Constructing models of type theory

Tamara von Glehn University of Cambridge

Homotopy Type Theory and Univalent Foundations DMV, 25 September 2015

- Type theory in a category
- Onstructing new models from old
- Operation of the second sec
- Seamples gluing, realizability, polynomials...

Categorical models of type theory

A display map category is a category ${\mathcal C}$ with a class of morphisms ${\mathcal F}$

such that

- ullet pullbacks of display maps exist and are in ${\cal F}$
- \mathcal{F} contains all isomorphisms
- ${\mathcal F}$ is closed under composition
- $\mathcal C$ has a terminal object 1 and $\mathcal F$ contains all morphisms to 1.

dependent types
$$\iff$$
display maps $a \in A \vdash B(a)$ Type $A \leftarrow B$

The 2-category *Disp* has:

as objects display map categories,

as morphisms $(\mathcal{C},\mathcal{F})\to (\mathcal{D},\mathcal{E})$ the functors ${\cal G}:\mathcal{C}\to \mathcal{D}$ such that

- G preserves the terminal object
- G preserves display maps
- G preserves pullbacks of display maps,

and as 2-cells natural transformations.

The 2-category *Disp* has:

as objects display map categories,

as morphisms $(\mathcal{C},\mathcal{F})\to (\mathcal{D},\mathcal{E})$ the functors ${\cal G}:\mathcal{C}\to \mathcal{D}$ such that

- G preserves the terminal object
- G preserves display maps
- G preserves pullbacks of display maps,

and as 2-cells natural transformations.

For a pseudofunctor $P : C^{op} \to Cat$, the Grothendieck construction gives a corresponding fibration $\int P$

$$\overset{\psi}{\mathcal{C}}$$
.

 $\int P \text{ has objects: pairs } (B \in \mathcal{C}, D \in P(B)), \\ \text{morphisms } (B, D) \to (B', D'): \text{ pairs } (B \xrightarrow{g} B' \text{ in } \mathcal{C}, D \xrightarrow{\alpha} P(g)D' \text{ in } P(B)).$

For a pseudofunctor $P : C^{op} \to Cat$, the Grothendieck construction gives a corresponding fibration $\int P$

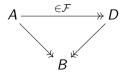
 $\int P \text{ has objects: pairs } (B \in \mathcal{C}, D \in P(B)), \\ \text{morphisms } (B, D) \to (B', D'): \text{ pairs } (B \xrightarrow{g} B' \text{ in } \mathcal{C}, D \xrightarrow{\alpha} P(g)D' \text{ in } P(B)).$

If $(\mathcal{C}, \mathcal{F})$ is a display map category and P is a pseudofunctor $\mathcal{C}^{op} \to Disp$, then $\int P$ has the structure of a display map category, and ψ is a morphism in Disp.

Display maps in $\int P$: morphisms (g, α) where g is a display map in C and α is a display map in P(B). If $(\mathcal{C},\mathcal{F})$ is a display map category and $B\in\mathcal{C}$,

 \mathcal{F}/B is the full subcategory of the slice \mathcal{C}/B with objects display maps.

 \mathcal{F}/B has a class of display maps:



If $B \xrightarrow{f} C$ is a display map in \mathcal{F} , the pullback functor

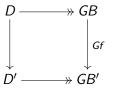
$$f^*: \mathcal{F}/C \to \mathcal{F}/B$$

is a morphism in *Disp*.

Examples: gluing

If $(\mathcal{C}, \mathcal{F})$ and $(\mathcal{D}, \mathcal{E})$ are display map categories, and G a functor $\mathcal{C} \to \mathcal{D}$, there is a pseudofunctor $\mathcal{C}^{op} \to Disp$: $B \mapsto \mathcal{F}/GB$ $B \xrightarrow{f} B' \mapsto (Gf)^*$

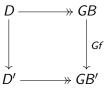
The corresponding fibration is the gluing $(\mathcal{E} \downarrow G)$ along *G*. Morphisms:



Examples: gluing

If $(\mathcal{C}, \mathcal{F})$ and $(\mathcal{D}, \mathcal{E})$ are display map categories, and G a functor $\mathcal{C} \to \mathcal{D}$, there is a pseudofunctor $\mathcal{C}^{op} \to Disp:$ $B \mapsto \mathcal{F}/GB$ $B \stackrel{f}{\to} B' \mapsto (Gf)^*$

The corresponding fibration is the gluing $(\mathcal{E} \downarrow G)$ along *G*. Morphisms:



It follows that:

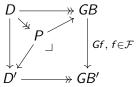
Proposition (Shulman 2013)

The gluing $(\mathcal{E} \downarrow G)$ has the structure of a display map category.

