unique factorization domain

Let RR be an integral domain. We say that an element rRr\in R is unit if it is invertible. A non-unit is called irreducible if it can not be represented as a product of two non-units.

A commutative integral domain RR is a unique factorization domain if every non-unit has a factorization u=r 1r nu = r_1 \cdots r_n as product of irreducible non-units and this decomposition is unique up to renumbering and rescaling the irreducibles by units.

Created on September 26, 2009 23:12:16 by Zoran Škoda (