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1 Vector Bundle Basics

Definition Let X be a topological space. A family of real vector spaces over X consists of

• a continuous map E
π−→ X from another topological space to X, and

• for each x ∈ X a structure of finite dimensional real vector space on the fibre Ex := π−1{x}.

It is required that the topology of Ex as a subspace of E coincides with its standard topology as a
real vector space.

The space X is called the base, E the total space, and π the projection of the family. The family is
often referred to just by E when X and π are implied by the context.

A section of the family E is a map1 s:X −→ E such that π ◦ s = idX .

Definition Let E
π−→ X and F

χ−→ X be families over X. A homomorphism from E to F is a map
h:E → F such that

• the diagram

E
h //

π
  @

@@
@@

@@
F

χ
~~~~

~~
~~

~

X

is commutative, and

• for each x ∈ X the restricted map hx:Ex → Fx is linear.

Of course, h is an isomorphism if there exists a homomorphism k:F → E with k ◦ h = idE and
h ◦ k = idF . This clearly happens if and only if h is bijective and h−1 is continuous. The families E
and F are called isomorphic if there exists an isomorphism between them.

Examples (1) Any (finite dimensional real) vector space V gives rise to the product family X×V pr−→ X.

A family E
π−→ X is called trivial if it is isomorphic to such a product family.

(2) We let E = X×V as in the previous example but giving the factor X the discrete topology (while
X as the base space retains the original one). The result is a family in the sense of the definition, but
it is quite far away from the intuitive notion of a continuously parametrised family of vector spaces.

(3) Put E =
{

(x, y) ∈ R2
∣∣xy = 0

}
and let π:E → R project (x, y) to x. Then E

π−→ X is a family of
vector spaces which certainly is not trivial since the dimension of the fibre E0 is one while all other
fibres are zero vector spaces.

Definition Let E
ψ−→ Z be a family of vector spaces over the base Z. A subspace Y ⊂ Z gives rise to the

commutative diagram

E|Y � � //

ψ′

��

E

ψ

��
Y � � // Z

1 As usual in topology we use map as shorthand for a continuous map between topological spaces.
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with E|Y := ψ−1Y and ψ′ obtained from ψ by restriction; it involves the new family E|Y ψ′−→ Y
called the restriction of E over Y . More generally, let Y be any space and g:Y → Z a map. We then
have a commutative diagram

g∗E
g̃ //

π

��

E

ψ

��
Y

g // Z

with
g∗E :=

{
(y, v) ∈ Y ×E

∣∣ g(y) = ψ(v)
}

and π(y, v)=y, g̃(y, v)=v,

and g∗E
χ−→ Y is a family of vector spaces over Y said to be induced by g, or the pull-back of E

under g.

This construction is functorial in two independent ways. Firstly fix g and let E
h−→ F be a homomor-

phism into another family F → Z over Z. Then a unique homorphism of families g∗h: g∗E −→ g∗F
is induced that lets the diagram

g∗E //

g∗h

((QQQQQQQQQQQQQQ

��1
11

11
11

11
11

11
11

E

h

''PPPPPPPPPPPPPPP

��1
11

11
11

11
11

11
11

g∗F //

}}{{
{{

{{
{{

F

����
��

��
��

Y
g // Z

commute, and we clearly have

g∗ idE = idg∗E as well as g∗(k ◦ h) = g∗k ◦ g∗h

for composable homomorphisms h and k. — On the other hand if we now fix the family E and vary
g we have though not equalities but canonical isomorphisms

• id∗Z E ' E and

• (g ◦ f)
∗
E ' f∗g∗E if f :X → Y is another map.

In the special case where g:Y → Z is the inclusion map of a subspace we recover the restricted family
E|Y ' g∗E up to canonical isomorphism.

Definition A family E of vector spaces over X is said to be locally trivial if every x ∈ X has a neighbour-
hood U ⊂ X such that E|U is trivial : any isomorphism between E|U and a product family over U
will be called a trivialisation of E over U . In this case the family will be called a vector bundle over
X. Every family induced from a vector bundle turns out to be locally trivial too, so that we have
the notion of induced vector bundle.

The function rankE :X → N assigns to each point x ∈ X the vector space dimension of the fibre
dimEx ; while rankE makes sense for every family E over X, in the case of a vector bundle it is a
locally constant — or, equivalently, continuous — function. It is called the rank function, and if it
happens to be constant its value it is simply called the rank of the family or vector bundle. We see
that the family (3) of our example is not a vector bundle while the product family (1) is one, of
course. — A vector bundle of constant rank one is often called a line bundle.

Example (4) One way to construct interesting vector bundle is via eigenspaces of families of linear endo-
morphisms. Consider for each t ∈ R the matrix

a(t) :=

 cos t sin t
sin t − cos t

 ∈ Mat(2×2,R).
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It is orthogonal of determinant −1, so we know it describes a reflection in a uniquely determined
line, its 1-eigenspace E(t) ⊂ R2. Thus the projection E

π−→ S1 =
{
z ∈ C

∣∣ |z| = 1
}

with

E :=
{

(eit, v) ∈ S1×R2
∣∣ a(t) · v = v

}
and π(eit, v) = eit

is a family of real vector spaces of rank one. It is in fact a line bundle. For the fibre Eeit = E(t) is
the kernel of

1− a(t) =

 1−cos t − sin t
− sin t 1+cos t

 ,

and as long as t is not a multiple of 2π this line is spanned by the vector (sin t, 1−cos t). Therefore
the assignements (

eit, λ
)

7−→
(
eit, λ ·

 sin t
1−cos t

)
(
eit,

1

1−cos t
· v
)
←−7

(
eit,

u
v

)
define mutually inverse isomorphisms of families (S1\{1})×R→ E|(S1\{1}). Using (1+cos t, sin t)
rather than (sin t, 1−cos t) as a spanning vector we similarly obtain an isomorphism between the
restrictions over S1\{−1}. We thus have shown that E is a locally trivial family over S1.

Notes (1) Let E be a vector bundle over X. In view of local triviality every section s:X → E can be
locally2 expressed as a function from X to a fixed vector space. The set of all (global) sections of E,
denoted ΓE, becomes itself a vector space under addition and scalar multiplication of their values.
The image of a section s is an embedded copy of X in E which in term determines s, and therefore
the term of section is sometimes applied to s(X) rather than s. In particular there is the zero section
s0:X → E which assigns to each x ∈ X the zero vector in Ex. It provides a canonical way to identify
X with the subspace s0(X) ⊂ E.

(2) Let X×V and X×W be two product bundles over X. There is a bijective correspondence between
bundle homomorphisms h:X×V → X×W and (continuous) mappings h̃:X → Hom(V,W ) into the
space of linear maps, namely (mildly abusing the notation)

h 7−→
(
x 7→ hx

)(
(x, v) 7→

(
x, h̃(x)(v)

))
←−7 h̃.

(3) Keeping this set-up we let Hom∗(V,W ) ⊂ Hom(V,W ) denote the open subset of all isomorphisms
from V to W . Consider a bijective bundle homomorphism h:X×V → X×W : then for every x ∈ X
the restriction hx:V →W is an isomorphism and h̃ maps into Hom∗(V,W ). Since the inversion map
Hom∗(V,W ) 3 g 7→ g−1 ∈ Hom∗(W,V ) is continuous, so is its composition with h̃, which is the map
X 3 x 7→ h−1

x ∈ Hom(W,V ). The corresponding bundle map is nothing but h−1:X×W → X×V ,
and we conclude that continuity of h−1 is automatic once the bundle homomorphism h is known to
be bijective. This being a local assertion it remains true if X×V and X×W are replaced by arbitrary
bundles over X.

(4) Similarly it follows from the openness of Hom∗(V,W ) ⊂ Hom(V,W ) that for an arbitrary bundle
homomorphism h:E → F the points x such that hx is an isomorphism, form an open subset of X.

2 In the context of bundles locality always refers to the base, never to the total space.
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2 Projective Spaces

Definition Let n ∈ N. The n-dimensional real projective space RPn is the quotient space of Rn+1\{0} by
the equivalence relation

x ∼ y :⇐⇒ λx = y for some λ ∈ R∗.

Alternatively RPn is obtained from the sphere Sn =
{
x ∈ Rn+1

∣∣ |x| = 1
}

identifying pairs of opposite
points: −x ∼ x. In either case we write the point of RPn represented by x = (x0, x1, . . . , xn) ∈ Rn+1

as
[x] = [x0 : x1 : · · · : xn] ∈ RPn

to emphasize the fact that not the values but the ratios between the n+1 numbers xj make up
the point [x]. Intuitively it is best to think of RPn as the space of lines (one-dimensional vector
subspaces) in Rn+1.

While the first definition carries over literally to a definition of the complex projective space CPn
the alternative one becomes more involved; it presents CPn as the quotient space of the sphere
S2n+1 =

{
z ∈ Cn+1

∣∣ |z| = 1
}

with respect to the equivalence relation

w ∼ z :⇐⇒ λw = z for some λ ∈ S1 ⊂ C.

Notes (1) All projective spaces are compact Hausdorff spaces. To make explicit calculations in them one
uses the fact that the sets

Xk :=
{

[x] ∈ RPn
∣∣xk 6= 0

}
for k = 0, . . . , n

form a finite open cover of RPn, and that for each k the mapping hk:Xk → Rn acting by1

[x0 : · · · : xk : · · · : xn] 7−→ 1

xk
· (x0 . . . , x̂k, . . . , xn)

[x0 : · · · : 1 : · · · : xn] ←−7 (x0 . . . , x̂k, . . . , xn)

is a homeomorphism. Of course the complex case is analogous.

(2) Since RP 0 and CP 0 are one-point spaces the first possibly interesting case is that of n = 1. In
the real case the mapping S1 3 z 7→ z2 ∈ S1, which takes equal values on antipodal points, induces
a homeomorphism RP 1 ≈ S1. A similar homeomorphism

h:CP 1 ≈ S2 =
{

(w, t) ∈ C×R
∣∣ |w|2 + t2 = 1

}
identifying CP 1 with the Riemann sphere involves stereographic projection and acts by the assign-
ments

[z0 : z1] 7−→ 1

|z0|2+|z1|2
·
 2z0z1

|z0|2−|z1|2


[
w : (1−t)

]
=
[
(1+t) : w

]
←−7

w
t

 .

Definition We consider the map T
π−→ RPn with

T :=
{

([x], v) ∈ RPn×Rn+1
∣∣ v ∈ Rx

}
and π([x], v) = [x].

1 We use the convention that terms covered by a hat are to be omitted.
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Since the fibre T[x] = π−1{[x]} is just {[x]}×Rx we have defined a family of vector spaces over RPn,
and in fact a line bundle, which is called the tautological bundle on RPn. Indeed the formula

X0 × R 3
(
[1 : x1 : · · · : xn], λ

)
7−→

(
[1 : x1 · · · : xn], λ(1, x1 . . . , xn)

)
∈ T

trivialises the family over the open subset X0 ⊂ RPn, and permuting the 0th with the other coor-
dinates we cover RPn by such local trivialisations. The name of this bundle expresses the fact that
the fibre over a point of RPn is the point itself, read as a line in RPn+1.

Theorem Further representations of RPn as a quotient space include the following.

• Let T → RPn−1 be the tautological bundle and let

D :=
{

([x], v) ∈ T
∣∣ |v| ≤ 1

}
and S :=

{
([x], v) ∈ T

∣∣ |v| = 1
}

denote the unit disk and sphere “bundles” in it. The space Dn∪hD obtained by gluing the unit disk
Dn =

{
x ∈ Rn

∣∣ |x| ≤ 1
}

to D via the homeomorphism

Dn ⊃ Sn−1 3 v h7−→ ([v], v) ∈ S ⊂ D

is homeomorphic to RPn.

• Consider the map

Sn−1 3 x ϕ7−→ [x] ∈ Pn−1.

The quotient space of Dn + RPn−1 with respect to the equivalence relation generated by

Dn 3 x ∼ ϕ(x) ∈ RPn−1

is said to be built from RPn−1 by attaching an n-cell via ϕ, and usually written Dn ∪ϕ RPn−1. It is
likewise homeomorphic to RPn.

• Indeed in the previous construction Dn clearly maps onto the quotient, and we thus may as
well write the latter as a quotient space of just Dn, identifying opposite points on the boundary
Sn−1 ⊂ Dn.

Further Notes (3) The quotient mapping

Sn 3 z q7−→ [z] ∈ RPn

is a two-fold covering projection. For n > 0 it must be non-trivial since Sn is connected. From a
different point of view we see a presentation of RPn as the space of orbits of Sn with respect to the
natural action

{±1} × Sn −→ Sn

of the group {±1} on the n-sphere.

(4) In the complex case the quotient mapping

S2n+1 3 z q7−→ [z] ∈ CPn

is called the Hopf mapping or Hopf fibration. Each of its fibres is a homeomorphic copy of the circle
S1, and indeed it presents CPn as the orbit space of S2n+1 ⊂ Cn+1 by the scalar action

S1 × S2n+1 −→ S2n+1

of the circle group S1 ⊂ C∗.

c© 2011/2012 Klaus Wirthmüller
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3 Linear Algebra of Vector Bundles

Construction We let T be a covariant functor from the category of finite dimensional real vector spaces
into itself and assume that T is continuous in the sense that for any two objects V and W the
mapping

T : Hom(V,W ) −→ Hom(T V, TW )

is continuous. An example is the functor T which assigns to V the vector space T V = Hom(A, V )
where A is a fixed real vector space of finite dimension.

We wish to extend T to a functor of vector bundles: given a vector bundle E → X we shall construct
a new vector bundle T E → X over X such that for each x ∈ X one has

(T E)x = T Ex,

while to each homomorphism of bundles E
h−→ F we will assign a homomorphism T h T h−→ T F such

that
(T h)x = T (hx).

Since these requirements already determine T E as a set (the disjoint union of the T Ex), and T h as
a fibre-wise linear mapping of sets we only need to specify the correct topology on T E. We do this
in three steps.

In case E = X×V → X is a product bundle we give T E = X×T V the product topology. If
F = X×W is another product bundle and h:E → F a homomorphism then the corresponding map
h̃:X → Hom(V,W ) is continuous, and so is the composition

X −→ Hom(V,W )
T−→ Hom(T V, TW ),

by continuity of T . Since this composition corresponds to the set mapping T E T h−→ T F we have
proven that the latter is continuous too. This completes the treatment of product bundles.

More generally we now assume that E is any trivial bundle. We choose a trivialisation h:X×V ' E
and use the bijection T h: T (X×V ) → T E to transfer the topology to T E. If k:X×W ' E is a
second trivialisation then k−1 ◦h:X×V → X×W is a bundle isomorphism, and from the first step we
know that then (T k)

−1 ◦T h = T (k−1 ◦h) is a bundle isomorphism, in particular a homeomorphism.
This proves that the topology on T E is well-defined. The continuity of the mapping T h: T E → T F
induced by a bundle homomorphism h:E → F is obvious. We finally observe that the topologies we
have put on X×T V and T E are clearly compatible with restriction to a subspace S ⊂ X, so that
the notation T E|S is unambiguous. This completes the discussion of trivial bundles.

Let now E → X be an arbitrary bundle. For the open sets of T E we take all sets V ⊂ T E such that
the intersection V ∩ T E|U is open in T E|U whenever U ⊂ X is open and E is trivial over U . It is
easily seen that in order to test V for openness the condition need only be checked for a collection
of such U that cover X. Again a bundle homomorphism h:E → F induces a continuous mapping
T h: T E → T F , and the topology on T E is compatible with restriction to arbitrary subspaces S ⊂ X.
This completes the construction.

Rather than with mere restrictions, the new-defined functor T is also compatible with pull-backs:
there is a natural isomorphism

f∗T E ' T f∗E

for every mapping f from another topological space into X.

c© 2011/2012 Klaus Wirthmüller
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Suitable Functors for this construction include, similarly, contravariant ones as well as functors of several
finite vector space variables, such as

• the contravariant functor assigning to V its dual space V ,̌

• the functor assigning to a pair (V,W ) of vector spaces its direct sum V ⊕W — we might as well
write the direct product V ×W , but the sum is preferred by tradition, and the resulting bundles
called Whitney sums of vector bundles;

• the bivariant functor that assigns to V and W the space of linear mappings Hom(V,W ),

• the covariant functor that sends V and W to the tensor product V ⊗W — for which Hom(V ,̌W )
is a valid substitute in case you are not familiar with the tensor product,

• the functor assigning to V its d-th symmetric power Symd V ,

• the functor assigning to V its d-th alternating or exterior power ΛdV ,

and many others.

Notes (1) The canonical isomorphy Hom(V,W ) ' V ˇ⊗W allows to replace all bundles of homorphisms
by tensor products if desired — or vice versa:

Hom(E,F ) ' Eˇ⊗ F ' Hom(F ,̌Eˇ).

If L is a line bundle then
L⊗ Lˇ' Hom(L,L) = EndL

is the trivial line bundle since endomorphisms of a one-dimensional vector space are just scalars:
thus the isomorphism classes of line bundles over a fixed base X form a commutative group Vect1X
under the tensor product. This group acts on the additive semi-group VectX of isomorphism classes
of all vector bundles on X by

[L] · [E] = [L⊗ E],

an action which clearly preserves the rank function.

(2) The correspondence between bundle homomophisms X ×V → X ×W and mappings X →
Hom(V,W ) now globalises to a canonical linear correspondence between homomorphisms E → F of
bundles over X, and sections of the bundle Hom(E,F )→ X.

Definition A subbundle of a vector bundle F
π−→ X is a subspace S ⊂ F which makes S

π|S−→ X a
vector bundle in its own right — notably this includes the condition that for each x ∈ X the fibre
Sx = S ∩ Fx ⊂ Fx is a vector subspace.

Lemma Let h:E → F be an injective homomorphism of vector bundles. Then h(E) ⊂ F is a subbundle.
Every subbundle S ⊂ F over X is locally near x ∈ X isomorphic to the inclusion X×Sx ⊂ X×Fx
induced by that of the vector spaces Sx ⊂ Fx.

Corollary If S ⊂ E is a subbundle then the fibre-wise quotient E/S :=
⋃
x∈X Ex/Sx, equipped with the

quotient topology, also is a vector bundle over X ; it is called the quotient bundle.

Proposition Let h:E → F be a homomorphism of vector bundles such that the function rankh:X → N
defined by x 7→ rankhx is locally constant. Then the fibre-wise defined sets

kernelh ⊂ E and imageh ⊂ F

are subbundles, and a fortiori cokerh = F/ imageh is a quotient bundle of F .

Examples (1) Let W ⊂ Rn be an open subset, f :W → Rp a differentiable function, and b ∈ Rp a regular
value of f : thus at every point x of

X := f−1{b} =
{
x ∈W

∣∣ f(x) = b
}

c© 2011/2012 Klaus Wirthmüller
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the differential Txf :Rn → Rp is surjective, and X ⊂W is a differentiable submanifold. The set

TX :=
⋃
x∈X
{x}×kernelTxf =

{
(x, v) ∈ X×Rp

∣∣Txf(v) = 0
}
−→ X

is a subbundle of the product bundle X×Rn → X, and called the tangent bundle of X : indeed the
differential of f defines the bundle homomorphism

X × Rn 3 (x, v) 7−→
(
x, Txf(v)

)
∈ X × Rp,

which by assumption is surjective and has TX as its kernel by definition. The quotient bundle
(X×Rn)/TX is called the normal bundle of X in W , and in this situation is always trivial since the
bundle homomorphism that defines TX induces an isomorphism (X×Rn)/TX ' X×Rp.

One of the simplest particular cases is that of the function Rn 3 x f7−→ |x|2 ∈ R with b = 1. Here
X = Sn−1 is the unit sphere, and its tangent space at x — the fibre over x of the tangent bundle —
is

TxS
n−1 = (TSn−1)x =

{
(x, v) ∈ Sn−1×Rn

∣∣x ⊥ v} .
(2) Taking the quotient of TSn−1 by the involutive action (x, v) 7→ (−x,−v) results in a vector
bundle on RPn−1 which in the theory of differentiable manifolds is identified with the tangent
bundle T (RPn−1) of this projective space.

Definition If E → X is a complex vector bundle we let HermE → X denote the (real !) vector bundle
whose fibre over x is the space of Hermitian forms Ex×Ex → C (conjugate-linear in the first
variable). A metric of E is a section of HermE which is positive definite at each point of X ; its value
on (v, w) ∈ Ex×Ex is often written 〈v, w〉x or just 〈v, w〉.

Proposition Assume that E → X admits a metric. Then for every subbundle S ⊂ E there exists a
complementary subbundle Q ⊂ E, so that in particular E/S ' Q.

Examples (1) The product bundle X×Rn certainly carries the standard euclidean metric, and by the real
version of the last proposition the tangent bundle TX ⊂ X×Rn of a submanifold X ⊂ W as above
admits a complement N ⊂ X×Rn, so that

TX ⊕N = X×Rn.

On the other hand N ' (X×Rn)/TX ' X×Rp must be trivial, and we record as a remarkable fact
that the Whitney sum of TX (usually non-trivial as we will see) and a trivial bundle (of sufficiently
large rank) is itself trivial. In the case of the sphere the complement N is the line bundle

N =
{

(x, v) ∈ Sn−1×Rn
∣∣ v ∈ Rx

}
,

trivialised by Sn−1×R 3 (x, λ) 7→ (x, x · λ) ∈ N . Putting things together we obtain the isomorphism

TSn−1 ⊕ (Sn−1×R) ' Sn−1×Rn

(x, v ⊕ λ) 7→ (x, v + x · λ)

of bundles over Sn−1.

(2) The analogue for bundles over RPn−1 requires the tautological bundle as a tensor factor on the
left hand side; it is the isomorphism

T ⊗
(
T (RPn−1)⊕ (RPn−1×R)

)
' RPn−1×Rn

given over the representative x ∈ Sn−1 of [x] ∈ RPn−1 by the assignment(
x, u⊗ (v ⊕ λ)

)
7−→

(
x,
u

x
· (v + λx)

)
=
(
x,
u

x
· v + u · λ

)
.