Examples: gluing

If $(\mathcal{C}, \mathcal{F})$ and $(\mathcal{D}, \mathcal{E})$ are display map categories, and G a functor $\mathcal{C} \to \mathcal{D}$, there is a pseudofunctor $\mathcal{C}^{op} \to Disp:$ $B \mapsto \mathcal{F}/GB$ $B \stackrel{f}{\to} B' \mapsto (Gf)^*$

The corresponding fibration is the gluing $(\mathcal{E} \downarrow G)$ along *G*. Display maps:



It follows that:

Proposition (Shulman 2013)

The gluing $(\mathcal{E} \downarrow G)$ has the structure of a display map category.

Any category with finite products has a class of display maps consisting of the binary product projections:

$$A \times B \rightarrow A$$

Any finite-product preserving functor is a morphism of display map categories.

Thus any pseudofunctor $P : C^{op} \to FinProdCat$ factors through *Disp*. This corresponds to:

If $(\mathcal{C}, \mathcal{F})$ is a display map category and $\mathcal{D} \xrightarrow{\psi} \mathcal{C}$ is a fibration such that \mathcal{D} has and ψ preserves finite products, then \mathcal{D} inherits the structure of a display map category.

A display map category $(\mathcal{C},\mathcal{F})$ has product types if for any display maps

$$E \xrightarrow{g} A \xrightarrow{f} B$$

the dependent product

$$\prod_f(g) \longrightarrow B$$

exists and is a display map.

- (\iff for every display map $f, f^* : \mathcal{F}/B \to \mathcal{F}/A$ has a right adjoint \prod_f satisfying the Beck-Chevalley condition,
 - $\iff \text{for every display map } f, f^* \text{ has a right adjoint and the inclusion} \\ \mathcal{F}/B \hookrightarrow \mathcal{C}/B \text{ preserves exponentials.})$

 $\Pi Disp$ is the 2-category of display map categories with product types and morphisms *G* which preserve dependent products,

 $G(\prod_f g) \cong \prod_{Gf} Gg.$

If $(\mathcal{C}, \mathcal{F})$ is a display map category with product types and P is a pseudofunctor $\mathcal{C}^{op} \to \prod Disp$ such that for every $f \in \mathcal{F}$,

- P(f) has a right adjoint Π_f ,
- Π_f preserves display maps,
- the Beck-Chevalley condition for the Π-functors holds,

then $\int P$ has the structure of a display map category with product types, and ψ is a morphism in $\Pi Disp$.

A morphism is anodyne if it has the left lifting property with respect to all display maps.

A display map category $(\mathcal{C}, \mathcal{F})$ has identity types if

- $\bullet\,$ Every morphism in ${\mathcal C}$ factors as an anodyne map followed by a display map
- Anodyne maps are stable under pullback along display maps.

hDisp is the 2-category of display map categories with identity types and morphisms which preserve anodyne maps.

A morphism is anodyne if it has the left lifting property with respect to all display maps.

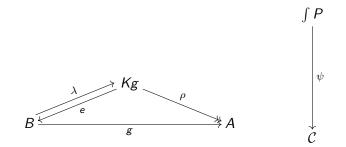
A display map category $(\mathcal{C}, \mathcal{F})$ has identity types if

- $\bullet\,$ Every morphism in ${\mathcal C}$ factors as an anodyne map followed by a display map
- Anodyne maps are stable under pullback along display maps.

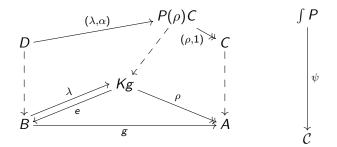
hDisp is the 2-category of display map categories with identity types and morphisms which preserve anodyne maps.

