$Principal \infty$ -bundles – Theory and applications

Urs Schreiber Notes for a talk, May 2012 reporting on joint work [NSS] with Thomas Nikolaus and Danny Stevenson with precursors in [NiWa, RoSt, SSS, S]

Contents

1	Motivation	1
2	Higher geometry	2
3	G -principal ∞ -bundles	3
4	Associated and twisted ∞ -bundles	4
5	Selected examples	5
6	Outlook: ∞ -Geometric Prequantization	6

1 Motivation

Classical fact. For X a manifold and G a topological/Lie group, regarded as a sheaf of groups C(-, G) on X, there is an equivalence:

Problem. In higher differential geometry [S], for instance in String-geometry [SSS], Lie groups G are replaced by grouplike smooth A_{∞} -spaces: by ∞ -groups (examples below in 5). Need to generalize the above classical fact to this case.

2 Higher geometry

We need

 $\boxed{\text{geometry}} + \boxed{\text{homotopy theory}} = \boxed{\text{higher geometry} \simeq \infty\text{-topos theory}}$

Here is a way to think of the above classical fact that will generalize: let

- C := SmthMfd be the category of all smooth manifolds (or some other site, here assumed to have enough points);
- gSh(C) be the category of groupoid-valued sheaves over C, for instance $X = \{X \implies X\}, BG = \{G \implies *\} \in gSh(C);$
- $\operatorname{Ho}_{\operatorname{gSh}(C)}$ the homotopy category obtained by universally turning the stalkwise groupoidequivalences into isomorphisms.

Fact: $H^1(X, G) \simeq \operatorname{Ho}_{\operatorname{gSh}(C)}(X, \mathbf{B}G).$ To generalize, let

• Categories N KanComplexes be the Kan complexes, aka ∞ -groupoids QuasiCategories inside all quasi-categories aka ∞ -categories SimplicialSets

- $\mathrm{sSh}(C)_{\mathrm{lfib}} \hookrightarrow \mathrm{Sh}(C, \mathrm{sSet})$ be the (stalkwise Kan) simplicial sheaves;
- $L_W sSh(C)_{lfib}$ the simplicial localization obtained by universally turning stalkwise homotopy equivalences into homotopy equivalences.

Definition/Theorem. This is the ∞ -category theory analog of the sheaf topos over C, the ∞ -stack ∞ -topos: $\mathbf{H} := \mathrm{Sh}_{\infty}(C) \simeq L_W \mathrm{sSh}(C)_{\mathrm{lfib}}.$

Example. Smooth ∞ Grpd := Sh $_{\infty}$ (SmthMfd) is the ∞ -topos of smooth ∞ -groupoids / smooth ∞ -stacks.

Example. For A a sheaf of abelian groups, $\mathbf{B}^{n+1}A := \text{DoldKan}(A[n+1]) \in \text{sSh}(C)$ is the moduli *n*-stack of $\mathbf{B}^n A$ -principal bundles (details in a moment).

Proposition. Every object in $\text{Smooth}\infty\text{Grpd}$ is presented by a simplicial manifold, but not necessarily by a *locally Kan* simplicial manifold (see below).

Definition A group in the ∞ -topos is a $G \in \mathbf{H}$ equipped with a groupal A_{∞} -algebra structure: coherently homotopy associative product with coherent homotopy inverses.

Example. In Smooth ∞ Grpd this is a *smooth* ∞ *-group*: for instance a Lie group, or a Lie 2-group, or a differentiable group stack, or a sheaf of simplicial groups on SmthMfd. **Fact.** (Milnor-Lurie) There is an equivalence

$$\left\{ \text{ groups in } \mathbf{H} \right\} \xrightarrow[\text{delooping } \mathbf{B}]{} \left\{ \begin{array}{c} \text{pointed connected} \\ \text{objects in } \mathbf{H} \end{array} \right\}$$

Proposition. Let C have a terminal object. For every ∞ -group $G \in \operatorname{Grp}(\operatorname{Sh}_{\infty}(C))$ there is a sheaf of simplicial groups presenting it under $\operatorname{Sh}_{\infty}(C) \simeq L_W \operatorname{sSh}(C)$; and every ∞ -action $\rho: P \times G \to P$ is presented by a corresponding simplicial action.