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4 Compact Base Spaces

From now on we only consider vector bundles over compact1 base spaces. The bundles themselves will be
complex vector bundles unless stated otherwise.

Proposition Every vector bundle E → X admits a metric.

Proposition Let E → X be a vector bundle and S ⊂ X a closed subspace. Then every section s ∈ Γ(E|S)
extends to a section t ∈ ΓE.

Lemma Let E → X and F → X be vector bundles and S ⊂ X a closed subspace. If E|S f−→ F |S
is an isomorphism of bundles then there exist an open set U ⊂ X with S ⊂ U and an extension

E|U g−→ F |U of f which is an isomorphism.

Theorem Let E → Y be a vector bundle, X a compact space, and f : I×X → Y be a homotopy2 from
f0:X → Y to f1:X → Y . Then

f∗0E ' f∗1E.

Notation We let VectX denote the set of isomorphism classes of vector bundles over X : this is a semi-ring3

under the operations of Whitney sum and tensor product. It always contains the disjoint union

VectX =

∞⋃
d=0

VectdX

where VectdX comprises the classes of vector bundles of rank d, but is stricly larger if X is discon-
nected. Since every map f :X → Y induces maps f∗, more precisely

Vectd f : Vectd Y → VectdX and Vect f : VectY → VectX,

assigning to a class of bundles that of the pull-back bundle, we are dealing with contravariant functors
from the category of compact spaces to that of sets, in the last case even to that of semi-rings. The
result of the theorem allows to read these functors as defined on the homotopy category where
continuous maps are replaced by their homotopy classes.

Corollary (1) Every bundle E → I×X is isomorphic to the pull-back of the restriction pr∗(E | {0}×X).

(2) If X
f−→ Y is a homotopy equivalence — that is, an isomorphism in the homotopy category —

then the induced semi-ring homomorphism f∗: VectY ' VectX is an isomorphism. In particular, if
X is contractible then the rank function sets up an identification VectX = Vect{∗} = N.

1 Compactness shall include the Hausdorff property. All such spaces X are normal, and thus obey
Urysohn’s and Tietze’s theorems. Furthermore every finite open cover of X admits a subordinate parti-
tion of unity.

2 As usual in homotopy theory, I = [0, 1] is shorthand for the unit interval.
3 This notion, which seems to be rarely used in mathematics, refers to an algebraic structure that satisfies

the standard ring axioms with the exception that addition is required to make it a semi-group rather than
a group.
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Note Let X be compact, S ⊂ X a closed subspace, and X
q−→ X/S the quotient mapping that collapses S

to the point S/S ∈ X/S. If F → X/S is any vector bundle over X/S the induced bundle q∗F → X
not only is trivial over the subspace S but we even obtain a particular trivialisation

S×Cd ' S×FS/S = q∗F |S

once we have chosen a base of the single vector space FS/S .

Collapsing Construction We reverse this process: Let X and S be as before, E
π−→ X be a vector

bundle, and h:S×Cd ' E|S a trivialisation of E over S. We form the quotient space of E with
respect to the equivalence relation

v ∼ w :⇐⇒ {v, w} ⊂ E|S and pr ◦h−1(v) = pr ◦h−1(w)

where pr:S×Cd → Cd is projection to the fibre. The result is a family of vector spaces E/h→ X/S,
and in fact a vector bundle over X/S. For by the lemma above, h extends to a local trivialisation
h:U ×Cd ' E|U over some neighbourhood U ⊂ X of S, and this extension in turn drops4 to a
trivialisation U/S×Cd ' (E/h)|(U/S) over the neighbourhood U/S of S/S. On the other hand local
triviality of E/h over X\S is clear since no identifications are made over this open subspace.

Let now h0 and h1 be homotopic trivialisations of E over S : this means that there exists a triviali-
sation

I×S×Cd h−→ I×(E|S)

of the bundle I×(E|S) → I×S which over {0}×S and {1}×S reduces to h0 and h1 respectively.
Using h as a gluing isomorphism we may form the bundle (I×E)/h → (I×X)/(I×S), and pulling

back by the quotient mapping I×(X/S)
p−→ (I×X)/(I×S) obtain a vector bundle

p∗
(
(I×E)/h

)
−→ I×(X/S)

which over {0}×X/S restricts to E/h0, and over {1}×X/S to E/h1. By the theorem we conclude
that E/h0 ' E/h1.

Summarising, our construction establishes a bijection between isomorphims classes of vector bundles
over X/S, and isomorphism classes of pairs (E, [h]) comprising a bundle E over X and a homotopy
class of trivialisations h of E|S.

Proposition Let S ⊂ X be a contractible closed subspace. Then the quotient mapping q:X → X/S
induces an isomorphism of semi-rings

q∗: VectX/S ' VectX.

Gluing Construction Assume the following data are given: a decomposition

X = X1 ∪X2, X1 ∩X2 = S

of the space X, vector bundles E1 → X1 and E2 → X2, and an isomorphism of bundles

E1|S
h−→ E2|S.

Note that X may be identified with the quotient space of X1 +X2 obtained by making x ∈ S ⊂ X1

equal to x ∈ S ⊂ X2. Similarly the quotient space of E1 +E2 with respect to the equivalence relation
generated by

E1 ⊃ E1|S 3 v ∼ h(v) ∈ E2|S ⊂ E2

4 Here and elsewhere we tacitly apply results on the compatibility of product and quotient topologies.
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may be formed, it is written E1 ∪h E2 and is a family of vector spaces over X. Again this family
turns out to be a vector bundle:

Given a point x ∈ S we choose a closed neighbourhood V1 ⊂ X1 over which we find a trivialisation

h1:V1 × Cd ' E1|V1.

Composing the restrictions of h1 and h over V1 ∩ S we obtain a trivialisation

h2: (V1 ∩ S)× Cd ' E2|(V1 ∩ S)

of E2 over V1 ∩ S, which we extend at once over some neighbourhood V2 ⊂ X2. Then V := V1 ∪ V2

is a neighbourhood of x in X, and we glue h1 and h2 to obtain the required trivialisation

h1 ∪h|V h2:V × Cd ' (E1 ∪h E2)|V

of E1 ∪h E2 over V . — Local triviality of E1 ∪h E2 at all points of the open set X\S follows at once
from the local triviality of E1 and E2.

Let us record a few obvious properties of the gluing construction:

• If E1 → X1 and E2 → X2 are the restrictions of an existing bundle E → X then the construction
with h = idE|S simply recovers the latter up to canonical isomorphism.

• If two sets of gluing data (E1 → X1, h, E2 → X2) and (E′1 → X1, h
′, E2 → X ′2) are related by

isomorphisms g1:E1 ' E′1 and g2:E2 ' E′2 such that

E1|S
g1 //

h

��

E′1|S

h′

��
E2|S

g2 // E′2|S

commutes then g1 and g2 induce an isomorphism E1 ∪h E2 ' E′1 ∪h′ E′2.

• The construction is compatible with algebraic operations on bundles:

(E1 ∪h E2)⊕ (E′1 ∪h′ E′2) = (E1 ⊕ E′1) ∪h⊕h′ (E2 ⊕ E′2)

(E1 ∪h E2)⊗ (E′1 ∪h′ E′2) = (E1 ⊗ E′1) ∪h⊗h′ (E2 ⊗ E′2)

An important fact is that gluing by homotopic isomorphisms E1|S ' E2|S gives isomorphic results,
as follows. A homotopy of the type in question is an isomorphism

H: (pr∗E1)|(I×S) ' (pr∗E2)|(I×S)

of bundles over I×S, where pr: I×X → X is the cartesian projection. For each t ∈ I we let

X 3 x jt7−→ (t, x) ∈ I×X and E1|S 3 v
ht7−→ H(t, v) ∈ E2|S

denote the embedding and the gluing isomorphism at time t, so that

E1 ∪ht E2 = j∗t
(
pr∗E1 ∪H pr∗E2

)
.

The claim now follows from the homotopy invariance of the induced bundle.

We finally note that the gluing isomorphism E1|S
h−→ E2|S may, of course, be equivalently described

by the corresponding section h̃:S → Hom∗(E1|S,E2|S), which we will call a gluing function. From
this point of view homotopy of gluing isomorphisms corresponds to homotopy of gluing functions in
the standard sense.

c© 2011/2012 Klaus Wirthmüller



K. Wirthmüller : Vector Bundles and K-Theory 2011/2012 12

Definition The suspension of a (not necessarily compact) topological space X is the quotient ΣX of I×X
obtained by collapsing the subspaces {0}×X and {1}×X to a single point each.

Theorem Let X be compact. For each d ∈ N the set of rank d complex vector bundles over ΣX is in
canonical bijection with the set of homotopy classes5 of mappings X → GL(d,C):

Vectd ΣX ' [X,GL(d,C)] .

Examples (1) The set [S0, GL(d,C)] has a single element since GL(d,C) is path-connected. Since the
suspension ΣS0 ≈ S1 is a circle we conclude that every complex vector bundle over S1 is trivial.

(2) The choice X = S1 makes ΣX = ΣS1 a 2-sphere, say via the obvious homeomorphism

ΣS1 3 (t, z) 7→ (

√
1−(2t−1)

2 · z, 2t−1) ∈ S2,

and for d = 1 the homotopy set

[X,GL(d,C)] = [S1,C∗] = π1(S1) ' Z

comes down to the fundamental group of C∗, which is infinite cyclic. If we identify S2 with CP 1 as
in Section 2 Note (2) then the homotopy class of S1 3 z 7→ z−1 ∈ C∗ corresponds to the tautological
bundle T → CP 1.

Indeed in terms of this identification the cones

C−X =
{

[t, x] ∈ ΣX
∣∣ t ≤ 1

2

}
and C+X =

{
[t, x] ∈ ΣX

∣∣ t ≥ 1
2

}
become

CP 1
− =

{
[w : z] ∈ CP 1

∣∣ |w| ≤ |z|} and CP 1
+ =

{
[[w : z] ∈ CP 1

∣∣ |w| ≥ |z|}
respectively, and the construction glues the trivial bundles CP 1

−×C and CP 1
+×C via

CP 1
−×C 3

(
[1 : z] , λ

)
'
(
[1 : z] , z−1 · λ

)
∈ CP 1

+×C if |z| = 1.

Thus the assignment

CP 1
−×C 3

(
[w : 1] , λ

)
7−→

(
[w : 1] , λ ·

w
1

) ∈ T
CP 1

+×C 3
(
[ 1 : z] , λ

)
7−→

(
[ 1 : z] , λ ·

 1
z

) ∈ T
yields a well-defined isomorphism of bundles over CP 1.

(3) The bijection between Vect1 ΣX and [X,C∗] is at once seen to be a group isomorphism, so that
more generally the gluing function z 7→ z−k produces the k-th tensor power T k = T ⊗ · · · ⊗ T of the
tautological bundle on S2. Note that while from the previous example we learnt that T is non-trivial
we now see that it is not isomorphic to its dual Tˇ = T−1.

(4) For n > 2 the set [Sn−1,C∗] consists of just one homotopy class, so that S2 is the only sphere
that carries non-trivial complex line bundles.

(5) In the theory of Lie groups it is well-known that the inclusion

GL(n,C) 3 g 7→ g ⊕ 1 =

 g
1

 ∈ GL(n+1,C)

5 Throughout we use square brackets to indicate sets of homotopy classes.
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induces an isomorphism of fundamental groups for each n ≥ 1. Together with the previous example
this implies that every complex vector bundle on S2 is isomorphic to the Whitney sum of a unique
power of the tautological bundle T , and an arbitrary trivial bundle.

Lemma Let E → X be a vector bundle. Then ΓE contains a subspace V of finite dimension such that the
evaluation map

X×V 3 (x, v) 7−→ v(x) ∈ E

is surjective.

Note Given x ∈ X and e ∈ Ex we know that the section over {x} with value e may be extended to a
global section of E : thus the full evaluation amp X×ΓE → ΓE certainly is surjective — but as the
same argument shows ΓE is, with the few obvious exceptions, of infinite dimension.

Theorem For every vector bundle E → X there exists a vector bundle F over X such that E ⊕ F is a
trivial bundle.
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5 Projective and Flag Bundles

Definition Let E
π−→ X be a vector bundle, and let E′ = E\X be the complement of the zero section.

The quotient space of E′ with respect to the equivalence relation

v ∼ w :⇐⇒ π(v) = π(w) and λv = w for some λ ∈ C∗

is written P (E), and together with the projection P (E) 3 [v]
ρ7−→ π(v) ∈ X, is called the projective

bundle of E.

Notes (1) It is clear how to translate the defining properties of vector bundles to such projective bundles:
Firstly for each x ∈ X the fibre P (E)x of the projective bundle over x has a well-defined structure
of an abstract projective space. Furthermore the projection is locally trivial : X may be covered by
open sets U with homeomorphisms h that make the diagram

U × CP d−1 h //

pr
%%JJJJJJJJJJ P (E)|U

ρ|U
{{ww

ww
ww

ww
w

U

commutative, and over each x ∈ U restrict to a projectivity CP d ' P (E)x.

(2) While the notion of isomorphism between projective bundles is the obvious one it does not
generalise to one of arbitrary homomorphism as only injective homomorphisms of vector spaces may
be projectivised.

(3) If a line bundle L acts on E by the tensor product the vector bundle L ⊗ E has no reason to
be isomorphic to E. Nevertheless a canonical isomorphism P (E) ' P (L ⊗ E) is induced from the
assignment that sends v ∈ Ex to u⊗ v ∈ Lx ⊗Ex for an arbitrary non-zero choice of u ∈ Lx. Indeed
the class of u⊗ v is well-defined, and continuity follows from the fact that locally u may be realised
as the value of a continuous section of L.

(4) The pairs ([x], v) with v ∈ Cx form a one-dimensional subbundle of the vector bundle ρ∗E, which
of course is called the tautological bundle T → P (E).

Definition The dual bundle H := Tˇ→ P (E) is called the hyperplane bundle.

Notes (5) While of course T and H mutually determine each other we will often prefer H over T in order
to stay compatible with algebraic geometry, where there are strong reasons to consider H rather
than T as the basic object. A good way to memorise the difference is this observation in the simplest
case E = {∗}×V → {∗} = X : every linear function f :V → C yields a section of H assigning to
[x] ∈ P (V ) the linear form T[x] = Cx 3 v 7→ f(v) ∈ C. This section is not just continuous but even
holomorphic — by contrast T has no non-trivial holomorphic section.

The somewhat misleading term of hyperplane bundle for what after all is a line bundle also comes
form algebraic geometry, it is due to the fact that the zero sets of the holomorphic sections are just
the hyperplanes in P (V ). Algebraic geometers’ preferred notation for H is O(1).

(6) Let us repeat our construction with the quotient bundle ρ∗E/T → P (E), which everywhere has
rank one less than ρ∗E. A point of P (ρ∗E/T )→ P (E)→ X over x ∈ X specifies first a line L in Ex
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and then another line in Ex/L or, equivalently, a plane in Ex that contains L : this is the beginning
of a flag in Ex.

Definition Let Let E
π−→ X be a vector bundle of constant rank d. We inductively define vector bundles

Ej
πj−→ Xj and projective bundles Xj

ρj−→ Xj−1

Ed

πd

��

Ed−1

πd−1

��

· · · E1

π1

��

E0

π0

��
Xd

ρd // Xd−1
ρd−1 // · · · ρ2 // X1

ρ1 // X0

starting with E → X as E0
π0−→ X0, and putting

Xj = P (Ej−1)
ρj−→ Xj−1 and Ej = (ρ∗jEj−1)/Tj for j ≥ 1

where Tj
τj−→ Xj is the tautological bundle of Ej−1. Note that the rank of Ej is d−j, so that in

particular Xd = P (Ed−1)
ρd−→ Xd−1 is a homeomorphism and Ed the zero bundle — we nevertheless

retain these objects in order to have a systematic notation.

The composition ρ1 ◦ · · · ◦ ρd:Xd → X0 is called the flag bundle F (E)
ρ−→ X of E since points of

its fibre over x ∈ X correspond to flags

{0} = V0 ⊂ V1 ⊂ · · · ⊂ Vd−1 ⊂ Vd = Ex with dimVj = j

of vector subspaces of Ex. In case E = {∗}×V → {∗} is a bundle over a point F (E) is written F (V )
and called the flag space of the vector space V , and more precisely flag manifold or flag variety when
additional structures are taken into account that have no relevance here.

Note (7) Pulling back all the tautological bundles Tj ⊂ Ej to F (E) we obtain line bundles

Lj = (ρj+1 ◦ · · · ◦ ρd)∗ Tj −→ F (E) for j = 1, . . . , d.

Using now that the base X is compact we may realise each Ej , which by definition is a quotient
bundle of ρ∗jEj−1, by a subbundle complementary to Tj . This makes Tj+1 a subbundle of the pull-
back of E to Xj+1, and a fortiori Lj a subbundle of ρ∗E. It is clear form the construction that we
thus obtain a direct sum decomposition

L1 ⊕ · · · ⊕ Ld = ρ∗E.

Example Let L → X be a line bundle, and let 1 → X denote the product line bundle X×C → X. The

fibre over x ∈ X of the projective bundle P (1 ⊕ L)
ρ−→ X is the projective line P (C ⊕ Lx); in

geometric terms this is Lx — a copy of the complex plane — compactified by a point at infinity:

P (C⊕ Lx) =
{

[w : z]
∣∣ 0 6= w ∈ C and z ∈ Lx

}
∪ {[0 : 1]} = Lx ∪ {∞} ≈ S2.

Globally the special points 0 ∈ Lx and ∞ correspond to distinguished sections of the projective
bundle s0:X → P (1⊕ L) and s∞:X → P (1⊕ L) defined by

x
s07−→ [1 : 0] and x

s∞7−→ [0 : v] with any non-zero v ∈ Lx ;

they are continuous by local triviality. We find it convenient to call them the zero section and the
section at infinity. Note that the restrictions of the tautological bundle T → P (1⊕L) to these sections
are

s∗0T = 1 and s∗∞T = L.
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6 K-Theory

Construction Let S be an abelian semi-group. A pair consisting of an abelian group K and a homo-
morphism of semi-groups j:S → K is called a Grothendieck group of S if, given any semi-group
homomorphism f :S → B into another abelian group B there exists a unique homomorphism g that
lets the diagram

S
f //

j

��

B

K

g

88

commute. The standard reasoning yields the uniqueness of (K, j), and the Grothendieck group of S
is usually written K(S).

A simple construction of K(S) is by taking the cartesian product S×S, which likewise is a semi-group,
and forming cosets with respect to the diagonal ∆S ⊂ S×S : thus two pairs (x, y) and (x′, y′) are
identified if

(x+z, y+z) = (x′+z′, y′+z′) holds for some z, z′ ∈ S.

The quotient set K(S) inherits a semi-group structure, and indeed is a group since [x, y] has the
additive inverse [y, x]. The assignment x 7→ [x, 0] defines j, so that in particular [x, y] = j(x)− j(y).

If S happens to be a semi-ring then the multiplication extends to K(S) via

[x, y] · [x′, y′] =
[
xx′+yy′, xy′+yx′

]
and makes it a true ring.

In any case K is a covariant functor: every homomorphism of semi-groups or -rings S → T induces
a homomorphism of groups or rings K(S)→ K(T ).

Examples (1) For the semi-group N this reproduces the well-known construction of the ring of integers from
the semi-ring of natural numbers. In this case j:N→ Z is injective, since the additive cancellation law
holds in N : the assumption x+z = y+z implies x = y. The defining property of Z = K(N) thus simply
requires that every semi-group homomorphism form N into a group extends as a homomorphism to
Z. This more suggestive language is also used in other cases even when j fails to be injective.

(2) The construction applies to our favourite semi-ring VectX of isomorphism classes of complex
vector bundles over X, and leads to the ring

KX := K(VectX)

which for lack of a more imaginative name is referred to as K of the topological space X. If E → X
is a vector bundle we use [E] to denote not only the isomorphism class of E but also its image
j([E]) ∈ KX. The class of the rank d product bundle d→ X is simply written d ∈ KX.

By definition every element of KX is a difference [E]−[F ] of classes of vector bundles E and F on
X : such a difference is often referred to as a virtual bundle. Using compactness of X we know that
there exists a bundle G such that F ⊕G is trivial, say F ⊕G ' d. Thus the equation

[E]−[F ] =
(
[E]+[G]

)
−
(
[F ]+[G]

)
=
(
[E]+[G]

)
− [d] =

(
[E]+[G]

)
− [d]
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shows that in fact every virtual bundle can be written as the difference of the class of a vector bundle
and a trivial class.

The homomorphism j: VectX → KX need not be injective: it may happen that two non-isomorphic
vector bundles E and F produce isomorphic Whitney sums E ⊕G ' F ⊕G for some bundle G, so
that [E] = [F ] ∈ KX. Such bundles are called stably isomorphic. As we know from Section 4 we can
always find yet another vector bundle H such that G ⊕H is trivial, and the isomorphy above then
implies E ⊕G⊕H ' F ⊕G⊕H. Thus E and F are stably isomorphic if and only if

E ⊕ d ' F ⊕ d for some, and thus every sufficiently large d ∈ N.

Note finally that K is a contravariant functor from compact topological spaces to rings: a map
f :X → Y induces a ring homomorphism Kf :KY → KX, a notation often simplified to f∗ —
and even y 7→ y|X in the particular case of an inclusion mapping f :X → Y . Like every ring
homomorphism f∗ defines a scalar multiplication

KY ×KX 3 (y, x) 7−→ f∗y · x ∈ KX

that makes KX a module over KY and, together with the latter’s ring structure, even a KY -algebra.

Periodicity Theorem Let L→ X be a line bundle X over the compact space X, and let P (1⊕L)
ρ−→ X

be the projective bundle. Then writing l = [L] ∈ KX we have the identity of algebras over KX

K
(
P (1⊕ L)

)
= KX [h]

/(
(h−1)(l h−1)

)
in the sense that the algebra on the right is the quotient of the polynomial algebra in one determinate
H by the ideal generated by the polynomial (H−1)(l H−1) = 1−H − l H + l H2, and that the left
hand side is obtained by substituting h for H.