If the fibration $\psi : \int P \to C$ is also an opfibration, then factorizations exist in $\int P$ (Stanculescu 2012, Harpaz & Prazma 2015). This doesn't hold in general in the previous examples.

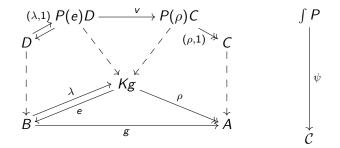
To factorize $(g, \alpha) : (B, D) \rightarrow (A, C)$:



To factorize $(g, \alpha) : (B, D) \rightarrow (A, C)$:

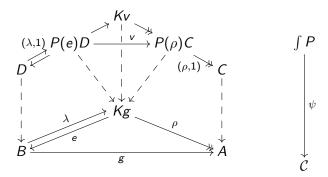


To factorize $(g, \alpha) : (B, D) \rightarrow (A, C)$:



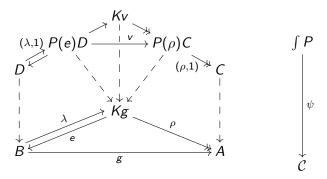
If $(\lambda, 1)$ is anodyne in $\int P$.

To factorize $(g, \alpha) : (B, D) \rightarrow (A, C)$:



If $(\lambda, 1)$ is anodyne in $\int P$.

To factorize $(g, \alpha) : (B, D) \rightarrow (A, C)$:



If $(\lambda, 1)$ is anodyne in $\int P$. i.e.: Condition (*): If λ is anodyne in C, $f \in \mathcal{F}$ and $P(\lambda)f$ has a section s, then f has a section t such that $P(\lambda)t = s$.

If $(\mathcal{C}, \mathcal{F})$ is a display map category with identity types and $P : \mathcal{C}^{op} \to hFib$ satisfies (*), then $\int P$ has identity types.

A display map category with product and identity types satisfies function extensionality if for every display map f, the product functor \prod_{f} preserves anodyne maps.

If function extensionality holds in $(\mathcal{C}, \mathcal{F})$ and in P(B) for each $B \in C$, product and identity types are constructed as above, and the right adjoint functors Π_f preserve anodyne maps, then function extensionality holds in $\int P$.

A display map category with product and identity types satisfies function extensionality if for every display map f, the product functor \prod_{f} preserves anodyne maps.

If function extensionality holds in $(\mathcal{C}, \mathcal{F})$ and in P(B) for each $B \in C$, product and identity types are constructed as above, and the right adjoint functors Π_f preserve anodyne maps, then function extensionality holds in $\int P$.

Gluing example (Shulman 2013):

If $(\mathcal{C}, \mathcal{F})$ and $(\mathcal{D}, \mathcal{E})$ are display map categories with function extensionality, and $G : \mathcal{C} \to \mathcal{D}$ preserves display maps and anodyne maps, then $(\mathcal{E} \downarrow G)$ satisfies function extensionality.

Example: finite product projections

If the display maps in the fibres are product projections, fibrewise dependent products correspond to fibrewise exponentials.

If $(\mathcal{C}, \mathcal{F})$ is a display map category with product types and $\mathcal{D} \xrightarrow{\psi} \mathcal{C}$ is a fibration such that

- ${\mathcal D}$ has and ψ preserves finite products
- ${\cal D}$ has and ψ preserves preserves exponentials
- each reindexing functor has a right adjoint satisfying BCC,

then $\ensuremath{\mathcal{D}}$ inherits the structure of a display map category with product types.

Example: finite product projections

If the display maps in the fibres are product projections, fibrewise dependent products correspond to fibrewise exponentials.

If $(\mathcal{C}, \mathcal{F})$ is a display map category with product types and $\mathcal{D} \xrightarrow{\psi} \mathcal{C}$ is a fibration such that

- ${\mathcal D}$ has and ψ preserves finite products
- ${\cal D}$ has and ψ preserves preserves exponentials
- each reindexing functor has a right adjoint satisfying BCC,

then \mathcal{D} inherits the structure of a display map category with product types.

Any morphism $f : A \to B$ has a factorization $A \xrightarrow{(1,f)} A \times B \twoheadrightarrow B$ into an anodyne followed by a display map.

