
Traditionally there are two notions referred to as compactness of a space, which are
closely related but subtly different.

1. On the one hand a space is called compact if regarded as an object of a certain site
each of its covering families has a finite subfamily that is still covering.

2. On the other hand, an object in a category with colimits is called compact if the
hom-functor out of that object commutes with all filtered colimits.

For instance in the site of topological spaces or of smooth manifolds, equipped with the
usual open-cover coverage, the first definition reproduces the the traditional definition of
compact topological space and of compact smooth manifold, respectively. But the notion of
compact object in the category of topological spaces in the sense of the second definition is
not quite equivalent. For instance the two-element set equipped with the indiscrete topology
is compact in the first sense, but not in the second.

The cause of this mismatch, as we will discuss in detail below, becomes clearer once we
generalize beyond 1-category theory to ∞-topos theory: in that context it is familiar that
locality of morphisms out of an object X into an n-truncated object A (an n-stack) is no
longer controled by just the notion of covers of X, but by the notion of hypercover of height
n, which reduces to the ordinary notion of cover for n = 0. Accordingly it is clear that the
ordinary condition on a compact topological space to admit fintie refinement of any cover is
just the first step in a tower of conditions: we may say an object is compact of height n if
every hypercover of height n over the object is refined by a “finite hypercover” in a suitable
sense.

Indeed, the condition on a compact object in a 1-category to distribute over filtered
colimits turns out to be a compactness condition of height 1, which conceptually explains
why it is stronger than the existence of finite refinements of covers. This state of affairs in
the first two height levels has been known, in different terms, in topos theory, where one
distinguishes between a topos being compact and being strongly compact [MoVe00]:

Definition 0.1. A 1-topos (∆ a Γ) : X oo // Set is called

1. a compact topos if the global section functor Γ preserves filtered colimits of subterminal
objects (= (-1)-truncated objects);

2. a strongly compact topos if Γ preserves all filtered colimits (hence of all 0-truncated
objects).

Clearly these are the first two stages in a tower of notions which continues as follows.

Definition 0.2. For (−1) ≤ n ≤ ∞, an ∞-topos (∆ a Γ) : X oo //∞Grpd is called
compact of height n if Γ preserves filtered ∞-colimits of n-truncated objects.

Since therefore the traditional terminology concerning “compactness” is not quite con-
sistent across fields, with the category-theoretic “compact object” corresponding, as shown
below, to the topos theoretic “strongly compact”, we introduce for definiteness the following
terminology.

Definition 0.3. For C a subcanonical site, call an object X ∈ C ↪→ Sh(C) ↪→ Sh∞(C)
representably compact if every covering family {Uα → X}i∈I has a finite subfamily {Uj →
X}j∈J⊂I which is still covering.
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The relation to the traditional notion of compact spaces and compact objects is given by
the following

Proposition 0.4. Let H be a 1-topos and X ∈ H an object. Then

1. if X is representably compact, def. 0.3, with respect to the canonical topology, then the
slice topos H/X is a compact topos;

2. the slice topos H/X is strongly compact precisely if X is a compact object.

Proof. Use that the global section functor Γ on the slice topos is given by

Γ([E → X]) = H(X,E)×H(X,X) {idX}

and that colimits in the slice are computed as colimits in H:

lim
−→i

[Ei → X] ' [(lim
−→i

Ei)→ X] .

For the first statement, observe that the subterminal objects of H/X are the monomor-
phisms in H. Therefore Γ sends all subterminals to the empty set except the terminal object
itself, which is sent to the singleton set. Accordingly, if U• : I → H/X is a filtered colimit of
subterminals then

• either the {Uα} do not cover, hence in particular none of the Uα is X itself, and hence
both Γ(lim

−→i

Uα) as well as lim
−→i

Γ(Uα) are the empty set;

• or the {Uα}i∈I do cover. Then by assumption on X there is a finite subcover J ⊂ I, and
then by assumption that U• is filtered the cover contains the finite union lim

−→
i∈J

Uα = X

and hence both Γ(lim
−→i

Uα) as well as lim
−→i

Γ(Uα) are the singleton set.

For the second statement, assume first that X is a compact object. Then using that
colimits in a topos are preserved by pullbacks, it follows for all filtered diagrams [E• → X]
in H/X that

Γ(lim
−→i

[Ei → X]) ' H(X, lim
−→i

Ei)×H(X,X) {id}

' (lim
−→i

H(X,Ei))×H(X,X) {id}

' lim
−→i

(H(X,Ei)×H(X,X) {id})

' lim
−→i

Γ[Ei → X]

,

and hence H/X is strongly compact.
Conversely, assume that H/X is strongly compact. Observe that for every object F ∈ H

we have a natural isomorphism H(X,F ) ' Γ([X×F → X]). Using this, we obtain for every
filtered diagram F• in H that

H(X, lim
−→i

Fi) ' Γ([X × (lim
−→i

Fi)→ X])

' Γ(lim
−→i

[X × Fi → X])

' lim
−→i

Γ([X × Fi → X])

' lim
−→i

H(X,Fi)
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and hence X is a compact object. �

We show now that, while a representably compact object does not distribute over all
filtered colimits, it still distributes over some filtered colimits.