Note Being represented by a line bundle, l ∈ KX always is a unit, so that the ideal is likewise generated
by the unitary polynomial (H−1)(H−l−1) = H2 − (1+l−1)·H + l−1 ∈ KX[H]. Thus

K
(
P (1⊕ L)

)
= KX ⊕KX ·h

is the direct sum of two copies of KX as an additive group, with the multiplication determined by
the rule h2 = −l−1 + (1+l−1)·h.

Example The choice X = {∗} yields KS2 = Z[h]/(h−1)
2
. In particular the identity h2 +1 = 2h shows

that the bundles H⊗H ⊕ 1 and H ⊕H on CP 1 = S2 are stably isomorphic.

The proof of the Periodicity Theorem requires careful preparation. We fixX and L as required, and abbreviate
the projective bundle writing

P := P (1⊕ L)
ρ−→ X

as well as X0 ⊂ P and X∞ ⊂ P for the sections of ρ at zero and infinity. As a technical tool we now choose
a metric on L, and use it to define

P0 :=
{

[w : z]
∣∣ |w| ≥ |z|} σ0−→ X and P∞ :=

{
[w : z]

∣∣ |w| ≤ |z|} σ∞−→ X ;

the indicated projections to X make them what one would call two-disk bundles over X while their inter-
section

S := P0 ∩ P∞
σ−→ X

rather qualifies for the name of circle bundle. We thus have a decomposition

P = P0 ∪ P∞ with P0 ∩ P∞ = S

and record two facts, both to be read up to bundle isomorphism:

c© 2011/2012 Klaus Wirthmüller



K. Wirthmüller : Vector Bundles and K-Theory 2011/2012 18

• Since σ0 is a homotopy equivalence every vector bundle on P0 has the form σ∗0E for a unique
bundle E → X, and similarly for bundles over P∞.

• Therefore every bundle E on P is of the form

E = σ∗∞E∞ ∪f σ∗0E0,

and if we normalise by the requirements E0 = E|X0 and E∞|X∞ then the homotopy class of the
gluing function

f :S → Hom∗(σ∗E∞, σ
∗E0)

is uniquely determined by E. Indeed automorphisms of the bundle σ∗0E0 → P0 correspond to sections
g ∈ Γσ∗0 Hom(E0, E0), and if such a section g, say

g([1 : z]) =
(
[1 : z], g′([1 : z])

)
restricts to the identity over X0 then it is itself homotopic to the identity via the homotopy

I×P0 3 (t, [1 : z]) 7−→
(
[1 : z], g′([1 : tz])

)
∈ σ∗0 Hom(E0, E0).

If conversely bundles E0 → X and E∞ → X, and a gluing function f are given, we will write the resulting
vector bundle σ∗∞E∞ ∪f σ∗0E0 simply as V(E∞, f, E0).

Examples (1) If L = 1 is the product bundle we have P = CP 1×X, and given bundles E0 and E∞ over X
any choice of a section a:X → Hom∗(E∞, E0) — which of course forces E∞ and E0 to be isomorphic
— gives a gluing function

S = S1×X 3 (z, x)
f7−→ a(x) ∈ Hom∗(σ∗E∞, σ

∗E0)(z,x)

that does not depend on the coordinate z = [1 : z] ∈ S1 ⊂ CP 1. The assignments

σ∗∞E∞ 3
(
[w : 1], x, v

)
7−→

(
[w : 1], x, a(x) · v

)
∈ ρ∗E0

σ∗0E0 3
(
[ 1 : z], x, v

)
7−→

(
[ 1 : z], x, v

)
∈ ρ∗E0

then define an isomorphism V(E∞, f, E0) ' ρ∗E∞.

(2) Let us modify the gluing function of the previous example to

S = S1×X 3 (z, x)
f7−→ z−1 a(x) ∈ Hom∗(σ∗E∞, σ

∗E0)(z,x)

where z ∈ S1 simply acts by scalar multiplication. Recalling Example (2) of Section 4 we see that
this introduces a tensor factor T → P ; indeed the formulae

σ∗∞E∞ 3
(
[w : 1], x, v

)
7−→

(
[w : 1], x,

w
1

⊗ a(x) v

)
∈ T ⊗ ρ∗E0

σ∗0E0 3
(
[ 1 : z], x, v

)
7−→

(
[ 1 : z], x,

 1
z

⊗ v

)
∈ T ⊗ ρ∗E0

now combine and give an isomorphism V(E∞, f, E0) ' T ⊗ ρ∗E∞.

While the first example at once carries over to the case of a general line bundle L → X, in the second the
fact that the coordinate z is not a well-defined function on S seems to pose a problem — but only at first,
for z is perfectly well-defined as a section

S 3 [1 : z] 7−→
(
[1 : z], z

)
∈ σ∗L
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of the pull-back bundle σ∗L → S. As we do want the gluing function f to remain a section of the bundle
Hom∗(σ∗E∞, σ

∗E0) we are now forced to take for a a section X → Hom∗(E∞, L⊗ E0) so that the formula

S 3 [1 : z]
f7−→ z−1 a

(
σ([1 : z])

)
∈ Hom∗

(
σ∗E∞, σ

∗L−1 ⊗ σ∗(L⊗ E0)
)

= Hom∗(σ∗E∞, σ
∗E0)

makes sense.

Example (3) We let L → X be an arbitrary line bundle but choose E0 = 1 trivial and E∞ = L, which
makes

z−1 ∈ Γ(σ∗L−1) = Hom(1, σ∗L−1) = Hom(σ∗L,1) = Hom(σ∗E∞, σ
∗E0)

a suitable gluing function. The calculation of Example (2) shows that the resulting line bundle
V(L, z−1,1) is the tautological bundle over P , and since the multiplication of gluing functions cor-
responds to the tensor product of bundles we may record this fact as

V(L−1, z,1) ' H.

More generally, gluing functions may involve arbitrary powers of z : given an exponent k ∈ Z and any section
ak ∈ Γ Hom(Lk ⊗ E∞, E0) the formula

S 3 [1 : z]
f7−→ zk ak

(
σ([1 : z])

)
∈ Hom(σ∗(Lk ⊗ E∞), σ∗Lk ⊗ σ∗E0) = Hom(σ∗E∞, σ

∗E0)

defines a section which we write ak z
k ∈ Γ Hom(σ∗E∞, σ

∗E0). If ak was a gluing function then so is ak z
k,

and the resulting vector bundles on P are related by

V(E∞, z
kak, E0) ' Hk ⊗ V(Lk ⊗ E∞, ak, E0)

Reviewing the statement of the Periodicity Theorem in the light of this construction one challenge emerges:
Given an arbitrary vector bundle on P , and thereby an arbitrary gluing function f :S → Hom∗(σ∗E∞, σ

∗E0)
we must somehow reduce f to gluing functions which are as simple as those of the two examples. As a first
step to this we would like to represent f by a Laurent series

∑
k∈Z ak z

k — a wish that finds ready fulfilment
in classical Fourier analysis.
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7 Fourier Series

Let C0(S1) denote the space of complex-valued continuous functions on the circle. This is a unitary space
under the hermitian form

〈f, g〉 =
1

2πi

∮
S1

f(ζ) g(ζ)
dζ

ζ
,

and it is seen at a glimpse that the functions zk for k ∈ Z form an orthonormal system in C0(S1):

〈zj , zk〉 =
1

2πi

∮
ζ−j ζk

dζ

ζ
=

1

2πi

∮
ζk−j−1 dζ =

{
1 if j=k, and
0 else.

Definition An infinite series

∞∑
k=−∞

ak z
k with coefficients ak ∈ C is called a Fourier series.

Note If you associate Fourier series rather with sines and cosines you may want to substitute z = eit with
a periodic real variable t, and even split zk = eikt = cos kt + i sin kt into real and imaginary parts.
But be advised to do so only in direst emergency unless you are fond of tiresome calculations.

Can every f ∈ C0(S1) be written as a convergent Fourier series? A good candidate of such a series is obtained
by computing the projections of f with respect to the orthonormal system of the zk, known as the Fourier
coefficients of f

f̂k = 〈zk, f〉 =
1

2πi

∮
ζ−k f(ζ)

dζ

ζ
.

While the corresponding Fourier series

∞∑
k=−∞

f̂k z
k is, by definition, the best approximation to f in the sense

of the hermitian norm, in general it fails to converge even point-wise to f . But it does not fail too badly:

Fejér’s Theorem For every f ∈ C0(S1) the sequence (cn)
∞
n=0 of Cesàro means defined as

cn(z) =
1

n+1

n∑
k=0

( k∑
j=−k

f̂j z
j

)

converges uniformly to f .

Proof We will describe the operator that takes the function f to the n-th term of the Fejér sequence in
terms of the Fejér kernel

Fn(z) =
1

n+1

n∑
k=0

k∑
j=−k

zj ,

which itself is a function in C0(S1). We state and prove three properties:

• 1

2πi

∮
Fn(ζ)

dζ

ζ
= 1 for all n ∈ N. Indeed we calculate that

∮
Fn(ζ)

dζ

ζ
=

1

n+1

∮ n∑
k=0

k∑
j=−k

ζj
dζ

ζ
=

1

n+1

n∑
k=0

2πi = 2πi.
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• Fn(eit) =
1

n+1

(
sin n+1

2 t

sin 1
2 t

)2

for all t ∈ R ; in particular Fn ≥ 0. This but requires to evaluate the

geometric series:

Fn(z) =
1

n+1

n∑
k=0

k∑
j=−k

zj

=
1

n+1

n∑
k=0

z−k
z2k+1 − 1

z − 1

=
1

n+1

1

z−1

n∑
k=0

(
zk+1 − z−k

)
=

1

n+1

1

z−1

(
z − z−n

) zn+1 − 1

z − 1

=
1

n+1
z−n

(
zn+1 − 1

z − 1

)2

=
1

n+1

(√
z
n+1 −

√
z
−(n+1)

√
z −
√
z
−1

)2

• For every δ > 0 one has lim
n→∞

∫
Fn(ζ)

dζ

ζ
= 0 where integration is restricted to all ζ = eit such

that t ∈ [δ, 2π−δ]. There indeed we have the estimate

Fn(eit) ≤ 1

n+1

1

sin 1
2 t
≤ 1

n+1

1

sin 1
2δ

implying that Fn converges to zero uniformly on the domain of integration.

Turning to the proof proper of Fejér’s Theorem, consider a given f ∈ C0(S1). We compute

k∑
j=−k

f̂j z
j =

1

2πi

k∑
j=−k

∮
ζ−j f(ζ)

dζ

ζ
zj

=
1

2πi

k∑
j=−k

∮
(z/ζ)

j
f(ζ)

dζ

ζ

=
1

2πi

k∑
j=−k

∮
ηj f(z/η)

dη

η
,

and substituting the definition of the Fejér kernel obtain

cn(z) =
1

n+1

n∑
k=0

k∑
j=−k

f̂j z
j =

1

2πi

∮
Fn(η) f(z/η)

dη

η
.

Using the stated properties we estimate

|cn(z)− f(z)| =
∣∣∣∣ 1

2πi

∮
Fn(η) f(z/η)

dη

η
− 1

2πi

∮
Fn(η) f(z)

dη

η

∣∣∣∣
≤ 1

2πi

∮
Fn(η)

∣∣f(z/η)−f(z)
∣∣ dη
η
.

Given any ε > 0 we now choose δ > 0 so that∣∣f(eis)−f(eit)
∣∣ < ε for all s, t ∈ [0, 2π] with |s−t| ≤ δ ;
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this is possible since f is uniformly continuous. We correspondingly split the last integral ; again
using properties of the Fejér kernels we conclude∫ δ

−δ
Fn(eit)

∣∣f(z/eit)−f(z)
∣∣ dt ≤ ∫ δ

−δ
Fn(eit) ε dt ≤ ε

∫ 2π

0

Fn(eit) dt = ε

and ∫ 2π−δ

δ

Fn(eit)
∣∣f(z/eit)−f(z)

∣∣ dt ≤ max
t∈[0,2π]

∣∣f(z/eit)−f(z)
∣∣ · ∫ 2π−δ

δ

Fn(eit) dt < ε

for all sufficiently large n ∈ N. This completes the proof of Fejér’s Theorem.

We must generalise Fejér’s Theorem to a setting sufficiently general in order to accommodate gluing functions
f :S → Hom∗(σ∗E∞, σ

∗E0). The nature of the bundle Hom(E∞, E0) being quite irrelevant here we replace
it by a general vector bundle F → X, for which we choose a metric.

Fejér’s Theorem for Bundles Let X be a compact space, L → X a line bundle with metric, giving
rise to the sphere bundle S

σ−→ X. Let further F → X be a vector bundle with metric. Then every
f ∈ Γ(σ∗F ) has well-defined Fourier coefficients

f̂k = 〈zk, f〉 ∈ Γ(L−k ⊗ F ),

and the sequence in Γ(σ∗F ) of Cesàro means (cn)
∞
n=0, defined as before by

cn(z) =
1

n+1

n∑
k=0

( k∑
j=−k

f̂j z
j

)

converges uniformly to f .

Adaptions of the Proof The Fourier coefficients are well-defined since the measure of integration dζ/ζ does
not change under multiplication by a constant. Note that the metric on F gives a meaning to uniform
convergence of sections, a meaning which in fact does not depend on the particular choice of that
metric.

The main difficulty that remains is that the topology of X need not be induced by a metric and that
therefore there is no notion of uniform continuity of f . On the other hand compactness of X makes
the statement local in X. We may thus assume that the bundles L = X×C→ X and F = X×Cd → X
are product bundles and that the metric of F is the standard one.

The statement is thereby reduced to one for a scalar function f :S1×X → C and thus to the classical
case but for the presence of the parameter space X. By inspection we see that the proof given above
works fine if we interpret uniform continuity as a version involving a parameter, as in the conclusion
of the

Proposition Let X be compact and f ∈ C0(S1×X) be given. Then for every ε > 0 there exists a δ > 0
such that

|f(w, x)−f(z, x)| < ε holds for all w, z ∈ S1 with |w−z| < δ and all x ∈ X.

Proof Given ε > 0 we choose for each (c, a) ∈ S1×X a real number δca > 0 and an open neighbourhood
Vca ⊂ X such that

|f(z, x)−f(c, a)| < ε for all z ∈ S1 with |z−c| < 2δca and all x ∈ Vca.

Using compactness we pick a finite set Λ ⊂ S1×X such that the sets Uδca(c, a)×Vca with (c, a) ∈ Λ
cover S1×X. We put δ = min{δca | (c, a) ∈ Λ}.
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Consider now any points w, z ∈ S1 with |w−z| < δ and any x ∈ X. We choose (c, a) ∈ Λ such that
(z, x) ∈ Uδca(c, a)×Vca ; since |w−z| < δ and |z−c| < δca we have |w−c| < 2δca and therefore both

|f(w, x)−f(c, a)| < ε and |f(z, x)−f(c, a)| < ε.

We conclude |f(w, x)−f(z, x)| < 2ε, and thus complete the proof.

Lemma 1 (in the proof of the Periodicity Theorem) Let E and F be vector bundles over X, and let
f :S → Hom∗(σ∗E, σ∗F ) be a gluing function. For every n ∈ N we consider the n-th Cesàro mean of
the Fourier series of f

cn(z) =

n∑
k=−n

ak z
k:S → Hom∗(σ∗E, σ∗F ).

Then the sequence of Laurent polynomials (cn)
∞
n=0 has the property that for all sufficently large

n ∈ N the linear homotopies

t 7−→ (1−t)·cn + t·cn+1 and t 7−→ (1−t)·cn + t·f

are homotopies of gluing functions.

Proof Choose a metric on the bundle Hom(E,F ). The function d:S → [0,∞) which assigns to s ∈ S the
distance from f(s) ∈ Hom(σ∗E, σ∗F )s to the closed subset

Hom(σ∗E, σ∗F )s\Hom∗(σ∗E, σ∗F )s ⊂ Hom(σ∗E, σ∗F )s

is everywhere positive and continuous; we let ε > 0 be its smallest value.

By Fejér’s Theorem for all sufficiently large n ∈ N we have |cn(s)−f(s)| < ε for all s ∈ S. This
implies not only that cn maps into Hom∗(σ∗E, σ∗F ) but also that the stated homotopies do so at
any time t ∈ I.

Corollary Every vector bundle on P is isomorphic to a bundle V(E, p, F ) with a gluing function

c(z) =

n∑
k=−n

ak z
k:S → Hom∗(σ∗E, σ∗F )

which is a Laurent polynomial.
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8 Polynomial and Linear Gluing Functions

The main result of the previous section suggests to study Laurent rather than general gluing functions. At
the end of Section 6 we have already noted the isomorphy

V(E, zkf, F ) ' Hk ⊗ V(Lk⊗E, f, F )

for gluing functions f :S → Hom∗
(
σ∗(Lk⊗E), σ∗F

)
: we thus know the effect of multiplication by a power of

z and may restrict our attention even further to gluing functions that are polynomial in z.

Notation Let E and F be vector bundles over X and let for some n ∈ N

p(z) =

n∑
k=0

ak z
k:S → Hom∗(σ∗E, σ∗F )

be a polynomial gluing function of degree at most n. We introduce the auxiliary bundle

En =

n⊕
k=1

Lk⊗E

and define the section linnp ∈ Γ Hom
(
(σ∗(E ⊕ En), σ∗(F ⊕ En)

)
by the matrix

linnp(z) =


a0 a1 a2 . . . an
−z 1

−z 1
. . .

. . .

−z 1

 ;

as the notation suggests this is a linearisation of p in the sense that it has degree at most one in z.
It is compatible with forming direct sums, as well as tensor products with a further bundle D → X :

linn(p⊕ p′) = linnp⊕ linnp
′ and linn(idσ∗D ⊗p) = idσ∗D ⊗ linnp .

Lemma 2 The linearisation linnp is a gluing function, and there is an isomorphism

V(E, p, F )⊕ ρ∗En ' V(E ⊕ En, linnp, F ⊕ En).

Proof We define polynomials q0, . . . , qn ∈ Γ Hom
(
σ∗(E ⊕ En), σ∗(F ⊕ En)

)
inductively by

q0 = p and z · qk(z) = qk−1(z)− qk−1(0) for k = 1, . . . , n

so that explicitly qk(z) =
∑n−k
j=0 ak+jz

j . Since all values of p are isomorphisms the matrix identity

linnp(z) =


a0 a1 a2 . . . an
−z 1

−z 1
. . .

. . .

−z 1

 =


1 q1 q2 . . . qn

1
1

. . .

1




p
−z 1

−z 1
. . .

. . .

−z 1


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shows that the same is true of linnp. Furthermore, applying a time factor t to all off-diagonal terms
on the right hand side we define a homotopy of gluing functions that joins linnp to p ⊕ 1En

. This
yields the stated isomorphy.

Lemma 3 Let E and F be vector bundles, and p:S → Hom∗(σ∗E, σ∗F ) a polynomial gluing function of
degree not exceeding n. Then there are homotopies

linn+1p ' linnp⊕ 1Ln+1⊗E

of gluing functions S → Hom∗
(
σ∗(E ⊕ En)⊕ σ∗(Ln+1⊗E), σ∗(F ⊕ En)⊕ σ∗(Ln+1⊗E)

)
, and

linn+1 z ·p(z) ' z ⊕ linn p(z)

of gluing functions S → Hom∗
(
(σ∗(L−1⊗E)⊕ σ∗(E ⊕ En), σ∗E ⊕ σ∗(F ⊕ En)

)
.

Proof By definition we have

linn+1 p(z) =

 linn p(z) 0

0 . . . . . . 0 −z 1


and obtain the first homotopy by just applying a time factor to the last entry −z. In the same way
we make disappear the 1 from the first line of

linn+1 z ·p(z) =


−z 1
0 a0 a1 . . . an
−z 1

. . .
. . .

−z 1


while a rotation by 180◦ turns the remaining term −z into +z within the homotopy class.

Corollary Under the assumptions of Lemma 3 there are bundle isomorphisms

V(E ⊕ En+1, linn+1p, F ⊕ En+1) ' V(E ⊕ En, linnp, F ⊕ En)⊕ ρ∗(Ln+1⊗E)

V
(
(L−1 ⊗ (E ⊕ En+1), linn+1 z ·p(z), F ⊕ L−1⊗ En+1

)
' H⊗ρ∗E ⊕ V(E ⊕ En, linnp, F ⊕ En).

Examples (1) The simplest choice, that of a “constant” gluing polynomial p:X → Hom∗(E,F ) and of
n = 0, reduces the last isomorphism to

V(L−1⊗E ⊕ E, lin1 pz, F ⊕ E) ' H⊗ρ∗E ⊕ V(E, lin0p, F )

or, using Lemma 2 and substituing F via the isomorphism E
p−→ F ,

V(L−1⊗E, z,E
)
⊕ ρ∗E ' H⊗ρ∗E ⊕ ρ∗E,

which tells us no more than we already know.

(2) By contrast choose z:L−1 → 1 for the polynomial p and put n = 1. The second isomorphy of the
corollary reads

V(L−2 ⊕ L−1 ⊕ 1, lin2z
2,1⊕ L−1 ⊕ 1) ' H⊗ρ∗L−1 ⊕ V(L−1 ⊕ 1, lin1z,1⊕ 1),

and via Lemma 2 we obtain

V(L−2, z2,1)⊕ ρ∗L−1 ⊕ 1 ' H⊗ρ∗L−1 ⊕ V(L−1, z,1)⊕ 1
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and thus in terms of the structure of KP as a KX-module, the important identity h2+l−1 = l−1 h+h
or

(l h−1)(h−1) = 0 ∈ KP.

