# nLab symmetric monoidal (infinity,1)-category

### Context

#### $(\infty,1)$-Category theory

(∞,1)-category theory

## Models

#### Monoidal categories

monoidal categories

## With traces

• trace

• traced monoidal category?

# Contents

## Idea

A symmetric monoidal $(\infty,1)$-category is

• which is ”$\infty$-tuply monoidal”, or “stably monoidal”.

This means that it is

• for which the tensor product is commutative up to infinite coherent homotopy.

This can be understood as a special case of an (∞,1)-operad (…to be expanded on…)

## Definition in terms of quasi-categories

Recall that in terms of quasi-categories a general monoidal (infinity,1)-category is conceived as a coCartesian fibration $C^\otimes \to N(\Delta)^{op}$ of simplicial sets over the (opposite of) the nerve $N(\Delta)^{op}$ of the simplex category satisfying a certain property.

The fiber of this fibration over the 1-simplex $[1]$ is the monoidal (infinity,1)-category $C$ itself, its value over a map $[n] \to [1]$ encodes the tensor product of $n$ factors of $C$ with itself.

The following definition encodes the commutativity of all these operations by replacing $\Delta$ with the category $FinSet_*$ of pointed finite sets.

###### Definition

A symmetric monoidal $(\infty,1)$-category is a coCartesian fibration of simplicial sets

$p : C^\otimes \to N(FinSet_*)$

such that

• for each $n \geq 0$ the associated functors $C^\otimes_{[n]} \to C^\otimes_{[1]}$ determine an equivalence of $(\infty,1)$-categories $C^\otimes_{[n]} \stackrel{\simeq}{\to} C_{[1]}^n$.
###### Remark

In other words, a symmetric monoidal $(\infty,1)$-category is an $\mathcal{O}$-monoidal (∞,1)-category for

$\mathcal{O} = Com$

See (Lurie, def. 2.0.0.7).

###### Proposition

The homotopy category of a symmetric monoidal $(\infty,1)$-category is an ordinary symmetric monoidal category.

###### Remark

There is a functor $\varphi : \Delta^{op} \to FinSet_*$ such that the monoidal (infinity,1)-category underlying a symmetric monoidal $(\infty,1)$-category $p : C^\otimes \to N(FinSet_*)$ is the (infinity,1)-pullback of $p$ along $\varphi$.

## Properties

### Model category structure

A presentation of the (∞,1)-category of all symmetric monoidal $(\infty,1)$-categories is provided by the model structure for dendroidal coCartesian fibrations.

## References

The defintion of symmetric monoidal quasi-category is definition 1.2 in

and definition 2.0.0.7 in

Revised on August 21, 2013 02:26:47 by Urs Schreiber (150.212.95.252)