Definition 0.5. Call a filtered diagram A : I → D in a category D mono-filtered if for all
morphisms i1 → i2 in the diagram category I the morphism A(i1 → i2) is a monomorphism
in D.

Lemma 0.6. For C a site and A : I → Sh(C) ↪→ PSh(C) a monofiltered diagram of sheaves,
its colimit lim

−→i

Ai ∈ PSh(C) is a separated presheaf.

Proof. For {Uα → X} any covering family in C with S({Uα}) ∈ PSh(C) the corresponding
sieve, we need to show that

lim
−→i

Ai(X)→ PShC(S({Uα}), lim−→i

Ai)

is a monomorphism. An element on the left is represented by a pair (i ∈ I, a ∈ Ai(X)).
Given any other such element, we may assume by filteredness that they are both represented
over the same index i. So let (i, a) and (i, a′) be two such elements. Under the above func-
tion, (i, a) is mapped to the collection {i, a|Uα}α and (i, a′) to {i, a′|Uα}α. If a is different
from a′, then these families differ at stage i, hence at least one pair a|Uα , a′|Uα is different
at stage i. Then by mono-filteredness, this pair differs also at all later stages, hence the
corresponding families {Uα → lim

−→i

Ai}α differ. �

Proposition 0.7. For X ∈ C ↪→ Sh(C) a representably compact object, def. 0.3, HomSh(C)(X,−)
commutes with all mono-filtered colimits.

Proof. Let A : I → Sh(C) ↪→ PSh(C) be a mono-filtered diagram of sheaves, regarded as a
diagram of presheaves. Write lim

−→i

Ai for its colimit. So with L : PSh(C)→ Sh(C) denoting

sheafification, L lim
−→i

Ai is the colimit of sheaves in question. By the Yoneda lemma and

since colimits of presheaves are computed objectwise, it is sufficient to show that for X a
representably compact object, the value of the sheafified colimit is the colimit of the values
of the sheaves on X

(Llim
−→i

Ai)(X) ' (lim
−→i

Ai)(X) = lim
−→i

Ai(X) .

To see this, we evaluate the sheafification by the plus construction. By lemma 0.6, the
presheaf lim

−→i

Ai is already separated, so we obtain its sheafification by applying the plus-

construction just once.
We observe now that over a representably compact object X the single plus-construction

acts as the identity on the presheaf lim
−→i

Ai. Namely the single plus-construction over X takes

the colimit of the value of the presheaf on sieves

S({Uα}) := lim
−→

(
∐

α,β Uα,β
////
∐

α Uα )

over the opposite of the category of covers {Uα → X} of X. By the very definition of
compactness, the inclusion of (the opposite category of) the category of finite covers of X
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into that of all covers is a final functor. Therefore we may compute the plus-construction
over X by the colimit over just the collection of finite covers. On a finite cover we have

PSh(S({Uα}), lim−→i

Ai) := PSh(lim
−→

(
∐

α,β Uαβ
// //
∐

α Uα ), lim
−→i

Ai)

' lim
←−

(
∏

α lim
−→i

Ai(Uα) ////
∏

α,β lim
−→i

Ai(Uα,β) )

' lim
−→i

lim
←−

(
∏

αAi(Uα) ////
∏

α,β Ai(Uα,β) )

' lim
−→i

Ai(X)

,

where in the second but last step we used that filtered colimits commute with finite limits,
and in the last step we used that each Ai is a sheaf.

So in conclusion, for X a representably compact object and A : I → Sh(C) a monofiltered
diagram, we have found that

HomSh(C)(X,L lim
−→i

Ai) ' (lim
−→i

Ai)
+(X)

' lim
−→i

Ai(X)

' lim
−→i

HomSh(C)(X,Ai)

�

Definition 0.8. For C a site, say that an object X ∈ C is representably paracompact if each
bounded hypercover over X can be refined by the Čech nerve of an ordinary cover.

The motivating example is

Proposition 0.9. Over a paracompact topological space, every bounded hypercover is refined
by the Čech nerve of an ordinary open cover.

Proof. Let Y → X be a bounded hypercover. By lemma 7.2.3.5 in [LuTop] we may find
for each k ∈ N a refinement of the cover given by Y0 such that the non-trivial (k + 1)-fold
intersections of this cover factor through Yk+1. Let then n ∈ N be a bound for the height of
Y and form the intersection of the covers obtained by this lemma for 0 ≤ k ≤ n. Then the
resulting Čech nerve projection factors through Y → X. �

Proposition 0.10. We want to show (if true) that if X ∈ C ↪→ Sh∞(C) =: H is

1. representably paracompact, def. 0.8;

2. representably compact, def. 0.3

then it distributes over sequential ∞-colimits A• : I → Sh∞(C) over n-truncated objects for
every n ∈ N.