We now analyse linear gluing functions l(z) = az+b:S → Hom∗(σ∗E, σ∗F ). We will make use of the fact
that the formula defining l extends to make it a section l ∈ Γ(σ∗0E, σ

∗
0F ) over the disk bundle P0 → X, while

similarly 1
z l(z) is a section in Γ(σ∗∞E, σ

∗
∞F ). Note that over X∞ ⊂ P∞ the latter restricts to a. The values

of these sections off S no longer need to be isomorphisms.

Proposition Let V be a finite-dimensional complex vector space, and assume that the endomorphism
f :V → V has no eigenvalue on the unit circle. Then the endomorphism

qf :=
1

2πi

∮
S1

dζ

ζ − f
∈ EndV

is the projector onto the sum of those generalised eigenspaces of f which belong to eigenvalues inside
the unit circle.

Proof For each ζ ∈ S1 the operator ζ−f is invertible, its inverse commutes with f , and so does qf . Therefore
the generalised eigenspaces of f are stable under qf , and it suffices to prove the proposition under
the additional hypothesis that f has just one eigenvalue λ.

In the case of |λ| > 1 the operator (ζ−f)
−1

is a holomorphic function of ζ ∈ D2 ⊂ C, and the
integral must vanish. On the other hand for |λ| < 1 it is holomorphic outside D2 but for a pole at
infinity, and the substitution ζ = η−1 yields

qf =
1

2πi

∮
dζ

ζ − f
=

1

2πi

∮
1

η−1−f
dη

η2
=

1

2πi

∮
1

1− ηf
dη

η
= 1 ∈ EndV.

Let E and F be vector bundles, and l:S → Hom∗(σ∗E, σ∗F ) a linear gluing function. We define endomor-
phisms ql:E → E and rl:F → F by the integrals

ql =
1

2πi

∮
l−1dl =

1

2πi

∮
l(ζ)

−1
l′(ζ) dζ and rl =

1

2πi

∮
dl l−1 =

1

2πi

∮
l′(ζ)l(ζ)

−1
dζ

taken over each fibre of the sphere bundle S
σ−→ X. We have put ζ as an argument of l′ in order to indicate

the variable of differentiation though of course here l′(ζ) = a does not depend on ζ. This will no longer true
once we transform to a different variable of integration as we will do in a minute.

Lemma 4 For every linear gluing function l the endomorphisms ql and rl are projection operators, and
they satisfy

l ◦ ql = rl ◦ l.

There results a decomposition of l

E = E+ ⊕ E−
l+⊕ l−−−−−→ F+ ⊕ F− = F

with E+ = image ql and E− = kernel ql complementary subbundles of E → X, while F+ = image rl
and F− = kernel rl are complementary subbundles of F → X. Furthermore l+ is an isomorphism
over P∞, and l− an isomorphism over P0.

Proof Assuming first that X is a one-point space we thoroughly normalise the situation: L = C, and as l is
an isomorphism over S1 we may pick a real number t > 1 such that l(t):E → F is an isomorphism
too: we now use it to identify the vector spaces E and F . The Moebius transformation

ζ 7−→ η :=
1− t ζ
ζ − t
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preserves the unit disc, sends t to ∞, and ∞ to −t, so that in terms of the new coordinate η the
gluing function — again written l by a classical abuse of language — becomes the rational function

l(η) =
η − f
η + t

for some endomorphism f :E → E.

Evaluating the integrals we obtain

ql =
1

2πi

∮
l−1dl =

1

2πi

∮ (
η−f
η+t

)−1
d

dη

η−f
η+t

dη =
1

2πi

∮
dη

η−f
− 1

2πi

∮
dη

η+t
=

1

2πi

∮
dη

η−f

since t is outside the unit circle, and the same result for rl. Thus both ql and rl conincide with the
projector qf of the proposition, and all assertions can now be read off from the latter.

For general base spaces X we apply the special case to each fibre and need but add the observation
that the ranks of the projectors ql and rl must be locally constant functions on X.

Corollary If under the assumptions of Lemma 4 we write out l+ = a+ z+ b+ and l− = a− z+ b− then the
function

I × S 3 (t, z) 7−→ (a+ z + t b+)⊕ (t a− z + b−) ∈ Hom(σ∗E+, σ
∗F+)⊕Hom(σ∗E−, σ

∗F−)

defines a homotopy of linear gluing functions between l and a+z ⊕ b−. We have an isomorphism of
bundles on P

V(E, l, F ) ' H⊗ρ∗(L⊗E+) ⊕ ρ∗E− .

Proof By Lemma 4 we know that for every t ∈ I and every z ∈ S1 all values

a+ z + t b+ ∈ Hom(σ∗E+, σ
∗F+) and t a− z + b− ∈ Hom(σ∗E−, σ

∗F−)

are invertible, so that we have written down a homotopy of gluing functions indeed; we conclude
that

V(E, l, F ) ' V(E+, a+z, F+)⊕ V(E−, b−, F−) .

In particular a+:L⊗E+ → F+ and b−:E− → F− are isomorphisms of bundles over X, and we thus
may substitute

V(E+, a+ z, F+) ' V(E+, z, L⊗E+)

V(E−, b−, F−) ' V(E−, 1, E−) .

Notation Given vector bundles E and F overX, and a polynomial gluing function p:S → Hom∗(σ∗E, σ∗F )
of degree at most n we let

Vn(E, p, F ) −→ X

denote the subbundle (E ⊕ En)+ ⊂ E ⊕ En → X associated to the linearisation linnp by Lemma 4.

Note that Vn(E, p, F ) is compatible with direct sums and with taking tensor products with a fixed
bundle D → X :

Vn(E ⊕ E′, p⊕ p′, F ⊕ F ′) ' Vn(E, p, F )⊕ Vn(E′, p′, F ′)

Vn(D ⊗ E, id⊗p,D ⊗ F ) ' D ⊗ Vn(E, p, F ).

Lemma 5 Let E and F be vector bundles over X, and a polynomial gluing function p of degree at most
n. Then, written in terms of the module structure KP over KX, the identity

[V(E, p, F )] = [E] +
[
Vn(E, p, F )

]
· (l h−1)

holds, which expresses the class of V(E, p, F ) in KP in terms of [Vn(E, p, F )] ∈ KX.
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Proof The corollary to Lemma 4 tells us

V(E ⊕ En, linnp, F ⊕ En) ' H⊗ρ∗(L⊗Vn(E, p, F ))⊕ ρ∗
(
(E⊕En)/Vn(E, p, F )

)
.

On the other hand we have the obvious isomorphism of bundles over X

E ⊕ En ' Vn(E, p, F )⊕ (E⊕En)/Vn(E, p, F ) ,

and taking the difference of classes in KP we obtain the identity[
V(E ⊕ En, linnp, F ⊕ En)

]
−
[
ρ∗(E ⊕ En)

]
=
[
H⊗ρ∗(L⊗Vn(E, p, F ))

]
−
[
ρ∗Vn(E, p, F )

]
.

By Lemma 2 the left hand side is [V(E, p, F )]− [ρ∗E], and we conclude[
V(E, p, F )

]
= [E] +

[
Vn(E, p, F )

]
· (l h−1) .

Lemma 6 Assume that p0 and p1 are homotopic as polynomial gluing functions of degree at most n. Then
they define isomorphic bundles

Vn(E, p0, F ) ' Vn(E, p1, F ).

For every polynomial gluing function p of degree at most n we have isomorphisms

Vn+1(E, p, F ) ' Vn(E, p, F )

Vn+1(L−1⊗E, z ·p(z), F ) ' L−1⊗E ⊕ Vn(E, p, F ).

Proof Applying Lemma 4 over I×X in place of X yields a vector bundle that restricts to Vn(E, p0, F ) over
{0}×X, and to Vn(E, p1, F ) over {1}×X : this proves the first statement.

On the other hand the isomorphism Vn+1(E, p, F ) ' Vn(E, p, F ) follows from the first homotopy of
Lemma 3 since the term involving the constant gluing polynomial 1Ln+1⊗E makes no contribution
to (Ln+1 ⊗ E)+. Similarly the second homotopy of Lemma 3 implies

Vn+1(L−1⊗E, z ·p(z), F ) ' (L−1⊗E, z,E)+ ⊕ Vn(E, p, F ) = L−1⊗E ⊕ Vn(E, p, F ) .

We are now ready to assemble everything and prove the Periodicity Theorem. For this final part we let H
denote an indeterminate over the ring KX. As we have seen in Example (2), substitution of h ∈ KP for H
defines a ring homomorphism

KX [H]
/(

(H−1)(lH−1)
) ϕ−→ KP .

We proceed to construct an additive homomorphism KP
ψ−→ KX[H]/((H−1)(lH−1)) which will turn out

to be the inverse of ϕ.

Let G → P be a given vector bundle and choose a gluing function f for it, so that E ' V(E, f, F ). We
choose n ∈ N as large as required by Lemma 1, and put pn = zncn(z): this is a polynomial gluing function
of degree at most 2n and yields the bundle

V(L−n⊗E, pn, F ) ' Hn ⊗ V(E, cn, F ) .

We note that in view of the relation H+ lH− lH2 = 1 the congruence class of H in KX [H]
/(

(H−1)(lH−1)
)

is a unit, and define ψ(f, n) ∈ KX [H]
/(

(H−1)(lH−1)
)

by

Hn · ψ(f, n) = l−n [E] +
[
V2n(L−n⊗E, p, F )

]
(lH−1) .

If we increase n by one, we know from Lemma 1 that pn+1 and z pn are homotopic gluing functions of degree
at most 2n+2, so that Lemma 6 gives an isomorphism

V2n+2(L−n−1⊗E, pn+1, F ) ' V2n+2(L−n−1⊗E, z pn, F )
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as well as
V2n+1(L−n⊗E, pn, F ) ' V2n(L−n⊗E, pn, F )

V2n+2(L−n−1⊗E, z pn, F ) ' L−n−1⊗E ⊕ V2n+1(L−n⊗E, pn, F ) .

We conclude that

Hn+1 · ψ(f, n+1) = l−n−1 [E] +
[
V2n+2(L−n−1⊗E, pn+1, F )

]
(lH−1)

= l−n−1 [E] +
[
V2n+2(L−n−1⊗E, z pn, F )

]
(lH−1)

= l−n−1 [E] +
(
l−n−1 [E] +

[
V2n+1(L−n⊗E, pn, F )

])
(lH−1)

= l−n−1 [E] + l−n−1 [E] (lH−1) +
[
V2n(L−n⊗E, pn, F )

]
(lH−1)

= H · l−n [E] +H
[
V2n(L−n⊗E, pn, F )

]
(lH−1)

= H ·Hn · ψ(f, n) ,

using the congruence H ≡ 1 mod (lH−1). Therefore ψ(f, n) does not depend on the choice of n, and we may
write it as ψ(f).

Let now g be another gluing function for the bundle G. Then f and g are homotopic, and choosing a
homotopy I×S → Hom∗(σ∗E, σ∗F ) and applying Lemma 1 with the base space I×X we obtain a new
n ∈ N and a homotopy between the two polynomials pn associated to f and g. Then Lemma 6 assures that
ψ(f) = ψ(g), so that this value in fact only depends on the isomorphism class of G, and may be written
ψ([G]). We thus have constructed a well-defined mapping

ψ: VectP −→ KX [H]
/(

(H−1)(lH−1)
)
.

Since ψ clearly is a homomorphism of semi-groups it extends to a unique group homomorphism

ψ:KP −→ KX [H]
/(

(H−1)(lH−1)
)
.

We know from the construction that ψ even is a homomorphism of KX-modules, as of course is ϕ.

It remains to verify that ψ is inverse to ϕ as claimed. As the KX-module KX [H]
/(

(H−1)(lH−1)
)

is spanned
by 1 and H−1 the composition ψ ◦ ϕ need only be evaluated on these two elements. While ψ ◦ ϕ(1) = 1 is
obvious we calculate according to the definitions

(ψ ◦ ϕ)(H−1) = ψ(h−1) = ψ
(
V(L, z−1,1)

)
and thus

H ⊗ (ψ ◦ ϕ)(H−1) = l−1[L] +
[
V2(L−1⊗L, z ·z−1,1)

]
= 1 +

[
V0(1, id,1)

]
= 1 .

The other composition need but be applied to a vector bundle V(E, f, F )→ P , where we may assume that f
is a Laurent polynomial. Then for n� 0 the Cesàro mean cn coincides with f , and we have a valid identity

Hn · ψ([V(E, f, F )]) = l−n [E] +
[
V2n(L−n⊗E, znf, F )

]
(lH−1)

in KX [H]
/(

(H−1)(lH−1)
)
. Using the fact that ϕ is a ring homomorphism Lemma 5 now implies

hn ·(ϕ◦ψ)([V(E, f, F )]) = [L−n⊗E]+
[
V2n(L−n⊗E, znf, F )

]
(lh−1) = [V(L−n⊗E, znf, F )] = hn ·[V(E, f, F )] .

This completes the proof of the Periodicity Theorem.
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9 Cohomological Properties

So far we have worked, on the topological side, with the category Cp of compact spaces and continuous maps.
In the context of homotopy and cohomology it is often convenient to have various related categories at hand.
They include the category Cp◦ of pointed spaces, that is pairs (X, a) comprising a compact space X and a
point a ∈ X called its base point — and often implied by the context and then dropped from the notation.
A wider framework is the category Cp(2) of compact pairs, whose objects are pairs1 (X,A) consisting of a
compact space X and a closed subspace A ⊂ X. Morphisms (X, a) → (Y, b) and (X,A) → (Y,B) in these
categories are maps that send a to b and A into B. Apart from the obvious inclusion and forgetful functors
Cp◦ −→ Cp(2) −→ Cp there are more interesting functors

Cp −→ Cp(2) −→ Cp◦

which send a space X to the pair (X, ∅), and a general pair (X,A) to the quotient (X/A,A/A): their
composition would “collapse” the empty subspace to a base point and thus send X to the pointed space
X+ = {∗}+X.

Definition The one-point union or wedge of two pointed spaces (X, a) and (Y, b) is the quotient space

X ∨ Y := (X + Y )/(a ∼ b) ,

and their smash product2 is the space

X ∧ Y := (X × Y )/(X ∨ Y )

obtained by collapsing the subspace X ∨ Y = X×{b} ∪ {a}×Y to the new base point.

Examples (1) We denote the boundary {0, 1} ⊂ [0, 1] = I by ∂I, and more generally by ∂Id the boundary
of the d-dimensional unit cube Id, comprising all points with at least one component in ∂I. We
identify the quotient Id/∂Id with Sn passing from Id to the one-point compactification of Rd with
t 7→ tanπ(t − 1

2 ) applied to each component, and then to Sd via the stereographic projection. The
charm of this description of Sd is that Sd ∧ Se = Sd+e holds by the very definitions.

(2) Let (X, a) be a pointed space. The smash product S1 ∧X may be read as the quotient obtained
from the suspension ΣX by collapsing the contractible subspace I×{a} : it is therefore called the
reduced suspension of the pointed space (X, a). We will from now on write ΣX for the reduced
version.

(3) The smash product is easily seen to be associative3, and for the iterated suspension we therefore
have a canonical homeomorphism ΣdX ≈ Sd∧X.

Definition The reduced cone of a pointed space X is the smash product

CX := (I, {0}) ∧X ;

1 In topology space pairs are usually understood in this restricted sense: the second component is required
to be a subspace of the first.

2 The name refers to the way it is constructed — the smash product is not the abstract product in the
category of pointed spaces.

3 This would not be true for general non-compact spaces.

c© 2011/2012 Klaus Wirthmüller



K. Wirthmüller : Vector Bundles and K-Theory 2011/2012 31

from now on CX will have this meaning. If f :X → Y is a map of pointed spaces the mapping cone
of f is the quotient

Cf := (CX + Y )/ ∼

with respect to the identification

CX 3 [1, x] ∼ f(x) ∈ Y.

Notes (1) The canonical mapping f1:Y → CX+Y → Cf always is a topological embedding, and it is
convenient to identify Y with its image f1(Y ) ⊂ Cf .

(2) If f is an embedding then so is the canonical map CX → CX+Y → Cf . Thus the mapping
cone Cf contains the reduced cone over f(X) ⊂ Y , which of course is a contractible subspace. The
mapping cone may therefore be thought of as a homotopy analogue of Y/f(X) — which avoids the
brutality of simply collapsing f(X) to a point. Collapsing the subspace CX ⊂ Cf eventually does
result in a quotient Cf/CX homeomorphic to Y/f(X).

(3) Starting with any pointed map f = f :X → Y the construction of the mapping cone Cf can be
re-applied to the embedding f1:Y → Cf , and thus iterated writing f = f0 and defining fk+1 as the
embedding Cfk−1 ⊂ Cfk :

X
f // Y

f1

// Cf
f2

// · · · fk

// Cfk−1
fk+1

// Cfk // · · ·

Proposition For every pointed map f :X → Y there is a canonical homeomorphism Cf1/CY ≈ ΣX which
applied to f , f1, f2 . . . fits into the diagram

X
f // Y

f1

// Cf
f2

// Cf1
f3

//

q

��

Cf2
f4

//

q

��

Cf3
f5

//

q

��

Cf4 //

q

��

· · ·

Cf1/CY

≈

��

Cf2/Cf

≈

��

Cf3/Cf1

≈
��

Cf4/Cf3

≈
��

· · ·

ΣX
Σ′f // ΣY

Σ′f1

// ΣCf
Σ′f2

// ΣCf1 // · · ·

which is commutative up to base-point preserving homotopy. All quotient mappings are marked q,
and the reflected suspension Σ′h of any map h sends the class [t, y] to [1−t, h(y)]. Let us use the
homeomorphisms in this diagram to identify spaces; the diagram may then be repeatedly extended
to yield an infinite sequence

X
f // Y

f1

// Cf
f2

// Cf1

q

��
ΣX

Σ′f // ΣY
Σ′f1

// ΣCf // ΣCf1

q

��
Σ2X

Σ′2f // Σ2Y
Σ′2f1

// · · ·

where each q is an identification mapping that collapses an embedded reduced cone to the base point.

Proof The mapping cone Cf1 is a quotient of CX+CY , and the promised homeomorphism Cf1/CY ≈ ΣX
simply sends [s, x] ∈ CX to [s, x] ∈ ΣX.
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As to the diagram

Cf1
f3

//

q

��

Cf2

q

��
Cf1/CY

≈
��

Cf2/Cf

≈
��

ΣX
Σ′f // ΣY

the mapping I×Cf1 → ΣY given by

I×CX 3 (τ, [s, x]) 7−→ [1− τs, f(x)] ∈ ΣY

I×CY 3 (τ, [t, y]) 7−→ [(1−τ) t , y ] ∈ ΣY

is a pointed homotopy from the upper right to the lower left hand composition. This implies the
commutativity of the large diagram as stated, and thereby completes the proof.

Definiton The reduced K-theory of a pointed space (X, a) is the kernel K̃(X, a) of the ring homomorphism

KX −→ K{a} = Z

induced by the inclusion {a} → X. The K-theory of a pair (X,A) is defined as

K(X,A) = K̃(X/A) .

Both notions clearly are functorial for pointed maps respectively pairs of maps.

Proposition Assume that the pointed map f :X → Y is a topological embedding. Then the induced
sequences in K-theory

K̃X
f∗←− K̃Y (f1)

∗

←− K̃Cf and KX
f∗←− KY (f1)

∗

←− K̃Cf

are exact : kernel f∗ = image (f1)
∗
.

Proof From the commutative diagram

K̃X

��

K̃Y
f∗oo

��

K̃Cf
(f1)

∗
oo

KX

��

KY
f∗oo

��

K̃Cf
(f1)

∗
oo

K{∗} K{∗}

with exact columns we read off that both the relevant image and kernel are contained in the reduced
part, and that therefore exactness of either sequence is equivalent to that of the other. We will prove
exactness of the unreduced version.

Identify X with the subspace f(X) ⊂ Y , and let q:Y → Y/X denote the quotient map. As noted
before the canonical mapping

Cf −→ Cf/CX ≈ Y/X

is an identification map, and since CX is contractible we know from Section 4 that an isomorphism
KCf ' K(Y/X) is induced. Substituting K̃Cf we rewrite the unreduced sequence as

KX
f∗←− KY q∗←− K̃(Y/X) .

c© 2011/2012 Klaus Wirthmüller



K. Wirthmüller : Vector Bundles and K-Theory 2011/2012 33

As to exactness, note first that the composition q ◦ f is constant, so that the induced composition4

f∗q∗ in K-theory factors through K̃{∗} = {0},

K̃X
f∗←− K̃{∗} q∗←− K̃(Y/X) .

and thus must be the zero homomorphism. This proves the inclusion image q∗ ⊂ kernel j∗.

Conversely let y ∈ KY be such that f∗(y) = 0. We may represent y = [E]−d as the difference
between the class of a vector bundle E → Y and a trivial class. The property f∗(y) = 0 means that
the restriction E|X → X is a stably trivial bundle and that E has constant rank d on X ; at the cost
of increasing d we may even assume that E|X is truly trivial. We choose any trivialisation and apply
the collapsing construction from Section 4: the result is a vector bundle F → Y/X with q∗F ' E.
This implies

q∗([F ]−d) = [E]−d = y,

and since rankF (X) = rankE |X = d we have [F ]−d ∈ K̃(Y/X) and therefore y ∈ image q∗. This
proves kernel j∗ ⊂ image q∗.

Corollary There is a functorial sequence

K̃X oo
f∗

K̃Y oo
(f1)

∗

K̃Cf oo
(f2)

∗

K̃ΣX oo
(Σ′f)∗

K̃ΣY oo
(Σ′f1)

∗

K̃ΣCf oo · · ·

· · · oo(Σ
′f2)

∗

K̃Σ2X oo
(Σ′2f)

∗

K̃Σ2Y oo
(Σ′2f1)

∗

K̃Σ2Cf oo · · ·

which is exact at every position from K̃Cf to the right, and also at K̃Y if f is an embedding.

