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Abstract

We demonstrate that twisted equivariant differential K-theory of transverse complex curves accommodates exotic charges
of the form expected of codimension=2 defect branes, such as of D7-branes in IIB/F-theory on A-type orbifold singularities,
but also of their dual 3-brane defects of class-S theories on M5-branes. These branes have been argued, within F-theory and
the AGT correspondence, to carry special SL(2)-monodromy charges not seen for other branes, at least partially reflected
in conformal blocks of the su2-WZW model over their transverse punctured complex curve. Indeed, it has been argued that
all “exotic” branes of string theory are defect branes carrying such U-duality monodromy charges – but none of these had
previously been identified in the expected brane charge quantization law given by K-theory.

Here we observe that it is the subtle (and previously somewhat neglected) twisting of equivariant K-theory by flat complex
line bundles appearing inside orbi-singularities (“inner local systems”) that makes the secondary Chern character on a punc-
tured plane inside an A-type singularity evaluate to the twisted holomorphic de Rham cohomology which Feigin, Schechtman
& Varchenko showed realizes ŝl2

k-conformal blocks, here in degree 1 – in fact it gives the direct sum of these over all admis-
sible fractional levels k = −2+κ/r. The remaining higher-degree ŝl2

k-conformal blocks appear similarly if we assume our
previously discussed “Hypothesis H” about brane charge quantization in M-theory. Since conformal blocks – and hence these
twisted equivariant secondary Chern characters – solve the Knizhnik-Zamolodchikov equation and thus constitute represen-
tations of the braid group of motions of defect branes inside their transverse space, this provides a concrete first-principles
realization of anyon statistics of – and hence of topological quantum computation on – defect branes in string/M-theory.
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1 Introduction
It is a classical and famous fact that the Chern character on twisted K-theory classes over smooth manifolds may be understood
as taking values in (complex) de Rham cohomology twisted by a closed differential 3-form H3, i.e., in the cohomology of the
shifted de Rham differential d+H3∧ acting on (complex) differential forms of even or odd degrees ([RW86][BCMMS02],
review in [FSS20-Cha, Prop. 3.109 & 5.6]). What has received much less attention than this “3-twist” of the Chern character
is the curious fact that – in further generalization to equivariant twisted K-theory and hence to the twisted K-theory of smooth
orbifolds – there appears ([TX06][FHT07], see Prop. 2.1 below) “inside” the orbi-singularities a system of further shifts of
the de Rham differential by closed differential 1-forms ω1, hence by flat connections on (complex) line bundles. In §3 we
give a detailed outline of a transparent proof of this fact.

Of course, in themselves such “1-twists” d+ω1∧ of the de Rham differential are even more classical ([De70, §2, 6],
review in [Vo03, §5.1.1], see also [Wi82][GS18]), often known as or implicitly identified with “local systems” ([St43],
whence their orbifold version has been named “inner local systems” [Ru00]). A particularly rich class of examples is the
1-twisted de Rham cohomology already of the simple example of N-punctured planes, which is known to be the source of
the “hypergeometric” solutions ([SV89][SV90][SV91], review in [EFK98, §7]) of the celebrated Knizhnik-Zamolodchikov
(KZ) equation ([KZ84], review in [Ko02, §1.5]). In the special case that the holonomy of the twisting connection takes
values in the group of rational phases Q/Z ↪−!U1 (i.e., roots of unity), these KZ solutions and hence these 1-twisted de Rham
cohomology spaces constitute ([FSV90][FSV94][FSV95]) the conformal blocks (e.g. [Be96][Ko02, §1.4]) of chiral WZW
models (e.g. [DMS97, §C][Wa00]), thus providing a twisted cohomological re-incarnation of the core structure of conformal
field theory (CFT). Specifically, if the holonomy of the 1-twist is inside the cyclic group of κ-fold roots of unity Cκ ↪−! U1,
then the corresponding 1-twisted de Rham cohomology of the N-punctured plane reflects the ŝl2

k-conformal blocks at level
k = −2+κ . We review this as Prop. 2.15, 2.17 below. It is expected that this remains the case also for the fractional levels
k =−2+κ/r at which the sl2-WZW model exists as a “logarithmic” CFT (see Rem. 2.19 below).

One of the main observations of this paper is the unification of these two threads by regarding the 1-twisted de Rham
cohomology which constitutes ŝl2

k-conformal blocks as the (secondary) twisted equivariant Chern characters of the twisted
equivariant differential (TED) K-theory of the punctured plane regarded as sitting inside an Aκ−1-orbi-singularity (Prop. 2.16,
Thm. 2.18 below). We observe that this K-theoretic perspective naturally enforces the holonomy in Cκ ↪−! U1 as well as the
“admissible” fractional levels k =−2+κ/r (see Rem. 2.3 below), both of which are necessary for ensuring that the general
hypergeometric construction of KZ-solutions specializes to conformal blocks of WZW models.

Moreover, under the widely expected Hypothesis K (see Rem. 4.1) that twisted equivariant differential K-theory (hence-
forth TED-K-theory) classifies the RR-fluxes and D-brane charges in type-II string theory, this identification implies (dis-
cussed in §4) that charges of codim=2 “defect branes” on Aκ−1-type singularities have exotic properties not previously
identified in K-theory, such as transformation laws under SL(2,Z) and under the braid group of motions of the defect branes
in their transverse space. Both of these are hallmarks expected of D7/D3-branes in F-theory but have not previously been de-
rived from first principles of charge quantization. Finally, assuming also our more recently introduced Hypothesis H about the
charge quantization of M-branes, it follows that charges of defect M-branes reflect the full structure of ŝl2

k-conformal blocks,
which is a key property expected ([NT11][FMMW20][Ma20]) of the “dual” incarnation of D3-branes at IIB A-type singular-
ities as codim=2 defects inside M5-branes, according to the AGT correspondence ([AGT10], review in [Ta17][LF20][Ak21]).

TED-K-Theory of
(configuration space of points in)

N-punctured plane
inside Aκ−1-singularity

1-twisted holomorphic
deRham-cohomology of

(configuration space of points in)
N-punctured plane

Exotic charges of N
codim=2 defect branes
in F-theory (M-theory)

ŝl2
k-conformal blocks

with N field insertions
of integrable weights

transforming under SL(2,Z)

Hypothesis K(Hypothesis H)Rem. 4.1

(secondary)

TED-Chern character

Prop. 2.1, and §3

§2
hypergeometricconstructionProp. 2.15, 2.17

F-theory prediction

(AGT correspondence)

§4

TED-K-Theory of
(configuration space of points in)

N-punctured plane
inside Aκ−1-singularity

1-twisted holomorphic
deRham-cohomology of

(configuration space of points in)
N-punctured plane

Exotic charges of N
codim=2 defect branes
in F-theory (M-theory)

ŝl2
k-conformal blocks

with N field insertions
of integrable weights

transforming under SL(2,Z)

In conclusion, we describe a curious embedding of WZW conformal field theory and of anyonic braid representations into
TED-K-theory, compatibly so with expectations about defect brane charges in F-theory/M-theory. An outlook is given in §5.
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Quantum states of M-branes. We suggest that this result further supports the Hypothesis H (Rem. 4.1) that quantum states
of M-branes in the elusive non-perturbative completion of string theory known as “M-theory” or “F-theory” are reflected in
the cohomology of Cohomotopy cocycle spaces, which for the low-codimension intersecting “flat branes” of interest here
are given by configuration spaces of points (82) in the plane. These form a direct system whose fibers (40) are exactly the
configuration spaces of points in the N-punctured plane whose 1-twisted cohomology reflects ŝl2

k-conformal blocks, by the
above discussion.

Previously we had discussed this (in [SS22-Cfg][CSS21]) for NS5 = D6⊥D8-brane intersections within the reduced M-
theory bulk spacetime where charges are in 4-Cohomotopy, quantizing the degree=4 C-field flux density G4 (incarnated as F4).
The discussion here (§4) concerns the directly analogous situation (see Table 1), now for M3 = M5⊥M5-intersections within
the ambient MK6-singularity where charges are in 3-cohomotopy (according to the discussion in [FSS21-M5c][FSS19-M5a]),
quantizing the degree=3 flux density H3.

Hanany-Witten theory of
codim=3 branes

([SS22-Cfg][CSS21])

Seiberg-Witten theory of
defect codim=2 branes

(here)

Intersecting branes
NS5 = D6⊥D8
in 10d bulk spacetime

D7∥D3 ⇝ M3 = M5⊥M5
in 7d MK6 worldvolume §4

Charge quantization law 4-Cohomotopy 3-Cohomotopy [FSS21-M5c]

Cocycle space /
configuration space

∏

Nf∈N
Conf

{1, · · · ,Nf}

(
R3
) ∏

N∈N
Conf

{1, · · · ,N}

(
R2
)

(82)

(Twisted, fiberwise)
(Co)Homology /
quantum states + observables

Weight systems/
Chord diagrams

ŝl2
k-Conformal blocks/

Braid group representations
§2

Table 1. Quantum states of branes as cohomology of Cohomotopy cocycle spaces according to Hypothesis H.

Independently of this relation to M-theory, the results we present now indicate a new way in which generalized cohomol-
ogy theory and tools from algebraic topology are usefully brought to bear on questions of quantum physics in general and of
topologival quantum computation, in particular. We come back to this at the end in §5.

Acknowledgements. We thank David Ridout, Eric Sharpe and Guo Chuan Thiang for useful discussions.

2 Conformal blocks in TED-K-Theory
This section discusses how the secondary sector of twisted equivariant differential K-theory (“TED-K-theory” for short, see
§3) of configuration spaces of points in the punctured plane inside Aκ−1-singularities naturally reflects the spaces of conformal
blocks of the ŝl2

k-WZW model (Prop. 2.16, Thm. 2.18 below) at the usual integer level k =−2+κ , as well as those expected
for the fractional-level WZW models which are conjectured to exist (Rem. 2.19 below).

Our Theorem 2.18 is a consequence of Prop. 2.1 and Prop. 2.17 below, for which we now provide a quick introduction of
all the notions and notation that go into the them, together with pointers to full details.

– Prop. 2.17 below is a digest of Feigin, Schechtman & Varchenko’s identification [FSV94] of ŝl2
k-conformal blocks inside

the twisted holomorphic de Rham cohomology of configuration spaces of points in the complex plane. This is a special case
of a more general construction, via “hypergeometric integrals”, of solutions to the Knizhnik-Zamolodchikov equation due to
[SV89][SV90][SV91], whose specialization to level-k conformal blocks, when the twisting holonomy is inside Ck+2 ↪−! U1,
was established in [FSV90][FSV94][FSV95] (see also [Va95]), following special cases established in [DF84][CF87]. Reviews
include [EFK98, §7][FBZ04, §14.3][Ko12][Ko14].

– Prop. 2.1 highlights the structure of TED-K-theory of A-type singularities, in order to point out (Prop. 2.16, Thm. 2.18)
that this is a natural home for the twisted cohomology groups in the FSV-construction of conformal blocks, in that it features
twists by just the relevant local systems with exactly the necessary restriction to rational phases and to admissible levels, and
automatically sums up the conformal blocks at all the commensurate fractional levels at which the ŝl2

k-CFT is thought to
make sense.
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The level.
• κ ∈ N≥2 denotes a natural number, which a priori is the order of an Aκ−1-type orbi-singularity (beginning in Prop. 2.1

below) and as such necessarily ≥ 2, but which eventually is being identified with the shift of:
• k ∈ Q, denoting a rational number that is eventually identified (see Cor. 2.16, Thm. 2.18, Rem. 2.19 below) with the level

of an affine Kac-Moody algebra ŝl2
k, such that κ is its shift by the dual Coxeter number, which for sl2 means:

κ := k + 2︸︷︷︸
dual Coxeter number

of sl2

∈ N≥2 . (1)

Eventually ŝl2
k will be identified with the symmetry algebra of the chiral sl2-WZW model at level k, arising as the com-

plexification (17) of the affine su2-algebra which, in turn, appears as a summand in the super-conformal algebra on the
worldsheet of strings probing an A-type singularity (74); and the shift (1) will arise from a cancellation with a fermionic
level. After the fact, this shift is also the renormalization of the level (see [AGLR90][Sh91]) of the corresponding su2
Chern-Simons theory ([Wi89]): the dual Coxeter number constitutes the quantum correction to the classical Chern-Simons
level k.

In fact, more generally:
• r ∈ {1,2, · · · ,κ} serves as a denominator in the more general identification between these two numbers

k + 2 := κ/r ⇔ κ = r(k+2) ∈ N≥2 , (2)

that a priori appears in the secondary TED-K-theory of the punctured plane inside an Aκ−1-singularity (see (14) below),
but eventually characterizes the (admissible) fractional level of an sl2-CFT (Rem. 2.22 below).

The groups.
• Cκ ⊂ U1 denotes the cyclic group of order κ , regarded here as the subgroup of κth roots of unity inside the circle group U1.
• Cs/κ denotes its s-th irrep with action:

Cs/κ := e2πi(−)s/κ · ↷ C . (3)

• C∗
κ := Hom(Cκ , U1) denotes its character group. Notice that this is isomorphic to the original cyclic group, C∗

κ ≃ Cκ , but
not naturally so; isomorphisms are in bijection to choices of generators g ∈ Cκ , i.e., of elements with ord(g) = κ:

Hom(Cκ , U1) = C∗
κ Cκ ⊂ U1 .

evg
∼

This little subtlety leads to the following major distinction:

• Q/Z ≃ lim
−!

κ ∈N+

Cκ is the colimit over the inclusions Cκ

·n
↪−!Cnκ for n ∈N+. We may think of this as the “rational circle group”

Q/Z ↪−! U1 or the group “of rational phases” or “of any roots of unity”: Q/Z ≃
{

exp(2πiw/κ) | w ∈ Z, κ ≥ 2
}

.

• Ẑ ≃ lim
 −

κ ∈N+

is the limit over the surjections C∗
nκ C∗

κ ,
(·n)∗= modκ

known as the profinite integers. Here we wrote surjections

of character groups to make manifest that the profinite integers constitute the character group of the rational circle group:(
Q/Z

)∗
=
(

lim
−!

κ ∈N+

Cκ

)∗
= Hom

(
lim
−!

κ ∈N+

Cκ , U1

)
≃ lim
 −

n∈N+

Hom
(
Cκ , U1

)
≃ lim
 −

n∈N+

C∗
κ ≃ Ẑ .

The A-type orbifold singularity.
• H denotes the space of quaternions, to be understood as a complex manifold H ≃ C2.
• Sp(1) := S(H) ⊂ H denotes the multiplicative group of unit quaternions (which, as a Lie group, is ≃ SU(2) ≃ Spin(3)).

Its left multiplication action on H induces a canonical left action Cκ ↷ H of Cκ ⊂ U1 ⊂ Sp(1).
• H�Cκ denotes the complex orbifold of this action. As such, the singular point [0] ∈ H/Cκ in the corresponding ordinary

quotient space is an Aκ−1-type singularity.
• X denotes any complex manifold, and X×H�Cκ its direct product, as orbifolds, with the above complex orbifold.
• The orbifold obtained from equipping X with the trivial action of a cyclic group of order κ is denoted

X�Cκ ≃ X×∗�Cκ ↪−−−! X×H�Cκ ,

to be thought of as the extended Aκ−1-type singular locus.

Cohomology. All domain spaces we consider here are connected, and we regard them all as pointed spaces, meaning that
all (generalized) cohomology groups in the following are reduced. For further pointers and discussion in our context see
[FSS20-Cha].
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Differential K-theory.

• KUn−1(X) denotes the complex topological K-cohomology (e.g. [Kar78]) of the manifold X in degree n−1 (mod 2). The
shifted degree n will eventually be identified with the number of points (probe branes) in a configuration (39), as well as
with the degree of conformal blocks (30).

• KU•
diff(X), KU•

♭ (X) denote, respectively, differential and flat differential K-theory (e.g. [BuSc12]).

These cohomology groups arrange into a hexagonal commuting diagram, the lower part of which looks as follows ([SiSu08,
§2][BNV13, §6]), where the bottom sequence of groups is long exact ([Kar87, §7.21][Kar90, Ex. 3][Lo94, (16)]):

KUn−2(X; C)
differential K-theory

KUn−1
diff

(
X
)

KUn−1(X; C) .

KUn−1
♭ (X)

flat K-theory

KUn−1(X)
underlying plain K-theory

secondary
Chern character

forgetinclude
Chern

character

(4)

Here the items on the left and right denote C-rationalized K-theory (i.e., “with complex coefficients”, e.g. [Lo94, Def.
4]), which is equivalently even-periodic ordinary cohomology (cf. [GS19a]). For making contact to the hypergeometric
formalism, it is convenient to represent this, and its variants below, via de Rham cohomology (cf. Rem. 2.2 below):

KUn(X; C) :=
⊕
d∈Z

even-periodic de Rham cohomology

Hn+2d(
Ω

•
dR(X; C), d

)
.

Twisted Equivariant Differential K-theory.

• KUn−1(X�Cκ) denotes the Cκ -equivariant K-theory of Cκ ↷X (e.g. [Gr05][SV07]). The notation suggestively follows that
for orbifold K-theory ([LU04][AR03]), which coincides with equivariant K-theory for our case of global quotient orbifolds.