3 *G*-principal ∞ -bundles

Definition. A *G*-principal bundle over $X \in \mathbf{H}$ is

- a morphism $P \to X$; with an ∞ -action $\rho : P \times G \to P$;
- such that $P \to X$ is ∞ -quotient $P \to P//G \Leftrightarrow^{(*)}$ principality : $P \times G^n \xrightarrow{(p_1,\rho)} P \times_X \cdots \times_X P$

Theorem. There is equivalence of ∞ -groupoids $GBund(X) \xrightarrow[\lim]{}{\simeq} \mathbf{H}(X, \mathbf{B}G)$, where

- 1. hofib sends a cocycle $X \to \mathbf{B}G$ to its homotopy fiber;
- 2. lim sends an ∞ -bundle to the map on ∞ -quotients $X \simeq P//G \to *//G \simeq \mathbf{B}G$.

In particular, G-principal ∞ -bundles are classified by the intrinsic cohomology of **H**

$$GBund(X)/_{\sim} \simeq H^1(X,G) := \pi_0 \mathbf{H}(X, \mathbf{B}G).$$

This gives a general abstract theory of principal ∞ -bundles in every ∞ -topos. We also have the following explicit presentation.

Definition For $G \in \operatorname{Grp}(\operatorname{sSh}(C))$, and $X \in \operatorname{sSh}(C)_{\text{lfib}}$, a weakly *G*-principal simplicial bundle is a *G*-action ρ over *X* such that the principality morphism $(\rho, p_1) : P \times G \to P \times_X P$ is a stalkwise weak equivalence.

Theorem.

Nerve
$$\left\{\begin{array}{c} \text{weakly } G\text{-principal} \\ \text{simplicial bundles} \\ \text{over } X \end{array}\right\} \simeq G\text{Bund}(X)$$

Example. For X terminal over C and restricted to cohomology classes, this is [JL].

Remark. We need more than that, notably $X = \mathbf{B}G$ itself, see next page.

Example. For C = * we have $sSh(C)_{lfib} = KanComplexes$. Classical theory considers *strictly* principal simplicial bundles [Ma].

Proposition. Strictly principal simplicial bundles over C = * do present the cohomology $H^1(X, G)$, but not in general the full cocycle space $\mathbf{H}(X, \mathbf{B}G)$. For C nontrivial they do in general not even present $H^1(X, G)$.

Proposition. For G a simplicial Lie group, which is "CartSp-acyclic" (e.g. String), every G-principal ∞ -bundle over a smooth manifold is presented by a locally Kan simplicial smooth manifold.

4 Associated and twisted ∞ -bundles

Observation. By the above theorem, every G- ∞ -action $\rho: V \times G \to G$ has a classifying map: $V \longrightarrow V//G$ \downarrow_{ρ} **Proposition.** This is the universal ρ -associated V-bundle. **B**G

Observation. Sections σ of the associated ∞ -bundle are *lifts* of the cocycle through ρ ; and these locally factor through V:

$$\left\{ \begin{array}{c} P \times_G V \longrightarrow V/\!/G \\ \sigma \downarrow & \downarrow \rho \\ X \longrightarrow BG \end{array} \right\} \simeq \left\{ \begin{array}{c} V/\!/G \\ \sigma \downarrow & \downarrow \rho \\ X \longrightarrow BG \end{array} \right\} \simeq \left\{ \begin{array}{c} V/\!/G \\ \sigma \downarrow & \downarrow \rho \\ X \longrightarrow BG \end{array} \right\} \begin{array}{c} V \longrightarrow V/\!/G \\ \sigma \downarrow & \downarrow \rho \\ V \longrightarrow V/\!/G \\ \downarrow & \downarrow \rho \\ U \longrightarrow X \longrightarrow BG \end{array} \right\}$$

Hence sections are cocycles in *g*-twisted ΩV -cohomology relative ρ :

$$\Gamma_X(P \times_G V) \simeq \mathbf{H}_{/\mathbf{B}G}(g,\rho).$$

Theorem. Equivalently this classifies P-twisted ∞ -bundles: twisted G-equivariant ΩV - ∞ -bundles on P:

First example. Associated *connected-fiber* ∞ -bundles are ∞ -gerbes.