Proof. Let A• : I → [Cop, sSet] be a presentation of a given sequential diagram in Sh∞(Mfd),
such that it is fibrant and cofibrant in [I, [Cop, sSet]proj,loc]proj. Note for later use that this
implies in particular that
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• The ordinary colimit lim
−→i

Ai ∈ [Cop, sSet] is a homotopy colimit.

• Every Ai is fibrant in [Cop, sSet]proj,loc and hence also in [Cop, sSet]proj.

• Every morphism Ai → Aj is (by example ??) a cofibration in [Cop, sSet]proj,loc, hence
in [Cop, sSet]proj, hence in particular in [Cop, sSet]inj, hence is over each U ∈ C a
monomorphism.

Observe that lim
−→i

Ai is still fibrant in [Cop, sSet]proj: since the colimit is taken in presheaves,

it is computed objectwise, and since it is filtered, we may find the lift against horn inclusions
(which are inclusions of degreewise finite simplicial sets) at some stage in the colimit, where
it exists by assumption that A• is projectively fibrant, so that each Ai is projectively fibrant
in the local and hence in particular in the global model structure.

Since X, being representable, is cofibrant in [Cop, sSet]proj,loc, it also follows by this rea-
soning that the diagram

H(X,A•) : I →∞Grpd

is presented by
A•(X) : I → sSet .

Since the functors

[I, [Cop, sSet]proj,loc]proj
id // [I, [Cop, sSet]proj]proj

id // [I, [Cop, sSet]inj]proj
id // [I, sSetQuillen]proj

all preserve cofibrant objects, it follows that A•(X) is cofibrant in [I, sSetQuillen]proj. Therefore
also its ordinary colimit presents the corresponding ∞-colimit.

This means that the equivalence which we have to establish can be written in the form

RHom(X, lim
−→i

Ai) ' lim
−→i

Ai(X) .

If here lim
−→i

Ai were fibrant in [Cop, sSet]proj,loc, then the derived hom on the left would be

given by the simplicial mapping space and the equivalence would hold trivially. So the
remaining issue is now to deal with the fibrant replacement: the ∞-sheafification of lim

−→i

Ai.

We want to appeal to theorem 7.6 c) in [DuHoIs04] to compute the derived hom into this
∞-stackification by a colimit over hypercovers of the ordinary simplicial homs out of these
hypercovers into lim

−→i

Ai itself. To do so, we now argue that by the assumptions on X, we

may in fact replace the hypercovers here with finite Čech covers.
So consider the colimit

lim
{Uα→X}finite

[Cop, sSet](Č({Uα}), lim−→i

Ai)

over all finite covers of X. Since by representable compactness of X these are cofinal in all
covers of X, this is isomorphic to the colimit over all Čech covers

· · · = lim
{Uα→X}

[Cop, sSet](Č({Uα}), lim−→i

Ai) .

Next, by representable paracomopactness of X, the Čech covers in turn are cofinal in all
bounded hypercovers Y → X, so that, furthermore, this is isomorphic to the colimit over all
bounded hypercovers

· · · = lim
Y→X

[Cop, sSet](Y, lim
−→i

Ai) .
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Finally, by the assumption that the Ai are n-truncated, the colimit here may equivalently
be taken over all hypercovers.

We now claim that the canonical morphism

lim
{Uα→X}finite

[Cop, sSet](Č({Uα}), lim−→i

Ai)→ RHom(X, lim
−→i

Ai)

is a weak equivalence. Since the category of covers is filtered, we may first compute homotopy
groups and then take the colimit. With the above isomorphisms, the statement is then given
by theorem 7.6 c) in [DuHoIs04].

Now to conclude: since maps out of the finite Cech nerves pass through the filtered
colimit, we have

RHom(X, lim
−→i

Ai) ' lim
{Uα→X}finite

[Cop, sSet](Č({Uα}), lim−→i

Ai)

' lim
{Uα→X}finite

lim
−→i

[Cop, sSet](Č({Uα}), Ai)

' lim
−→i

lim
{Uα→X}finite

[Cop, sSet](Č({Uα}), Ai)

' lim
−→i

Ai(X)

.

Here in the last step we used that each single Ai is fibrant in [Cop, sSet]proj,loc, so that for
each i ∈ I

[Cop, sSet](X,Ai)→ [Cop, sSet](Č({Uα}), Ai)

is a weak equivalence. Moreover, the diagram [Cop, sSet](Č({Uα}), A•) in sSet is still pro-
jectively cofibrant, by example ??, since all morphisms are cofibrations in sSetQuillen, and so
the colimit in the second but last line is still a homotopy colimit and thus preserves these
weak equivalences. �
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