• ω1 ∈ Ω1
dR(X)|d = 0 denotes a closed differential 1-form such that its holonomy in R↠U1 is in fact in Cκ ↪−!U1, hence such

that its class is that of a flat connection on a complex line bundle whose holonomy is in Cκ :

a flat connection on
a complex line bundle{

[ω1]
}

H1(X; Cκ)≃ H1(X; C∗
κ)

H1
dR(X) H1(X; U1)

equivalence classes of
all flat U1 -connections

with holonomy in
κth roots of unity

with globally defined
connection 1-form

de Rham theorem
mod Z

(5)

• KUn+1+[ω1]
(diff)

(
X�Cκ

)
denotes [ω1]-twisted Cκ -equivariant (differential) K-cohomology, according to the following:

Proposition 2.1 (Secondary Chern characters in TED-K-theory of an A-type singularity). The closed differential 1-forms
ω1 (5) twist the Cκ -equivariant K-cohomology of smooth manifolds X inside Cκ -singularities such that the corresponding
(secondary) twisted equivariant Chern character classes fill the direct sum over r ∈ {0, · · · ,κ − 1} of the r ·ω1-twisted de
Rham cohomology groups of X; in that the BC∗

κ -twisted Cκ -equivariant enhancement of the differential cohomology hexagon
(4) looks as follows:

⊕
d ∈ Z

1 ≤ r ≤ κ

even-periodic de Rham cohomology

Hn+2d
(
Ω•

dR(X; C), d

twisted by tensor powers of
the flat complex line bundle

+ r ·ω1∧
)

BC∗
κ -twisted

Cκ -equivariant
differential K-theory

KUn−1+[ω1]
diff

(
X×∗�Cκ

smooth manifold inside
Cκ -orbi-singularity

) ⊕
d ∈ Z

1 ≤ r ≤ κ

even-periodic twisted de Rham cohomology in opposite degree

Hn−1+2d
(
Ω•

dR(X; C), d+ r ·ω1 ∧
)
.

KUn−1+[ω1]
♭ (X×∗�Cκ)

flat TED-K-theory

KUn−1+[ω1](X×∗�Cκ)
underlying twisted equivariant K-theory

secondary

Chern character

forgetinclu
de

Chern
characte

r
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Outline proof. This follows essentially as a highly specialized case of a general expression for the twisted equivariant Chern
character which may be extracted from [TX06, Def. 3.10, Thm. 1.1][FHT07, Def. 3.6, Thm. 3.9]; in fact it is that special
case which isolates exactly the peculiar extra BC∗

κ -twisting of equivariant K-theory that appears on Cκ -fixed loci. Below in
§3 we outline a transparent proof, the formalities of which are relegated to [SS22-TEC]. □

Remark 2.2 (Twisted de Rham cohomology over complex Stein manifolds).
(i) When X in Prop. 2.1 happens to be a complex manifold which is Stein (see [GR04]) and ω1 is a holomorphic form
representative, then the twisted cohomology groups are equivalently twisted holomorphic de Rham cohomology groups:

X is complex Stein domain ⇒ Hn+[ω1]
(
X; C

)
= Hn(

Ω
•
dR
(
X; C

)
, d+ r ·ω1

)
twisted ordinary/de Rham cohomology

≃ Hn(
Ω

•,0
dR (X; C)|

∂=0, ∂ + r ·ω1 ∧
)

twisted holomorphic de Rham cohomology. (6)

(ii) This follows, as in the case over affines [De70, Cor. 6.3] (review in [LY00, p. 171][Vo03, Cor. 5.4]), using that sheaves
of positive-degree holomorphic forms are still acyclic over Stein manifolds.
(iii) Examples of Stein manifolds include punctured Riemann surfaces [BS47] and their configuration spaces of points
[DG60]. These are the domains to which we turn next.

The punctured Riemann surface.
• N ∈ N denotes a natural number, counting punctures in the complex plane, eventually interpreted as the number of defect

branes.
• Denoted by

Σ
2 := C\{z1, · · · ,zN} ≃ CP1 \{z1, · · · ,zN ,∞}

this N-punctured complex plane, equivalently the (N + 1)-punctured Riemann sphere, equipped with its canonical holo-
morphic coordinate function z : Σ2 ↪−! C.

The “incoming” punctures z⃗ := (z1, · · · ,zN) are taken to be ordered (and will carry labels wI in a moment) and the “outgo-
ing” puncture of number N +1 is taken to be at z = ∞.

transverse plane

ω1

defect brane

Σ2

∞

zI

Figure 1. The punctured complex plane. Compare the defect brane configurations in Figure 2 and Figure 3, where the solid
lines correspond to brane worldvolumes. Concerning the physical meaning of the braiding that is indicated on the left above,
see Rem. 4.2 and Footn. 12 below.

– Since H2
(
Σ2; Z

)
= 0, all complex line bundles on Σ2 are trivializable, and hence every element in H1

(
Σ2; Cκ

)
is

represented by a class [ω1] as in (5).

– Since Σ2 is connected and the abelianization of its fundamental group is
(
π1(Σ

2)
)ab ≃ ∏

1 ≤ i ≤ N

Z, the Hurewicz theorem

gives that
H1(

Σ
2; C∗

κ

)
≃ Hom

(
∏

1 ≤ i ≤ N

Z,C∗
κ

)
≃ ∏

1 ≤ i ≤ N

C∗
κ . (7)

– Therefore, flat connections [ω1] (see (5)) on Σ2 may be specified by N-tuples of integers in ∏
1 ≤ i ≤ N

Z ↠ ∏
1 ≤ i ≤ N

C∗
κ .

These are going to be called weights:
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The weights.

• Such an N-tuple of integers is denoted
w⃗ := (wI )1≤I≤N ∈ ∏

1 ≤ I ≤ N

Z

and will label the N punctures in the complex plane and eventually be identified with highest weights that label sl(2)-
representations. Regarding these tuples as encoding connections [ω1] (see (5)) for any shifted level κ means, by (7), to
regard them as N-tuples of profinite integers:

weights

Z
profinite weights

Ẑ
levels

∏
κ ∈N+

phases

C∗
κ .

w 7−!
(
[wmodκ]

)
κ ∈N+

(8)

• win := ∑
1 ≤ I ≤ N

wI denotes the sum of the “incoming” weights.

• ω1(⃗w,κ) ∈ Ω
1,0
dR (C \ {z1, · · · ,zN})|∂=0 denotes the corresponding canonical holomorphic flat connection 1-form with

holonomy [wI/κ] around the Ith incoming puncture:

flat holomorphic
connection 1-form

ω1(⃗w,κ) := ∑
1 ≤ I ≤ N

− wI

κ

dz
(z− zI )

= ∑
1 ≤ I ≤ N

− wI

κ
dlog(z− zI ) ∈ Ω

1,0
dR (C\{z1, · · · ,zN})|∂=0 . (9)

When regarded as a connection on the (N + 1)-punctured Riemann sphere, this has holonomy −∑I −wI = +win around
the outgoing puncture at ∞, which we may notationally make explicit by writing (using 1/(z−∞) = 0):

ω1(⃗w,κ) =

holonomy contributions
around incoming punctures

∑
1 ≤ I ≤ N

− wI

κ

dz
(z− zI )

+

holonomy contribution
around outgoing puncture

win

κ

dz
(z−∞)

∈ Ω
1,0
dR (CP1 \{z1, · · · ,zN ,∞})|

∂=0 . (10)

• Σ̂2 pΣ−! Σ2 denotes the universal cover of Σ2, i.e., the complex manifold isomorphic to the space of homotopy classes [γ] of
continuous paths ẑγ : [0,1]! Σ2, all based at a fixed start point γ(0) ∈ Σ2 and modulo homotopies that fix this and their
respective endpoint γ(1).

Picking any open disk U ⊂ Σ2 and a lift Û ⊂ Σ̂2 through p, we write ẑ : Σ̂2 −!C for the unique holomorphic function which
agrees with z := p∗z on Û . This yields:

• ℓ : Σ̂2 −! C denotes a holomorphic function on the universal cover Σ̂2 given by any branch of the following expression (cf.
[SV89, (2.1)]:

ℓ(ẑ) := ℓ(⃗w,κ)(ẑ) := ∏
1 ≤ I ≤ N

(
ẑ− zI

)−wI /κ
. (11)

This has come to be called the “master function” [SlVa19, §2.1], in appreciation of the fact that any branch of the logarithm
of it trivializes the pullback of ω1 to the universal cover

p∗ω1 =
dℓ
ℓ

= d logℓ ∈ Ω
1,0
dR ( Σ̂2 )|

∂=0 ,

so that multiplication by this function transforms the ω1-twisted holomorphic de Rham cohomology on Σ2 (Rem. 2.2) into
the Deck-transformation-equivariant de Rham cohomology on Σ̂2:

twisted holomorphic de Rham cohomology
of the complex curve

Hn
(

Ω
•,0
dR (Σ

2; C)|
∂=0, d+ω1

) equivariant holomorphic de Rham cohomology
of its universal cover

Hn
((

Ω
•,0
dR ( Σ̂2; Cr/κ)|∂=0

)π1(Σ
2))

.

[α] 7−!
[
ℓ · p∗

Σ
α
]

∼ (12)

Here the action of π1(Σ
2) on the right is by pullback of differential forms along its canonical operation on the universal

covering space and by action on their coefficients through π1(Σ
2)

[ω1]−−!C∗
κ .
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Remark 2.3 (Admissible rational levels seen in TED-K-theory).
(i) It follows from expression (9) for ω1 on Σ2 that

r ·ω1(⃗w,κ) = ω1(⃗w,κ/r) ,

and hence that the direct sum appearing in the [ω1]-twisted equivariant K-theory of Σ2, according to Prop. 2.1, is the direct
sum of 1-twisted holomorphic cohomology groups over all the rational levels (cf. (2))

k =−2+κ/r ∈ Q ; (13)

this means that the secondary Chern character becomes:

⊕
d ∈ Z

1 ≤ r < κ

direct sum of holomorphic de Rham cohomology groups

Hn+2d
(

Ω
•,0
dR (X)|

∂=0, ∂ +ω1(⃗w,κ/r)∧
twisted by the flat holomorphic 1-form

at any κ-fractional level

) TED-K-theory of punctured plane inside Aκ−1 -singularity

KU1+n+[ω1(w⃗,κ)]
diff

((
C\ {⃗z}

)
×∗�Cκ

)
.

secondary
Chern character

(14)

(ii) The fractional level (13) is redundant when r and κ contain a common factor, in that the same twisted cohomology group
that it labels in (14) then appears already for smaller values of κ and r. When this is not the case, hence when

gcd(κ,r) = 1 ,

then precisely the formula (13) with precisely our condition κ ≥ 2 from (2) characterizes admissible fractional levels in
conformal field theory. We come back to this in Rem. 2.19 and Rem. 2.22 below.

Proposition 2.4 (Hypergeometric forms span twisted de Rham cohomology of punctured plane). For w⃗ ∈ {0, · · · ,κ − 1}N

such that win
κ

̸∈ N+, the [ω1(⃗w,κ)]-twisted holomorphic de Rham cohomology of C \ {⃗z} in degree 1 is spanned by the
“hypergeometric” 1-forms dlog(z−zI ) subject to the single relation

[
ω1(⃗w,κ)

]
= 0. That is, there is a natural isomorphism:

H1
(

Ω
•,0
dR (C\ {⃗z})|

∂=0, d+ω1(⃗w,κ)
)

≃
〈
dlog(z− z1), · · · ,dlog(z− zN )

〉〈
∑

1 ≤ I ≤ N

wI
κ

dlog(z− zI )
〉 . (15)

Proof. This is essentially a special case of [ESV92].1 In extracting this statement from [ESV92], beware that their expression
for ω is of the form (10), cf. [STV95, §4]: With this understood, the sufficient condition “(Mon)” in [ESV92, p. 2] is here
equivalently the condition win

κ
̸∈ N+.

These “weights” wI of holonomies over Σ2 are now going to be identified with weights in the sense of Lie theory:

The sl2-Modules. (see e.g. [DMS97, §13])

• sl2 := sl(2,C) denotes the complex Lie algebra of traceless complex 2×2 matrices.

The usual Chevalley generators of this Lie algebra are denoted:

e :=
[

0 1
0 0

]
, h :=

[
1 0
0 −1

]
, f :=

[
0 0
1 0

]
∈ sl2 (16)

subject to these Lie bracket relations:

[h,e] = +2e , [h, f ] = −2 f , [e, f ] = h .

We may and will understand sl2 as the complexification of the special unitary Lie algebra su2, hence as a convenience for
speaking about the unitary Lie representations of su2 in terms of complex-linear Lie representations of sl2:

sl2 ≃ (su2)C ,

unitary Lie representations
of real Lie algebra{
su2 −!

R
ud
}
↔

{
sl2 ud gl(Cd)

C

complex-linear Lie representation
of complexified Lie algebra }

(17)

In particular, we never regard sl2 as a real Lie algebra and are not concerned with what is called SL(2,C)-Chern-Simons
theory. Instead, the complex-linear representations of sl2 serve as a convenient way of speaking about the complex repre-
sentations of the real Lie algebra su2 which appear in the discussion of the usual SU(2) CS/WZW theory (eg. [Wi82]).
1For vanishing twist (⃗w = 0) the result of Prop. 2.4 is due to [OS80], whence the subalgebra of the de Rham algebra generated by the dlog(z− zI ) is also

known as an Orlik-Solomon algebra.
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• Lw ∈ sl2Mod denotes the highest weight sl2-irrep of highest weight w, meaning that (it is irreducible and) there is a highest
eigenvalue of h (16) equal to w.

• v0 ∈ Lw denotes the corresponding highest weight eigenvector, characterized by h · v0 = w · v0 and e · v0 = 0.
• Lin := Lw1 ⊗·· ·⊗LwN denotes the tensor product of “incoming” highest weight representations” of sl2.

For v = v1 ⊗·· ·⊗ vN ∈ Lin and 1 ≤ i ≤ N, we write

fi · v := v1 ⊗·· ·⊗ vi−1 ⊗ ( f · vi)⊗ vi+1 ⊗·· ·⊗ vN ∈ Lin .

We define the action of hi and ei similarly.
• Lin(wout) ↪−! Lin denotes the linear subspace of incoming representation vectors of total weight wout:

Lin(wout) :=
{

v ∈ Lw1 ⊗·· ·⊗LwN
∣∣ ∑

i
hi · v = wout · v

}
. (18)

• Vg := V/(g ·V ) (for any Lie algebra g and g-module V ) denotes the quotient space of co-invariants, i.e., the space such
that linear maps out of it are the g-invariant linear maps out of V .

Specifically:
•
(
Lw1 ⊗ ·· ·⊗LwN+1

)
sl2

denotes the space of co-invariants of the diagonal sl2-action on the tensor products of its highest
weight irreps for the given weights (⃗w,wout).

For example, if vi ∈ Lwi denote the highest weight vectors, and f ∈ sl2 according to (16), then the element

f ·
(
v1 ⊗ v2 ⊗·· ·⊗ vN+1

)
:=
(
( f · v1)⊗ v2 ⊗·· ·⊗ vN+1

)
+
(
v1 ⊗ ( f · v2)⊗·· ·⊗ vN+1

)
+ · · · +

(
v1 ⊗ v2 ⊗·· ·⊗ f · vN+1

)
becomes null in the space of co-invariants.

Lemma 2.5 (sl2-Coinvariants in terms of incoming representation vectors [FSV94, Lem. 2.3.3]). Adjoining the highest
weight(=wout)-vector v0

N+1 of the outgoing sl2-irrep Lwout to a tensor product of incoming sl2-representation vectors consti-
tutes a linear identification of the space of sl2-coinvariants in the tensor product of incoming and outgoing irreps with the
quotient of the weight=wout-subspace of just the tensor product of incoming irreps (18) by the image of the diagonal lowering
operator:

Lin(wout)
/(

im(∑i fi)
) (

Lw1 ⊗·· ·⊗LwN ⊗LwN+1
)
sl2[

v1 ⊗·· ·⊗ vN
]

7−!
[
v1 ⊗·· ·⊗ vN ⊗ v0

N+1
]∼ (19)

The ŝl2
k-Modules. (see e.g. [DMS97, §14])

• ŝl2
k denotes its “affine” version, i.e., the universal central extension at level k of the infinite-dimensional algebra of loops in

sl2 ([Ka83]).
• L̂w

k ∈ ŝl2
kMod denotes the highest weight ŝl2

k-irrep.

Remark 2.6 (Integrable and admissible weights).
(i) One says that a weight w ∈ N satisfies the integrability condition (cf. [SV90, §2.3.2, 3.2]) at a given level k if and only if

0 ≤ w ≤ k ,
i.e., 0 ≤ w ≤ κ −2 . (20)

The highest weight irreps L̂w
k whose highest weight satisfies the integrability condition (20):

• are indeed integrable ([SV90, p. 176]2) in the sense of Lie theory, in that their
(
sl2 ↪−! ŝl2

k )-action extends to a representa-
tion of the group SL(2,C), [Ka83, Prop. 3.6];

• label the primary fields of the corresponding WZW conformal field theory (e.g. [Wa00, (2.69)]).
(ii) More generally, for admissible fractional levels k = −2+κ/r (Rem. 2.3), a weight w is called admissible (e.g. [Ra20,
(3.3)], following [KM88a][KW89]) if and only if

w ∈

{
(1+a) · κ

r −b−1 ,

−a · κ

r +b−1

∣∣∣∣∣ for a ∈ {0, · · · ,r−1}
and b ∈ {1, · · · ,κ −1}

}
⊃

{
0,1, · · · ,κ −2

}
. (21)

On the right we have highlighted that this set of admissible weights always contains (using a = r−1 in the first line or a = 0
in the second) the subset of integrable weights (20), which is always the largest subset of admissible weights that are also
integers.