- A (nonabelian/Giraud-)gerbe on X is a connected 1-truncated object in $\mathbf{H}_{/X}$ (a connected stack on X).
- A (nonabelian/Giraud-Breen) ∞ -gerbe over X is a connected object in $\mathbf{H}_{/X}$.
- A G- ∞ -gerbe is an Aut(**B**G)-associated ∞ -bundle. Its band is the underlying Out(G)-principal ∞ -bundle.

Observation. G- ∞ -gerbes bound by a band are classified by ($\mathbf{B}Aut(\mathbf{B}G) \rightarrow \mathbf{B}Out(G)$)-twisted cohomology.

$extension \ / \ \infty$ -bundle of coefficients	$\begin{array}{l} {\rm twisting} \ \infty {\rm -bundle} \ / \\ {\rm twisting} \ {\rm cohomology} \end{array}$	twisted ∞ -bundle / twisted cohomology	
$V \longrightarrow V//G$ \downarrow^{ρ} BG	ρ -associated V - ∞ -bundle	section	[S]
$\mathbf{B}^{2}\mathrm{ker}(G) \longrightarrow \mathbf{B}\mathrm{Aut}(\mathbf{B}G)$ \downarrow $\mathbf{B}\mathrm{Out}(G)$	band (lien)	nonabelian (Giraud-Breen) G - ∞ -gerbe	[NSS] [S]
$\begin{array}{c c} \operatorname{GL}(d)/O(d) \longrightarrow \mathbf{B}O(d) \\ & \downarrow \\ & \mathbf{B}\operatorname{GL}(d) \end{array}$	tangent bundle	orthogonal structure / Riemannian geometry	[S]
$O(d) \setminus O(d, d) / O(d) \Rightarrow \mathbf{B}(O(d) \times O(d))$ \downarrow $\mathbf{B}O(d, d)$	generalized tangent bundle	generalized (type II) Riemannian geometry	[S]
$\begin{array}{c} \mathbf{B}U \longrightarrow \mathbf{B}PU \\ & \downarrow^{\mathbf{d}\mathbf{d}} \\ \mathbf{B}^2 U(1) \end{array}$	circle 2-bundle / bundle gerbe	twisted vector bundle / twisted K-cocycle / bundle gerbe module	[S]
$ \begin{array}{c} \mathbf{B}^{n}U(1) \longrightarrow \mathbf{B}^{n}U(1) / / \mathbb{Z}_{2} \\ & \downarrow^{\mathbf{J}_{n-1}} \\ \mathbf{B}\mathbb{Z}_{2} \end{array} $	double cover	higher orientifold / n = 2: Jandl bundle gerbe	[FSSb] [SSW]
$V \longrightarrow \mathbf{B} \mathrm{Spin}^{\nu_{n+1}}$ $\downarrow^{\nu_{n+1}^{\mathrm{int}}}$ $\mathbf{B}^{n} U(1)$	circle <i>n</i> -bundle	smooth integral Wu structure	[FSSb]
$\begin{array}{c} \mathbf{BString} \longrightarrow \mathbf{BSpin} \\ & & \downarrow \frac{1}{2}\mathbf{p}_1 \\ & & \mathbf{B}^3 U(1) \end{array}$	circle 3-bundle / bundle 2-gerbe	twisted String 2-bundle	[SSS] [FSSa]
$V \longrightarrow \mathbf{B}(\mathbb{T} \times \mathbb{T}^*)$ $\downarrow^{\langle \mathbf{c}_1 \cup \mathbf{c}_1 \rangle}$ $\mathbf{B}^3 U(1)$	circle 3-bundle / bundle 2-gerbe	twisted T-duality structure	[S]
$\begin{array}{c} \mathbf{B} \text{Fivebrane} \longrightarrow \mathbf{B} \text{String} \\ & & \downarrow \frac{1}{6} \mathbf{p}_2 \\ & & \mathbf{B}^7 U(1) \end{array}$	circle 7-bundle	twisted Fivebrane 6-bundle	[SSS] [FSSa]
$ \begin{array}{c} & & & & & \\ & & & $	$\begin{array}{c} \text{curvature} \\ (n+1)\text{-form} \end{array}$	circle n -bundle with connection	[S]

