nLab
Dietmar Salamon

Dietmar Salamon is a mathematician at ETH, Zurich. His main directions of research include dynamical systems and symplectic and contact geometry and topology.

  • homepage

  • Dusa McDuff, D.A. Salamon, J-holomorphic curves and symplectic topology, AMS Colloquium Publications 52, 2004.

  • Dusa McDuff, Dietmar Salamon, Introduction to symplectic topology, 2 ed. Oxford Mathematical Monographs 1998. x+486 pp.

  • Dusa McDuff, Dietmar Salamon, J-holomorphic curves and quantum cohomology, AMS, University Lecture Series 6, 1994.; revised pdf

  • J. W. Robbin, D. Salamon, Maslov index for paths, Topology 32 (1993), no. 4, 827–844, doi90052-W), pdf, MR94i:58071

  • Joel W. Robbin, Dietmar A. Salamon, A construction of the Deligne–Mumford orbifold, J. Eur. Math. Society, ISSN 1435-9855, Vol. 8, Nº 4, 2006, 611-699, arXiv:math/0407090 MR2009d:32012, Corrigendum, J. Eur. Math. Soc. (JEMS) 9 (2007), no. 4, 901–905, doi

  • Joel W. Robbin, Dietmar A. Salamon, Lyapunov maps, simplicial complexes and the Stone functor, Ergodic Theory Dynam. Systems 12 (1992), no. 1, 153–183, doi, MR93h:58091

  • Joel W. Robbin, Dietmar A. Salamon, Dynamical systems, Shape Theory and the Conley index, Ergodic Theory Dynam. Systems 8 (1988) 375 - 393

  • Joel W. Robbin, Yongbin Ruan, Dietmar A. Salamon, The moduli space of regular stable maps, Math. Z. 259 (2008), no. 3, 525–574, doi, MR2010a:58014

  • Joel W. Robbin, Dietmar A. Salamon, Feynman path integrals and the metaplectic representation, Math. Z. 221 (1996), no. 2, 307–-335, MR98f:58051, doi

  • Joel W. Robbin, Dietmar A. Salamon, Phase functions and path integrals, Symplectic geometry (Proc., ed. D. Salamon), 203–-226, London Math. Soc. Lecture Note Ser. 192, Cambridge Univ. Press 1993, RobbinSalamonPhaseFunctionsPathIntegrals.djvu.

category: people

Revised on July 19, 2013 21:15:18 by Urs Schreiber (89.204.155.16)