2Beware that in [FSV94] these integrable irreps are denoted L(w), while L̂(w) there denotes a larger reducible rep, in the integrable case.
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Remark 2.7 (SL(2,Z)-Action on span of characters of ŝl2k-Modules). Associated with an integrable highest weight ŝl2
k-

irrep L̂w
k (Rem. 2.6) is its affine character chk

w (e.g., [DMS97, §][Wa00, (3.43)]), which may be thought of as the partition
function of the chiral ŝl2

k-WZW-model over the complex torus C/(Z× τ ·Z). Under the modular transformation action of
SL(2,Z) on the characters (e.g. [Wa00, (4.6)]) via the canonical action on the modulus τ ∈ C|Re>0, given by(

a b
c d

)
· τ :=

aτ +b
cτ +d

, e.g.
(

1 1
0 1

)
︸ ︷︷ ︸

=:T

· τ := τ +1 ,
(

0 −1
1 0

)
︸ ︷︷ ︸

=:S

· τ := −1/τ , (22)

these characters span a k + 1-dimensional unitary representation
〈
chk

w
〉

0≤w≤k of SL(2,Z), ([KW88b, p. 159], based on
[KP84]) according to the following concrete formulas3 ([COZ87a, (2.19) with (2.13)][COZ87b, (26) with (24)]):

(T · chk
w)(τ) := chk

w(τ +1) = exp
(

2πi
(
(w+1)2

4·(k+2) −
1
8

))
· chk

w(τ) ,

(S · chk
w)(τ) := chk

w(−1/τ) = −i√
2(k+2)

2k+2

∑
w′=1

exp
(

2πi
(
(w+1)(w′+1)

2(k+2)

))
· chk

w(τ) .

(23)

Example 2.8 (The 2-dimensional SL(2,Z)-Representation on ŝl2
1-Characters). For unit level k= 1, the SL(2,Z)-representation

(23) is 2-dimensional, spanned by the affine characters ch1
0 and ch1

1 at weight 0 and weight 1, respectively. Since

1
12 −

1
8 = − 1

24 ,
4
12 −

1
8 = + 5

24 ,

the action of T from (22) on the characters is given in this case by

T · ch1
0 = exp(−2πi/24) · ch1

0 , T · ch1
1 = exp(2πi ·5/24) · ch1

1 . (24)

In particular, the action of T on tensor powers of this representation becomes trivial exactly for

T ·
(
chk

w
)⊗24

= 1 ·
(
chk

w
)⊗24

.

Definition 2.9 (Truncation condition). Following [FSV94, (14)], we say that an N-tuple of weights w⃗ satisfies the truncation
condition for a given number n of insertions if and only if

win + wout > 2k

⇔ win + (win −2 ·n) > 2(κ −2) (25)
⇔ win > κ +(n−2) .

Remark 2.10 (Truncation condition combined with integrability). Assuming the integrability condition (20) on the out-
going weight wout, which says that

wout ≤ k

⇔ win −2 ·n ≤ κ −2 (26)
⇔ win ≤ κ + 2(n−1) ,

the truncation condition is equivalent to

κ + (n−1) ≤ win ≤ κ + 2(n−1) . (27)

Example 2.11 (Truncation condition for n = 1). The truncation condition for n = 1, and using the integrability condition
(Rem. 2.10), is equivalently the condition

win = κ , (28)

while its failure is the condition win < κ .

3The linear combination on the right in the second line of (23) is overdetermined, hence reduces to a linear combination of just the first k+1 characters.
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The ŝl2
k-conformal blocks.

• n ∈ N+ denotes a positive integer which, in the next bullet point, measures (half) the difference between incoming and
outgoing weights, to be called the degree of the corresponding conformal block (see below (29)), and eventually identified
also with the number of probe branes, hence of points in a configuration of points in complex curve Σ2.

• wout := wN+1 := win − 2 · n denotes the “outgoing weight at infinity”, constrained to be the sum of incoming weights
minus twice the number of field insertions (cf. [SV90, above (12)]).

• sl2(Σ
2) denotes the ring of sl2-valued holomorphic functions on Σ2 (hence meromorphic functions on CP1 with possible

poles at {⃗z,∞}), regarded as a Lie algebra under the inherited pointwise Lie bracket.

• sl2(Σ
2)

(−)|zi−−−! ŝl2
0 denotes the operation of forming the Laurent expansion of such an algebraic function around the puncture

at zi. The direct product of these around all punctures lifts uniquely to the diagonal central extension ([FSV94, (8)]):⊕̂
1≤ i≤N+1

sl2
k

sl2(Σ
2)

⊕
1≤ i≤N+1̂

sl2
0

∑
1≤i≤N+1

(−)|zi

∃!

Through this Lie homomorphism, sl2(Σ2) acts on any (N + 1)-fold tensor product of ŝl2
k-modules, notably on the tensor

product of integrable highest weight irreps (20) for the given weights (⃗w,wout):

sl2(Σ
2) ↷

(
L̂w1

k ⊗·· ·⊗ L̂wN
k ⊗ L̂wout

k) . (29)

• CnfBlckn
ŝl2

k (⃗w,⃗z) :=
(
L̂w1

k ⊗ ·· · ⊗ L̂wN
k ⊗ L̂wout

k)
sl2(Σ2)

denotes the co-invariants of the action (29), called the space of
conformal blocks (e.g. [Be96][Ko02, §1.4]):

– of the ŝl2
k-WZW-model

– on CP1 \{z1, · · · ,zn,∞};

– at level k,

– with the ith puncture zi labeled by the integrable ŝl2
k-irrep of highest weight wi, for all i ∈ {1, · · · ,N +1},

– with n = 1
2 (win −wout) := 1

2

((
∑

1≤i≤N
wi

)
−wN+1

)
primary field insertions.

We are going to show that these spaces of conformal blocks are naturally transformed into the TED-K-theory of Σ2�Cκ .
The first step towards this reformulation is the fact that – despite the superficial appearance of the above definition – conformal
blocks may be expressed in terms of just the irreps of the underlying finite-dimensional Lie algebra sl2:

Proposition 2.12 (Conformal blocks as quotient of space of incoming sl2-reps [FSV94, Lem. 2.3.3, Thm. 2.3.6]).
The above spaces of ŝl2

k-conformal blocks on CP1 \ {⃗z,zN+1} are isomorphic to the plain sl2-coinvariants, hence to the
quotient (19) of the incoming sl2-reps – except when the truncation condition holds (Def. 2.9), in which case they are even
smaller:

CnfBlckn
ŝl2

k (⃗w,⃗z) ≃


Lin(wout)

/
im
(

∑i fi
)/

im
((

∑i(zi fi)
)κ−1−wout

)
if (25) holds

Lin(wout)
/

im
(

∑i fi
)

≃
Lem. 2.5

(
Lw1 ⊗·· ·⊗LwN ⊗Lwout

)
sl2

otherwise.
(30)

Remark 2.13 (Truncation). If the truncation condition does not hold then the image of the second operator in the first line of
(30) is null ([FSV94, (13)]). While, therefore, the first line already subsumes the second, we have split up the statement to
highlight that, more often than not, the conformal blocks are just plain sl2-coinvariants (cf. item (ii) in Prop. 2.15 below).

Example 2.14 (Conformal blocks in terms of incoming representation vectors.). Recalling that n = 1
2 (win −wout), we have:

(i) For n = 0, the space of incoming representation vectors of total weight wout is spanned by the the single vector∣∣v0
1, · · · ,v0

N
〉

:= v0
1 ⊗·· ·⊗ v0

N ∈ Lin(wout) . (31)

(ii) For n = 1, the space of incoming representation vectors of total weight wout is spanned by the N elements

fi
∣∣v0

1, · · · ,v0
N
〉

:= v0
1 ⊗·· ·⊗ v0

i−1 ⊗ ( f · v0
i )⊗ v0

i+1 ⊗·· ·⊗ v0
N ∈ Lin(wout) , i ∈ {1, · · · ,N} , (32)
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which, as representatives of sl2-coinvariants, are subject to one linear relation (Prop. 2.5):

∑
1≤i≤N

fi · |v0
1, · · · ,v0

N⟩ = 0 ∈
(
Lw1 ⊗·· ·⊗LwN+1

)
sl2

. (33)

By Prop. 2.12, this already characterizes the conformal blocks, unless win = κ as in (28), i.e., κ − 1−wout = 1, in which
case there is one further linear relation:

∑
1≤i≤N

zi · fi|v0
1, · · · ,v0

N⟩ = 0 ∈ CnfBlck1
ŝl2

k (⃗w,⃗z) . (34)

(iii) For n = 2, the space of incoming representation vectors of total weight wout is spanned by the N2 elements

fi f j
∣∣v0

1, · · · ,v0
N
〉

∈ Lin(wout) , i, j ∈ {1, · · · ,N} , (35)

which, as representatives of sl2-coinvariants, are subject to N relations:

∑
i

fi

(
f j
∣∣v0

1, · · · ,v0
N
〉)

= 0 ∈
(
Lw1 ⊗·· ·⊗LwN+1

)
sl2

, j ∈ {1, · · · ,N} .

The key observation now is that this Lie-algebraic definition of ŝl2
k-conformal blocks has a re-formulation purely in terms

of the twisted cohomology of configurations of n points in the punctured plane. For n = 1, this is the following statement:

Proposition 2.15 ( ŝl2
k-Conformal blocks in degree 1 as twisted holomorphic 1-cohomology of punctured plane).

(i) For integrable weights w⃗ ∈ {0, · · · ,k}N (20), the [ω1]-twisted holomorphic de Rham cohomology (12) of C\{z1, · · · ,zN}
with ω1 = ω1(w⃗,⃗z) (9) is concentrated in degree 1, where it receives a natural transformation from the ŝl(2)k-conformal
blocks (30) in degree 1:

CnfBlck1
ŝl2

k (⃗w,⃗z) H1
(

Ω
•,0
dR (C\ {⃗z})|

∂=0, ∂ +ω1(⃗w,⃗z)∧
)

fi|v0
1, · · · ,v0

N⟩ =
(32)

[
v0

1, · · · , ( f · v0
I
), · · · , v0

N
] generators

7−!
[
− wI

κ

dz
(z−zI )

]
∑

i
fI |v0

1, · · · , v0
N⟩ =

(33)
0 7−!

relations

∑
I

[
− wI

κ

dz
(z−zI )

]
=
[
(∂ +ω1∧)1

]
∑

i
zI · fI |v0

1, · · · ,v0
N⟩ =

(34)
0 (when win = κ) 7−! ∑

I

[
− zI

wI
κ

dz
(z−zI )

]
=
[
(∂ +ω1∧)z

]
.

(36)

(ii) This transformation is an isomorphism, at least when win < κ (i.e., away from the truncation condition of Ex. 2.11). 4

Proof. That we have a linear map is the special case n = 1 of [FSV94, Cor. 3.4.2]5; we spell it out: Noticing that all 1-forms
here are twisted-closed already by degree reasons, to have a linear map as shown in (36) it suffices to see that the relations
on the left are respected. For the first relation in (36) this is immediate from (9), as shown above. To see that the more subtle
second relation is respected, we may dramatically shortcut the general argument in [FSV94, §3.5] as follows (cf. [Va95, Ex.
12.4.6 (iii)]). Using the assumption from (28) that win = κ , i.e., that

∑
1 ≤ I ≤ N

wI

κ
= 1 , (37)

we directly compute:

(∂ +ω1∧)z = ∑
I
− z

wI
κ

dz
(z−zI )

+ dz by (9)

= ∑
I
− z

wI
κ

dz
(z−zI )

+ ∑
i

wI
κ

dz by (37)

= ∑
I
− z

wI
κ

dz
(z−zI )

+ ∑
I
(z− zI )

wi
κ

dz
(z−zI )

= ∑
I
− zI

wI
κ

dz
(z−zI )

.

This shows that (36) does define a natural linear transformation for all values of win. Finally, that this linear map is an
isomorphism when win < κ follows by Prop. 2.4.

4Even at the truncation condition win = κ the map (36) is claimed to be an injection in [FSV94, Rem. 3.4.3], repeated in [Ko12, p. 107]; but we are not
aware of a proof.

5Our n is their q. Our N is their n. Our wI is their mi. Our ω1 is their α .
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This result now has a natural re-formulation:

Proposition 2.16 ( ŝl2
k-Conformal blocks as secondary Chern classes in TED-K-theory of Riemann surface inside A-type

singularities). For integrable weights w⃗ ∈ {0, · · · ,k}N (20), the secondary TED-K-theory from Prop. 2.1 naturally receives
the space of ŝl(2)k-conformal blocks at level k =−2+κ in degree n = 1:

coformal blocks of the sl2 -WZW model
on the sphere, at level κ −2, in degree 1

CnfBlck1
ŝl2

−2+κ (⃗w,κ) H1
(

Ω
•,0
dR (C\ {⃗z})|

∂=0, ∂ +ω1(⃗w,⃗z)∧
) secondary TED-K-theory of punctured sphere inside Aκ -orbi-singularity

KU0+[ω1 (⃗w,κ)]
diff

(
(CP1 \ {⃗z,∞})×∗�Cκ

)
.

natural
transformation

secondary
Chern character

(38)

Proof. In view of Rem. 2.2, this is the result of combining Prop. 2.15 with Prop. 2.1.

We proceed to the generalization of this situation away from the special case where conformal blocks are just in degree 1.

The configuration spaces.
• The complex manifold of configurations of n ordered points in some complex manifold X is denoted (following [SS22-Cfg,

§2.2])
Conf
{1, · · · ,n}

(
X
)

:=
{

z1, · · · ,zn ∈ X
∣∣ ∀

i< j
zi ̸= z j

}
. (39)

The punctured plane Σ2 = C \ {z1, · · ·zN} itself may be understood as one such configuration of N points in the complex
plane. We are interested in configurations of (further) n points inside this N-punctured plane, which is usefully understood
as the following fiber product of configuration spaces (the top right entry denotes the singleton set containing the given
configuration of punctures):

configurations of n points in the N-punctured plane

Conf
{1, · · · ,n}

(
C\{z1, · · · ,zN}

) {
C\{z1, · · · ,zN}

}

Conf
{1, · · · ,N +n}

(
C
)

Conf
{1, · · · ,N}

(
C
)(pb)
pick

the configuration
of puncturres

forget the last n points

(40)

The previous discussion may be understood as concerning the degenerate case of configurations of a single point:

Conf
{1}

(
C\{z1, · · · ,zN}

)
≃ C\{z1, · · · ,zN} .

In this vein, much of the previous discussion has evident generalizations, such as:
• The flat holomorphic connection 1-form (9) is generalized to the configuration space by setting:

ω1(⃗w,κ) := ∑
1 ≤ I ≤ N
1 ≤ i ≤ n

− wI

κ

dz
(zi − zI )

+ ∑
1 ≤ i < j ≤ n

2
κ

dz
(zi − z j)

∈ Ω
1,0
dR ( Conf

{1, · · · ,n}

(
C\{z1, · · · ,zN}

)
)|

∂=0 . (41)

• Accordingly, the master function (11) is generalized to the following holomorphic function on the universal cover of
Conf
{1, · · · ,n}

(
C\{1, · · · ,zN}

)
:

ℓ(ẑ1, · · · , ẑn ) := ℓ(⃗w,κ)(ẑ1, · · · , ẑn) := ∏
1 ≤ I ≤ N
1 ≤ i ≤ n

(
ẑ i − zI

)−wI /κ

∏
1 ≤ i < j ≤ N

(
ẑ i − ẑ j)2/κ

. (42)

Now the general form of Prop. 2.15 is:

Proposition 2.17 ( ŝl2
k-Conformal blocks as twisted holomorphic cohomology of configuration space of punctured plane

[FSV94, Cor. 3.4.2, Rem. 3.4.3]). For k ∈ N and integrable weights w⃗ ∈ {0, · · · ,k}N (20), the [ω1(w⃗,κ)]-twisted holo-
morphic cohomology of the configuration space Conf

{1, · · · ,n}

(
C\{z1, · · · ,zN}

)
(40) is concentrated in degree n, where it naturally

contains the space of degree=n ŝl(2)k-conformal blocks (30):

CnfBlckn
ŝl2

k (⃗w,⃗z) ≃ Lin(win −2n)
/
(· · ·) Hn

(
Ω

•,0
dR ( Conf

{1, · · · ,n}

(
C\ {⃗z}

)
)|

∂=0, ∂ +ω1(⃗w,κ)∧
)
.

e.g. fI fJ |v0
1 · · · ,v0

N⟩ =
(35)

[
· · · , ( f · v0

I
), · · · , ( f · v0

J
), · · ·

] generators
7−!