Proof The vertically drawn identification mappings of the previous long step diagram collapse contractible
subspaces and therefore induce isomorphisms in K-theory. It remains to note that the constructions
of suspension and mapping cone commute up to canonical homeomorphism: ΣCh = CΣh for every
pointed map h.

Definition Given a pair (X,A), a map r:X → A with r|A = idA is called a retraction, and A called a
retract of X if such a retraction exists.

Proposition Every retraction r:X → A defines canonical splittings of additive groups

KX = KA⊕K(X,A) and K̃X = K̃A⊕K(X,A),

the latter if r is a retraction of pointed spaces.

Proof The case of empty A being trivial it suffices to consider the reduced version. We let j:A→ X denote
the inclusion and note that Σr: ΣX → ΣA likewise is a retraction. Using K̃Cj = K̃(X/A) = K(X,A)
we read from the exact sequence of the corollary the piece

K̃A oo
j∗

r∗
//___ K̃X oo K(X,A) oo K̃ΣA oo

(Σ′j)∗

(Σ′r)∗
//___ K̃ΣX ;

the homomorphisms induced by r split it as indicated. The identity j∗r∗ = id forces j∗ and (Σ′j)
∗

to be surjective, so that we may extract the short exact sequence

0 oo K̃A oo
j∗

r∗
//___ K̃X oo K(X,A) oo 0

which is still split.

4 It is harmless, and often makes for easier reading to suppress the composition symbol.
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Corollary There is a functorial additive isomorphism K̃(X×Y ) ' K̃X ⊕ K̃(X ∧ Y )⊕ K̃Y .

Proof Clearly X = X×{∗} is a retract of X×Y , and Y = {∗}×Y one of (X×Y )/(X×{∗}). Applying the
last proposition twice we obtain

K̃(X×Y ) ' K̃X ⊕ K̃
(
(X×Y )/(X×{∗})

)
' K̃X ⊕ K̃(X ∧ Y )⊕ K̃Y .

Applications (1) Let (X, a) be a pointed space. Applied to the retract {a} ⊂ X the proposition yields
the canonical decomposition

KX = K{a} ⊕K(X, {a}) = K{a} ⊕ K̃X = Z⊕ K̃X

of KX. Explicitly, it comes down to writing a virtual bundle on X as the sum of a trivial virtual
bundle and one with rank zero at the point a.

(2) Let h ∈ K(S2×X) denote the class of the hyperplane bundle as usual. Multiplication by h−1
induces an additive isomorphism K̃X ' K̃Σ2X.

Proof of (2) The Periodicity Theorem provides an additive isomorphism

KX ⊕KX −→ K(S2×X)

that sends (w, x) to w·1 + (h−1)x. The claim is that the inverse image of

K̃Σ2X = {0} ⊕ K̃Σ2X ⊕ {0} ⊂ K̃S2 ⊕ K̃Σ2X ⊕ K̃X = K̃(S2×X) ⊂ K(S2×X)

is exactly {0} ⊕ K̃X.

Consider an arbitrary y = w·1 + (h−1)x ∈ K(S2×X). The statement that y ∈ K̃Σ2X can be broken
down into three successive conditions, as follows. The first is that y ∈ K̃(S2×X), or equivalently
w·1 ∈ K̃(S2×X), for (h−1)x is a virtual bundle of degree zero. Now the projection of y to K̃X makes
sense and is just w, so that the second condition is w = 0. The third and final condition requires
that the projection of y to K̃S2 is zero: this projection being rankx(∗) (h−1) ∈ K̃S2 the condition
is equivalent to rankx(∗) = 0 and thus to x ∈ K̃X .

Theorem For every pointed map f :X → Y there is a functorial periodic sequence of K-theory

K̃X

δ

��

K̃Y
f∗oo K̃Cf

(f1)
∗

oo

K̃ΣCf
(Σf1)

∗
// K̃ΣY

Σf∗
// K̃ΣX

δ

OO

which is exact throughout; the arrows marked δ are called coboundary operators.

Proof This is the previous exact sequence where all double suspensions have been substituted. Note that
for any pointed map h the double reflected suspension Σ′

2
h is homotopic to Σ2h by a rotation of

S2 ; therefore the induced homomorphisms in K-theory coincide. Exactness at the suspension free
positions is insured since they may be replaced by double suspensions.

Examples (1) Based on the observation that K̃S0 = K{∗} = Z the isomorphisms K̃X ' K̃Σ2X now
imply that

K̃Sn ' Z for all even n ∈ N.

Since from the examples of Section 4 we know VectS1 = N we conclude that by contrast

K̃Sn = {0} for all odd n ∈ N.
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(2) Every real invertible matrix g ∈ GL(n,R) naturally acts on the sphere Sn — the one-point
compactification of Rn — and thus also on the n-fold suspension ΣnX = Sn ∧ X of any given
space X. The induced isomorphism on K̃ΣnX is ± id according to whether g preserves or reverses
orientation.

Definiton A cell complex 5 is a topological space with a filtration by subspaces

X−1 ⊂ X0 ⊂ · · · ⊂ Xj−1 ⊂ Xj ⊂ · · · ⊂ Xn−1 ⊂ Xn = X

such that X−1 = ∅, and for each j ≥ 0 the space Xj is obtained form Xj−1 by attaching a finite
number of j-cells. The subspace Xj ⊂ X is the j-skeleton of X, and in case Xn−1 6= Xn we call n
the dimension of X.

Application Let X be a cell complex and assume that all cells of X have even dimension. Then

KX '
⊕
c∈C

Zc

is isomorphic to the free abelian group on the set C of cells while K̃ΣX = {0} is trivial.

Proof If X is empty the conclusion is obvious, and so is the value of KX if dimX = 0, that is, if X is
discrete. For such X we also know from Section 4 that Vectd ΣX ' [X,GL(d,C)] comprises just the
trivial bundle for each d ∈ N, and conclude that K̃ΣX = {0} as claimed.

Proceeding by induction we may assume that the conclusion holds for a cell complex X and must
prove it for the new cell complex Dn ∪ϕX, where n > 0 is even and ϕ:Sn−1 → X an attaching map.

By definition Y := Dn ∪ϕ X is the unreduced version of the mapping cone of ϕ:Sn−1 → X, and
if we choose any base point ∗ ∈ Sn−1 then passing to the reduced cone Cϕ means collapsing the
embedded interval I · {∗} ⊂ Dn ∪ϕ X — a modification that does not affect K-theory. We thus may
work with Cϕ rather than Dn ∪ϕ X. Here the exact sequence of the theorem runs

K̃Sn−1

δ

��

K̃Xoo K̃Cϕoo

K̃ΣCϕ // K̃ΣX // K̃ΣSn−1

δ

OO

or

0

δ

��

K̃Xoo K̃Cϕoo

K̃ΣCϕ // 0 // K̃Sn .

δ

OO

We conclude that K̃ΣCϕ = {0}, and observe that the short exact sequence

0 // K̃Sn // K̃Cϕ // K̃X // 0

must split since K̃X is a free Z-module: this proves the assertion.

Example (3) We have seen in Section 2 that RPn can be obtained from RPn−1 by attaching an n-cell.
This also works for CPn : the attaching map

S2n−1 3 z = (z1, . . . , zn)
ϕ7−→ [z1 : · · · : zn] ∈ CPn−1

5 This would be called a finite complex in standard terminology — the finiteness restriction makes it
compact as a topological space.
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defines a compact space D2n ∪ϕ CPn−1, and the assignments

D2n 3 (z1, . . . , zn) 7−→
[√

1−|z|2 : z1 : · · · : zn
]
∈ CPn

CPn−1 3 [z1 : · · · : zn] 7−→ [0 : z1 : · · · : zn] ∈ CPn

combine to give a homeomorphism D2n ∪ϕ CPn−1 ≈ CPn.

The construction gives CPn the structure of a cell complex with exactly one j-cell for j = 0, 2, . . . , 2n,
and we conclude that as an additive group KCPn ' Zn+1 while K̃ΣCPn = {0}.
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10 Graded K-Theory and Products

Notation We define new functors on the categories Cp◦ and Cp(2) respectively by

K1X := K̃ΣX and K1(X,A) := K̃Σ(X/A) .

When we want to stress the analogy with the standard functors of K-theory we now mark these by
a zero superscript:

K0X = KX, K̃0X = K̃X, and K0(X,A) = K(X,A) .

Recall the identity K0(X, ∅) = K̃0(X+) = K0X, which holds by the very definitions. The analogue for K1

is true though not obvious:

Lemma There is a functorial isomorphism K1(X, ∅) ' K1X for pointed spaces X.

Proof Let a ∈ X be the base point of X, and denote by X̃ the unreduced suspension of X+, that is the
quotient of I×X+ in which {0}×X+ and {1}×X+ are collapsed to one point each. The subspace
I×{∗} ∪ I×{a} is a retract of X̃ and homeomorphic to S1, and we know from the previous section
that then

K̃X̃ = K̃S1 ⊕ K̃(X̃/S1) .

Now collapsing the interval I×{∗} in X̃ gives Σ(X+), so that K̃X̃ = K̃Σ(X+) = K1(X, ∅). On the
other hand K̃S1 = {0} and X̃/S1 = ΣX, which implies K̃(X̃/S1) = K̃ΣX = K1X.

In view of the lemma we identify K1(X, ∅) with K1X even for X with no distinguished base point, and
complete the definition by putting K1∅ = {0}.

Definition The graded K-theory functors on the categories Cp, Cp◦, and Cp(2) are defined by

K∗X = K0X ⊕K1X, K̃∗X = K̃0X ⊕K1X, and K∗(X,A) = K0(X,A)⊕K1(X,A);

they take values, so far, in the category of abelian groups which are graded by Z/2.

Note There are many ways to restate and specialise the main result of the previous section. An obvious
one is the exact sequence

K̃0X

δ

��

K̃0Yoo K̃0Cfoo

K̃1Cf // K̃1Y // K̃1X

δ

OO

for pointed maps f :X → Y . If (X,A) is a space pair with inclusion j:A → X then the choice
f = j+:A+ ⊂ X+ yields the exact sequence of the pair

K0A

δ

��

K0Xoo K0(X,A)oo

K1(X,A) // K1X // K1A

δ

OO
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as well as its reduced version

K̃0A

δ

��

K̃0Xoo K0(X,A)oo

K1(X,A) // K̃1X // K̃1A ;

δ

OO

these are the most widely known and used instances of the exact sequence. Often convenient is the
more concise graded version which reduces to an exact triangle

K∗A

δ ##G
GG

GG
GG

GG
K∗Xoo

K∗(X,A)

;;wwwwwwwww

involving one homomorphism δ of degree one while the unmarked ones are geometric and have degree
zero.

Lemma There is a functorial isomorphism K∗X ' K(S1×X) of (non-graded) abelian groups.

Proof This is obvious if X = ∅. For non-empty X we choose an arbitrary base point and consider the
decomposition K̃(S1×X) ' K̃S0⊕K̃(S1∧X)⊕K̃X. The first term vanishes and the second is K1X.
Adding the trivial bundles on both sides we obtain the result.

We return to the study of the K-theory product KX×KX → KX. It admits an equivalent external version

KX ×KY 3 (x, y) 7−→ x×y := pr∗ x · pr∗ y ∈ K(X×Y );

indeed the internal one is recovered using the diagonal d:X → X×X as x·y = d∗(x×y).

Proposition Let X and Y be pointed spaces. Then the external product KX×KY → K(X×Y ) restricts
to a product

K̃X × K̃Y −→ K̃(X ∧ Y )

in reduced K-theory.

Proof If two virtual bundles on X and Y restrict to zero over the base points then their product is zero
over X×{∗}∪{∗}×Y . Thus the cartesian projections of K̃(X×Y ) = K̃X ⊕ K̃(X ∧Y )⊕ K̃Y to K̃X
and K̃Y send the product to zero.

Corollary There is a natural external product for space pairs

K(X,A)×K(Y,B)
×−→ K

(
(X,A)×(Y,B)

)
where the product of two pairs is defined as

(X,A)× (Y,B) = (X×Y, X×B ∪A×Y ) .

Together with the diagonal mapping d: (X,X1∪X2)→ (X,X1)×(X,X2) it yields an internal version

K(X,X1)×K(X,X2) −→ K(X,X1 ∪X2)

which applies to spaces X with two distinguished subspaces X1 and X2. It generalises, and is com-
patible with the original product KX×KX → KX in the commutative diagram

K(X,X1)×K(X,X2) //

��

K(X,X1 ∪X2)

��
KX ×KX // KX
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of products and restrictions.

Definition For every space pair (X,A) consider the bilinear mappings

K̃(X/A)× K̃(X/A) −→ K̃(X/A)

K̃(X/A)× K̃Σ(X/A) −→ K̃
(
(X/A) ∧ Σ(X/A)

) d∗−→ K̃Σ(X/A)

K̃Σ(X/A)× K̃Σ(X/A) −→ K̃
(
Σ(X/A) ∧ Σ(X/A)

) e∗−→ K̃Σ2(X/A)
'←− K̃(X/A)

built with the partial diagonals d: Σ(X/A)→ (X/A)∧Σ(X/A) and e: Σ2(X/A)→ Σ(X/A)∧Σ(X/A)
and the suspension isomorphism. These mappings combine to give

K∗(X,A) = K0(X,A)⊕K1(X,A) = K̃(X/A)⊕ K̃Σ(X/A)

the structure of a graded commutative ring:

x · y = (−1)
deg x·deg y

y · x for homogeneous elements x, y ∈ K∗(X,A).

Similarly, K∗A and K∗(X,A) are graded modules over K∗X, and the homomorphisms of the exact
triangle

K∗A

δ ##G
GG

GG
GG

GG
K∗Xoo

K∗(X,A)

;;wwwwwwwww

turn out to be K∗X-linear.

Proposition Let X be a compact base space, and let L1, . . . , Ld be line bundles over X. As usual let
h ∈ KP (L1 ⊕ · · · ⊕ Ld) denote the class of the hyperplane bundle. Then

KP (L1 ⊕ · · · ⊕ Ld) = KX [h]
/ d∏
i=1

(
[Li]h− 1

)
as a KX-algebra in the sense that h behaves like an indeterminate which is subject to the stated
relation.

Proof Without loss of generality we may assume that L1 = 1, since multiplying each bundle Li by L−1
1

replaces h by [L1]h and leaves the projective bundle unchanged:

P (L1 ⊕ L2 ⊕ · · · ⊕ Ld) = P (1 ⊕ L−1
1 ⊗L2 ⊕ · · · ⊕ L−1

1 ⊗Ld) .

We will argue by induction on d, the case of d = 0 being trivial. For d > 0 we suppose that L1 = 1
and abbreviate

P = P (L1 ⊕ · · · ⊕ Ld) and P ′ = P (L2 ⊕ · · · ⊕ Ld);

note that the restriction of the hyperplane bundle H of P over P ′ ⊂ P is the same as the hyperplane
bundle H ′ of P ′. The projective bundles P = P (1 ⊕ L2 ⊕ · · · ⊕ Ld) → X and P (1 ⊕ H ′ˇ) → P ′

contain a copy of their base spaces as the sections

X ≈ P (1⊕ 0) ⊂ P respectively P ′ ≈ P (1⊕ 0) ⊂ P (1⊕H ′ˇ) .

We will treat them as embedded subspaces X ⊂ P and P ′ ⊂ P (1⊕H ′ˇ); note that both are retracts.
Let q:P (1⊕H ′ˇ)→ P be the map

P (1⊕H ′ˇ) 3 [v1 : · · · : vd][w2: ··· :wd]
q7−→ [v1 : · · · : vd] ∈ P
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and note that in the point on the left hand side (v2, . . . , vd) must be a (possibly zero) multiple of
(w2, . . . , wd) 6= 0. Together with the projection P ′ → X the map q makes a commutative diagram

P ′ //

��

X

��
P (1⊕H ′ˇ)

q // P

inducing a homeomorphism P (1 ⊕ H ′ˇ)/P ′ ≈ P/X. Furthermore the definition of q shows that
G := q∗H is the hyperplane bundle on P (1⊕H ′ˇ).

From the Periodicity Theorem we know that

KP (1⊕H ′ˇ) = KP ′ [g]
/(

(g−1)(g−h′)
)

where g = [G] ∈ KP (1⊕H ′ˇ) and h′ = [H ′] ∈ KP ′. Since G|P ′ is the trivial line bundle, the second
term in the decomposition

KP (1⊕H ′ˇ) = KP ′ ⊕K
(
P (1⊕H ′ˇ), P ′

)
is the KP ′-submodule freely generated by the element g−1: note the valid identity

g ·x = h′ ·x for all x ∈ K
(
P (1⊕H ′ˇ), P ′

)
on this submodule. Translating to the pair (P,X) we obtain that K(P,X) is a free KP ′-module with
generator h−1, and

h·x = h′ ·x for all x ∈ K(P,X) .

We now use the inductive assumption that the proposition holds for d−1 in place of d and thus may
assume the isomorphism

KP ′ = KX [h′]
/ d∏
i=2

(
[Li]h

′ − 1
)
.

In terms of an indeterminate U we have the commutative diagram of KX-module isomorphisms

KX [U ]
/∏d

i=2

(
[Li]U − 1

) U 7→h′ //

·(U−1)

��

KP ′

·(h−1)

��
(U−1)KX [U ]

/
(U−1)

∏d
i=2

(
[Li]U − 1

) U 7→h // K(P,X) .

In view of the fact that X is a retract of P , and the resulting decomposition KP ' KX ⊕K(P,X),
complementing the bottom row by the term KX on both sides gives the KX-algebra isomorphism
KX [U ]

/∏d
i=1

(
[Li]U − 1

)
' KP . This completes the induction step.

Corollary K∗CPn = Z[h]/(h− 1)
n+1

is the truncated polynomial algebra.

Addendum The conclusion of the proposition holds likewise for graded K-theory:

K∗P (L1 ⊕ · · · ⊕ Ld) = K∗X [h]
/ d∏
i=1

(
[Li]h− 1

)

Proof In terms of the projection S1×X pr−→ X we have S1×P (L1⊕ · · · ⊕Ld) = P (pr∗ L1⊕ · · · ⊕pr∗ Ld)
and therefore

K∗P (L1 ⊕ · · · ⊕ Ld) ' KP (pr∗ L1 ⊕ · · · ⊕ pr∗ Ld);
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it thus suffices to apply the proposition to S1×X in place of X.

Theorem Let P
ρ−→ X be a map, and let p1, . . . , pd ∈ K∗P be homogeneous elements. Assume that every

x ∈ X admits a neighbourhood Y such that for all compact subsets A ⊂ Y the homomorphism of
KA-modules

(K∗A)d = K∗A⊕ · · · ⊕K∗A 3 (x1, . . . , xd)
ϕA7−−−−→

d∑
i=1

xipi ∈ K∗ρ−1A

is bijective. Then the map

(K∗X)d
ϕX−−−−→ K∗P

is an isomorphism of KX-modules. Note that ϕX is homogeneous of weight zero if we shift the
degrees of the i-th term of the direct sum by deg pi ∈ {0, 1}.

Proof For the purposes of the proof let us call an open subset Y ⊂ X good if ϕA is bijective for all compact
A ⊂ Y . By assumption is covered by good subsets, and we choose a finite subcover. We will show
that if Y and Z are good subsets of X then so is their union Y ∪ Z : this clearly will prove the
theorem.

Assuming Y ⊂ X good we first note that by the Five Lemma for any compact pair (A,B) with
A ⊂ Y not only ϕA and ϕB but also the relative version ϕAB is an isomorphism:

(K∗A)d
//

ϕA

��

(K∗B)d
δd //

ϕB

��

K∗(A,B)d
//

ϕAB

��

(K∗A)d
//

ϕA

��

(K∗B)d

ϕB

��

K∗ρ−1A
//
K∗ρ−1B

δ //
K∗ρ−1(A,B)

//
K∗ρ−1A

//
K∗ρ−1B

Let Z be another good subset of X and let A ⊂ Y ∪ Z be compact. We may write A = B ∪ C with
compact subsets B ⊂ Y and C ⊂ Z — using that X is normal we find a compact neighbourhood
V of A\Z in Y and put B = A ∩ V and C = A\V ◦. Since Y is good ϕB,B∩C is an isomorphism,
and in view of the homeomorphism B/(B ∩ C) ≈ (B ∪ C)/C = A/C this means that ϕAC is an
isomorphism. On the other hand ϕC is an isomorphism since Z is good, and by another a¡pplication
of the Five Lemma we conclude that ϕA is an isomorphism too.

Proposition Let E → X be a vector bundle of rank d, and let h ∈ K0P (E) denote the class of the
hyperplane bundle. Then the homomorphism of K∗X-modules

(K∗X)d = K∗X ⊕ · · · ⊕K∗X 3 (x1, . . . , xd−1) 7−→
d−1∑
i=0

xih
i ∈ K∗P (E)

is bijective.

Proof Over some neighbourhood of any x ∈ X the bundle E is locally trivial and a fortiori a Whitney
sum of line bundles. Therefore the previous proposition assures that the hypothesis of the theorem
is satisfied, and from the theorem we directly obtain the result.

Splitting Principle Let E → X be a vector bundle of rank d. Then the flag bundle F := F (E)
ρ−→ X

has the properties that

• the homomorphism ρ∗:K∗X → K∗F is injective, and

• the pull-back ρ∗E is isomorphic to Whitney sum of d line bundles.

Proof The first property follows from the last proposition since F is an iterated projective bundle, and the
second is a known fact from the construction of flag bundles in Section 5.
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Theorem For every vector bundle E → X of degree d put λ−1[E](h) =
∑d
i=0 (−1)

i
[ΛiE]hi ∈ K0X [h].

Then

K∗P (E) = K∗X [h]
/(
λ−1[E](h)

)
with h, the hyperplane class on the left hand side, playing the usual role of an indeterminate subject
to the relation λ−1[E] on the right.

Proof Let t be an indeterminate over K∗X. By the last proposition the K∗X-algebra homomorphism

K∗X [t] −→ K∗P (E)

that substitutes h for t is surjective, and its kernel is the principal ideal generated by a monic
polynomial of degree d. It therefore suffices to prove that the identity λ−1[E](h) = 0 holds in
K∗P (E).

