# nLab conjugation action

### Context

#### Algebra

higher algebra

universal algebra

# Contents

## Idea

For $G$ a group and $V_1$ and $V_2$ two objects equipped with $G$-action, the conjugation action on morphisms $f : V_1 \to V_2$ (not necessarily respecting the $G$-action) is for $g \in G$

$f \mapsto g \circ f \circ g^{-1} \,.$

The invariants of the conjugation action are the $G$-action homomorphism.

In the case that the $G$-action on $V_2$ is trivial, this is the precomposition action and in the case that the action on $V_1$ is trivial this is the postcomposition action.

## Definition

###### Definition

Given a discrete group $G$ and two $G$-actions $\rho_1$ and $\rho_2$ on sets $S_1$ and $S_2$, respectively, then the function set $[S_1, S_2]$ is naturally equipped with the conjugation action

$Ad \;\colon \; [S_1, S_2] \times G \longrightarrow [S_1,S_2]$

which takes $((S_1 \stackrel{f}{\to} S_2), g)$ to

$\rho_2(-)(g)\circ f \circ \rho_1(-)(g^{-1}) \;\colon\; S_1 \stackrel{\rho_1(-)(g^{-1})}{\longrightarrow} S_1 \stackrel{f}{\longrightarrow} S_2\stackrel{\rho_2(-)(g)}{\longrightarrow} S_2 \,.$
###### Proposition

The conjugation action construction of def. 1 is the internal hom in the category of actions.

###### Proof

We need to show that for any three permutation representations, functions

$\phi \;\colon\; S_3 \longrightarrow [S_1,S_2]$

which intertwine the $G$-action on $S_3$ with the conjugation action on $[S_1,S_2]$ are in natural bijection with functions

$\tilde \phi \;\colon\; S_3 \times S_1 \longrightarrow S_2$

which intertwine the diagonal action on the Cartesian product $S_3 \times S_1$ with the action on $S_2$.

The condition on $\phi$ means that for all $g\in G$ and $s_3 \in S_3$ it sends

$\phi \;\colon\; \rho_3(s_3)(g) \mapsto \left( s_1 \mapsto \rho_2\left( \phi\left(s_3\right)\left( \rho_1\left(s_1\right)\left(g^{-1}\right) \right)\right)\left(g\right) \right) \,.$

This is equivalently a function $\tilde \phi$ of two variables which sends

$\tilde \phi \;\colon\; (\rho_3(s_3)(g), s_1) \mapsto \rho_2 ( \phi(s_3)( \rho_1(s_1)(g^{-1}) ) )(g) \,.$

Since this has to hold for all values of the variables, it has to hold when substituing $s_1$ with $\rho_1(s_1)(g)$. After this substitution the above becomes

$\tilde \phi \;\colon\; (\rho_3(s_3)(g), \rho_1(s_1)(g)) \mapsto \rho_2(\phi(s_3)(s_1 ))(g) \,.$

This is the intertwining condition on $\tilde \phi$. Conversely, given $\tilde \phi$ satisfying this for all values of the variables, then running the argument backwards shows that its hom-adjunct $\phi$ satisfies its required intertwining condition.

The following is immediate but conceptually important:

###### Proposition

The invariants of the conjugation action on $[S_1,S_2]$ is the set of action homomorphisms/intertwiners.

Hence the inclusion of invariants into the conjugation action gives the inclusion of the external hom set of the category of $G$-action into the set underlying the internal hom

$G Act(\rho_1,\rho_2)\hookrightarrow [\rho_1,\rho_2] \,.$
###### Remark

Regarding the conjugation action as the internal hom of actions immediately gives the generalization of this concept to more general kinds of actions, notably to infinity-actions in general (infinity,1)-toposes. See at infinity-action – Conjugation action for more on this.

Revised on May 21, 2015 04:30:05 by Urs Schreiber (80.92.246.195)