[
wI
κ

dz
(z1−zI )

∧ wJ
κ

dz
(z2−zJ )

] (43)

In the evident generalization of Prop. 2.16, using the above, we have the following:
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Theorem 2.18 ( ŝl2
k-Conformal blocks as secondary Chern classes in TED-K-theory of configurations inside A-type singu-

larities). For integrable weights w⃗ ∈ {0, · · · ,k}N (20) and for any n ∈ N+, the secondary Chern classes in TED-K-theory of
Prop. 2.1 of the orbifold configuration space Conf

{1, · · · ,n}

(
C\ z⃗

)
×∗�Cκ naturally receives the space of ŝl2

k-conformal blocks at

level k =−2+κ in degree n:
conformal blocks of the su2 WZW model

CnfBlckn
ŝl2

−2+κ (⃗w,⃗z)

TED-K-theory of configurations of points in complex curve inside A-type singularity

KUn−1+[ω1 (⃗w,κ)]
diff

(
Conf
{1, · · · ,n}

(CP1 \ {⃗z,∞})×∗�Cκ

)
.

natural
transformation

(44)

ŝl2
k-CFT beyond admissible weights at integral level. It is clear that the TED-K-theory group on the right of (44) is larger

than the space of standard conformal blocks included on the left, which suggests that the TED-theory of configurations inside
A-type singularities reflects yet further aspects of conformal field theory. This is argued in Rem. 2.22 below, for which we
now briefly review some relevant background.

Remark 2.19 (Fractional-level WZW models).
(i) The twisted cohomology on the right of (43) certainly makes sense for more general choices of parameters than assumed
in Prop. 2.17 (discussion in this generality goes back to [SV90][SV91], review is in [Va95][EFK98, §7]) – notably it makes
sense at admissible fractional levels k =−2+κ/r (cf. Rem. 2.3).
(ii) Also the ŝl2

k-CFT model is known to make sense for admissible fractional levels (e.g. [FGPP93, (1.4)][PRY96, (1)][Ra20,
§3.1]) if also the weights are “admissible”, which is the case (21) for the integrable integer weights considered above. In fact,
these admissible fractional-level models have been argued to be building blocks of logarithmic CFTs ([CR13, (3.1)][KR19,
(5.1)][KR22, (1.2)], review in [Ri10][Ri20]).
(iii) It is is expected 6 but remains unproven (cf. [FGPP93, bottom of p. 35]) that a suitable notion of conformal blocks for
these fractional-level WZW models exists and that Prop. 2.17 holds true in this greater generality.

We record this as:

Conjecture 2.20 ( ŝl2
k/r-Conformal blocks as twisted holomorphic cohomology of configuration space of punctured plane).

For κ ∈ N≥2, r ∈ {1, · · · ,κ} and w⃗ ∈ {0, · · · ,k}N , the [ω1]-twisted holomorphic de Rham cohomology of the configuration
space Conf

{1, · · · ,n}

(
C \ {z1, · · · ,zN}

)
(40) with ω1 = ω1(w⃗,κ) (41) is concentrated in degree n, where it naturally contains the

space of degree=n ŝl(2)−2+κ/r-conformal blocks (30):

CnfBlckn
ŝl2

−2+κ/r (⃗w,⃗z) Hn
(

Ω
•,0
dR ( Conf

{1, · · · ,n}

(
C\ {⃗z}

)
)|

∂=0, ∂ +ω1(⃗w,κ/r)∧
)
. (45)

Remark 2.21 (The logarithmic-admissible highest-weight irrep). Since the hypergeometric SV-construction of Prop. 2.15
makes manifest that the conformal blocks depend on the weights only modulo the shifted level κ (because they enter the
construction solely through the twisting holonomy [w/κ] ∈ Cκ in (8), (9), see also [Ra20, (3.2)]), it is curious that the
admissible weights w = 0,1, · · · ,k (21) only almost exhaust the non-redundant available range: One single non-admissible
class of weights remains: [k+1] = [κ −1] ∈ Cκ . It has been argued in [Ra20]7 that this single non-admissible weight does
correspond to an irreducible highest-weight affine Kac module which is to be included in the context of logarithmic CFT (cf.
Rem. 2.19). In conclusion:

Remark 2.22 (Fractional-level CFT and logarithmic-admissible modules possibly seen in TED-K-cohomology). Apart
from the cokernel of the map (44), the differential TED-K-cohomology group in Theorem 2.18 is larger than just one copy of
the conformal blocks of the given integrable weights at the integral level k = κ −2:

(i) Fractional-levels. By Rem. 2.3, the secondary TED-K-cohomology groups are direct sums indexed by r ∈ {1, · · · ,κ} of
the twisted cohomology, as on the right of (36), but at all fractional levels k = −2+κ/r (13) which are admissible (in that
κ ≥ 2, see Rem. 2.3). Hence if Conjecture 2.20 holds, then the statement of Prop. 2.16 enhances to the stronger statement that
secondary TED-K-theory naturally contains the conformal blocks of all admissible fractional-level WZW models at once:

direct sum of conformal blocks
of all κ-fractional-level sl2 -WZW models⊕

1≤r≤κ

CnfBlckn
ŝl2

−2+κ/r (⃗w,⃗z) natural transformation
−−−−−−−−−−−−−!

TED-K-theory of configurations of points in complex curve inside A-type singularity

KUn−1+[ω1 (⃗w,κ)]
diff

(
Conf
{1, · · · ,n}

(
CP1 \ {⃗z,∞}

)
×∗�Cκ ; C

)
. (46)

(ii) The logarithmic-admissible module. In addition, the TED-K-theory is defined also for twists that correspond to “non-
admissible” weights wi = κ −1, which by Rem. 2.21 corresponds to a sector that one does want to include in the context of
logarithmic CFT.

6We thank D. Ridout for discussion of this point.
7In [Ra20] this non-admissible highest-weight irrep, or its character, corresponds to the case r = p, s = 0 in (4.17), hence ℓ= 0,s0 = 0 in (3.55), see also

(4.2), hence to the boxes marked by a red upper corner in Figure 1 there.
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3 TED-K-Theory of A-type singularities
The aim of this section is to give an accurate but leisurely informal description of twisted equivariant differential (TED) K-
theory (full definitions and proofs are relegated to [SS22-TEC][SS22-TED]), with goal and focus on transparently bringing
out its peculiar twisting, appearing on Cκ -fixed loci, by C∗

κ -cohomology in degree 1.

In themselves, these twists are known, as “inner local systems” [Ru00], but available descriptions of how these act
([TX06][FHT07]) on equivariant K-theory have been somewhat indirect. To the end of making the phenomenon fully trans-
parent, we use the higher geometric language laid out in [FSS20-Cha][SS20-Orb][SS22-Bun].

The upshot of the discussion here is to explain the simple but archetypical example of how TED-K-theory of Cκ -
singularities with vanishing 3-twist is, in its secondary Chern characters, equivalent to direct sums of ordinary (holomorphic)
cohomology groups twisted by any tensor power of a given flat holomorphic connection – which is the statement used as
Prop. 2.1 in §2 in order to see the natural appearance of conformal blocks into TED-K-theory.

Twisted KU-Theory (following [SS22-Bun, Ex. 1.3.19]).

• ℓ2(C) denotes any countably-infinite dimensional complex Hilbert space, concretely that of square-summable sequences of
complex numbers.

• Fred := Fred
(
C2 × ℓ2(C)

)
denotes the space of Fredholm operators on this Hilbert space, meaning the set of odd-graded

self-adjoint bounded operators on C2 × ℓ2(C) ≃ ℓ2(C)⊕ ℓ2(C)(
0 F

F† 0

)
∈ B

(
C2 × ℓ2(C)

)
hence ℓ2(C) ℓ2(C) ,

F

F†
(47)

whose square differs from the identity by a compact operator: F ◦F† −1, F† ◦F −1 ∈ K (ℓ2(C)).
This implies that F and F† are isomorphisms up to a finite-dimensional kernel and finite-dimensional co-kernel

F : ℓ2(C) ≃
ℓ2(C) ℓ2(C)
⊕ ⊕

ker(F) coker(F)

(
id

0

0

0

)
≃ ℓ2(C) ,

which thus constitute a finite-dimensional C2-graded virtual vector space:(
ker(F)⊕ker(F†)

)
⊖
(
coker(F)⊕ coker(F†)

)
. (48)

• Ugr
ω := U

(
C2 × ℓ2(C)

)
denotes the corresponding unitary group,

• PUgr
ω := Ugr

ω /U1 denotes the corresponding projective unitary group, and
• PUω ⊂ PUgr

ω denotes its subgroup of 0-graded projective unitary operators.
• Ugr

ω ↷Fred denotes the conjugation action F 7! u◦F ◦u†, and
• PUgr

ω ↷Fred denotes its passage to the projective quotient (since conjugation by c ∈ U1 ↪! Ugr
ω is trivial).

• Fred�PUgr
ω denotes the homotopy quotient of this action, formed in topological stacks.

Equipped with the canonical projection

Fred Fred�PUω Fred�PUgr
ω

BPUω BPUgr
ω

pr�PUω (pb) pr�PUgr
ω

(49)

this is the universal Fred-fiber bundle over the topological moduli stack BPUgr
ω := ∗�PUgr

ω of PUgr
ω -principal bundles.

• KU[τ](X) := τ0 SMap
(
(X,τ), Fred�PUgr

ω

)
BPUω

denotes – for a given twist τ ∈ Map(X, BPUgr
ω ) – the [τ]-twisted complex

K-cohomology of the topological space X, being the set homotopy classes of sections of the τ-associated Fred-bundle, see
(55) below.

Towards the equivariant generalization of twisted K-theory, we first consider the notion of “stable” projective unitary
representations of the equivariance group:
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Stable projective representations (following [SS22-Bun, Ex. 4.1.56]).
• G denotes a finite group, to serve as the equivariance group and eventually to be specialized to a cyclic group G := Cκ .
• Irr(G) denotes the set of isomorphism classes of its irreducible unitary representations.
• RC(G) ≃ Z

[
Irr(G)

]
denotes the complex representation ring, identified with the ring of integer multiples of irreps under

tensor product of representations:

[ρi], [ρ j] ∈ Irr(G) ⊂ RC(G) ⊢ [ρi] · [ρ j] :=
[
ρi ⊗ρ j

]
=

[ ⊕
[ρk] ∈
Irr(G)

⊕
{

1, · · · ,ρk
i j
}ρk

]
= ∑

[ρk] ∈
Irr(G)

ρ
k
i j · [ρk] . (50)

For example, when G = Cκ as in (3), then this product operation is addition of labels modulo κ:

[Cs/κ ], [Cs′/κ ] ∈ Irr(Cκ) ⊢ [Cs/κ ] · [Cs′/κ ] = [C(s+s′ modκ)/κ ] . (51)

• G∗ := Hom(G, U1) ⊂ RC(G) denotes the character group, regarded as the subgroup of the group of units of the represen-
tation ring given by the G-representations on C, and

• 1ρ ∈ C ρ
∼ denotes the unit complex number as an element of a 1d irrep [ρ] ∈ G∗.

For example, when G = Cκ as in (3), then

C∗
κ =

({
[ρ1], · · · , [ρκ ]

}
, ·
)
,

with the group operation (51).
• G∗ ↷RC(G) denotes the action of the character group on (the abelian group underlying) the representation ring by tensoring,

hence by the formula (50) for 1-dimensional ρi.
• G∗ ↷

(
C⊗Z RC(G)

)
denotes the complexified complex representation ring equipped with the permutation representation of

the above action of the character group.

For G = Cκ this is the regular representation of the character group C∗
κ , isomorphic to the direct sum of its 1d irreps:

C∗
κ ↷

(
C⊗Z RC(Cκ)

)
≃ C∗

κ ↷

⊕
Irr(Cκ )

C ≃ C∗
κ ↷

⊕
1≤r≤κ

(
∑

1≤s≤κ

e2πisr/κ · [ρs]

)
=:

⊕
1≤r≤κ

C−r/κ . (52)

• Map(BG, BPUgr
ω ) ≃ Hom(G, PUgr

ω )�PUgr
ω denotes the mapping stack, which is equivalently the homotopy quotient of the

space of group homomorphisms G−! PUgr
ω , hence of projective unitary G-representations, by the PUgr

ω -conjugation action.
• Map(BG, BPUgr

ω )stbl ↪−!Map(BG, BPUgr
ω ) denotes the sub-object of the “stable” projective unitary representations, which

are indexed by a level of projectivity [c2] ∈ H2(G; U1) and give by the direct sums of a countably infinite number of copies
of all [c2]-projective irreps ρ

[c2]
i of G.

• BG∗ ≃
{

stbl0
}
�G∗ ι

−!Map(BG, BPUω)
stbl denotes the further inclusion of the stable projective representation at [c2] = 0

G ↷

stbl0
ℓ2(C) ≃

⊕
[ρi] ∈
Irr(G)

ρi ⊗ ℓ2(C) , (53)

together with its automorphisms given by the following action of group characters [ρ] ∈ G∗ Ωι
↪−−! Ωstbl0Map(BG, BPUω)

by projective auto-intertwiners:

BG BPUω

•
⊕
[ρi] ∈
Irr(G)

ρi ⊗ ℓ2(C)
⊕
[ρi ]∈
Irr(G)

ρi ⊗ ℓ2(C)

7−!

•
⊕
[ρi ]∈
Irr(G)

ρi ⊗ ℓ2(C)
⊕
[ρi ]∈
Irr(G)

ρi ⊗ ℓ2(C)

stbl0

stbl0

ρ ∈G∗

g

v 7!1ρ⊗v

⊕
[ρi ]

(ρi(g)⊗id) ⊕
[ρi ]

(ρi(g)⊗id)

v 7!1ρ⊗v

ρ(g)(1ρ )

(54)
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Here the diagram on the right shows that the operation of tensoring with the unit element 1ρ ∈ C ≃ ρ intertwines the
stable G-representation with itself, up to (as befits a projective intertwiner) a coherent phase factor, here given by the values
ρ(g)(1ρ) ∈ U1 ↪−! C:

v ∈ ρ j ⊂ ⊕
i
ρi ⊢

(
⊕
i

ρi
)
(g)
(
1ρ ⊗ v

)
=
(
ρ(g)(1ρ)

)
⊗
(
ρ j(g)(v)

)
= ρ(g)(1ρ) ·

(
1ρ ⊗

(
⊕
i

ρi
)
(g)(v)

)
.

Twisted Equivariant KU-Theory (following [SS22-Bun, Ex. 4.3.19]).

• G ↷X denotes a topological space X equipped with a continuous G-action (a “G-space”).
• Map(X�G, BPUgr

ω )stbl ↪−!Map(X�G, BPUgr
ω ) denotes the sub-object of the mapping stack on the maps that restrict to stable

projective Gx-representations (in the above sense) of the isotropy group Gx ⊂ G of all x ∈ X.
• KU[τ]

(
X�G

)
:= τ0 SMap(X�G, Fred�PUgr

ω )BPUgr
ω

denotes – for a given stable twist τ ∈ Map(X�G, BPUgr
ω )stbl – the

[τ]-twisted G-equivariant complex K-cohomology of X, being the set of homotopy classes of sections of the τ-associated
Fred-fiber bundle over the orbifold X�G:

twisted equivariant
complex K-cohomology

KU[τ]
(
X�G

)
:=



universal
Fred-bundle

Fred�PUgr
ω

X�G
orbifold

BPUgr
ω

moduli
stack

equivariant twist

τ

twisted equivariant

cocycle

/
htpy

(55)

We now specialize this general situation to the of case of interest here, namely (1) to G-fixed loci and (2) to G =Cκ :

Twisted equivariant K-theory of singularities.

• FredG ↪−! Fred denotes the subspace of Fredholm operators which are fixed under the action of the unique stable G-
representation (53), hence the following stacky homotopy fiber space:

FredG Map
(
BG, Fred�PUω

)
∗ Map(BG, BPUω) .

