the sheaf E.

Proof. Let Z ∈ Aff. The groupoid (Y ×[X/G] X)(Z) is identified with the set of pairs (a, u),
with a : Z → Y and u : G|Z ∼= E|Z an isomorphism from E|Z to the trivial G|Z-torsor
(Exercise: check it). The image of the unit of G(Z) under the isomorphism u gives a point
in E(Z). As Z varies in the affine schemes this defines a morphism Y ×[X/G] X → E which
we see is an isomorphism (Exercise). �
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We return to the proof of the proposition. For that we show that the morphism

X −→ [X/G]

is a representable and smooth epimorphism. This implies that [X/G] is an algebraic stack,
because by composing with an atlas for X we find a smooth epimorphism

∐
Ui → [X/G]

with Ui affine schemes, and we can apply Proposition 8.2.2.
The fact that X → [X/G] is an epimorphism is general. In fact, the morphism induced

on the sheaves π0 is the natural projection

X −→ π0([X/G]) = X/G,

where X/G is the quotient sheaf of X by G. This is therefore an epimorphism of sheaves.
Now let Y ∈ Aff and Y → [X/G] a morphism. By Lemma 8.2.5 we find that Y ×[X/G]X →

Y is a G|Y -torsor. Thus, through an étale covering of Y this morphism is isomorphic to the
natural projection

Y ×G −→ Y.

It is therefore representable and smooth (because G is smooth). �

Proposition 8.2.4 also has the following relative version. Given an affine scheme S =
Spec k, X and algebraic space over S (i.e. equipped with a morphism X → S), and G is
a group algebraic space over S (i.e. a group object in the algebraic spaces over S) which
acts on X. We may then define the quotient stack [X/G] which is a stack equipped with a
morphism to S. Then the conclusion of Proposition 8.2.4 remains valid, and the proof is the
same: the stack [X/G] is algebraic.

Corollary 8.2.6. Let G be a smooth group algebraic space. Then the stack BG is an algebraic
stack.

Proof. Indeed, we have BG = [∗/G]. �

Corollary 8.2.6 shows in particular that BGLn is an algebraic stack (we recall that GLn is

the group scheme A 7→ GLn(A), and is smooth because it is an open subscheme of An2
).

8.3. Two examples

We will start by defining, for any integer n > 0, a sub-prestack Vectn of the stack of
modules -Mod (see Lecture 6). For that, we recall that an A-module M is projective if there
exists an A-module N such that M ⊕ N is a free A-module. We say furthermore that M
is projective of rank n (we also say is a vector bundle of rank n) if for any field K and any
morphism A → K, we have dimKM ⊗A K = n. Similarly, we say that an A-module M is
projective of rank n if the A-module Mid is.

By definition Vectn(A) is the full sub-groupoid on -Mod(A) of projective A-modules of
rank n. It is clear that for a morphism of rings A→ B the functor

-Mod(A) −→ -Mod(B)

sends the sub-groupoid Vectn(A) into Vectn(B). Thus, Vectn is a full sub-stack of -Mod.

Proposition 8.3.1. The prestack Vectn is an algebraic stack.

Proof. [...] �
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Let A be a commutative ring. Recall that an A-algebra (associative and unitary) is given
by an A-module R equipped with two morphisms of A-modules

µ : R×A R −→ R,

e : A −→ R

which satisfy the evident associative and unitary axioms.
Similarly, an A-algebra R consists of the following data.

• For any morphism of commutative rings u : A → B, a B-algebra Ru ∈ B-Alg
(associative and unitary).
• For any commutative diagram of commutative rings

A
u //

v

��

B

f��
C

an isomorphism of C-algebras

γRf : Ru ⊗B C −→ Rv

(simply denoted by γf when R is clear).

We furthermore demand that these data satisfy the following two conditions:

• γid = id.
• For any commutative diagram of commutative rings

A

w~~
v

��

u

��
D Cg
oo B

f
oo

the following diagram commutes

(Ru ⊗B C)⊗C D
α

��

γf⊗CD// Rv ⊗C D
γg

��
Ru ⊗B D γg◦f

// Rw,

where α : (Ru ⊗B C) ⊗C D ∼= Ru ⊗B D is the natural isomorphism of simplification
of tensor products (which sends (m⊗ c⊗ d) to (m⊗ g(c) · d)).

A morphism φ : R→ R′ in A-algebras consists of the data of an isomorphism

φu : Ru −→ R′u

for any u : A→ B, such that for any commutative diagram

A
u //

v

��

B

f��
C
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the following diagram commutes

Ru ⊗B C
γf

��

φu⊗BC// R′u ⊗B C
γf

��
Rv

φf

// R′v.

Thus defined, the A-algebras form a groupoid denoted by A-Alg. Furthermore, just as for
the case of A-modules, we have for any morphism of commutative rings A→ B a functor

A-Alg −→ B-Alg

which makes A 7→ A-Alg a prestack on Aff. This prestack is denoted Ass (for associative
algebras).

Lemma 8.3.2. The prestack Ass is a stack.

Proof. [...] �

We have a forgetful morphism of the algebra structure

f : Ass −→ -Mod.

We then define the substack Assn of Ass by

Assn := Ass×h-Mod Vectn .

In other words, the substack Assn ⊂ Ass consists of the A-algebras whose underlying A-
modules is projective of rank n.

Theorem 8.3.3. For any n > 0 the stack Assn is an algebraic stack.

Proof. [...] �

An important corollary of the proof of Theorem 8.3.3 is the following.

Corollary 8.3.4. The stack Assn is finitely presented over SpecZ (and therefore noetherian).

Proof. In the proof of the theorem we saw that an atlas of Assn is given by

Assn ×hVectn
∗ −→ Assn,

and that Assn ×hVectn
∗ is furthermore the spectrum of a Z-algebra of finite type. Moreover,

it is easy to see that the diagonal morphism Assn → Assn×Assn is representable affine, and
therefore quasi-compact (Exercise: prove it). �
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