We wish to apply the Splitting Principle. Denoting the bundle projections by P (E)
π−→ X and

F (E)
ρ−→ X we identify the canonically homeomorphic spaces F (π∗E) and P (ρ∗E) and obtain the

commutative diagram

P (ρ∗E) //

��

P (E)

π

��
F (E)

ρ
// X

whose horizontal arrows induce injections in K-theory. We therefore may without loss of generality
assume that E = L1 ⊕ · · · ⊕ Ld is a sum of line bundles, and in view of our former results it just
remains to verify the identity

λ−1[E](h) =

d∏
i=1

(
1− [Li]h

)
in this case:

Lemma For any d line bundles L1, . . . , Ld over a common base space X the polynomial identity

d∑
i=0

(−1)
i [

Λi(L1 ⊕ · · · ⊕ Ld)
]
ti =

d∏
i=1

(
1− [Li] t

)
holds in KX [t].

Proof This is certainly true for d = 0, and proved in general by induction on d : for d > 0 the canonical
isomorphisms

Λi(L1 ⊕ · · · ⊕ Ld) ' Λi(L1 ⊕ · · · ⊕ Ld−1) ⊕ Λi−1(L1 ⊕ · · · ⊕ Ld−1)⊗ Ld

from linear algebra, and the induction hypothesis immediately yield

d∑
i=0

(−1)
i [

Λi(L1 ⊕ · · · ⊕ Ld)
]
ti =

d−1∏
i=1

(
1− [Li] t

)
·
(
1− [Ld] t

)
.

Theorem For every vector bundle E → X of degree d let l1, . . . , ld ∈ KF (E) be the classes of the canonical
line bundles Li on the flag bundle F (E)→ X. Then

K∗F (E) = K∗X [l1, . . . , ld] /Σ

where the ideal of relations

Σ =
(
σ1(l)−[E], σ2(l)−[Λ2E], . . . , σd(l)−[ΛdE]

)
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is generated by expressions involving the elementary symmetric polynomials

σi(l) = σi(l1, . . . , ld) ∈ Z [l1, . . . , ld] .

Proof Repeatedly applying the previous theorem we arrive at the representation

K∗F (E) = K∗X [l1, . . . , ld] /Σ̃

with an ideal Σ̃ ⊂ K∗X [l1, . . . , ld] that must contain Σ since the identities

σi(l1, . . . , ld) =
[
Λi(L1 ⊕ · · · ⊕ Ld)

]
= [ΛiE] for i = 1, . . . , d

hold in K∗F (E). In order to prove the opposite inclusion Σ̃ ⊂ Σ we need a more explicit description
of Σ̃. For d = 0 we have Σ̃ = {0} and there is nothing to show, while for d > 0 we interpret F (E) as
the flag bundle of E/L1 → P (E) and, by induction, obtain the formula

K∗F (E) = K∗P (E)[l2 . . . , ld]
/(

σ1(l′)−[E/L1], σ2(l′)−[Λ2E/L1], . . . , σd−1(l′)−[Λd−1E/L1]
)

with l′ = (l2, . . . , ld) and

K∗P (E) = K∗X[l1]
/(

λ−1[E](l−1
1 )
)
,

recalling that L1 → F (E) is pulled back form the tautological bundle of P (E). Calculating modulo
Σ we see that

λ−1[E](l−1
1 ) =

d∑
i=0

(−1)
i
[ΛiE] l−i1 ≡

d∑
i=0

(−1)
i
σi(l) l

−i
1 mod Σ ,

but the last expression is

l−d1 ·
d∑
i=0

(−1)
i
σi(l) l

d−i
1 = l−d1 ·

d∏
i=1

(l1−li) = 0 .

We further obtain successively for i = 1, . . . , d−1 that

σi(l
′)− [ΛiE/L1] = σi(l)− [ΛiE]− l1 · σi−1(l′) + [L1 ⊗ Λi−1E/L1] ≡ 0 mod Σ

as well. This proves the inclusion Σ̃ ⊂ Σ and thereby concludes the proof.

Further results on the computation of the K-functor include the following, not mentioned in class.

Theorem Let X be a space such that K∗X is torsion free as an abelian group, and let Y be a cell complex.
Then the K-theory product induces an isomorphism

K∗X ⊗K∗Y ' K∗(X×Y ) .

Remarks The point of excluding torsion from K∗X is that then taking the tensor product over Z with K∗X
preserves exact sequences, in particular the K-theory sequence of any pair (Ỹ , Y ). By induction of the
number of cells of Y this reduces the theorem to the case where Y is a sphere — compare Problem
36.

Theorem The K-theory of the real projective spaces is

K̃0RP 2n ' K̃0RP 2n+1 ' Z/2n

K1RP 2n = {0} and K1RP 2n+1 ' Z

for all n ∈ N.

Remarks Not surprisingly the K-theory of complex vector bundles is less suitable for a direct approach
to the real projective spaces. But it is remarkable that K-theory generalises quite easily to a so-
called equivariant theory which applies to spaces with an action of a finite group rather than a mere
topological space. The calculation of the groups shown above in Atiyah’s book is fairly simple and
based on Z/2-equivariant K-thery.
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11 Operations I

Definition An operation in K-theory is a natural self-transformation of the functor K, considered as
defined on Cp with values in the category of sets. Explicitly an operation η assigns to each compact
space X a mapping ηX :KX → KX such that for every map f :X → Y the diagram

KX
ηX //

OO

f∗

KXOO

f∗

KY
ηY // KY

commutes. We do not require ηX to respect the ring operations of KX.

Note Every operation is determined by its action on vector bundles of constant rank. Indeed, if E → X is
a general vector bundle then the function rankE :X → N defines a decomposition X =

∑∞
d=0Xd of

X as a (but formally infinite) topological sum, and the diagram

KX
ηX //

'
��

KX

'
��

∞∏
d=0

KXd

∏
ηXd //

∞∏
d=0

KXd

induced by the restriction homomorphisms commutes.

Examples (1) Sending x ∈ KX to 4x5 + 6 ∈ KX is an operation but not an interesting one since it can
be — in fact is — expressed completely in terms of the ring structure. If we know KX as a ring no
additional information on X can be gathered from this operation.

(2) A host of operations is obtained from the linear algebra of vector bundles. For instance passing
form a vector bundle E to its dual Eˇ defines a semi-group homomorphism VectX → VectX and
thus an operation

KX 3 x 7−→ x ∈ KX

in K-theory. It sends the generator h−1 ∈ K̃S2 to h−1−1 = (2−h)−1 = 1−h. Since the n-fold exterior
product (h−1)×· · · × (h−1) generates the group K̃S2n ' Z we see that the dualising operation acts
on K̃S2n as multiplication by (−1)

n
. In particular it helps to distinguish between the spaces S2 and

S4 which cannot be homeomorphic, even though the rings KS2 and KS4 are both isomorphic to
K[t]/(t2).

(3) We consider the power series

λt[E] :=

∞∑
k=0

[ΛkE] tk ∈ KX [[t]]

in an indeterminate t over KX, with coefficients depending on the vector bundle E → X ; for
any given bundle E whose rank is bounded by d the series reduces to a polynomial of degree at
most d. Note that the special value λ−1[E] =

∑
(−1)

k
[ΛkE] has been considered before and that
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λt[E] ∈ 1 + (t)·KX [[t]] belongs to the multiplicative group of power series with constant term 1. If
F is another bundle on X then the canonical isomorphism

Λk(E ⊕ F ) '
⊕
i+j=k

ΛiE ⊗ ΛjF

shows that λt[E ⊕ F ] = λt[E] ·λt[E]. By the defining property of the K-group the homomorphism
VectX 3 [E]→ 1 + (t)·KX [[t]] extends to a group homomorphism

λt:KX −→ 1 + (t)·KX [[t]]

given explicitly by
λt ([E]−[F ]) = λt[E] · λt[F ]−1 .

Thus for each k ∈ N we have, taking the coefficient of tk, the operation

λk:KX −→ KX

in K-theory. To the class of a vector bundle in VectX it simply applies the k-th exterior power
functor.

Definition If E → X is a vector bundle we let rankE ∈ VectX be the bundle that on each connected
component of X restricts to the trivial bundle of the same rank as E|X. This notion at once extends
to virtual bundles x ∈ KX, and we define an operation Ψ0 putting

ψ0(x) = rankx .

We proceed to define an infinite series of operations ψk : in view of λt ∈ 1 + (t) ·KX [[t]] for each
x ∈ KX there is a well-defined power series

d

dt
log λ−t(x) =

1

λ−t(x)
· d
dt
λ−t(x) =

∞∑
k=0

(
1−λ−t(x)

)k · d
dt
λ−t(x) ,

and we put

ψt(x) =

∞∑
k=0

ψk(x) tk := ψ0(x)− t d
dt

log λ−t(x) ∈ KX [[t]] .

Thus for each k ∈ N we obtain an operation

ψk:KX −→ KX

in K-theory called the k-th Adams operation.

Proposition The Adams operations have the following properties for all x, y ∈ KX.

• ψk(x+y) = ψk(x) + ψk(y) for all k ∈ N.

• If x is the class of a line bundle then ψk(x) = xk.

• ψk(x·y) = ψk(x) · ψk(y) for all k ∈ N.

• ψk
(
ψl(x)

)
= ψkl(x) for all k, l ∈ N.

• If p ∈ N is prime then ψp(x) ≡ xp mod p.

• If x ∈ K̃S2n then ψk(x) = kn · x for all k ∈ N.

Remarks We will see in the proof that already the first two properties determine the operations ψk uniquely,
a fact that offers a certain compensation for the apparent lack of motivation in the definition. — The
forth rule implies of course that the Adams operations commute among themselves. — Comparing
properties we see that ψ−1 would have been a consistent notation for the operation x 7→ x considered
above.

c© 2011/2012 Klaus Wirthmüller



K. Wirthmüller : Vector Bundles and K-Theory 2011/2012 46

Proof Let E and F be two vector bundles on X. We know that λ−t[E ⊕ F ] = λ−t[E]·λ−t[E] and therefore
log λ−t[E ⊕ F ] = log λ−t[E] + log λ−t[E], so that the additivity of ψk for k > 0 follows from that of
differentiation. For k = 0 it is obvious.

If L→ X is a line bundle then λ−t([L]) = 1− [L] t, and we obtain

∞∑
k=0

ψk[L] tk = 1− t d
dt

log(1−[L] t) = 1 +
[L] t

1−[L] t
=

1

1−[L] t
=

∞∑
k=0

[L]
k
tk .

This shows that ψk(x) = xk for the class of any line bundle x ∈ KX. If η is an arbitrary additive
operation in K-theory with this property then η and ψk coincide on sums of line bundles, and thus
on the class of every vector bundle on X, in view of the splitting principle and the note above. They
must therefore altogether coincide.

The identity ψk(x·y) = ψk(x)·ψk(y) is now obvious if x is the class of a line bundle. If x1, . . . , xd ∈ KX
and y1, . . . , ye ∈ KX are such classes then using additivity we also have

ψk
(∑

i

xi ·
∑
j

yj

)
= ψk

(∑
i,j

xi·yj
)

=
(∑
i,j

xi·yj
)k

=
(∑

i

xi

)k
·
(∑

j

yj

)k
= ψk

(∑
i

xi

)
·ψk
(∑

j

yj

)
.

Since the identity holds for sums of line bundles it holds in general, again by the splitting principle.

The same argument works to prove ψk
(
ψl(x)

)
= ψkl(x), calculating

ψk
(
ψl
(∑

i

xi

))
=
∑
i

ψk
(
ψl(xi)

)
=
∑
i

ψkl(x) = ψkl
(∑

i

xi

)
.

Let p ∈ N be prime. If x1, . . . , xd ∈ KX represent line bundles then

ψp
(∑

i

xi

)
=
∑
i

xpi ≡
(∑

i

xi

)p
mod p ,

and by the splitting principle this implies the congruence ψp(x) ≡ xp mod p for general x ∈ KX.

Finally we know that for n > 0 the additive group K̃S2n is spanned by the n-fold external product

(h−1)× · · · × (h−1) ∈ K(S2 × · · · × S2)

where h ∈ KS2 denotes the hyperplane class as usual. Applying ψk sends each factor h−1 to

ψk(h−1) = hk−1 =
(k−1∑
i=0

hk
)
· (h−1) = k · (h−1)

where the latter identity results from the congruence h ≡ 1 mod (h−1). We conclude that ψk(x) = kn x
holds for all x ∈ K̃S2n and n > 0. For n = 0 we are dealing with bundles over the one-point space,
and ψk acts identically for all k.

Example (4) The last stated property of the Adams operations clearly shows that two spheres of different
even dimensions are not homotopy equivalent, in particular not homeomorphic. This result is imme-
diately extended to include spheres of arbitrary dimensions using K1Sn = K̃0Sn+1. It also implies
that Rm and Rn cannot be homeomorphic unless m 6= n.
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12 Division Algebras

Definition Let K be a field. In this section an algebra over K is a vector space A over K together with a
multiplication A×A→ A which is required to be K-bilinear:

(λx+ µy) · z = λ(x · z) + µ(y · z) and x · (µy + νz) = µ(x · y) + ν(x · z)

as well as

(λx) · y = λ(x · y) = x · (λy)

must hold for all λ, µ, ν ∈ K and all x, y, z ∈ A. Thus neither associativity nor commutativity, nor
the existence of a unit is required.

If, on the other hand, A is not the zero algebra, and for any choice of a, b ∈ A with a 6= 0 the
equations a · x = b and y · a = b have unique solutions x, y ∈ A then A is called a division algebra.

Note Given an element a of an algebra A we denote by

la:A→ A and ra:A→ A

the K-linear mappings x 7→ la(x) = a x and x 7→ ra(x) = x a : the condition for A to be a division
algebra is that these maps are bijective for all non-zero a ∈ A. In case A has finite dimension over
K it suffices to establish either injectivity or surjectivity of la and ra.

Examples of Real Division Algebras (1) The field R itself is the trivial example.

(2) The field C is well-known to be the only finite-dimensional real division algebra which is associative
and commutative.

(3) The skew field H of quaternions, discovered by Hamilton in 1843, admits various realisations,
including one as a subring of Mat(2×2,C):

H =
{
λ+ ih ∈ Mat(2×2,C)

∣∣λ ∈ R and h hermitian
}
.

The scalar matrix λ is sometimes called the scalar part , and ih the vectorial part of the quaternion.
More explicitly, in terms of the Pauli matrices

σx =

 0 1
1 0

 , σy =

 0 −i
i 0

 , and σz =

 1 0
0 −1


the matrices 1, −iσx, −iσy, and −iσz form a basis of H as a real vector space. The latter three
quaternions are traditionally denoted by i, j, and k respectively, and the formulae

i2 = j2 = k2 = i j k = −1

completely describe the multiplication in H.

Associated with any quaternion w = λ+ ih = λ+ µxi + µyj + µzk there is the conjugate quaternion

w∗ = λ− ih = λ− µxi− µyj− µzk .
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Conjugation is an anti-involution: (vw)
∗

= w∗ · v∗. It leads in turns to the norm

|w| =
√
w∗w =

√
λ2 + µ2

x + µ2
y + µ2

z .

As in the case of complex numbers the norm is multiplicative, and the inverse of a non-zero quaternion
w turns out to be

w−1 =
w∗

|w|2
.

The impression that quaternions might be after all be not unlike complex numbers — apart from
commutativity — is correct in some formal respects but quite erroneous in others. It is true that
much of elementary linear algebra works well over H and other skew fields if the necessary care is
taken. For instance in order to preserve matrix calculus one should work with right rather than left
vector spaces, so that the compatibility of skew field and scalar multiplications reads v(λµ) = (vλ)µ
for vectors v and scalars λ and µ. There also is a good theory of H-linear group representations,
and there are projective spaces over H. On the other hand a striking feature is that every purely
vectorial quaternion w of unit norm satisfies w2 = −1 and together with the real number 1 spans an
embedded copy of the complex field, with w playing the role of the imaginary unit: thus the skew
field extension H/R of finite degree 4 contains an infinite variety of intermediate fields which are all
conjugate to each other.

(4) The algebra O of octonians was discovered by Graves shortly after Hamilton’s description of
the quaternions, and independently in 1845 by Cayley. Not being an associative algebra, O cannot
be embedded in a matrix algebra, and the simplest description seems to be in terms of pairs of
quaternions: O = H2 with the multiplication

(u, v) · (w, z) = (uw − vz∗, uz + vw∗) .

Again we have a conjugation (u, v) 7→ (u∗,−v) which is an anti-involution and provides the norm,
which in turn allows to write down the inverse of any non-zero octonian with respect to the unit
(1, 0) ∈ O.

Needless to say, due to the lack of associativity calculations in O require extreme care.

(5) Division algebras of infinite dimension abound. They include the fields R((t)) of Laurent series

∞∑
k=d

ak t
k with d ∈ Z and ak ∈ R

and R(t) of rational functions

a(t)

b(t)
with polynomials a(t) ∈ R[t] and 0 6= b(t) ∈ R[t] .

After the discoveries of Hamilton, Graves, and Cayley various questions of existence and classification of
division algebras with prescribed properties have been studied. We will concentrate on the particular question
of whether given a number n ∈ N there exists at least one real division algebra A with dimRA = n.
Surprisingly this problems turns out to have a purely topological answer.

As a first step towards topology we rewrite the algebra multiplication as a map between spheres. Throughout
we assume that A = Rn as a vector space, and we consider the sphere Sn−1 ⊂ A with respect to the standard
euclidean norm. Correcting for the fact that the multiplication of A has no reason to respect this norm —
or any other for that matter — we define the map µA:Sn−1 × Sn−1 → Sn−1 by

µA(u, v) =
1

|u·v|
u · v ;
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it is well-defined since A has no zero divisors. This topological version of the algebra multiplication still
has the property that for every a ∈ Sn−1 the mapping Sn−1 3 v 7→ µA(a, v) ∈ Sn−1 is a homeomorphism.

Indeed, it is inverted sending w ∈ Sn−1 to |l−1
a (w)|−1

l−1
a (w). Of course the same is true of u 7→ µA(u, b) for

fixed b ∈ Sn−1.

Proposition Let A be a finite-dimensional real division algebra. Then either A is isomorphic to R itself,
or dimRA is even.

Proof If dimRA = 1 then choosing any non-zero a ∈ A we find an element e ∈ A such that a ·e = a. Writing
a = λe with λ ∈ R∗ we conclude λe2 = λe : thus e is idempotent, and the linear map sending 1 ∈ R
to e ∈ A an isomorphism of algebras.

We now make the assumption that dimRA is odd, say dimA = 2n+1 with n ∈ N, and will show that
this leads to a contradiction. We consider the homomorphism in K-theory µ∗A:KS2n → K(S2n×S2n)
that is induced by the map µA. In terms of the known description of KS2n it is a ring homomorphism

Z[z]/(z2) −→ Z[x]/(x2) ⊗Z Z[y]/(y2) = Z[x, y]/(x2, y2)

where x, y, and z are three copies of the canonical generator (h−1)× · · · ×(h−1) ∈ K̃S2n. Fixing
any a ∈ S2n the restriction homomorphism K(S2n×S2n)→ K

(
{a}×S2n

)
simply annihilates y, and

the fact that S2n 3 v 7→ µ(a, v) ∈ S2n is a homeomorphism implies that the composition

Z[z]/(z2)
µA−→ Z[x, y]/(x2, y2) −→ Z[x, y]/(x2, y) = Z[x]/(x2)

is an isomorphism. In terms of the generator z this means that µ∗A(z) ≡ ±y mod (x), and by way of
symmetry we also have µ∗A(z) ≡ ±x mod (y). We conclude that the image of z has the form

µ∗A(z) = ±x± y + k xy ∈ Z[x, y]/(x2, y2) for some k ∈ Z.

Since none of these elements has vanishing square this contradicts the fact that µ∗A is a homomorphism
of rings.

Thus odd dimensional division algebras are essentially ruled out. The case of a real division algebra A of
even dimension 2n is decidedly much subtler. We first pass from the map µA to another mapping

ϕA:S4n−1 −→ S2n

which imitates the Hopf fibration S3 3 z 7→ [z] ∈ CP 1 = S2 from Note (4) of Section 2. It is convenient to
use homeomorphisms similar to those at the beginning of Section 9 to identify the domain S4n−1 of ϕA with
the subspace

(S×D) ∪ (D×S) ⊂ R2n×R2n = R4n

where we have abbreviated D := D2n and S := S2n−1. On the target side of the mapping ϕA we identify
S2n with the one-point compactification of A = R2n and write D0 := D2n ⊂ S2n and D∞ := S2n\(D0)

◦
.

The map ϕA:S4n−1 −→ S2n then is defined by the assignments

S×D 3 (u, v) 7−→ |v| · µA
(
u,

1

|v|
v
)
∈ D0

D×S 3 (u, v) 7−→ 1

|u|
· µA

( 1

|u|
u, v
)
∈ D∞ .

Note that for fixed a, b ∈ S restricting ϕA yields homeomorphisms

D = {a}×D ≈−→ D0 and D = D×{b} ≈−→ D∞

which are inverted sending z ∈ D0 to |z| ·v and z ∈ D∞ to 1
|z| ·u if u, v ∈ S are the unique points with

µA(a, v) = 1
|z| ·z respectively µA(u, b) = 1

|z| ·z.
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Definition Let n ∈ N be a positive integer and f :S4n−1 → S2n a map. The reduced K-theory exact
sequence of f then runs

K̃S4n−1 ←− K̃S2n ←− K̃Cf ←− K1S4n−1 ←− K1S2n

or
0←− (y)/(y2)←− K̃Cf ←− (x)/(x2)←− 0

where x ∈ Z[x] = KΣS4n−1 and y ∈ Z[y] = KS2n are the canonical generators of reduced K-theory.