(pb)

⊢ ⊕
i

ρi⊗ℓ2(C)

(56)

Since the PUω -action on Fred is by conjugation, these G-fixed Fredholm operators are precisely the G-equivariant Fredholm
operators. Therefore, Schur’s Lemma implies that G-fixed Fredholm operators are direct sums of plain Fredholm operators
Fi : ℓ2(C)−! ℓ2(C) indexed by the G-irreps:

F ∈ FredG ⊢ F :
⊕
[ρi ]∈
Irr(G)

ρi ⊗ ℓ2(C)
⊕
[ρi ]∈
Irr(G)

ρi ⊗ ℓ2(C) .
⊕

i id⊗Fi (57)

Hence, in particular, the shape of the space of G-fixed Fredholm operators is the Irr(G)-indexed product of copies of the
shape of the space all Fredholm operators:

S
(
FredG) ≃ ∏

Irr(G)

(
SFred

)
. (58)

Consequently, the (co)kernels (48) of G-fixed Fredholm operators are G-subspaces of the stable G-representation, hence
are any finite-dimensional virtual G-representations:

F ∈ FredG ⊢ F :
⊕

i

ρi ⊗ ℓ2(C) ≃
⊕

i ρi ⊗ ℓ2(C)
⊕

i ρi ⊗ ℓ2(C)
⊕ ⊕

ker(F) coker(F)

(
id

0

0

0

)
≃
⊕

i

ρi ⊗ ℓ2(C) . (59)

Moreover, on the fixed locus FredG there is still an action F 7! [ρ] ·F by group characters [ρ] ∈ G∗, induced by their
projective intertwining action (54) on the stable G-representation:
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stable G-representation⊕
i ρi ⊗ ℓ2(C)

⊕
i ρi ⊗ ℓ2(C)

⊕
i ρi ⊗ ℓ2(C)

⊕
i ρi ⊗ ℓ2(C)

⊕
i ρi ⊗ ℓ2(C)

⊕
i ρi ⊗ ℓ2(C)

⊕
i ρi ⊗ ℓ2(C)

action of group character on equivariant Fredholm operator
FFredholm operator

v 7!1ρ⊗v

⊕
i ρi⊗ℓ2(C)

[ρ]·F

equivariance of
Fredholm operator

v 7!1ρ⊗v
tensoring with unit of group character

⊕
s ρi(g)⊗id

⊕
s ρi(g)⊗id

F

projective intertwining action
of group character

v 7!1ρ⊗v

(60)

From the top square it is manifest that this G∗-action on the (co)kernels (59) is again by tensoring with unit elements in the
group characters:

ker
(
[ρ] ·F

)
= 1ρ ⊗ker(F) , coker

(
[ρ] ·F

)
≃ 1ρ ⊗ coker(F) .

Therefore, the G∗-action on the geometric G-fixed locus (58) of the classifying G-space is by permuting the irrep labels as
given by their (inverse) tensor product with the group characters:

G∗× S
(
FredG) S

(
FredG)

G∗× ∏
Irr(G)

SFred ∏
Irr(G)

SFred

(
[ρ],

(
f[ρi]

)
[ρi]∈Irr(G)

)
7−!

(
f[ρ]−1·[ρi]

)
[ρi]∈Irr(G) .

≃ ≃

(61)

• X�G ≃ X×∗�G denotes the special case of the domain orbifold where X is fixed by the G-action, hence where X is
entirely “inside a G-orbi-singularity”.

In this case, the mapping stack adjunction gives the following natural equivalence of the moduli stack of stable twists:

Map(X�G, BPUω)
stbl Map(X×∗�G, BPUω)

stbl Map
(
X, Map(BG, BPUω)

stbl
)
.∼

assmpt.

(̃−)

∼
adj.

(62)

If here X is a smooth manifold, then the maps on the right are classified by ([SS22-Bun, Ex. 4.3.19]):

SMap(BG, BPUω)
stbl ≃ Map(BG, B3Z) .

Furthermore, when G ≃ Cκ , where the cohomology groups are given by

H3(BCκ ; Z
)
≃ H3

Grp
(
Cκ ; Z

)
≃ 0 and

H2(BCκ ; Z
)
≃ H1(BCκ ; BU1

)
≃ Hom(Cκ , U1)

= C∗
κ ,

this classifying space of twists becomes Map(BCκ , B3Z) ≃ BC∗
κ × B3Z , so that the twists (62) on an Aκ−1-singularity X

are classified by

τ0 SMap
(
X, Map(BCκ , BPUω)

)
≃

special
deg=1 twists

H1(X; C∗
κ

)
×

ordinary
deg=3 twists

H3(X; Z
)
. (63)

The second factor is the familiar degree=3 twist of complex K-theory, while the first factor is the twist by flat complex line
bundles with holonomy in the character group of the singularity, that appear in Prop. 2.1.

• Denote by

τ̃ ∈ Map(X, BG∗) Map
(

X, Map(BG, BPUω)
stbl
)

≃
(62)

Map
(
X×∗�G, BPUω

)stblMap(X, ι)

(53)

the assumption that the given stable twist τ on X×∗�G is on X a cocycle with coefficients in BG∗ (54) (i.e., in the first factor
of (63)). This means that, under the equivalence (62), the TE-K-theory cocycles (55) now take values in G∗-associated (60)
FredG-fiber (56) bundles over X:
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Fred�PUω

X×∗�G BPUω
τ

equivariant
twist

K-cocycle
↔

FredG�G∗ Map(BG, Fred�PUω)
stbl

X BG∗ Map(BG, BPUω)
stbl

(pb)

1-twist on
singularity

adjunct

K-cocycle

τ̃

ι

(53)

(64)

This brings out the special 1-twist that appears on singularities. Next we see how this becomes the twist a flat complex
line bundle, by entering the differential setting, i.e., into twisted equivariant differential K-theory.

TED-K-Theory of A-type singularities (following [FSS20-Cha, Def. 4.38]).
• SmthGrpd∞ := LocLclWEq

∆PSh(CartSp) denotes the homotopy theory of ∞-stacks over the site of smooth manifolds (e.g.
[FSS20-Cha, Ex. A.49]).

For the most part here we just need that, in addition to plain homotopy types, this contains the sheaves of De Rham
complexes:

• BdΩ•
dR(−;C) ∈ SmthGrpd∞ denotes the image under the Dold-Kan embedding DK (cf [FSS20-Cha, Ex. A.66]) of the

sheaf of de Rham complexes of C-valued differential forms, regarded as chain complexes in non-positive degrees, shifted
up in degrees by d and then cohomologically truncated in degree 0:

Bd
Ω

•
dR(−;C) := DK

(
· · · 0
−! 0 0
−!Ω

0
dR(−;C) d

−!Ω
1
dR(−;C) d

−! · · · d
−!Ω

d
dR(−;C)|d=0

)
∈ SmthGrpd∞ .

By the Poincaré Lemma and as an incarnation of the De Rham theorem, this ∞-stack is equivalent to the classifying space
for ordinary cohomology with complex coefficients in degree d:

BdC ≃ Bd
Ω

•
dR(−;C) ∈ SmthGrpd∞ . (65)

• BdΩ•
dR(−;Cr/κ) denotes the de Rham complex as above, now regarded with an action (3) of C∗

κ on its coefficients.

• BdΩ•
dR(−;Cr/κ)�C∗

κ ∈ (SmthGrpd∞)/BC∗
κ

denotes the corresponding homotopy quotients.

• X
ηC

X−−! LocCX denotes the C-rationalization of a simply-connected homotopy type X , hence its Q-rationalization followed
by derived extension of scalars along Q ↪−! C (cf. [FSS20-Cha, Rem. 3.64]).

In particular, the C-rational homotopy type of the space of Fredholm operators (47) is the map representing the usual Chern
character (cf. [FSS20-Cha, Ex. 4.13]):

SFred LocC
(
SFred

)
≃ ∏

d∈N
B2dC (66)

and that of its G-fixed locus with its C∗
κ -action (61) is as follows:

C∗
κ ↷

(
LocC S

(
FredG)) ≃ C∗

κ ↷

(
LocC

∏
Irr(G)

SFred
)

by (58)

≃ C∗
κ ↷

(
∏

Irr(G)
LocC SFred

)
≃ C∗

κ ↷

(
∏

Irr(G)
∏

d∈N
B2dC

)
by (66)

≃ C∗
κ ↷

( ⊕
Irr(G)

⊕
d∈N

B2dΩ•
dR(−; C)

)
by (65)

≃
⊕

1≤r≤κ

⊕
d∈N

B2dΩ•
dR(−; Cr/κ) by (61) & (52) .

(67)

(In the last step, notice that the sign on the far right of (52) cancels against the inversion in the action (61).)
• KUdiff ∈ SmthGrpd∞ denotes the coefficient stack for differential complex K-theory, namely the following homotopy fiber

product (as in the general setting of [HS05][BNV13], we follow [FSS20-Cha, Def. 4.38]):

KUdiff
⊕

d∈N
Ω2d

dR(−; C)|d=0

SFred LocC SFred
⊕

d∈N
B2dΩ•

dR(−;C)

(pb)

(66)

ch

∼
(66) & (65)

(68)
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The full twisted equivariant version of this holomorphic-differential K-theory is defined in the analogous way for each fixed
locus FredH , as G/H for H ⊂ G ranges through the category of orbits of the group G. Here we only need and hence only
display the adjunct situation (64) over the G-singularity:

• KUCκ

diff�C∗
κ ∈ CplxGrpd∞ denotes the homotopy quotient of the C∗

κ -action induced by the respective actions (67) on the
Cκ -fixed loci in the factors of the fiber product, hence the following homotopy pullback:

KUCκ

diff�C∗
κ

⊕
1≤r≤N

⊕
d∈N

Ω2d
dR(− ;Cr/κ)|d=0�C∗

κ

S
(
FredCκ

)
�C∗

κ

(
LocC S

(
FredCκ

))
�C∗

κ

⊕
1≤r≤N

⊕
d∈N

B2dΩ•
dR(− ;Cr/κ)�C∗

κ

(pb)

(66)

chCκ �C∗
κ

twisted equivariant Chern character on A-type singularity

∼
(67)

(69)

This is the moduli stack for TED-K-theory of Cκ -singularities (as appearing in Prop. 2.1), which is now defined, analogously
to (55), as:

KU1+n+[ω1]
diff

(
X×∗�Cκ

)
=


KUCκ

diff�C∗
κ

X BC∗
κ[ω1]

/
htpy

.

Forming the homotopy fiber sequence of the twisted equivariant Chern character map (69) we obtain first the moduli stack
for the flat version and then the secondary Chern character in TED-K-theory of A-type singularities, yielding the stacky
avatar of a twisted and equivariant version of the differential cohomology hexagon (4):

⊕
1≤r≤N

⊕
d∈N

B1+2dΩ•
dR(− ;Cr/κ)�C∗

κ KUCκ

diff�C∗
κ

⊕
1≤r≤N

⊕
d∈N

B2dΩ•
dR(− ;Cr/κ)�C∗

κ .

KUCκ

♭ �C∗
κ

S
(
FredCκ

)
�Cκ

chCκ
diff �C∗

κ

chCκ �κ
∗

Finally, the equivalence classes of maps into these smooth stacks, sliced over BCκ , gives the cohomology groups:

⊕
d∈N

1≤r≤κ

H1+2d
(
Ω•

dR(X; C),d+ r ·ω1
)

≃



⊕
d∈N

1≤r≤κ

B1+2d Ω•
dR(−;Cr/κ)�C∗

κ

X BC∗
κ[ω1]

/
htpy

KU0+[ω1]
diff

(
X×∗�Cκ

)

:=


KUCκ

diff�C∗
κ

X BC∗
κ[ω1]

/
htpy

(
chCκ

diff �C∗
κ

)
∗

⊕
d∈N

1≤r≤κ

H2d
(
Ω•

dR(X),d+ r ·ω1
)

≃



⊕
d∈N

1≤r≤κ

B2d Ω•
dR(−;Cr/κ)�C∗

κ

X BC∗
κ[ω1]

/
htpy

(70)

(Here the equivalences on the left and right follow by (6) and (12), after using that the simplicial presheaf B2dΩ•
dR(−)

satisfies descent over smooth manifolds, so that the sliced hom-space above is equivalently that of π1(X)−!C∗
κ -equivariant

de Rham cohomology on the universal cover of X.)

This presentation (70) now makes manifest the claim of Prop. 2.1.
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4 Anyonic defect branes in TED-K-theory
In this section we match the mathematical results in §2 to computations and expectations in the string theory literature,
concerning the nature of codimension=2 defect branes. The result supports the notion that the expected exotic defect brane
charges are well reflected in K-theory – if this is understood in its refined incarnation as TED-K-theory (§3). Of course, it is
generally expected that all of equivariant & twisted & differential K-theory is necessary for measuring D-brane charge (see
Rem. 4.1 below), but the relevant sector according to Prop. 2.1 has not found attention before.

We conclude below by highlighting that a full match requires considering TED-K-theory not just of spacetime manifolds
transversal to defect branes, but also of the configuration spaces of points inside these transversal spaces; and we close, around
Rem. 4.8, by explaining how this squares with our previously discussed Hypothesis H about the nature of brane charges in
M-theory. First to recall this and related hypotheses:

Remark 4.1 (Hypotheses about brane charge quantization.). Despite all existing discussion of brane physics in non-
perturbative string theory, an complete theory of branes has been missing, and the rules followed by stable brane charges have
remained hypothetical. We briefly indicate three such hypotheses and some of their interrelations (the first two of these are
well-known but do not have established names, so we introduce the following terms for ease of reference):

• Hypothesis D – the hypothesis ([AD02][DFR05], review includes [ABCD+09][Pi18][CS15, p. 3-4]) that stable D-brane
charge, at least on complex-analytic spaces such as Calabi-Yau manifolds, is reflected in stability conditions [Br07] on the
homotopy category of chain complexes (“derived category”) of coherent sheaves on these complex spaces, hence essentially
of (possibly degenerate) holomorphic vector bundles ([Bl05]).

The Z-grading V• on these chain complexes has been motivated, somewhat vaguely, from a ghost degree seen in topological
strings, while the differential V• −!V•+1 models the tachyon field between brane/anti-brane Chan-Paton bundles. This latter
aspect is the compelling one, but what it really motivates is not so much a differential on a chain complex, but a Fredholm
operator on a Z/2-graded vector bundle – as in (47) – whose (co)kernel is the stable (anti-)brane charge that remains after
tachyon condensation.

Since Fredholm operators represent topological K-theory, this motivates instead (see [Wi98, §3]):
• Hypothesis K – the hypothesis that D-brane charge is measured in some (twisted, equivariant, differential) version of

topological K-theory of spacetime ([Wi98], see [SV07][BMSS19, §1][GS19b] for further pointers and details).

But plain topological K-theory – as the name suggests – is insensitive to the complex-analytic structure that is so crucial in
motivating Hypothesis D above. This striking disconnect between the two proposals for D-brane charge quantization seems
to have received little systematic attention, though it clearly suggests to consider some form of K-theory of holomorphic
vector bundles (a point made in [Sh99], see also [Sche01, §5.3.3]).

We observe that the holomorphic vector bundle structure must be thought of as part of the differential enhancement of
K-theory:

1. Holomorphic structure. The Koszul-Malgrange Theorem (e.g. [DK97, Thm. 2.1.53]) says that holomorphic vector
bundles are equivalently complex vector bundles equipped with a flat anti-holomorphic covariant derivative. This already
implies a purely differential-geometric incarnation of the derived category of coherent sheaves over a complex manifold
([Bl05, §4]), and hence of the categories of D-branes according to Hypothesis D (as highlighted in [Be08]).

2. Holomorphic connections. Completing this to a holomorphic connection on a holomorphic vector bundle implies that
the Chern character vanishes and, under mild conditions, that the connection is in fact flat (e.g. [Bi98]). Therefore, Chern
character invariants of holomorphic connections on holomorphic vector bundles are necessarily secondary invariants (e.g.
[DHZ00], i.e., of Cheeger-Simons-type, see [FSS20-Cha, §4.3]), and thus (cf. Rem. 2.2) “holomorphic K-theory” over
complex manifolds is largely a topic in flat differential K-theory (68).

• Hypothesis H is the hypothesis ([FSS20-Hyp][FSS19-M5a][SS21-M5b][FSS21-M5c][SS19-Tad][SS22-Cfg][SS21-MF],
initiated in [Sa13, §2.5]) that: 8

– M-brane charge is in (tangentially twisted, equivariant, differential) non-abelian Cohomotopy theory;
– the full Cohomotopy cocycle spaces (of which Cohomotopy classes are just the connected components) constitute the

moduli spaces of M-brane configurations;
– the abelian cohomology of these Cohomotopy cocycle spaces/moduli spaces reflects the quantum states of M-branes.

8Following [FSS20-Cha], we say “abelian cohomology” for Whitehead-generalized cohomology theories represented by spectra, and “non-abelian
cohomology” for cohomology theories represented by unstable spaces, such as those classifying principal bundles, Giraud gerbes or unstable Cobor-
dism/Cohomotopy.
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For example (see [FSS16-S][BMSS19]): the Cohomotopy cocycle space of the M-theory circle (hence the moduli of M-
branes in their “double dimensional reduction” to type IIA string theory) is rationally equivalent to essentially the classifying
space of twisted complex K-theory, and hence itself carries a canonical class in twisted K-theory, the pullback of which to
10d spacetime yields the usual K-theory classes of D-branes (all at least in rational approximation).

Similarly (see [SS22-Cfg][CSS21]), the non-abelian Cohomotopy cocycle space of the space transverse to intersecting
D6/D8-branes, properly formulated, is the configuration space of points in the 3-space transverse to the D6s inside the D8s
(as befits the space of moduli of D6⊥D9 -intersections) and the abelian cohomology of this configuration space reflects
much of the quantum structure expected of such brane intersections.

In short, according to Hypothesis H, the brane charges and their moduli are fundamentally in non-abelian Cohomotopy
theory, while their quantum states are reflected in the abelian cohomology of, in turn, the Cohomotopy cocycle spaces (cf.
[GS20]), which tend to be related to configuration spaces; and here twisted K-theory is singled out as being the abelian
cohomology theory which canonically observes, on the Cohomotopy cocycle spaces, the double dimensional reduction
from 11d to type II string theory, thereby connecting back to Hypothesis K above.

