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Higher TQFT and categorical quantum mechanics

Recently new parallels between the foundations of quantum mechanics, quantum com-
putation and topological quantum field theory (TQFT) have begun to take shape.
Categorical quantum mechanics was conceived by Abramsky and Coecke about ten
years ago in an attempt to clarify the conceptual foundations of the subject, while
TQFT (pioneered by Atiyah, Segal and Witten) is one of the finest modern exam-
ples of the interaction between pure mathematics and theoretical physics. The two
subjects are founded on a common mathematical language: symmetric monoidal cat-
egories (both ordinary categories and higher categories) with duals at various levels.

In recent years higher categories, under for example the headings of ‘categorifica-
tion’ and ‘defects’, have generated a lot of activity in the field of TQFT. This has
led to insights in algebra, geometry, topology, condensened matter physics, supersym-
metric gauge theory, and string theory; the rich and growing literature on categorified
knot invariants is a prime example here. These developments have many unexplored
implications for categorical quantum mechanics, and for quantum computation more
specifically. In the opposite direction, researchers in categorical quantum mechanics
have made rapid progress on clarifying the conceptual problems of quantum informa-
tion; this insight, as well as an emphasis on categorical structures not traditionally
studied in TQFT, is an opportunity to examine the latter subject from a new angle.

The time is right for a workshop to intensify cross-fertilisation between TQFT
and categorical quantum mechanics, by bringing together experts in higher category
theory, TQFT, and quantum mechanics. The categorical language that these subjects
share is sure to quickly catalyse new collaborations and research directions. ESI and
Vienna are an ideal place to conduct such an activity: new interactions between
different communities in pure mathematics and theoretical physics, with foundational
quantum theory as the unifying framework.

The main advantage of categorical quantum mechanics over more standard pre-
sentations is that its diagrammatic language not only dramatically simplifies many
proofs such as that of the no-cloning theorem, it also emphasises the formal similar-
ities of quantum computation with logic and computer science. In this setting the
connection between quantum and classical computation arises because both are em-
bedded into the common framework of symmetric monoidal categories, with classical
computation being modelled by the case where the tensor product is cartesian. The
relation with logic is classical and is referred to as the Curry-Howard correspondence,
which relates formulas and proofs of first-order propositional logic with objects and
morphisms in cartesian closed categories, respectively.

The diagrammatic language goes beyond pure formalism: an important example in
the symmetric monoidal category C of finite-dimensional Hilbert spaces is the obser-
vation that the data of an orthogonal basis of a Hilbert space H may be equivalently
expressed as the data of a commutative †-Frobenius monoid in C with underlying ob-
ject H, that is, a collection of morphisms H⊗H → H, C→ H, H → H⊗H, H → C

satisfying natural equations. In a similar way some of the basic concepts of quan-
tum information may be internalised into the categorical language, and represented
diagrammatically.
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Another insight made possible by categorical quantum mechanics is a clear sep-
aration between syntax and semantics: the syntax of a quantum protocol may be
represented abstractly by a string diagram, and then given semantic and operational
meaning by realising that string diagram in the monoidal category of Hilbert spaces.
From this point of view it is natural to expect that TQFT, which in its basic form is
the study of monoidal functors from bordism categories of various kinds into finite-
dimensional vector spaces, might also have an important role to play in models of
computation.

Finally, one is naturally lead to study certain symmetric monoidal 2-categories:
these arise when one allows quantum systems to store and extract information from
classical environments, or more generally consider all interactions of open quantum
systems.

The kinds of symmetric monoidal 2-categories that arise in connection with cat-
egorical quantum mechanics possess duality on many levels, and similar structures
had previously been identified to be as fundamental to two-dimensional rational con-
formal field theories (CFTs) and TQFTs with defects. Frobenius monoids, which
appear in categorical quantum mechanics as avatars of orthogonal bases, or ‘wit-
nesses of classical information’, abound in the study of TQFT. In particular, special
symmetric Frobenius monoids (on the representation category of vertex algebras)
fully encode rational CFTs in the Fuchs-Runkel-Schweigert formalism, and they also
feature prominently in a 2-categorical theory of generalised orbifolds.

Another, much more fundamental aspect of TQFT is the cobordism hypothesis,
which guarantees that any symmetric monoidal (higher) category with sufficient du-
ality gives rise to representations of some suitable bordism category. It continues to
inspire new insights in its native territory, but as has already been mentioned such
representations are clearly related to models of computation studied in categorical
quantum mechanics, and it is reasonable to expect that the cobordism hypothesis
may lead to a deeper understanding of 2-categorical quantum mechanics and higher
categorical models of both quantum and classical computation.

The first intention of the proposed workshop is to review recent progress in these
directions and discuss important open problems such as a unified 2-categorical treat-
ment of open quantum systems including infinite-dimensional state spaces, or a 2-
categorical version of homological mirror symmetry. The second and main purpose
is to contribute to solutions of these challenges, in the spirit of earlier successes such
as the idea of an anyonic topological quantum computer based on the understanding
of three-dimensional TQFT. Accordingly, higher-dimensional TQFTs will be another
focus. We believe that the ‘quantum camp’ and the ‘TQFT camp’ still have a lot to
learn from one another.
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