The short exact sequence shows that K̃Cf is the free abelian group generated by x and a lift ỹ of y,
and since y2 = 0 ∈ K̃Sn the square of ỹ must be an integral multiple

ỹ2 = H(f) · x

of x. The product x·ỹ likewise is a multiple of x, say x·ỹ = λx with λ ∈ Z, but calculating

0 = x ·H(f)x = x · ỹ2 = (x·ỹ) · ỹ = λx·ỹ = λ2x

we see that λ must vanish and that x·ỹ = 0. This implies that the integer H(f) does not depend on
the choice of the lift ỹ and thus is uniquely defined by f alone — in fact even by the homotopy class
of f . It is called the Hopf invariant of f .

Proposition Let A be a real division algebra of even vector space dimension 2n ∈ N. Then the corre-
sponding map ϕ = ϕA:S4n−1 −→ S2n has Hopf invariant H(ϕ) = ±1.

Proof Recalling the abbreviations D := D2n and S := S2n−1 we note that there is a well-defined mapping
Φ:D×D → Cϕ that sends (u, v) to the class[

m,
1

m
(u, v)

]
∈ Cϕ =

(
I×(D×D) + S2n

) /
∼

with m = max {|u|, |v|} the “box” norm of (u, v). As the latter takes the value 1 on the boundary
(S×D) ∪ (D×S) the restriction Φ

∣∣((S×D) ∪ (D×S)
)

is the composition of ϕ with the canonical
embedding S2n → Cϕ.

We choose and fix arbitrary points a, b ∈ S. As observed above ϕ restricts to homeomorphisms

D = {a}×D ≈−→ D0 and D = D×{b} ≈−→ D∞, so that the curved arrows in

(D,S)

(id,b)

��

$$

(D,S)

(a,id)

��

zz

(D,S)×D

Φ

��

D×(D,S)

Φ

��
(Cϕ,D0) (Cϕ,D∞)

embed the space pair (D,S) as (D∞, D0∩D∞) respectively (D0, D0∩D∞) in S2n ⊂ Cϕ. The induced
diagrams in K-theory enter in the upper left hand part of the large commutative diagram

K(D,S)⊗K(D,S)
' //

44
K
(
(D,S)×(D,S)

)

K
(
(D,S)×D

)
⊗K

(
D×(D,S)

)
//

'

OO

K
(
(D,S)×(D,S)

)

K(Cϕ,D0)⊗K(Cϕ,D∞) //

Φ∗⊗Φ∗

OO

K(Cϕ, S2n)

Φ∗'

OO

K̃Cϕ⊗ K̃Cϕ //
��
'

K̃Cϕ
��
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with horizontals which are K-theory product maps: at the top we have an exterior product while
the others are interior ones. The arrows marked as such really are isomorphisms since cartesian pro-
jection gives homotopy inverses to the embeddings (a, id) and (id, b), and collapsing the contractible
subspaces D0 and D∞ has no effect on K-theory. On the right hand side Φ∗ is an isomorphism
because collapsing S2n ⊂ Cϕ to a point results in the suspension ΣS4n−1.

The element ỹ ∈ K̃Cϕ whose square defines the Hopf invariant, by definition restricts to a generator
of K̃S2n, which in turn corresponds to generators of

K̃(S2n, D0) = K̃(D∞, S) and K̃(S2n, D∞) = K̃(D0, S) .

Thus the tensor square ỹ⊗ y∈̃K̃Cϕ⊗ K̃Cϕ corresponds to a tensor product z′⊗ z′′ of generators of
the cyclic group K(D,S). It follows that z′·z′′ ∈ K

(
(D,S)×(D,S)

)
also generates and so maps to a

generator of K(Cϕ, S2n). This means that ỹ2 = ±x ∈ K̃Cϕ, and finally that H(ϕ) = ±1.

Theorem Let n ∈ N be positive and f :S4n−1 → S2n a mapping. If H(f) is odd then n ∈ {1, 2, 4}.

Proof Recalling the short exact sequence

0←− (y)/(y2)←− K̃Cf ←− (x)/(x2)←− 0

from the definition of the Hopf invariant let ỹ ∈ K̃Cf be a lift of y. By the properties of the Adams
operations we have ψk(y) = kn · y and therefore

ψ2(ỹ) = λ · x+ 2n · ỹ and ψ3(ỹ) = µ · x+ 3n · ỹ

with integers λ and µ. Applying the Adams operations once more we obtain the competing repre-
sentations

ψ6(ỹ) = ψ3
(
ψ2(ỹ)

)
= ψ3(λ · x+ 2n · ỹ) = (32nλ+ 2nµ) · x+ 6n · ỹ

ψ6(ỹ) = ψ2
(
ψ3(ỹ)

)
= ψ2(µ · x+ 3n · ỹ) = (22nµ+ 3nλ) · x+ 6n · ỹ .

We conclude that 32nλ+ 2nµ = 22nµ+ 3nλ, or

2n(2n−1)µ = 3n(3n−1)λ.

By another property of the Adams operations

H(f) · x = ỹ2 ≡ ψ2(ỹ) mod 2,

and since the Hopf invariant is odd and n > 0 the coefficient λ must be odd too. Therefore 2n must
be a divisor of 3n−1.

The rest is elementary number theory. We first show that n must be a power of 2. To this end we

write n = 2lm with m odd. Thus 22lm = (2m)
2l

is a divisor of

32lm−1 = (32l

−1) ·
m−1∑
j=0

32lj .

Since the sum is odd this implies (2m)
2l ∣∣ (32l−1), in particular 2m < 3 and therefore m = 1, that is

n = 2l.

Next we show by induction that for l > 0 the highest power of 2 that divides 32l−1 is 2l+2. Indeed
for l = 1 this is true since 21+2 = 8 = 321−1. Assuming the statement for fixed l we write

32l+1

−1 = (32l

−1)(32l

+1) .
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Since l ≥ 1 the second factor satisfies 32l

+1 = 92l−1

+1 ≡ 2 mod 4, and we conclude that 2k+1 divides

(32l+1−1) if and only if 2k divides (32l−1). By the inductive hypotheses this implies that 2l+1 is the

highest power of 2 contained in (32l+1−1): this completes the induction.

Summarising, as we know that n = 2l and 22l | (32l−1) we have either l = 0, or l > 0 and 2l ≤ l+2,
which means l ∈ {1, 2}. Thus finally n = 2l ∈ {1, 2, 4}.

Corollary A finite-dimensional real division algebra of dimension n exists if and only if n ∈ {1, 2, 4, 8}.

Proof By our first proposition such an algebra A is either isomorphic to R, or n is even. In that case by the
second proposition the map µA has Hopf invariant 1, and by the theorem this implies n ∈ {2, 4, 8}.
Conversely the examples show that all four dimensions are realised.

One will naturally wonder whether the use of the Adams operations in the proof of the theorem may fit into
a systematic context. Indeed it does, though here we cannot go beyond the definition of an interesting new
invariant.

Definition Let m and n be positive integers, and let f :S2m+2n−1 → S2n be a map. As before consider
the exact sequence of the mapping cone

0←− (y)/(y2)←− K̃Cf ←− (x)/(x2)←− 0

with generators x ∈ K̃S2m+2n and y ∈ K̃S2n, and let ỹ ∈ K̃Cf be a lift of y. For every k ∈ N we
have an equation

ψk(ỹ) = λk · x+ kn · ỹ ∈ K̃Cf

for some λk ∈ Z. If l ∈ N is a second choice for k then using ψl ◦ ψk = ψkl = ψk ◦ ψl we see that

ψkl(ỹ) = ψl
(
ψk(ỹ)

)
= ψl(λk · x+ kn · ỹ) = (lm+nλk + knλl) · x+ knln · ỹ

ψkl(ỹ) = ψk
(
ψl(ỹ)

)
= ψk(λl · x + ln · ỹ) = (km+nλl + lnλk) · x+ knln · ỹ

and thus kn(km−1)λl = lm(ln−1)λk. Therefore the rational number

e(f) :=
λk

kn(km−1)

does not depend on the choice of k > 0. On the other hand it does depend on that of the lift ỹ :
substituting µ · x+ ỹ as an alternative choice for ỹ we obtain

ψk(µx+ỹ) = λk · x+ km+nµ · x+ kn · ỹ = λk · x+ (km+n−kn)µ · x+ kn · (µx+ỹ) .

Thus the integer µ is added to e(f) ∈ Q, and we see that the congruence class

e(f) ∈ Q/Z

is a well-defined invariant of f alone. It is called the e-invariant of f — in fact of the homotopy class
[f ] ∈

[
S2m+2n−1, S2n

]
.
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13 Operations II

One might think of a very simple structure on the set KX that would specify exactly which classes can be
represented by true vector bundles on X, or, better, for a given x ∈ KX the smallest number n ∈ N that
makes x+d the class of a vector bundle. This idea seems far away from any algebraic notion but in fact is
not, but rather related to an observation we might have made on the (few) examples of rings KX that we

know like KCPn = Z[h]/(h−1)
n+1

: they suggest that virtual bundles of rank zero — here h−1 — should
be given a more prominent role. We do this in a systematic way.

Notation We let
K1X = kernel rank ⊂ KX

denote the kernel of the rank homomorphism rank:KX −→ KX. Thus K1X is an ideal of KX.

Definition The geometric series

t

1− t
=

∞∑
i=1

ti ∈ Z[[t]]

of vanishing constant term may be substituted in λt(x) ∈ KX[[t]] and yields the new series

∞∑
k=0

γk(x) tk = γt(x) := λ t
1−t

(x) ∈ KX[[t]]

and thereby the K-theory operations

γk:KX −→ KX for all k ∈ N.

Notes (1) Assigning to x ∈ KX the difference x−rankx we obtain an additive endomorphism of KX
that projects KX onto its subgroup K1X, which therefore is a direct factor of KX. For connected
non-empty spaces X it coincides with K̃X.

(2) The series γt clearly inherits from λt(x) the property

γt(x+y) = γt(x) · γt(y) for all x, y ∈ KX.

(3) Each γk is an integral linear combination of the λj with j ≤ k, and since the relation s = t
1−t is

inverted by t = s
1+s we have λs = γ s

1+s
, so that conversely each λk is an integral linear combination

of the γj with j ≤ k.

(4) For the trivial bundle we have

γt(1) = λ t
1−t

(1) = 1 +
t

1−t
=

1

1−t

so that for an arbitary line bundle L→ X we obtain

γt([L]−1) =
(

1 + [L]
t

1−t

)
·
( 1

1−t

)−1

= 1 + ([L]−1) t .

Proposition Consider any x ∈ K1X.
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• Then γk(x) ∈ K1X for all k > 0, and γ1(x) = x.

• Let d ∈ N be the smallest number such that x+d ∈ KX is represented by a vector bundle. Then
γt(x) is a polynomial of rank at most d.

Proof We have just seen that the first statement holds for arguments of the form x = [L]−1. If more

generally x =
∑d
i=1 xi is such that xi+1 is the class of a line bundle for each i, then the formula

γt(y+z) = γt(y) · γt(z) shows that γk(x) ∈ K1 in this case too, and also that γ1(x) = x since the
coefficient γ1(x) is additive in x.

Let now x ∈ K1X be general, and assume that x = [E]−d for some vector bundle E → X. By the

splitting principle we may assume that E '
⊕d

i=0 Li is isomorphic to a Whitney sum af line bundles,
so that x =

∑
i ([Li]−1). Thus the first assertion of the proposition is true for x, and the second

follows from

γt(x) =

d∏
i=1

(1+xi t) = 1 +

d∑
i=0

σi(x1, . . . , xd) t
i .

Definition We formally assign to each operation γk the weight k ∈ N, and therefore to each product

γk1γk2 · · · γkr

(repeated factors allowed) the weight k1+k2+ · · ·+kr. Given a space X we put K0X = KX, and for
s ∈ N let KsX ⊂ KX be the additive subgroup generated by all products

γk1(x) γk2(x) · · · γkr (x) with x ∈ K1X

of weight at least s : the definition is consistent since γ1(x) = x for all x ∈ K1X. The decreasing
sequence

KX = K0X ⊃ K1X ⊃ · · · ⊃ KsX ⊃ Ks+1X ⊃ · · ·

is called the γ-filtration of KX.

Theorem Assume that x ∈ K1X. There exists a number m ∈ N such that γk1(x) γk2(x) · · · γkr (x) = 0
for all products γk1γk2 · · · γkr of weight greater than m.

Proof We first assume that x = [L]−1 with a line bundle L→ X, and write −x = [E]−d for some vector

bundle E → X. By the splitting principle we may assume that E =
⊕d

i=1 Li is a sum of line bundles,
so that −x =

∑
i yi with yi = [Li]−1.

We then have γt(x) = 1 + x t and γt(yi) = 1 + yi t, and therefore

1 = γt(x) · γt(−x) = (1 + x t) ·
d∏
i=1

(1 + yi t) = (1 + x t) ·
(

1 +

d∑
i=1

σi(y1, . . . , yd) t
i
)
.

Equating coefficients we successively obtain that xi = (−1)
i
σi(y1, . . . , yd) for all i > 0, in particular

xd+1 = 0. This was the claim for x of this special type.

Let now x ∈ K1X be arbitrary. Again by the splitting principle we may assume that x =
∑d
i=1 xi

with xi = [Li]−1; then

γt(x) =

d∏
i=1

(1 + xi t) = 1 +

d∑
i=1

σi(x1, . . . , xd) t
i

and thus γi(x) = σi(x1, . . . , xd) for all i > 0. Using the special case already treated, we now choose
mi ∈ N such that xmi+1

i = 0 for all i. The expression γk1(x) γk2(x) · · · γkr (x) ∈ KX is a homogeneous
polynomial of degree k1+k2+ · · ·+kr in the xi : if this degree exceeds m := m1+ · · ·+mn then one
factor must vanish, and the whole expression is zero.
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Remark The proposition does not lie as deep as the splitting principle: the proof may be based on a formal
algebraic rather than a true splitting of the bundles involved.

Corollary Let X be a space and x ∈ K1X. Then x is nilpotent.

Proof Choose k1 = · · · = kr = 1 and recall that γ1(x) = x.

Theorem Let X be a space such that KX is finitely generated as an abelian group. Then there exists an
m ∈ N such that Km+1X = {0}.

Proof Being a direct summand K1X also is finitely generated, say by x1, . . . , xr. We put xr+j = −xj for
j = 1, . . . , r and apply the previous proposition to xj for each j = 1, . . . , 2r, obtaining the number
mj ∈ N ; we then put m = m1+ · · ·+m2r. Any product of weight greater than m in the γi(xj) must,
for some particular j, contain a product of weight greater than mj in the γi(xj), and therefore must
vanish.

Since every element of K1X is the sum of a collection of xj the result now follows from the formula
γt(x+y) = γt(x) · γt(y).

Theorem Let s ∈ N and x ∈ KsX. Then

ψk(x) ≡ ks · x modKs+1X

for every k ∈ N. Thus every ψk preserves the γ-filtration and acts on KsX/Ks+1X as multiplication
by ks.

Proof In case s = 0 it suffices to write out

ψk(x)− k0 x = ψk(x− rankx)− (x−rankx)

and to note that ψk preserves the rank function.

We now fix some x ∈ K1 and prove that ψk ◦ γs(x) − kn · γs(x) ∈ Ks+1X for every s > 0. By the
splitting principle we may assume x = x1+ · · · + xd with xi such that 1+xi ∈ KX is a line bundle
for each i. Then γs(x) = σs(x1, . . . , xd) and ψk(xi) = (1+xi)

k − 1 and thus

ψk ◦ γs(x) = ψk
(
σs(x1, . . . , xd)

)
= σs

(
ψk(x1), . . . , ψk(xd)

)
= σs

(
(1+x1)

k − 1, . . . , (1+xd)
k − 1)

)
= σs(k x1, . . . , k xd) + y(x1, . . . , xd)

= ks · σs(x1, . . . , xd) + y(x1, . . . , xd)

for some symmetric polynomial y whose monomials all have degrees greater than s. Therefore the
difference

ψk ◦ γs(x)− ks · γs(x) = y(x1, . . . , xd)

is a polynomial in elementary symmetric functions σj(x1, . . . , xd) and thus in γj(x) with j > s. This
means that the difference belongs to Ks+1X.

Let now γk1γk2 · · · γkr any product of weight s. Since

ψk ◦ γkj (x) ≡ kkj · γkj (x) modKkj+1X for each j

and ψk is a ring endomorphism we conclude that

ψk
(
γk1(x)γk2(x) · · · γkr (x)

)
≡ ksj · γk1(x)γk2(x) · · · γkr (x) modKs+1X .

This proves the theorem.
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Corollary Let m ∈ N and assume that Km+1X = {0}. Then for any choice of non-negative integers
k0, k1, . . . , km the composition product vanishes:(

ψkm − (km)
m) ◦ · · · ◦ (ψk1 − (k1)

1) ◦ (ψk0 − (k0)
0)

= 0 .

Proof Apply the theorem repeatedly.

Example Recall that the ring KCPn = Z[h]/(h−1)
n+1

is generated by the class h of the hyperplane
bundle. The ideal K1CPn = K̃CPn is spanned by h−1, so that

KsCPn =

{
(h−1)

s
/(h−1)

n+1
for s ≤ n

{0} for s > n

is the γ-filtration. The k-th Adams operation acts on (h−1)
s

by

ψk
(
(h−1)

s)
= (hk−1)

s

=
((

1+(h−1)
)k−1

)s
=
(
k · (h−1) +

k∑
i=2

(−1)
i(k
i

)
(h−1)

i
)s

= ks · (h−1)
s

+ terms containing higher powers of (h−1) .

Taking the tensor product with the rational field we may form a weaker version Q ⊗Z KX of K-theory,
a functor with values in the category of commutative Q-algebras, on which the Adams operations act as
endomorphisms. Assuming Km+1X = {0} and putting k0 = k1 = · · · = km = k in the corollary we obtain
the identity

m∏
j=0

(ψk − kj) = 0 ∈ EndQ(Q⊗Z KX)

in the space of linear endomorphisms. Thus for k > 0 the endomorphism ψk has a minimal polynomial
with but simple factors, and the eigenvalues of ψk are powers of k not exceeding km, which in fact is still
true for k = 0 since ψ0 = rank is a projector onto K1X. In particular ψk can be diagonalised, and we let
E(k, j) ⊂ Q⊗ZKX be the eigenspace correspondung to kj . If we fix j and substitute a different choice l ∈ N
for k then the corollary with kj = l and ki = k for all i 6= j yields(

ψl − lj
)
·
∏
i 6=j

(
ψk − ki

)
= 0 .

For k > 0 this implies that (ψl − lj)|E(k, j) = 0 and thus E(k, j) ⊂ E(l, j). This result gives sense to the

Definition Let X be a space and assume that there exists an m ∈ N with Km+1X = {0}. Then the vector
spaces

H2j(X;Q) := E(k, j) ⊂ Q⊗Z KX for any choice of k > 0

form the rational cohomology of even degree of X. Making the analogous assumption on the γ-
filtration of the suspension ΣX+ we complement the definition by the part of odd degree

H2j+1(X;Q) := H2j+2(ΣX+;Q) .

Note Under the assumptions of the definition we clearly have Q⊗ZKsX =
⊕m

j=sH
2j(X;Q), and therefore

H2j(X;Q) ' Q⊗Z (KsX/Ks+1X)
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expresses the cohomology directly in terms of the γ-filtration.

Recall that the suspension isomorphism K̃X ' K̃Σ2X is given by external left multiplication with the
generator h−1 ∈ K̃S2. Since ψk acts on K̃S2 as multiplication by k the suspension isomorphism sends
H2j(X;Q) = E(k, j) onto H2j+2(ΣX+;Q) = E(k, j+1), and by definition of the odd graded cohomology we
obtain suspension isomorphisms

Hq(X;Q)
'−→ Hq+1(ΣX+;Q) for all q ∈ N.

The exact triangle of rational K-theory thus unwinds to the long exact cohomology sequence known to those
who are familiar with algebraic topology:

Proposition For every compact space pair (X,A) such that KX and KA are finitely generated abelian
groups there is a functorial exact sequence

· · · oo Hq+1(X,A;Q) oo
δ

Hq(A;Q) oo Hq(X;Q) oo Hq(X,A;Q) oo · · ·

of rational cohomology.
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14 Equivariant Vector Bundles

Definition Let G be a finite group. An action of G on a topological space X is a continuous mapping

G×X 3 (g, x) 7−→ g ·x ∈ X

with the properties that 1·x = x and (gh)·x = g · (h·x) holds for all g, h ∈ G and all x ∈ X. These
axioms imply at once that the assignment g 7−→ (x 7→ g ·x) defines a homomorphism from G to the
group of self-homeomorphisms of X — this is, in fact, an alternative description of the notion of a
group action.

A pair consisting of a space X and an action of G on it is called a G-space. For fixed G the G-
spaces form a category whose morphisms are the equivariant maps f :X → Y , namely those with
f(g ·x) = g ·f(x) for all g ∈ G and x ∈ X.

Of course the subobjects in G-equivariant categories are the G-stable subsets S ⊂ X, that is, those for which
x ∈ S implies g ·x ∈ S for all g ∈ G. If S ⊂ X is any subset then

G·S :=
{
g ·x

∣∣ g ∈ G and x ∈ S
}

clearly is the smallest G-stable subset of X containing S. The minimal subobjects of a given G-spaces arise
as the so-called orbits G·x := G·{x} of points x ∈ X. The orbits in X define a partition of X and thus an
equivalence relation on X, and the corresponding quotient space is denoted by1 X/G and called the space
of orbits, or just the orbit space of the G-space X.

Examples (1) The action of Z/2 as ±1 on the sphere Sn has RPn as its orbit space by the very definition.

(2) For fixed positive m ∈ N let ε = e2πi/m denote the primitive m-th root of unity. Then for any
choice of further constants a0, . . . , an the group Z/m acts on CPn by

g ·[z0 : z1 : . . . : zn] := [εa0gz0 : εa1gz1 : . . . : εangzn] .