We now explain what the discussion in §2 says about brane charges, under these hypotheses:

Remark 4.2 (Exotic defect branes and Anyon statistics.). It has been argued [dBS13, p. 12] that all “exotic branes” in string
theory (e.g. [BMO19]) are equivalently codim=2 defect branes with U-duality group monodromy around the point where
they puncture their transverse 2-dimensional space; and it has been speculated [dBS13, p. 65] that this may be understood as
realizing anyon statistics in string theory, though any details have remained open.

But under Hypothesis K, the statement of Prop. 2.16 and Thm. 2.18 is that defect brane charges subsume conformal
blocks – these, in their dependence on the punctured transverse space, solve the Knizhnik-Zamolodchikov (KZ) equation and
thus constitute monodromy braid representations (e.g. [Ko87][GHL21], review in [TH01] [GHL21, §1]). This is exactly
what reflects anyon statistics (e.g., [Le92][Rao16]), here now of defect branes as they are braided around each other in their
transverse space (Figure 1).

Indeed, it is well-understood that anyons in 2 spatial dimensions may be identified with primary fields (Rem. 2.6) of a
(rational chiral 2d) CFT, such that their wavefunctions are identified with the corresponding conformal blocks (this is due to
[MR91], further developments in [GHL21][ZWXT21], review in [Le92, §9][Wan10, §8.3][Su18]). In fact, realistic anyon
species are described by the ŝu2k-WZW model CFT, see p. 30 below.

Following this identification, it has become customary to take the unitary modular tensor categories (UMTC) formed by
primary CFT fields and their fusion rules to be the very definition of the given “topological order” exhibited by a topological
(i.e. gapped) phase of matter (e.g. [De19, Def. 1.3]).

We come back to this anyonic aspect of defect branes in §5. Here we continue with discussing the evidence that the
TED-K-theory of the punctured plane reflects further expected properties of defect branes in F/M-theory:

Remark 4.3 (D7-brane charges expected in type IIB/F-theory.). The most evident defect branes in string theory are D7-
branes in type IIB string theory [BdRGPT96]. Their naive charge lattice, under Hypothesis K, is the (reduced) K-theory of
their compact(ified) transverse space (see Rem. 4.5 below for background), which in the basic situation of a transverse plane
means: {

D7-brane charges as
seen in plain K-theory

}
= KU0(R7,1

+ ∧R2
cpt
)

≃ KU0(S2) ≃ Z . (71)

This says (or would say) that there is a single species of D7-branes which comes in integer multiples (of “coincident branes”).
While routinely stated (e.g. [BGH99, §2.1][OZ99, Tab. 3][Schw01, §4.2], following [Wi98, §4.1][Ho98, §2]), this is not
actually expected to be even close to the full answer: In the hypothetical non-perturbative completion of type IIB string
theory that goes by the working title F-theory [Va96][Sen96], one instead expects all of the following (see also analogous
earlier discussion of codim=2 “stringy cosmic strings” in [GSVY90, §3]), compare Figure 2 below:

(i) Complex structure. The space transverse to D7-branes carries the structure of a complex curve Σ2 (e.g. [Sen96, (2.4)]
[BBS06, (9.190)], nowadays traditionally denoted “B”, e.g. [We18, (2.40)]), being the base of an elliptic fibration (81)
whose fibers degenerate at the locus of each D7I , which hence appears as a puncture zI in Σ2 (e.g. [Sen96, (2.5)][BBS06,
(9.206)][We18, §3.2]).

(ii) Axio-Dilaton field. With respect to this complex structure, the RR-field F1, which measures the flux through 1-spheres
around the D7-branes, in its S-duality covariant incarnation where its potential is the axio-dilaton field (cf. [Sen96,
(2.4)][BBN10, §3.1][We18, (2.5)])

τ :=
axion

C0 + i
dilaton

eφ ∈ Map
(

Σ̂2, C|Re>0
)
, (72)
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is constrained (by supersymmetry) in the vicinity of the I-th D7 puncturing at zI , to have the following “profile” ([Va96,
p. 2][Sen96, (2.7)][We18, (2.7)]):

F1 := dτ := d
(
C0 + ieφ

) !
= 1

2πi dlog(z− zI ) + d
(

terms regular in (z− zI )
)
. (73)

(iii) SL(2,Z)-Multiplets. The S-duality group SL(2,Z) is meant to act on the possible charges carried by each D7I , making
them transform in SL(2,Z) representations, often assumed to be 2-dimensional (“doublets” or “(p,q)”-branes, e.g. [We18,
§2.1]), but possibly also higher dimensional (“multiplets”, such as triplets [MO98]).

In particular, the shift τ 7! τ + 1 which is picked up by the axio-dilaton (72) as a probe encircles one of the D7-branes,
according to (73), is meant to correspond to the action of the corresponding element T ∈ SL(2,Z), from (22), on the
D7-brane charges (e.g. [We18, (2.12)]).

(iv) 24 D7-branes to cancel tadpoles. Consistency of the total D7-brane charge under the shift action τ 7! τ +1 is meant to
require the presence of exactly 24 D7-branes ([Sen96, (2.5)]).

(v) SU(κ)-gauge fields on D3-branes at Aκ−1. Type IIB string theory exists over ADE-orbifolds, notably over Aκ−1-type
orbifolds H�Cκ ([DM96][JM96]) and D7-branes extending over such orbifolds contain bound D3-branes, transverse
to the singular locus, which carry N = 2, D = 4 super Yang-Mills theory with gauge group SU(κ) ([BDS96][BI97,
§3][BDVFLM02, p. 7] ): This is Seiberg-Witten theory in its incarnation via geometric engineering ([KKV97]) in type
IIB string theory (review in [Le97, §4]).

(vi) Transversal ŝu2k D-geometry. The conformal field theory of open superstrings on a worldsheet Σ2 stretching between
the D7-branes and probing the ambient Aκ−1-singularity (as in [Ku96]) is controlled by the ŝu2k-WZW model at just the
shifted level k = κ −2 (1):

LG-CFT with target H�Cκ = ŝu2κ −2 ⊕ 4 free fermions ⊕ 1 free scalar . (74)

This crucial statement is due to [OV96, p. 10-12][LLS02, p. 4], but may not to have found due attention; see also Rem.
4.7 below.

In the sense of non-commutative D-brane geometry (as in [FGR97, §7.4][Do99, §2]), this ŝu2κ −2-algebra may be under-
stood ([OV96, bottom of p. 11]) as encoding the quantum geometry of the complement 3-sphere S3 ≃ SU(2) around (75)
the Aκ−1-singularity.

(vii) SU(κ)-BPS states on D3. The boundary states of this CFT (74) are labeled ([Le00, p. 5][LLS02, §2]) by the pri-
mary fields of the ŝu2k-WZW model, hence (Rem. 2.6) by integrable weights wI and encode, in a stringy realization of
the MacKay correspondence, the BPS states of the N = 2 SU(κ) SYM-theory on the worldvolume of the D3-branes
([Le00][LLS02]).
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e
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Σ2 H�Cκ

A κ
−1
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pe
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gularity

Aκ−2 {0}
SL(2,Z)-multiplet D7I {zI}

SU(κ)-SYM on D3i {zi} {0}
Σ2

D7�Cκ

wI wJ

ŝu2κ −2

Figure 2. Defect brane configurations in F-theory. Compare Figure 1 and compare the M-theoretic configurations in Figure 3.

In conclusion, it used to be an open question (maybe never explicitly stated as such) how Hypothesis K, which naively
seems to predict the simple answer (71), can be compatible with this rich charge structure (Rem. 4.3, Figure 2) actually
expected for D7-branes.9 We now point out, culminating in (80) below, that when K-theory is understood in the full beauty
of TED-K-theory according to §3, then the discussion in §2 provides at least part of the answer to this question:

Remark 4.4 (D7-Brane Charges seen in TED-K-Theory.). According to §2, TED-K-theory of punctured planes transverse
to D7-branes exhibits all of the following effects:
• A further field ω1(⃗w;κ) appears around D7-branes at A-type singularities, of which the discussion in §3 shows that it is a

peculiar “twisted sector” of the Kalb-Ramond B-field, which may not have found due attention yet.
• Its effect is to attach new charges wI ∈ {0, · · ·κ − 1} from (9) to the D7-brane punctures zI , naturally identified with

integrable/admissible highest weight representations of ŝl2
k (Rem. 2.6) and hence with affine characters chk

wI
, from Rem.

2.7.
9The suggestion to include at least the complex structure on the transverse space Σ2 in the charge quantization law for D7-branes is implicit in discussions

of D7-brane charges under Hypothesis D, e.g. in [CS15, p. 4][Schw19, §4.1.1], but this alone still does not yield SL(2)-charges.
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• As such, these new charges canonically transform under an action of SL(2,Z) (Rem. 2.7).

This applies even when the twisted sector B-field ω1(⃗v,κ) actually vanishes – which is, implicitly, the case considered in
previous discussions of F-theory –, because this is just the case where all weights take the (admissible) value wI = 0.

• The affine character that is naturally associated with these weights in generality transforms under the monodromy shift
τ 7! τ +1 (22) by picking up a phase that is a primitive 24th root of unity (23). Therefore, it requires the tensor product of
24 of these charges to get an invariant under the shift operation τ 7! τ +1 (Ex. 2.8).

• This discrete set of charges parameterizes the full space of secondary charges constituting the degree-1 conformal blocks
on Σ2 of the ŝl2

k-WZW model at level k = κ −2 (Prop. 2.16).

This TED-K-theory data (Rem. 4.4) favorably compares with the expected list of exotic brane charges in Rem. 4.3 (Figure
2). To fully appreciate this match, it may be worthwhile to step back and discuss general aspects of D-brane charge seen in
K-theory, some subtleties of which may not have received due appreciation:

Remark 4.5 (D-Brane charges and RR-fields in K-Theory). While the topic has a somewhat long history, the following
general aspect is crucial but a little subtle and may need more amplification (cf. [MW00, §2]). Given a “flat brane”, i.e., one
with worldvolume Rp,1 linearly embedded into a Minkowski spacetime Rd,1, there are two different spherical domains on
which to measure the brane charge:

(i) The complement of the worldvolume

Rd,1 \Rp,1 ≃
htpy

Rd−p \{0} ≃
htpy

Sd−p−1 . (75)

This models the case of gravitationally back-reacted black branes whose actual locus is, or would be, a singularity. Just
like the singularity of a charged black hole – which is the special case d = 3, p = 1, to which the original and archetypical
electromagnetic charge quantization argument due to Dirac applies; this singular brane worldvolume is not actually part of
spacetime.

Still, the charge hidden in the singularity is reflected in the integrated field line flux through any sphere enclosing it – a
concept going back all the way to Faraday, which in terms of de Rham cohomology says:

Hd−p−1
dR

(
Rd,1 \Rp,1

)
≃ Hd−p−1

dR

(
Sd−p−1

)
R .

Fd−p−1
field flux density

on spacetime

7−!
∫

Sd−p−1
Fd−p−1

total flux through sphere
around singular brane

∼

(ii) The (Aleksandrov-)compactification of the space to the worldvolume, by adjoining a single “point at infinity”:

Rp,1
+ ∧

(
Rd,1/Rp,1)

cpt ≃ Rp,1
+ ∧Rd−p

cpt ≃
htpy

Rd−p
cpt ≃ Sd−p . (76)

This corresponds to the case of solitonic branes with respect to non-gravitational fields: The one-point compactification
(together with the use of reduced cohomology) expresses that the topologically non-trivial field configurations which sup-
port/constitute the brane vanish (trivialize) far away from the brane locus, and the fact that the brane locus is not removed
from spacetime expresses that the field is well-behaved everywhere in between, in that its charge density J is finite (i.e.,
well-defined) everywhere:

Hd−p
dR

(
Rp,1 ∧

(
Rd,1/Rp,1

))
≃ Hd−p

dR

(
Sd−p

)
R .

Jd−p
charge density
on spacetime

7−!
∫

Sd−p
Jd−p

total charge of
solitonic brane

In both cases, the effective space on which to measure flat brane charge is a (higher-dimensional) sphere, but the dimension
of that sphere for the case of singular branes (75) differs from that for non-gravitational solitons (76) by one. Accordingly,
the degree of the cohomology theory measuring charges in the corresponding situations differs by one.
This reasoning is equivalent to the one that leads to the traditional form of Hypothesis K, according to which ([MW00, §2]):

– Type IIB D-brane charge is measured in KU1.
– Type IIB RR-field flux is measured in KU0.
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How to measure D7-brane charge. However, the D7-branes of F-theory are manifestly of the singular form (75), since
the axio-dilaton field (73) diverges on the would-be brane locus, the removal of which is the pre-requisite for non-trivial
monodromy around the brane. Hence the spacetime manifold on which to measure D7-brane charge is the complement
(75) of their singular worldvolumes, On these, if one demands with Hypothesis K that D7-brane charge is still measured by
complex K-theory in degree 0, then, in contrast to (71), the naive underlying brane charge actually vanishes

KU0(R9,1 \R7,1) = KU0(C\{z0}
)
= KU0(S1) = 0 , (77)

while non-trivial RR-field fluxes show up:

KU1(R9,1 \R7,1) = KU1(C\{z0}
)
= KU1(S1) = Z . (78)

This is not a contradiction, just a subtlety when applying Hypothesis K to F-theory; in fact it reflects the hallmark effect
in F-theory, where the presence of D7-branes is all witnessed by the non-triviality of the axio-dilaton RR-field F1 (73) around
them. Mathematically, the resolution is that the cohomology theory to use is not plain but, in particular, differential K-theory
(4), which here is flat differential K-theory (since also the even-degree Chern character forms necessarily vanish on S1): Its
long exact sequence (4) collapses to a short exact sequence, since the group of RR-field configurations KU1(S1) ≃ Z, from
(78), has no torsion and since the group of underlying D7-brane charges vanishes KU0(S1) ≃ 0, from (77):

0 ≃ ker(ch1)

axio-dilaton
RR-fields near
I-th D7-brane

KU1(S1) H1
dR
(
C\{zI}; C

) charge lattice of
I-th D7-brane

KU0
♭ (S

1) KU0(S1) ≃ 0 .

1 7−!
(6) & (15)

[
dlog(z− z1)

]
RR-field strength of

axio-dilaton field

ch1(S1)

Chern character
secondary

Chern character

As indicated in the bottom line, this sequence witnesses, under the natural identifications of Rem. 2.2 and Prop. 2.4, the
precise form of the axio-dilaton field (73) as expected in F-theory. Moreover, this state of affairs generalizes to any number
N of parallel D7-branes. Indeed, since

Σ
2 := C\{z1, · · · ,zN} ≃

htpy

∨
N

S1 ,

we have
KU0(Σ2) ≃

⊕
1 ≤ I ≤ N

KU0(S1) ≃ 0 , KU1(
Σ

2) ≃
⊕

1 ≤ I ≤ N

KU1(S1) ≃
⊕

1 ≤ I ≤ N

Z ≃
〈
1I
〉N

I=1 .

and hence the long exact sequence (4) now truncates to:

0

axio-dilaton fields
around D7-branes

KU1(
Σ2
) axio-dilaton fields with

secondary D7-brane charges

H1
dR
(
Σ2; C

) secondary charges of
singular D7-branes

KU0
♭

(
Σ2
)

0 .

1I 7−!
(6) & (15)

[
dlog(z− zI )

]ch1
Chern character

secondary
Chern character

(79)

The left part of this sequence formalizes the expectation that the integral charge of the singular D7-branes of F-theory is
reflected not in their charge densities, as in the naive equation (71), but in the monodromy of the axio-dilaton field around
them (as it should be). On the other hand, the right part of this sequence says that, in addition to this traditional expectation,
a secondary charge density is carried by these singular D7-branes after all, which combines with the integral charges to form
the complex cohomology of the transverse space.

Measuring D7-brane charge at A-type singularities. This analysis now reveals a remarkably rich charge structure as we
consider these D7-branes located on an A-type singularity (cf. Figure 2) and measure their charge in the full TED-K-theory
of §3, as then the plain cohomology group of axio-dilaton/D7-charges in (79) is generalized to the twisted holomorphic
cohomology groups discussed in §2:

axio-dilaton fields around D7-branes
at A-type singularity

KU1+[ω1 (⃗w,κ)]
♭

(
Σ2 ×∗�Cκ

) axio-dilaton fields with secondary D7-brane charges
at A-type singularity

H1
(

Ω
•,0
dR (Σ

2)|
∂=0, d+ω1(⃗w,κ)

) secondary charges of singular D7-branes
at A-type singularity

KU0+[ω1 (⃗w,κ)]
♭

(
Σ2 ×∗�Cκ

)
.