If $(\mathcal{C}, \mathcal{F})$ is a display map category with identity types and $\mathcal{D} \xrightarrow{\psi} \mathcal{C}$ is a fibration satisfying condition (*), then \mathcal{D} has the structure of identity types.

 mod_0 is the category of non-empty modest sets objects: $\{X = (|X| \xrightarrow{\alpha} \mathcal{P}_+\mathbb{N}), \alpha(x) \cap \alpha(y) = \emptyset \text{ for } x \neq y, |X| \neq \emptyset\}$ morphisms $X \to Y$: functions $|X| \to |Y|$ trackable by some $e \in \mathbb{N}$

 mod_0 has a class of display maps with product and identity types, consisting of surjective trackable functions.

 mod_0 is the category of non-empty modest sets objects: $\{X = (|X| \xrightarrow{\alpha} \mathcal{P}_+\mathbb{N}), \alpha(x) \cap \alpha(y) = \emptyset \text{ for } x \neq y, |X| \neq \emptyset\}$ morphisms $X \to Y$: functions $|X| \to |Y|$ trackable by some $e \in \mathbb{N}$

 mod_0 has a class of display maps with product and identity types, consisting of surjective trackable functions.

 $\begin{array}{l} \mathit{mr}_0 \text{ is the category of modified realizability sets over } \mathit{mod}_0 \\ \text{objects: } \{P \subseteq |X|, X \in \mathit{mod}_0\} \\ \text{actual } \subseteq \text{ potential elements} \\ \text{morphisms } (P, X) \rightarrow (Q, Y) \text{: } P \xrightarrow{} |X| \\ & \downarrow \\ Q \xrightarrow{} |Y| \\ \text{morphisms } X \rightarrow Y \text{ preserving actual elements} \end{array}$

Modified realizability sets

The projection $mr_0 \rightarrow mod_0$ is a fibration which preserves finite products, exponentials and has compatible right adjoints to reindexing. It follows that:

Proposition (Streicher 1993)

The category mr_0 has the structure of a display map category with product types.

Modified realizability sets

The projection $mr_0 \rightarrow mod_0$ is a fibration which preserves finite products, exponentials and has compatible right adjoints to reindexing. It follows that:

Proposition (Streicher 1993)

The category mr_0 has the structure of a display map category with product types.

The condition (*) for identity types doesn't hold, but mr_0 can be given the structure of identity types:

$$\begin{split} & \textit{Id}(P,X) = P \hookrightarrow (X + X \times X) \\ & \textit{Id}_{(P,X)}(x,y) = 0 \hookrightarrow 1 & \text{if } x \neq y \\ & = 1 \hookrightarrow 1 + 1 & \text{if } x = y \in P \end{split}$$

The category mr_0 has identity types, for which function extensionality does not hold.

If $(\mathcal{C}, \mathcal{F})$ is a display map category, $\mathcal{F} \to \mathcal{C}$ is a fibration. Reversing the vertical arrows gives the opposite fibration $Poly(\mathcal{F}) \to \mathcal{C}$. $Poly(\mathcal{F})$ is the category of polynomials or containers.

If $(\mathcal{C}, \mathcal{F})$ is a display map category, $\mathcal{F} \to \mathcal{C}$ is a fibration. Reversing the vertical arrows gives the opposite fibration $Poly(\mathcal{F}) \to \mathcal{C}$. $Poly(\mathcal{F})$ is the category of polynomials or containers. Objects:

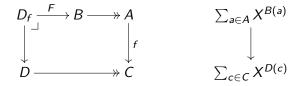
$$B \longrightarrow A$$
 $\sum_{a \in A} X^{B(a)}$

If $(\mathcal{C}, \mathcal{F})$ is a display map category, $\mathcal{F} \to \mathcal{C}$ is a fibration. Reversing the vertical arrows gives the opposite fibration $Poly(\mathcal{F}) \to \mathcal{C}$. $Poly(\mathcal{F})$ is the category of polynomials or containers. Morphisms:

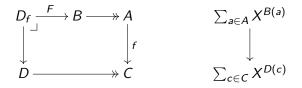
$$B \longrightarrow A$$
 $\sum_{a \in A} X^{B(a)}$

$$D \longrightarrow C \qquad \qquad \sum_{c \in C} X^{D(c)}$$

If $(\mathcal{C}, \mathcal{F})$ is a display map category, $\mathcal{F} \to \mathcal{C}$ is a fibration. Reversing the vertical arrows gives the opposite fibration $Poly(\mathcal{F}) \to \mathcal{C}$. $Poly(\mathcal{F})$ is the category of polynomials or containers. Morphisms:



If $(\mathcal{C}, \mathcal{F})$ is a display map category, $\mathcal{F} \to \mathcal{C}$ is a fibration. Reversing the vertical arrows gives the opposite fibration $Poly(\mathcal{F}) \to \mathcal{C}$. $Poly(\mathcal{F})$ is the category of polynomials or containers. Morphisms:



When C is extensive, $Poly(\mathcal{F}) \to C$ has fibred finite products, and satisfies condition (*). It follows that:

The category of polynomials $Poly(\mathcal{F})$ has the structure of a display map category with identity types.

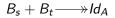
Display maps in $Poly(\mathcal{F})$:

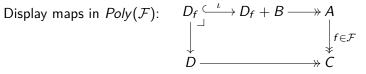
$$D_{f} \xrightarrow{\iota} D_{f} + B \longrightarrow A$$

$$\downarrow \downarrow f \in \mathcal{F}$$

$$D \longrightarrow C$$

Identity type $Id_{B \rightarrow A}$:





Identity type $Id_{B \rightarrow A}$:

$$B_s + B_t \longrightarrow Id_A$$

Product types:

Proposition (Altenkirch, Levy, Staton 2010)

The category of polynomials $Poly(\mathcal{F})$ is cartesian closed, but not locally cartesian closed. $Poly(\mathcal{F}) \rightarrow \mathcal{C}$ does not preserve exponentials.

However, $Poly(\mathcal{F})$ has dependent products not preserved by the fibration.

The category of polynomials $Poly(\mathcal{F})$ is a display map category with product and identity types, for which function extensionality does not hold. A universe in a display map category $(\mathcal{C},\mathcal{F})$ is a display map

 $\tilde{\mathcal{U}} \overset{u}{\longrightarrow} \mathcal{U}$

such that if S is the class of all pullbacks of u, then

- ${\mathcal S}$ contains all isomorphisms
- ${\mathcal S}$ is closed under composition
- if $E \xrightarrow{g} A \xrightarrow{f} B$ are in S then so is $\prod_{f} (g) \twoheadrightarrow B$
- if A → C and B → C are in S and f is any morphism A → B over C, then f factors as an anodyne map followed by a morphism in S.

Universes

Given a universe $\tilde{\mathcal{U}} \xrightarrow{u} \mathcal{U}$ in $(\mathcal{C}, \mathcal{F})$,

$$(\mathcal{\widetilde{U}},1) \xrightarrow{(u,1)} (\mathcal{U},1)$$

is a universe in $\int P$.

Given a universe $\tilde{\mathcal{U}} \xrightarrow{u} \mathcal{U}$ in $(\mathcal{C}, \mathcal{F})$,

$$(ilde{\mathcal{U}},1) \overset{(u,1)}{\longrightarrow} (\mathcal{U},1)$$

is a universe in $\int P$.

Given a universe $\tilde{\mathcal{U}} \xrightarrow{u} \mathcal{U}$ in $(\mathcal{C}, \mathcal{F})$, and $\mathcal{V} \in \mathcal{C}, \tilde{\mathcal{V}} \in P(\mathcal{V})$ such that reindexings of $\tilde{\mathcal{V}}$ are closed under finite products and Π -functors,

$$(\sum_{A:\mathcal{U}}\sum_{f:A\to\mathcal{V}}A, P(ev)(\tilde{\mathcal{V}})) \longrightarrow (\sum_{A:\mathcal{U}}(A\to\mathcal{V}), 1)$$

is a universe in $\int P$. e.g. polynomials, modified realizability sets.

- More general universes?
- Univalence
- Other type constructors, e.g. W-types
- New models \Rightarrow
 - consistency and independence results
 - useful features of specific categories
 - theory of models...