An element g ∈ Z/m acts trivially on CPn if and only if (ai−aj)g = 0 ∈ Z/m for all i 6= j, which in
terms of a representing integer means that m divides (ai−aj)·g, or that g is a multiple of the number

m

gcd (m, ai−aj)

where the greatest common divisor is taken over m and all ai−aj with i 6= j. A similar condition
determines whether a particular point [z0 : z1 : . . . : zn] ∈ CPn is held fixed by g ∈ Z/m : now only
the differences ai−aj with zi 6= 0 6= zj are taken into account.

The examples suggest further notions: The subgroup

Gx :=
{
g ∈ G

∣∣ g ·x = x
}
⊂ G

is called the isotropy group of the point x. It gives rise to the map

G/Gx 3 g Gx 7−→ g ·x ∈ Gx

1 The fact that G acts on the left of X suggests G\X as a more consequent but awkward notation, which
indeed is used when left and right actions are around simultaneously.
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from the space of cosets to the orbit of x, which is bijective and thus a homeomorphism (of discrete spaces)
provided that X is a Hausdorff space. A point x ∈ X with Gx = G is a fixed point of the G-action; the fixed
points form the subspace XG ⊂ X on which G acts trivially. In Example (2) many different subgroups Gx
can be realised choosing the weights a0, . . . , an as suitable divisors of m, and points z ∈ CPn with various
vanishing and non-vanishing components. In any case the n+1 points of CPn with just one non-zero entry
are fixed points. — At the other extreme lies the case that the isotropy group Gx = {1} is trivial for all
x ∈ X : such actions, like that of Example (1), are called free.

Note If X is a Hausdorff or normal space then so is X/G. Indeed assume the former and let Gx and Gy
be two different orbits in X. For any two elements g, h ∈ G we find disjoint open neighbourhoods
Ug,h ⊂ X of gx and Vg,h ⊂ X of gy. Then

U :=
⋂

g,h∈G

g−1Ug,h and V :=
⋂

g,h∈G

h−1Vg,h

are open neighbourhoods of x and y with G·U ∩G·V = ∅ ; they therefore project to open sets that
separate the points Gx and Gy in X/G. The proof of normality is similar.

Definition Let G be a finite group and X a G-space. A G-vector bundle over X is a vector bundle E
π→ X

with an action of G on E such that

• π is equivariant and

• for every g ∈ G and every x ∈ X the map Ex 3 v 7→ g ·v ∈ Egx is linear.

A homomorphism between G-bundles is, of course, a homomorphism of bundles which is G-equi-
variant.

In the same way as ordinary vector bundles over a one-point space reduce to finite-dimensional vector spaces,
G-bundles over the one-point space are known in algebra as representations of the group G, also referred
to as G-modules : they are just homomorphisms G → GL(V ) for some (finite-dimensional complex) vector
space V . Many of their properties remind of those of (ordinary) vector bundles, and we briefly recall some
of their most basic ones.

It is clear that the direct sum and the tensor product of G-modules again are G-modules, with g ∈ G
acting as g ·(x⊕ y) = gx⊕ gy and g ·(x⊗ y) = gx⊗ gy.

If 〈 , 〉 is any Hermitian metric on a G-module V then we may average over the group G to obtain a new
metric

〈〈v, w〉〉 :=
1

|G|
∑
g∈G
〈gv, gw〉

which is G-invariant: 〈〈gv, gw〉〉 = 〈〈v, w〉〉 for all g ∈ G and v, w ∈ V . Thus G acts on V by automorphisms
which are unitary with respect to this metric. One important application concerns subrepresentations U ⊂ V :
the orthogonal complement of U then is G-invariant and thus a representation of G in its own right, making
V = U ⊕ U⊥ the direct sum of two representations. From this fact it easily follows that every G-module
at all is isomorphic to a direct sum of so-called irreducible G-modules V : these are G-modules that have
exactly two submodules — necessarily the zero submodule and V itself.

Example A Z/2-module consists of a vector space V which carries an involution g:V → V . The eigen-
values ±1 determine the decomposition V = V− ⊕ V+, and every subspace of V± clearly is a Z/2-
submodule: up to isomorphism there exist therefore exactly two irreducible representations of Z : the
one-dimensional space C with g acting as −1 +1.

Taking averages has another important application. If V is a G-module then the linear mapping

V 3 v 7→ 1

|G|
∑
g∈G

gv
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is a projection — the orthogonal projection with respect to a G-invariant metric — to the fixed space

V G =
{
v ∈ V

∣∣ gv = v for all g ∈ G
}
.

If W is another G-module then the space of linear mappings Hom(V,W ) inherits a G-module structure where
g ∈ G acts as

Hom(V,W ) 3 f 7−→ g ◦ f ◦ g−1 ∈ Hom(V,W ) ,

so that Hom(V,W )
G

consists just of the G-equivariant linear maps.

Lemma Let V and W be irreducible G-modules. Then

Hom(V,W )
G '

{
C if V 'W ,
{0} else.

Proof If V and W are isomorphic G-modules we may assume V = W . Thus let f :V → V be an equivariant
endomorphisms. For any λ ∈ C the kernel of λ−f is a G-submodules, and by irreducibility it is either
zero or all V . The latter occurs for exactly one λ, and this proves that f = λ is scalar.

We now show that V must be isomorphic if there exists a non-zero equivariant homomorphism
f :V → W . Indeed the kernel of f is a proper submodule of V , and as V is irreducible the kernel is
zero, and f injective. Likewise the image of f is a non-trivial submodule of W , hence all W since W
also is irreducible. Therefore f :V 'W is an isomorphism.

Note The group G is abelian if and only if all irreducible representations of G have dimension one.

Proof Let ρ:G→ GL(V ) be a representation of an abelian group G. Since there exists a G-invariant metric
on V all elements of the image ρ(G) ⊂ GL(V ) are diagonalisable; since they commute among each
other they can be diagonalised even simultaneously. Thus there exists a common base of eigenvectors,
and the line spanned by each base vector is a G-stable submodule.

Conversely, given a finite group G we assume that all irreducible representations of G are one-
dimensional. There certainly exists an injective representation ρ:G → GL(V ): for instance put
V =

⊕
h∈G C and let g ∈ G cyclically permute the canonical base vectors of V :

g · (xh)h∈G = (xgh)h∈G .

In view of the assumption V decomposes into G-stable lines, so that ρ factors as

G
ρ //

$$I
IIIIIIIII GL(V )

∏
GL(1,C)

88rrrrrrrrrr

where the product is indexed by those lines. Since GL(1,C) = C∗ is abelian we have thus embedded
G into an abelian group.

Theorem Given the finite group G there are, up to isomorphism, but finitely many irreducible represen-
tations of G (as many as there are conjugacy classes in G).

Remark For abelian groups the theorem directly follows from the note preceding it.

Corollary Let I1, . . . , Ik a complete set of pairwise non-isomorphic irreducible G-modules. Then for any
G-module W the evaluation map

k⊕
j=1

Hom(Ij ,W )
G ⊗ Ij −→W , f ⊗ v 7→ f(v)
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is an isomorphism.

Proof Three observations suffice:

• If W is irreducible then the statement follows at once from the lemma.

• W is a direct sum of irreducible representations.

• The expressions on either side of the evaluation map are additive with respect to direct sums.

Note The corollary goes beyond the statement that every representation admits a decomposition into
irreducible ones: unlike the latter the decomposition of W into the images of the Hom(Ij ,W )

G ⊗ Ij
is unique. These images are called the isotypical summands of W as each of them may be (non-
uniquely) written as a sum of copies of one and the same irreducible representation.

All this carries over to equivariant vector bundles E → X over a space X without G-action, considered as a
G-space whose action is trivial : X = XG. The averaging homomorphism now defines a bundle endomorphism
E → E which still is a projection, so that its image is a subbundle of EndE. In particular the equivariant
bundle homomorphisms from E to another G-bundle F → X form the subbundle

Hom(E,F )
G ⊂ Hom(E,F ) .

Proposition Let X be a trivial G-space, let I1, . . . , Ik be a complete set of pairwise non-isomorphic irre-
ducible G-modules, and let F → X be an arbitrary G-bundle over X. Then the evaluation homo-
morphism

k⊕
j=1

Hom(X×Ij , F )
G ⊗ (X×Ij) −→ F

is an isomorphism of G-bundles.

Note The point is that the first factor of each tensor product may be a non-trivial bundle on which G acts
trivially, while the second is trivial as a bundle but with non-trivial G-action.

Example Up to equivariant isomorphism the Z/2-bundles on a trivial Z/2-space X are the Whitney sums
of any bundle with trivial action, and any other on which the non-trivial group element acts as the
scalar −1.

We now consider vector bundles over a free G-space.

Lemma If X is a Hausdorff space with free G-action then the quotient mapping X
q−→ X/G is a covering

projection.

Proof Let x ∈ X be a point. Using the Hausdorff property we choose pairwise disjoint neighbourhoods
Ug ⊂ X of gx for all g ∈ G. Then

U :=
⋂
g∈G

g−1Ug

is a neighbourhood of x with gU ⊂ Ug for each g ∈ G. Therefore the sets gU are pairwise disjoint,
and the group action restricts to a homeomorphism G×U ≈ GU . The resulting commutative diagram

G×U ≈ //

{∗}×idU

��

GU � � //

q

��

X

q

��
(G/G)×U ≈ // (GU)/G � � // X/G

shows that q restricts to a trivial projection over the neighbourhood (GU)/G of Gx ∈ X/G.
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Proposition Let X be a free G-space, X
q−→ X/G the quotient map. Then the pull-back operation

Vect(X/G)
q∗−→ VectGX

defines a bijection between isomorphism classes of vector bundles on X and equivariant isomorphism
classes of G-vector bundles on X/G.

Proof If F → X/G is a bundle then q∗F =
{

(x, v) ∈ X×F
∣∣ v ∈ FGx} is a G-bundle under the action

g ·(x, v) = (gx, v) .

Let now E
π−→ X be aG-vector bundle. Since π is equivariant we can form its quotient E/G

π−→ X/G.
It is a family of vector bundles as for any point x ∈ X the element g ∈ G sends the fibre Ex linearly
and bijectively to Egx. From the commutative diagram

E //

π

��

E/G

π

��
X

q // X/G

we at once obtain an isomorphism q∗(E/G) ' E of families over X. On the other hand X
q−→ X/G

is a covering projection, in particular a local homeomorphism: this proves that the family π is locally
trivial.

The assignment of E/G
π−→ X/G to E

π−→ X gives the desired inverse of the pull-back operation.

Let us briefly discuss a few aspects of bundles over a general (but always compact) G-space X, which
generalise results from Section 4. While we can no longer average endomorphisms of a bundle E → X we can
still average sections: g ∈ G acts on the space of sections ΓE by (gs)(x) = g

(
s(g−1 ·x)

)
, and the averaging

operator projects ΓE onto the subspace (ΓE)
G

of invariant sections.

Proposition Let X be a G-space, S ⊂ X a closed G-stable subspace, and E → X a G-vector bundle.
Then every invariant section of E|S admits an extension to an invariant section of E over X.

Proof From Section 4 we know that there exists an extension at all, to which we just apply the averaging
operator.

The equivariant analogues of the basic results from Section 4 now are but formal consequences: bundles
that are equivariantly isomorphic over S are still so over some neighbourhood of S in X, and G-homotopic
mappings induce isomorphic G-bundles from a given bundle. Likewise every G-bundle can be embedded as
a Whitney summand in a trivial bundle (whose G-action need not be trivial of course).

As in the non-equivariant case the set VectGX of isomorphism classes of equivariant vector bundles over
the G-space X is a commutative semi-group under the direct sum and tensor product operations. Applying
the K-functor we obtain the equivariant K-theory KGX and thus a ring-valued functor on the category of
compact G-spaces.

On the one-point space X = {∗} this functor reduces to a classical object of representation theory, the
(complex) representation ring

R(G) = KG{∗}

of the group G : thus KGX is a common generalisation of KX and R(G). By the result quoted before every
representation of G is isomorphic to a unique sum of irreducible representations: this means that the semi-
group formed by the isomorphism classes of representations is always isomorphic to a direct product of copies
of the semi-group N. It is thus embedded in R(G), which is a free abelian group of finite rank (equal to the
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number of conjugacy classes in G). By contrast the multiplicative structure of the ring R(G) contains much
more detailed information about the group G.

Examples (1) Up to isomorphim the irreducible representations of Z/2 are the trivial representation 1 and
the non-trivial one χ of dimension 1. Since clearly χ2 = 1 the representation ring is Z[χ]/(χ2−1).

(2) The symmetric group Sym3 has three non-isomorphic irreducible representations: the trivial one,
another one-dimensional one given by the sign character χ: Sym3 → {±1} ⊂ GL(1,C), and the
representation ρ on

{
(x, y, z) ∈ C3

∣∣x+y+z = 0
}

that permutes the coordinates. The representation
ring turns out to be

R(Sym3) = Z[χ, ρ]
/(

(χ2−1, (χ−1)ρ, ρ2−ρ−χ−1
)
.

(3) If X is given the trivial G-action then what we have learnt above gives us a canonical isomorphism
KGX ' KX ⊗Z R(G).

(4) In particular the map S1 → {∗} induces an isomorphism

R(G) = KG{∗} ' KGS
1

where the circle carries the trivial action: KG{∗} ' K{∗} ⊗R(G) ' KS1 ⊗R(G) ' KGS
1.

(5) For a free G-space X the pull-back operation induces an isomorphism K(X/G)
q∗−→ KGX.

Let X be a G-space and E → X a G-vector bundle. There are obvious induced actions of G on the projective
bundle P (E)→ X and on the tautological line bundle T → P (E), making the latter and its dual H → P (E)
again G-bundles. Note that in the particular case of E = 1⊕ L with a G-line bundle L→ X the canonical
sections X0 and X∞ of P (1⊕L)→ X are G-stable. On inspection it turns out that everything in the proof
of the Periodicity Theorem respects, or can easily be made to respect the G-actions. This results in the

Equivariant Periodicity Theorem Let L→ X be a G-line bundle on the G-space X. Then

K
(
P (1⊕ L)

)
= KX [h]

/(
(h−1)(l h−1)

)
as KGX-modules, where as usual h stands for the class of the hyperplane bundle H → P (1⊕ L) on
the left, and for an indeterminate on the right hand side.

The Periodicity Theorem gives KG the cohomological properties discussed in the non-equivariant case, in
particular use of the suspension isomorphism K̃GX ' K̃G(Σ2X) gives the exact sequence for space pairs
and suggests the definition of K∗GX = K0

GX ⊕K1
GX to turn it into the exact triangle of graded K-theory.

Nevertheless the picture is not quite complete unless G is abelian: in a true equivariant cohomology theory
every representation space V of G should give rise to a suspension isomorphism K̃GX ' K̃G(V c∧X) involv-
ing the G-sphere V c, the one-point compactification V . While this does hold for equivariant K-theory it is
not a conseqeunce of the Periodicity Theorem unless V is a sum of one-dimensional representations.

Theorem Assume that the G-vector bundle E → X is equivariantly isomorphic to a Whitney sum
⊕

i Li
of d line bundles. Then

K
∗
GP (E) = K

∗
GX [h]

/ d∏
i=1

(
1−[Li]h

)
= K

∗
GX [h]

/(
λ−1[E](h)

)
where the last version involves the well-known expression

λ−1[E](h) =

d∑
i=0

(−1)
i
[ΛiE]hi ∈ KGX [h]

that does not depend on a particular decomposition of E as a Whitney sum.
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Note As in the non-equivariant set-up this theorem remains true even without the decomposability condi-
tion, but it then would require a new proof. The problem is that the local triviality of E cannot be
immediately exploited since it no longer makes good sense to restrict E to arbitrary small open sets:
a useful open set must be G-stable and thus contain at least one full G-orbit in X.

The Thom space of a G-vector bundle E → X is the quotient space

Θ(E) = P (1⊕ E)/P (E)

which compactifies the fibres of E by a single point at infinity common to them all — in view of the fact that
the base X is compact it might alternatively be defined as the one-point compactification of E. Assuming
that E decomposes into line bundles the theorem computes the absolute terms in the K-theory exact sequence
of the pair

(
P (1⊕ E), P (E)

)
K∗G
(
P (1⊕ E), P (E)

)
←− K∗GP (E)←− K∗GP (1⊕ E)←− K∗G

(
P (1⊕ E), P (E)

)
←− K∗GP (E)

as

· · · ←− K∗GX[h]
/(
λ1[E](h)

)
←− K∗GX[h]

/(
(1−h)·λ1[E](h)

)
←− K∗G

(
P (1⊕ E), P (E)

)
←− · · · ,

with h ∈ K∗GP (1 ⊕ E) mapping to h ∈ K∗GP (E) since the hyperplane bundle on P (1 ⊕ E) restricts to the
hyperplane bundle on P (E). In particular the corresponding arrow is surjective, and we may put zeros in
the dotted positions and still have an exact sequence. We see that the element λ−1[E](h) — the so-called
Thom class —lives on the Thom space:

θE := λ−1[E](h) ∈ KG

(
P (1⊕ E), P (E)

)
= K̃GΘ(E) ,

and we further read off the

Thom Isomorphism Theorem Under the assumptions of the previous theorem multiplication by θE
yields an isomorphism

K∗GX
'−→ K̃∗GΘ(E)

of KGX-modules.

Note Again this is still true even if E does not decompose, but it requires an essentially different proof.

An equivalent, apparently less canonical description of the Thom space requires the choice of an invariant
metric on the G-bundle E → X. Then the equivariant disk and sphere bundles

D(E) =
{
v ∈ E

∣∣ |v| ≤ 1
}
→ X and S(E) =

{
v ∈ E

∣∣ |v| = 1
}
→ X

are defined and — see Problem 33 — we may identify Θ(E) = D(E)/S(E).

Proposition Let X be a G-space with K1
GX = {0} and let E → X be a decomposable vector bundle with

an invariant metric. There is a natural exact sequence

0←− K0
GS(E)←− K0

GX ←− K0
GX ←− K1

GS(E)←− 0

where the middle arrow is multiplication by λ−1[E] =
∑
i (−1)

i
λi[E].

Proof This is what remains of the exact sequence of the pair
(
D(E), S(E)

)
K1
G

(
D(E), S(E)

)
←− K0

GS(E)←− K0
GD(E)←− K0

G

(
D(E), S(E)

)
←− K1

GS(E)←− K1
GD(E) ,

taking into account that the projection D(E) → X is an equivariant homotopy equivalence and
substituting the relative term K∗G

(
D(E), S(E)

)
= K̃∗GΘ(E) by the Thom isomorphism: note that

the restriction of H to the zero section of E → X is a trivial line bundle.
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Corollary Let G be abelian, and V a G-module. Then, denoting by S ⊂ V the unit sphere with respect
to an invariant metric, there is a natural exact sequence

0←− K0
GS ←− R(G)←− R(G)←− K1

GS ←− 0

where the middle arrow is multiplication by the virtual representation λ−1[V ] =
∑
i (−1)

i
[ΛiV ].

Proof Put X = {∗}.

Corollary Assume furthermore that the action of G on V \{0} is free — this quite restrictive assumption
forces G to be a cyclic group. Then the exact sequence becomes

0←− K0(S/G)←− R(G)←− R(G)←− K1(S/G)←− 0 .

Examples (1) For an integer n > 0 we choose V = Cn and let the non-trivial element of G = Z/2 act
as −1 on V : thus the class of V in the representation ring is the sum of n copies the non-trivial
irreducible representation χ ∈ R(Z/2) = Z[χ]/(χ2−1), and the middle arrow of the exact sequence

0←− K0(RP 2n−1)←− R(Z/2)←− R(Z/2)←− K1(RP 2n−1)←− 0

is multiplication by
(
λ−1[nV ]

)n
=
(
1−λ1(χ)

)n
= (1−χ)

n
. Putting x = 1−χ, from the relation

(1−x)
2

= χ2 = 1 we obtain x2 = 2x and more generally

xj+1 = 2jx for all j > 0 ,

so that in terms of the base (1, x) for the free Z-module R(Z/2) the middle arrow has the matrix 0 0
2n−1 2n

 .

We thus obtain

K0(RP 2n−1) = K0{∗} ⊕ K̃0(RP 2n−1) ' Z⊕ Z/2n−1 for all n > 0 ,

where consideration of the rank homomorphism makes it clear that the direct sum decompositions
correspond as shown. On the other side we read off the kernel

K1(RP 2n−1) = (2−x) = (1+χ) ' Z for all n > 0 .

(2) Our computation may be extended to real projective spaces of even dimension 2n. To this end
we assemble the commutative diagram

R(Z/2) oo
·xn+1

R(Z/2) oo

·x
��

K1(RP 2n+1) oo

��

0

R(Z/2) oo
·xn

R(Z/2) oo K1(RP 2n−1) oo 0

from the exact sequences for RP 2n±1. Multiplication by xn+1 has the same kernel as multiplication
by x ; therefore the downward arrow on the right, that is, the restriction homomorphism is zero. Since
the quotient RPm/RPm−1 is an m-sphere the exact sequences

K0(RP 2n+1,RP 2n)←− K1(RP 2n)←− K1(RP 2n+1)←− K1(RP 2n+1,RP 2n)

K0(RP 2n,RP 2n−1)←− K1(RP 2n−1)←− K1(RP 2n)←− K1(RP 2n,RP 2n−1)

show that the homomorphism K1(RP 2n+1) → K1(RP 2n−1) is the product of the surjective factor
K1(RP 2n+1)→ K1(RP 2n) with K1(RP 2n)→ K1(RP 2n−1) which is injective: thus

K1(RP 2n) = {0} for all n ∈ N .
Note finally that both K1(RP 2n+1) and K1(RP 2n+1,RP 2n) are infinity cyclic groups. Thus we have
an exact sequence

0←− Z←− Z←− K0(RP 2n)←− K0(RP 2n+1)←− K0(RP 2n+1,RP 2n)

and conclude that the inclusion induces an isomorphism K0(RP 2n+1)→ K0(RP 2n), so that

K0(RP 2n) = K0{∗} ⊕ K̃0(RP 2n) ' Z⊕ Z/2n for all n ∈ N .
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