TED-Chern character
secondary

TED-Chern character

By Prop. 2.16, this implies the emergence of the exotic charge structure listed on p. 22-23 (where we the direct sum over the
background orbifold B-field which gives the weight labels, according to (64) and (9)): Axio-dilaton fields with

secondary D7-brane charges
as seen in TED-K-theory

 ≃
⊕
(⃗w,κ)

H1
(

Ω
•,0
dR (Σ

2)|
∂=0, d+ω1(⃗w,κ)

)
(38)

⊕
(⃗w,κ)

SL(2,Z)-charges
via KR B-field

CnfBlck1
ŝl2

κ −2 (⃗w,⃗z)

anyonic structure

. (80)
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It remains to discuss how the conformal blocks in degrees larger than 1 may analogously be identified with brane charges.
For this purpose, we turn to M-theory and then invoke Hypothesis H:

M3 = M5⊥M5-Defect Branes in M-theory. In M-theory, codim=2 defect branes appear in the guise of 3-branes inside M5-
brane worldvolumes ([HLP86][RT99][HLW98a], see also [BBN10]), which may be understood as the loci where a transversal
M5-brane intersects the ambient M5-brane ([PT96][Ts96][KOY98][GMST98]). These 3-branes do not have an established
name, but following terminology such as M-strings ([HIKLV15]) for the analogous 1-branes inside M5-brane worldvolumes,
it makes sense to refer to them as M3-branes, for short, see Figure 3:

R3,1 Σ2 T2
M/F C R1

MK6
M5

M5i

M3i {zi}

Figure 3. Defect brane configurations in M-theory. Compare the F-theoretic configurations in Figure 2 and their duality in Figure 4, Figure 5.

These M3 ⊂ M5-defect branes in M-theory are thought ([HLW98b][LW98a][LW98b][LW99]) to engineer the same SW-
gauge theory as the D3 ⊂ A-defect branes in F-theory (as per Rem. 4.3 (v) above); and they are thought to be controlled by
WZW-model CFTs on their transversal complex curve, vaguely akin to Rem. 4.3 (vi) above:

Remark 4.6 (AGT-correspondence and sl-WZW theory). When the M5-brane worldvolume transverse to the M3-brane(s)
is wrapped on a Riemann surface as in Figure 3, then the AGT correspondence ([AGT10], review in [Ta17][LF20][Ak21,
§3]) suggests that the M3-branes appear as punctures in this transversal space, labeled by vertex operators of a conformal
field theory on Σ2 which dually encodes at least some aspects of the (super-)Yang-Mills theory on the M3-brane worldvolume
([AT10, p. 2][GM12, §3][OSTY15, Table 1], see also [CDT13]). Specifically has been argued that this CFT may be expressed
via (cosets of) the sl-WZW CFT ([Gi10, §3][AT10][NT11], see in particular [FMMW20, §1.3][Ma20]).

Together, this suggests that defect branes in F-theory are equivalent (“dual”) to defect branes in M-theory:

M/F-Duality of defect branes. We describe sequences of T-dualities and M/IIA-dualities that relate defect brane configu-
rations in F-theory (Figure 2) with defect brane configurations in M-theory (Figure 3), either at Aκ−1-singularities. This is
essentially a recap of string theory folklore (e.g. [Jo97][Che99, §3][Sm03, §6.3.3][Ta14, §2.2][DHTV15, §3]) but may be
worth spelling out some more.

Duality rules for branes under T-duality (pointers in [FSS16-T]) and M/IIA-duality (pointers in [BMSS19, §1]):

Aκ−1/κNS5/κM5
The T-dual of an Aκ−1-singularity in IIA/B-theory along the S1-fiber of the blowup of the transverse orbifold to
an ALE-space is κ NS5-branes in IIB/A-theory ([OV96, §3][Ku96][GHM97][ACL98, §4]).
In turn, the M/IIA-dual of κ coincident NS5-branes in IIA-theory are κ coincident M5-branes in M-theory.

D3/D4/M5
The T-dual of a D3-brane in IIB-theory along a transverse circle is of course a D4-brane. The further M/IIA dual
is an M5-brane whose worldvolume completes that of the M5-branes dual to NS5-branes (as in the previous item)
to the Seiberg-Witten (SW) curve ([Wi97, §2.3], see also [FSS19-M5]).

D7/D6/MK6
The T-dual of D7-branes along a parallel circle are D6-branes in IIA-theory, whose M/IIA-dual are KK-monopoles
in M-theory (“MK5-branes”). As long as the D7-branes do not coincide, neither do these KK-monopoles, so that
each separately does not induce an orbi-singularity.

ρD5/ρD6/Aρ−1

The T-dual of ρ D5-branes along a transverse circle are ρ coincident D6-branes in IIA-theory, whose M/IIA dual
are ρ coincident KK-monopoles (MK6), whose far-horizon geometry (or “blowdown”) is an Aκ−1-singularity (e.g.
[As00, around (18)][HSS19, §2.2.5]).

These duality rules predict for instance that the F-brane configuration from Figure 2 is equivalent to the following M-brane
configuration shown in the following Figure 3 (essentially discussed this way in, e.g., [Ta14, §2][OSTY15, Table 1]):
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R3,1

transverse
complex curve

Σ2 H�Cκ

A-ty
pe

sin
gularity

ALE space

S1
f × R3

blowup

D7I
{zI}

Aκ−1 {0}
D3i {zi} {0}

T-duality
 −−−!

along S1
f

R3,1 Σ2

T-dual circle

S1
f R3

D6I
{zI} {x}

κ ·NS5 {x} {0}
D4i {zi} {0}

M/IIA
 −−−!
duality

R3,1 Σ2 S1
f S1

m

M-F torus T2
M/F︷ ︸︸ ︷

elliptic fibration︷ ︸︸ ︷
R3

MK6I
{zI} {x + iy}

κ ·M5 {x + iy} {0}
M5i {zi} {0}

SW-curve

Figure 4. A sequence of stringy dualities turning the F-theoretic configuration from Figure 2 into an M-theoretic configuration as in Figure 3.

Fiber/Base duality and brane-number/orbifold-order duality. Notice that [Ta14, §2.2.1] considers the worldvolume theory
of what above is called M5i, while [OSTY15, p. 23] also consider the worldvolume theory of the M5 above. The latter wraps
the base of the elliptic fibration, while the former wraps its fiber: 10

T2
M/F Σ2 ×T2

M/F

Σ2

(81)

Accordingly, switching perspective between regarding the M3-brane defects from within one or the other intersecting ambient
M5-brane species corresponds (e.g. [HS19, p. 5]) to what is known in F-theory as fiber-base duality (e.g. [HKYY18]). In
the quiver gauge theories on the compactified M5-branes, this is a duality interchanging rank and multiplicity of the gauge
group SU(ρ)κ−1 (e.g [BPTY12]); while in terms of the sl-WZW theory on the (either) transverse complex curve, this is (see
[FMMW20, (1.1) with (1.4)] and [Ma20, p. 2, 11]) the level-rank duality (e.g. [NT92]). Explicitly, the above duality rules
yield the brane-number/orbifold-order duality κ ↔ ρ as shown in the following Figure 5:11

M/IIA

M/IIA

Tf

Tb

R3,1 R1 S1
b S1

f R3

ρD5
Aκ−1

D3

R3,1 R1 S1
b S1

f R3

ρD6

κNS5
D4

R3,1 R1 S1
b S1

f S1
m R3

Aρ−1

κM5
M5

R3,1 R1 S1
b S1

f R3

ρD4
Aκ−1

D4

R3,1 R1 S1
b S1

f S1
m R3

ρM5
Aκ−1

M5

Figure 5. Sequence of stringy dualities exhibiting duality between the number of M5-branes and order of the orbifold singularity that they probe.

The configuration on the bottom right of Figure 5 is the fiber-base-dual configuration which we are after, where the κ-
M5-branes from Figure 4 have turned into a Cκ -orbi-singularity, and we see M5-branes intersecting over this singular locus
in an M3-brane (82). It is this configuration on which we now measure quantum brane charges according to Hypothesis H.

Before we turn to this in Rem. 4.8 below, here is a loose end worth mentioning:

Remark 4.7 (Level and rank in the sl-WZW models appearing in the AGT correspondence). In [NT11][FMMW20] it
is the rank and hence dually the level k of the AGT sl-WZW theory (from Rem. 4.6) which is identified with the order of the
orbifold singularity probed by the M5-branes, while the results in §2 instead identify this with the shifted level κ = k+2.
(i) While we currently do not see how to resolve this mismatch, it may be worthwhile to highlight the general subtlety with
quantum corrections to the level. For example, [NT11, p. 3] quotes the argument [DHSV08], whose analysis identifies

10The elliptic fibration (81) is a trivial fiber product only topologically, while the complex structure on the fibers depends non-trivially on the base via the
axio-dilaton field τ (72).

11Including the D7-branes from Figure 2 on the left of Figure 5 shows that under Tb they turn into D8-branes, whose IIA/M-dual is subtle (cf. pointers
and discussion in [BMSS19]) beyond the scope of the present discussion. Therefore we disregard the D7-branes at this point, focusing on the remaining data
constituted by the D3-branes of codimension=2 inside the Aκ−1-singularity.
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brane number with a classical Chern-Simons level (in [DHSV08, p. 15-16]). The latter is well-known to pick up quantum
corrections by exactly dual Coxeter number (1) that shifts k to κ (e.g. [AGLR90][Sh91]), but this correction seems not to
have been considered in these arguments. The analogous issue arises in discussion the ABJM model for M2-branes at Cκ -
singularities ([ABJM08]), where the quantum correction to the level is also generally disregarded – but here an exception is
[Mar11, (3.72)].
(ii) Indeed, the careful computation in [OV96, p. 10-12][LLS02, p. 4] shows that such a shift is present in the type II-theory
discussion (74) and thus would be expected to translate under type-II/M-duality.

Measuring M3-Brane charges at A-type singularities. The above discussion of dualities means to have shown that the
transverse orbi-geometries of codim=2 defect branes in F-theory and in M-theory correspond to each other under the expected
stringy dualities. Therefore we conclude now with discussing defect M3-brane charges in M-theory according to Hypothesis
H, amplifying that this makes (the respective dual of) the transverse space Σ2 be generalized to its configuration spaces of
points, as required to apply the full strength of Thm. 2.18 above:

Remark 4.8 (M3-brane moduli via Hypothesis H.). According to Hypothesis H, moduli spaces of M-branes in the 11-
dimensional M-theory bulk are cocycle space for TED-4-Cohomotopy theory, where the degree 4 corresponds to that of the
flux density G4 of the M-theory C-field [SS22-Cfg] (cf. [Sa19] from a TD-generalized cohomology perspective). Moreover,
after localization to the 7-dimensional locus of an MK6-brane (an ADE-singularity in 11d), this situation repeats, but now
with respect to 3-Cohomotopy, where the degree 3 corresponds to that of the flux density H3 [FSS21-M5c][FSS19-M5a] (see
Rem. 4.9 for more on how this works).

Specifically, the moduli space of a flat non-singular codimension=d − p brane with respect to plain n-Cohomotopy is the
pointed mapping space Map∗/

(
Rd−p

cpt , Sn
)
:

• In sufficiently large codimension d − p ≥ n, this is a homotopy type controlled by the homotopy groups of spheres
[SS21-MF].

• On the other hand, in small codimension d − p < n of interest here, the homotopy type of this space is presented by the
configuration space of un-ordered points in Rn which are distinct already in their projection to Rd−p and which may escape
to infinity along the remaining n−d + p directions (as follows by a classical theorem due to P. May and G. Segal, recalled
in [SS22-Cfg, Prop. 2.5]):

Cohomotopy cocycle space

Map∗/(Rd−p
cpt , Sn) ≃

htpy

∏

n∈N

configuration space of points in Rn

which are distinct already in Rd−p and
may escape to ∞ along Rn−p−d

Confn
(
Rd−p; Rn−d+p

cpt
)
.

Accordingly, the corresponding moduli space for intersections of branes in codimension d − p and d − p′ is to be the fiber
product of these respective configuration spaces [SS22-Cfg, (9)]. For example, when d − p′ = 1, then configurations of
codimension=1 branes are specified, up to homotopy of configurations, by the order in which they are arranged in their
transverse space, and therefore this fiber product moduli space of flat p⊥p′-brane intersections for d− p = n−1 is presented
by the configuration space of ordered points in Rd−p [SS22-Cfg, Prop. 2.4].

In [SS22-Cfg, Prop. 2.11] this situation is considered for n = 4, applicable to the M-theory bulk; while here we are
concerned with the case n = 3, d = 7, p = 5, p′ = 1, corresponding to charges of intersecting probe M5-branes inside M5-
domain walls inside MK6 worldvolumes, as expected:

Configuration space of
ordered points in the plane

∏
n Conf
{1, · · · ,n}

(C) ≃

3-Cohomotopy cocycle space
for codim=1 branes

Map∗/(R+∧Ccpt,S3)≃︷ ︸︸ ︷∏
nConfn

(
C; Rcpt

) ×
∏

n Confn
(
∗; (R×C)cpt

)
3-Cohomotopy cocycle space

for codim-2 branes

Map∗/(Rcpt∧C+,S3)≃︷ ︸︸ ︷∏
nConfn

(
R; Ccpt

)
Fiber product of respective configuration spaces

(of un-ordered points escaping to transverse infinity)
reflecting the brane intersections

e.g.: Conf
{1, · · · ,3}

(C) ≃

 R!

"
C

MK6

x1

M5

z1
M51

M31

x2<

z2

x3<

z3



(82)
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Figure 6. The moduli space of flat M3-branes according to Hypothesis H is the configuration space of ordered points in their transverse plane.

Therefore, taking N of the M3 as background branes and considering the moduli spaces of configurations of n further M3
branes around these yields exactly the configuration spaces of points in the punctured plane (40). Now Thm. 2.18 implies that
the corresponding quantum states, conceptualized as in [SS22-Cfg][CSS21] but now measured in full TED-K-theory, reflects
the ŝl2

k-conformal blocks in any degree n.

Remark 4.9 (Charge quantization on M5-branes at A-type singularities according to Hypothesis H). We recall and spell out
in more detail how Hypothesis H implies that the charges of M3-brane charges inside A-type singularities (Figure 3) have
coefficients in 3-Cohomotopy, thus leading to the moduli spaces (82):
(i) On the ambient 11d orbi-spacetime, the tangentially J-twisted 4-Cohomotopy coefficient (according to [FSS20-Hyp])
as applicable to an Aκ−1-type orbi-singularity R3,1 ×Ccpt ×R1 ×H�Cκ (by [SS19-Tad][SS20-Orb, Def. 5.28 (ii)]) is the
representation 4-sphere of the left multiplication action Cκ ↷ H (by [SS20-Orb, Thm. 5.16, Ex. 5.29 (ii)]).
(ii) On the M5 ⊂ MK6-worldvolume the induced twisted 7-Cohomotopy coefficient (by [FSS20-Hyp, (118)][FSS19-M5a,
(43)][FSS20, (12)]) is the lift of this action through the quaternionic Hopf fibration (e.g. [FSS20, (11)]) – which is the
representation 7-sphere of the left multiplication action Cκ ↷H×R4 on the left factor,

Cκ ↷ S7
L := S

(
H ⊕ R4

Cκ )
hH−−−−−! S

(
H

Cκ )
=: Cκ ↷ S4

L , (83)

in that (the topological sector of) the Hopf WZ term on the M5-brane ([FSS19-M5a, (46)][FSS21-M5c, (1)]) is given by
dashed sections shown in the following pullback diagram on the left (as in [FSS21-M5c, (9)]):

S3 ̂R3,1 ×C×R S7
L

(R3,1 ×C×R1)︸ ︷︷ ︸
M5⊂MK6

worldvolume

×Hcpt︸︷︷︸
ADE-

singularity

S4
L

(pb) hH

pr2
unit M5/MK6

charge
[SS19-Tad]

[FSS19-M5a]
[FSS21-M5c]

charge inside
M5/MK6

(−)Cκ

restriction to
Cκ -fixed locus

(R3,1 ×C×R1)×S3 S3

R3,1︸︷︷︸
4d

spacetime

× C×R︸ ︷︷ ︸
cylinder over

surface

S0 .

(pb)
3-Cohomotopy

cocycle

(84)

(iii) Under passage to the singularity by restricting this diagram to the Cκ -fixed locus, as shown on the right of (83), the
pullback diagram manifestly reduces to a direct product with the S3-fiber of the quaternionic Hopf fibration; and hence the
dashed sections inside the singularity are equivalently plain maps to S3, hence cocycles in 3-Cohomotopy (quantizing the
H3-flux on the M5, under Hypothesis H).

In conclusion we have thus made plausible the following:

(1) The charges of flat D3/D7-branes in F-theory (Figure 2) ought to be measured, according to the widely-expected
Hypothesis K (Rem. 4.1), by the (secondary) TED-K-theory of (79) their transverse complex curve inside an A-type
orbi-singularity; and the latter, computed via Prop. 2.16 as shown in (80), indeed neatly matches (as per Rem. 4.4) a
host of expectations (listed in Rem. 4.3) about exotic defect brane charges in F-theory.

The only shortcoming at this point is that the TED-K-theory of the F-theoretic transverse space sees of the expected
ŝu2k-CFT (74) only the conformal blocks of degree 1. But:

(2) Dualizing the situation to that of M3-branes in M-theory (Figure 3) allows to enhance the traditional Hypothesis K to
our more recently proposed Hypothesis H (Rem. 4.1). This has the consequence (Table 1) that the orbi-space to evaluate
the TED-K-theory on is enhanced from the plain transverse space to its 3-Cohomotopy cocycle space, which is given,
more generally, by the configuration space of points (82) inside the transverse space. On this, the TED-K-theory is
computed now via Thm. 2.18, which completes the F-theoretic analysis by including now also the conformal blocks in
all higher degrees.