5 Selected examples

6 Outlook: ∞ -Geometric Prequantization

Observation. There is a canonical ∞ -action γ of $\operatorname{Aut}_{\mathbf{H}_{/\mathbf{B}G}}(g)$ on the space of ∞ -sections $\Gamma_X(P \times_G V)$.

Claim. Since $Sh_{\infty}(SmthMfd)$ is "cohesive" [S], there is a notion of differential refinement of the above discussion, yielding connections on ∞ -bundles.

- **Example.** Let $\mathbb{C} \to \mathbb{C}//U(1) \to \mathbf{B}U(1)$ be the canonical complex-linear circle action. Then • $g_{\text{conn}} : X \to \mathbf{B}U(1)_{\text{conn}}$ classifies a circle bundle with connection, a prequantum line bundle of its curvature 2-form;
 - $\Gamma_X(P \times_{U(1)} \mathbb{C})$ is the corresponding space of smooth sections;
 - γ is the exp(Poisson bracket)-group action of prequiting operators, containing the Heisenberg group action.

Example. Let $\mathbf{B}U \to \mathbf{B}PU \to \mathbf{B}^2 U(1)$ be the canonical 2-circle action. Then

- $g_{\text{conn}}: X \to \mathbf{B}^2 U(1)_{\text{conn}}$ classifies a circle 2-bundle with connection, a prequantum line 2-bundle of its curvature 3-form;
- $\Gamma_X(P \times_{\mathbf{B}U(1)} \mathbf{B}U)$ is the corresponding groupoid of smooth sections = twisted bundles;
- γ is the exp(2-plectic bracket)-2-group action of 2-plectic geometry, containing the *Heisenberg 2-group* action [RoSc].

References

- [FSSa] D. Fiorenza, U. Schreiber, J. Stasheff. Cech-cocycles for differential characteristic classes, arXiv:1011.4735
- [FSSb] D. Fiorenza, H. Sati, U. Schreiber, The E₈-moduli 3-stack of the C-field, arXiv:1202.2455
- [JL] J.F. Jardine, Z. Luo, Higher order principal bundles, K-theory 0681 (2004)
- [Ma] P. May, Simplicial objects in algebraic topology University of Chicago Press (1967)
- [NSS] T. Nikolaus, U. Schreiber, D. Stevenson, Principal ∞-bundles General theory and presentations (2012)
- [NiWa] T. Nikolaus, K. Waldorf, Four equivalent versions of non-abelian gerbes, arXiv:1103.4815
- [RoSt] D. Roberts, D. Stevenson, Simplicial principal bundles in parametrized spaces (2012) arXiv:1203.2460
 D. Stevenson, Classifying theory for simplicial parametrized groups (2012) arXiv:1203.2461
- [RoSc] C. Rogers, Higher symplectic geometry, PhD (2011) arXiv:1106.4068, C. Rogers, U. Schreiber, ∞-Geometric prequantization, ncatlab.org/schreiber/show/infinity-geometric+prequantization
- [SSS] H. Sati, U. Schreiber, J. Stasheff, Twisted differential string- and fivebrane structures, Communications in Mathematical Physics (2012) arXiv:0910.4001
- [S] U. Schreiber, Differential cohomology in a cohesive topos ncatlab.org/schreiber/show/differential+cohomology+in+a+cohesive+topos
- [SSW] U. Schreiber, C. Schweigert, K. Waldorf, Unoriented WZW models and Holonomy of Bundle Gerbes, Communications in Mathematical Physics, Volume 274, Issue 1 (2007)