Notice that the arguments about brane charges in this one section here are necessarily non-rigorous, since the folklore
about F/M-theory of branes and dualities which they refer to does not yet exist as a complete well-defined theory. But
conversely, to the extent that this folklore plausibly matches to the well-defined TED-K-theory of Cohomotopy cocycle
spaces, it supports the Hypothesis H that the latter is (at least partly) the missing rigorous definition of F/M-theory. Assuming
this, we may then turn this around and rigorously explore F/M-theory by purely mathematical analysis of the TED-K-theory
of Cohomotopy cycles spaces.
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5 Anyonic quantum computation via TED-K
We close by highlighting some potentially far-reaching consequences of the above analysis. The following is an outline of a
research program which will be laid out in more detail, beginning with [SS22-TQC].

1. Quantum field theory of Defect branes. It is in fact an old observation that the correlators of some Euclidean quantum
field theories are encoded in the de Rham cohomology of a configuration space of points: For 3d Chern-Simons theory
this goes back to [AS94], further discussed in [AF96, §3][BC98, Rem. 3.6], leading to Kontsevich’s graph complexes;
a discussion for more general quantum field theories is in [Be15]. The evident suggestion that therefore the generalized
cohomology (such as the K-theory) of configuration spaces might reflect yet more details of quantum field theory seems not
to have been explored much yet (an exception being the note [Zh18] – the Hilbert schemes considered there are essentially
the algebro-geometric version of configuration spaces of points). The discussion here and its higher dimensional analog (see
Table 1) suggests that a fair bit of deep structure in quantum field theory is reflected in the (twisted, equivariant, differential,
generalized, ...) cohomology of configuration spaces of points, of which here we only discussed the simplest examples.

One immediate interesting generalization of the present discussion would be to consider M5-brane topologies more com-
plex than the R3,1 ×Σ2 considered here. If we generalize R3,1 to a topologically non-trivial spacetime manifold M3,1, then
the TED-K-theory

KUn+[ω1]
(

Conf
{1, · · · ,n}

(
M3,1 ×Σ

2 ×∗�Cκ

))
will extend the ŝl2

k-conformal blocks associated to the Σ2-factor by Prop. 2.16 by data attached to M3,1. If the discussion in
§4 is anything to go by, this cohomological approach could reveal further fine-structure of the 6d CFT in its class-S sector.

2. Topological quantum computation on Defect branes. The idea of topological quantum computation with anyons
([Ki03][FKLW03], review in [NSSFS08][Wan10]) is traditionally thought of as implemented within solid state physics, where
anyons are to be realized, in one way or another, as effective codim=2 defects in some quantum material whose gapped ground
state is governed by an effective 2+1-dimensional Chern-Simons theory with WZW boundaries (e.g. [Le92][Ki06][Rao16]).
Meanwhile, it has become understood that relevant solid state quantum systems (potentially) supporting quantum computation
tend to be analogs of intersecting brane models in string theory/M-theory, a statement known as the AdS/CMT correspondence
([ZLSS15][HLS18][Za21], closely related to the AdS/QCD correspondence [RZ16, §15-18], both of which being variants of
the more famous AdS/CFT correspondence [AGMOO00], i.e., of the “holographic principle” in string/M-theory).

While the realization of anyons in condensed matter theory seems possible ([NLGM20]) but remains somewhat elusive,
the analogous anyonic defects in string theory/M-theory would theoretically be ubiquitous, as soon as it is clarified that and
how defect branes such as D7-branes obey anyon statistics (cf [dBS13, p. 65]). But this is just what our discussion in §4
argues for (see Rem. 4.2).

This suggests that topological quantum computation may have its natural conceptual home not in “mesoscopic” con-
densed matter physics, but in the truly “microscopic” high energy physics according to string/M-theory, specifically in the
dynamics of defect branes, with the former only being the approximate image or analog of the latter under the AdS/CMT-
correspondence. A similar state of affairs is already believed to hold for quantum error correction, which in recent years has
been argued ([ADH14][PYHP15]) to naturally reflect the quantum information theory inherent in the AdS/CFT correspon-
dence (review in [Har17][SSW20][JE21]).

In the case of quantum error correction, this seemingly remote identification of aspects of quantum computation with
aspects of stringy quantum gravity has been argued to help with substantial practical problems in quantum computation (see
[WVSB20, p. 14][Har20, p. 16(4)][CDCW21, p. 1]). Similarly, an understanding of anyon braiding as fundamentally
describing defect brane dynamics might usefully inform the discussion of topological quantum computation.

For example, it is striking that among all mathematically possible anyon species (braid representations), the TED-K-
theory in Prop. 2.16 & Thm. 2.18 singles out specifically monodromy braid representations realized on conformal blocks
in conformal field theory (via Rem. 4.2), and here specifically the ŝl2

k-conformal blocks: These are known as “SU(2)k-
anyons”, such as Majorana/Ising-anyons for k = 2, and Fiboniacci-anyons for k = 3 (e.g. [TTWL08][GATHLTW13][SRN15,
p. 11][JS21, §III]) and include just those anyon species plausibly realized in nature, notably via the fractional quantum
Hall effect (see [MR91][EPSS12][NLGM20], review in [Su18]) or via Majorana modes bound to vortices in topological
superconductors (see [Iv01][Be13][SJ17]), and hence in particular in quantum computers (e.g., [KBWS21]). In fact, as we
speak an experimental proof of principle for topological qbits based on Majorana anyons (a special form of ŝu22 Ising anyons
[SRN15]) is being claimed by a major quantum computing lab ([Na22], following [Pi+21]).

WZW CFT ŝu22 ŝu23 ŝu2k ≥ 4 · · ·

realistic
anyon species Ising / Majorana Fibonacci / Potts parafermions · · ·
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Moreover, the realization of topological quantum computation on defect branes such as D3s or M3s may not be all that
remote from observed physics: After all, Randall-Sundrum-like “brane world models” (e.g. [KLLL03]), where the physically
observed spacetime is identified with the worldvolume of 3-brane intersections in an unobserved higher dimensional bulk
spacetime, notably with D3/D7@Aκ−1-branes (e.g. [GKP02][BBN10][MP13]), are the way in which all of type I/II/M/F-
theory realizes quasi-realistic particle physics (see [IU12], the only exception to this rule being HET-theory models). In fact
there is decent experimental indication for this notion:

(1) The geometric engineering of quantum chromodynamics on such brane world models (“holographic QCD”) yields a
strikingly realistic description of experimentally observed confined hadron physics (eg [Er10][KY11][RZ16, §15]).

In fact, seen among the (actually observed) hadrons (as opposed to their un-observed constitutent quarks), the no-
torious super-partners do seem to be experimentally realized as baryon/meson pairs (“hadron supersymmetry”, see
[Li99][KM12] for the general phenomenon and, eg., [BTDL16][Br21] for its emergence in holographic QCD).

(2) The ongoing LHC measurements of B-meson anomalies (see e.g. [CFFMIN21][ILOS21]) have been argued to be
experimental signatures of just such Randall-Sundrum-type 3-brane models ([FMILSS22][FMIPS20], review in [Li22,
§3][AZ22, §5.4], see also [BC18]).

Under this identification of 3-branes with observed spacetime, the model of topological quantum computation on defect
branes should amount to operating the hypothetical axio-dilaton-field (72). One could go on to quote speculations that this
string theoretic axio-dilaton field is secretly already observed (e.g. [CGRW21, §A.1]) namely in the form of fuzzy dark matter
(review in [Kh21]) . While this indicates rich possibilities for further phenomenological exploration of the idea of quantum
computation with defect branes, here is not the place to discuss this further.

3. Topological quantum computation in Topological phases of matter. More concretely, our identification of realistic
ŝu2k-anyons in the TED-K-theory of the punctured plane is reminiscent of the well-known fact that twisted equivariant K-
theory of tori classifies topological phases (gapped phases) of quantum materials ([Ki09][FM12][Th16][Th15]). These, of
course, are just the systems thought to host anyonic defect excitations, generally (e.g. [Ki06, p. 4]).

We suggest that this is not a coincidence: While these tori are often thought of as Brillouin tori of quasi-momenta, their
twisted equivariant K-theory is in fact equivalent (namely T-dual [MT15][GT18]) to dually-twisted equivariant K-theory of
the actual position-space tori which represent cells in the quantum material’s crystalline structure. But this means that anyon
defects will appear as punctures in these position-space tori, see, e.g., [Ei90][HH92][GW92][PJ21]. (Notice that the dual
situation of punctures in the momentum-space torus is known to correspond to Weyl points in Weyl semimetals, see [MT16].)

In view of the above discussion, this suggests that the TED-K-theory of punctured tori is in fact the natural language for
discussing topological quantum computation on anyonic defects in topological phases of matter:12 The TED-K theory of the
underlying un-punctured torus classifies the topological phase of the ambient quantum material, and its corrections around
the punctures encode the topological order reflected by the presence of anyons. We will further discuss this in [SS22-TQC]:

crystalline position-space /
transverse toroidal orbifold

plain

T2�G
punctured / with defects

(T2�G)\ {⃗z}

TED-K
cohomology

topological
phases

anyonic
topological orders

From the point of view of defect branes, this corresponds to allowing the transverse space Σ2 in Figure 2, Figure 3 to be a
(punctured) toroidal orbifold, which is exactly what one wants to consider also in F/M-theory, notably in the context of the
AGT correspondence, discussed in §4.

12 While here we are all focused on abstract theory, it is interesting to highlight the practical viability of this approach:
On the one hand, it is a general open problem in topological quantum computation of how to actually move anyons around, once they have been realized,

hence how to actually braid their worldlines. This is certainly an engineering problem but also a theoretical problem (e.g. [Ki06, p. 8][SRN15, p. 7-8]),
given that the defining properties of anyons revolve around them being inert to interactions and tending to behave like classical defects. This issue is only
further amplified by the above identification/analogy of anyons with with defect branes (in §4). In other words, while it is mathematically most natural to
consider curves in the configuration space of points (braids), it remains generally unclear and in fact implausible (at least if these points represent defects, see
also [SRN15, p. 7]) that these may be realized as actual motions of anyons in time, let alone as a quantum propagations that admit coherent superposition.

But a neat solution to this fundamental issue has been presented in [BFN08][BFN09][Bon12][ZDJ16], where it is claimed that the braid group actions
on anyon quantum states may be implemented, to suitable accuracy, by performing certain sequences of measurements of their topological charges, without
actually moving the anyons (review in [SRN15, p. 8][Be19]), hence by “braiding without braiding” ([VF16]), in fact by braiding via “quantum teleportation”
(as in [Zh06]). All this is understood fairly concretely for Majorana ŝu22-anyons, whose experimental realization has just been announced ([Na22], following
[Pi+21]).
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[IU12] L. Ibáñez and A. Uranga, String Theory and Particle Physics: An Introduction to String Phenomenology, Cambridge University

Press, 2012, [doi:10.1017/CBO9781139018951].
[ILOS21] G. Isidori, D. Lancierini, P. Owen, and N. Serra, On the significance of new physics in b ! sℓ+ℓ− decays, Phys. Lett. B. 822

(2021), 136644, [doi:10.1016/j.physletb.2021.136644], [arXiv:2104.05631].
[Iv01] D. A. Ivanov, Non-Abelian Statistics of Half-Quantum Vortices in p-Wave Superconductors, Phys. Rev. Lett. 86 268 (2001)

[arXiv:cond-mat/0005069] [doi:10.1103/PhysRevLett.86.268]
[JE21] A. Jahn and J. Eisert, Holographic tensor network models and quantum error correction: A topical review, Quant. Sc. Tech. 6

(2021) 033002, [doi:10.1088/2058-9565/ac0293], [arXiv:2102.02619].
[JS21] E. G. Johansen and T. Simula, Fibonacci anyons versus Majorana fermions PRX Quantum 2 010334 (2021) [arXiv:2008.10790]
[Jo97] C. V. Johnson, From M-theory to F-theory, with Branes, Nucl. Phys. B 507 (1997), 227-244, [arXiv:hep-th/9706155],

[doi:10.1016/S0550-3213(97)00550-6].

35

https://doi.org/10.1103/PhysRevB.87.235120
https://arxiv.org/abs/1303.4290
https://arxiv.org/abs/0912.1930
https://doi.org/10.1007/JHEP01(2010)097
https://arxiv.org/abs/1806.11385
https://doi.org/10.1016/j.geomphys.2019.01.002
https://doi.org/10.1016/S0370-2693(98)00555-3
https://arxiv.org/abs/hep-th/9803040
https://doi.org/10.1007/s10455-017-9583-z
https://arxiv.org/abs/1706.02742
https://dx.doi.org/10.4310/HHA.2019.v21.n1.a71
https://arxiv.org/abs/1712.05971
https://arxiv.org/abs/1903.08843
https://doi.org/10.1016/j.geomphys.2021.104203
https://arxiv.org/abs/2001.07640
https://link.springer.com/book/10.1007/978-3-642-18921-0
https://doi.org/10.1016/0550-3213(90)90248-C
http://projecteuclid.org/euclid.hha/1139839291
https://dx.doi.org/10.4310/ATMP.1997.v1.n2.a6
https://arxiv.org/abs/hep-th/9708086
https://doi.org/10.1016/0550-3213(92)90424-A
https://arxiv.org/abs/2112.07195
https://doi.org/10.1007/JHEP09(2018)060
https://arxiv.org/abs/1806.10335
https://doi.org/10.1007/s00220-014-2139-1
https://arxiv.org/abs/1305.6322
https://arxiv.org/abs/1811.04938
https://doi.org/10.1007/JHEP10(2019)192
https://doi.org/10.1007/978-3-319-13467-3
https://arxiv.org/abs/1802.01040
https://doi.org/10.22323/1.305.0002
https://ncatlab.org/nlab/files/HarlowComputationHolography.pdf
https://mitpress.mit.edu/books/holographic-quantum-matter
https://arxiv.org/abs/1612.07324
https://projecteuclid.org/euclid.jdg/1143642908
http://arxiv.org/abs/math.AT/0211216
https://dx.doi.org/10.4310/ATMP.1998.v2.n6.a5
https://arxiv.org/abs/hep-th/9812135
https://doi.org/10.1063/1.43444
https://arxiv.org/abs/hep-th/9210112
https://doi.org/10.1016/S0370-2693(97)01433-0
https://arxiv.org/abs/hep-th/9710033
https://doi.org/10.1016/S0370-2693(97)01424-X
https://arxiv.org/abs/hep-th/9710034
https://doi.org/10.1007/s00220-019-03442-3
https://arxiv.org/abs/1805.05987
http://inspirehep.net/record/20685
https://doi.org/10.1016/0370-2693(86)91204-9
https://doi.org/10.1017/CBO9781139018951
https://doi.org/10.1016/j.physletb.2021.136644
https://arxiv.org/abs/2104.05631
https://arxiv.org/abs/cond-mat/0005069
https://doi.org/10.1103/PhysRevLett.86.268
https://iopscience.iop.org/article/10.1088/2058-9565/ac0293
https://arxiv.org/abs/2102.02619
https://arxiv.org/abs/2008.10790
https://arxiv.org/abs/hep-th/9706155
https://doi.org/10.1016/S0550-3213(97)00550-6


[JM96] C. V. Johnson and R. C. Myers, Aspects of Type IIB Theory on ALE Spaces, Phys. Rev. D55 (1997), 6382-6393,
[doi:10.1103/PhysRevD.55.6382], [arXiv:hep-th/9610140].

[Ka83] V. G. Kac, Infinite Dimensional Lie Algebras, Progress in Math. 44, Springer, Berlin, 1983,
[doi:10.1007/978-1-4757-1382-4]; Cambridge University Press, 1990, [doi:10.1017/CBO9780511626234].

[KP84] V. G. Kac and D. H. Peterson, Infinite-dimensional Lie algebras, theta functions and modular forms, Adv. Math. 53 (1984),
125-264, [doi:10.1016/0001-8708(84)90032-X].

[KM88a] V. Kac and M. Wakimoto, Modular invariant representations of infinite-dimensional Lie algebras and superalgebras, Proc. Nat.
Acad. Sc. USA 85 (1988), 4956-4960, [doi:10.1073/pnas.85.14.4956].

[KW88b] V. Kac and M. Wakimoto, Modular and conformal invariance constraints in representation theory of affine algebras, Adv. Math.
70 (1988), 156-236, [doi:10.1016/0001-8708(88)90055-2].

[KW89] V. G. Kac and M. Wakimoto, Classification of modular invariant representations of affine algebras, pp. 138-177, V. G. Kac (ed.),
Infinite dimensional lie algebras and groups, Adv. ser. Math. Phys. 7, World Scientific, 1989,
[ncatlab.org/schreiber/files/KacWakimotoClassification.pdf]

[KOY98] S. Kachru, Y. Oz, and Z. Yin, Matrix Description of Intersecting M5 Branes, J. High Energy Phys. 9811 (1998) 004,
[doi:10.1088/1126-6708/1998/11/004], [arXiv:hep-th/9803050].

[Kar78] M. Karoubi, K-Theory – An introduction, Grundl. Math. Wiss. 226 Springer, 1978, [doi:10.1007/978-3-540-79890-3].
[Kar87] M. Karoubi, Homologie Cyclique et K-Theorie, Astérisque 149 (1987), [numdam:AST 1987 149 1 0].
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