WZW terms in a cohesive ∞ -topos Talk at Representation Theoretical and Categorical Structures in Quantum Geometry and CFT 2011

Urs Schreiber

November 1, 2011

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

With

- Domenico Fiorenza
- Hisham Sati

Details and references at

http://ncatlab.org/schreiber/show/differential+ cohomology+in+a+cohesive+topos

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Outline

Motivation

Higher WZW bundles

Higher WZW connections

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Example

Addendum

Goal: understand geometry of Chern-Simons models and their Wess-Zumino-Witten models.

Goal: understand geometry of Chern-Simons models and their

Wess-Zumino-Witten models.

in the spirit of Carey-Johnson-Murray-Stevenson-Wang (<u>math/0410013</u>), Waldorf (<u>0804.4835</u>)

Goal: understand geometry of higher Chern-Simons models and their higher Wess-Zumino-Witten models

I Motivation

Motivation

<u>Please!</u> <u>No need.</u>

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The **Holographic Principle** of quantum field theory (QFT):

The Holographic Principle of quantum field theory (QFT): There are pairs consisting of an (n + 1)-dimensional topological QFT (TQFT);

The Holographic Principle of quantum field theory (QFT): There are pairs consisting of an (n + 1)-dimensional topological QFT (TQFT); an *n*-dimensional conformal QFT (CFT).

The Holographic Principle of quantum field theory (QFT): There are pairs consisting of an (n + 1)-dimensional topological QFT (TQFT); an *n*-dimensional conformal QFT (CFT). such that... ◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

Holographic principle

states of TFT_{n+1} identify with correlators of CFT_n

Two realizations known:

▲□▶ ▲圖▶ ★ 圖▶ ★ 圖▶ → 圖 - の��

Two realizations known: AdS_{n+1}/CFT_n; supergravity on asymptotic anti-de-Sitter spacetime

Two realizations known: • $\operatorname{AdS}_{n+1}/\operatorname{CFT}_n$; supergravity on asymptotic anti-de-Sitter spacetime CS_{n+1}/CFT_n Chern-Simons theory in 3d or higher dim abelian

best understood example:

ChernSimons₃/WZW₂.

ordinary 3d Chern-Simons / Wess-Zumino-Witten model (WZW)

Witten (<u>hep-th/9812012</u>): also

- $\operatorname{AdS}_5/\operatorname{CFT}_4$
- AdS₇/CFT₆
- governed by their higher Chern-Simons subsystems

 Goal: understand higher CS models and their higher
WZW models

Goal: understand higher CS models and their higher WZW models

Strategy:

1. internalize construction in higher topos theory

• Goal: understand higher CS models and their higher WZW models

Strategy:

- 1. internalize construction in higher topos theory
- 2. unwind what the machinery spits out

II Higher WZW bundles

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

∞ -topos theory: pairs

- homotopy theory
- with geometric structure

∞ -topos theory: pairs

- homotopy theory
- with geometric structure Running example:
 - $H := \operatorname{Sh}_{\infty}(\operatorname{SmthMfd})$

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ うへつ

"smooth ∞ -groupoids" / "smooth ∞ -stacks"

∞ -topos theory: pairs

- homotopy theory
- with geometric structure

here we have long fiber sequences for smooth higher bundles...

G

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Start with an ∞ -group object: a grouplike A_{∞} -space internal to the ∞ -topos **H**.

In running example: G is a smooth ∞ -group.

G

BG

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

The moduli stack of *G*-principal bundles.

 $X \xrightarrow{g} \mathbf{B} G$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

A classifying map.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

The corresponding *G*-principal bundle.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

3

(All squares here and in the following are homotopy pullback squares.)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Consider a characteristic map.

Classifying a circle n + 1-bundle / bundle n-gerbe on **B**G.

イロト イポト イヨト イヨト

э

Lifting a topological cohomology class $[c] \in H^{n+2}(BG, \mathbb{Z}).$

・ロト ・ 雪 ト ・ ヨ ト

э

If the obstruction class $[\mathbf{c}(P)]$ vanishes...

 \dots then g lifts \dots

... to the extension $\hat{G} \to G$ classified by **c**.

On the total space of P this is, by the pasting law,...

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

...a circle *n*-bundle...

...whose restriction to any fiber...

イロト イポト イヨト イヨト

э

... is the looping of **c**.

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

This classifies...

the *WZW circle n-bundle* / bundle (n-1)-gerbe induced by **c**...

... which is \hat{G} itself (all by the pasting law).

Next: add connections

Next: add connections same idea of looping but now with a differential twist

III Higher WZW connections

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

cohesive ∞ -topos theory: pairs

- homotopy theory
- with differential structure

cohesive ∞ -topos theory: pairs

- homotopy theory
- with differential structure

Fact: our example $H = Sh_{\infty}(SmthMfd)$ is cohesive.

cohesive ∞ -topos theory: pairs

- homotopy theory
 with differential structure
- so we have long fiber sequences for smooth higher

bundles with connection...

♭**B**G

First, cohesion induces coefficients for *flat*

G-connections.

 $X \longrightarrow \flat \mathbf{B}G$

In that morphisms into it are flat G-principal connections on X.

 $X \xrightarrow{\nabla} \flat \mathbf{B} G \longrightarrow \mathbf{B} G$

Canonically equipped with a map to the underlying *G*-bundles.

The homotopy fiber of this...

...is the coefficient for flat *G*-valued differential forms.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

In that morphisms into it are flat L_∞ -algebra valued forms $A\in \Omega_{\mathrm{flat}}(X,\mathfrak{g}).$

The pasting law gives a universal \mathfrak{g} -valued form...

... on *G* itself. The ∞ -*Maurer-Cartan form* θ .

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Proceeding by similar constructions...

... one finds coeffiecients for non-flat G-connections.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The flat connections sit inside.

For $G = \mathbf{B}^n U(1)$, this object classifies circle (*n*+1)-connections / *n*-gerbes with connection.

Characteristic maps $\mathbf{c}: \mathbf{B}G \to \mathbf{B}^{n+1}U(1)$ may lift to

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

differential characteristics CS_c.

The homotopy fiber of the total map...

(日) (個) (目) (目) (目) (目)

... is the coefficient for circle *n*-connections with curvature given by $\mathbf{c}(\theta)$.

By universality, θ factors through this...

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

... and this defines the WZW circle n-connection on

G induced by CS_c .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

higher CS functional

$$\exp(iS_{\mathrm{CS}_{\mathbf{c}}}(-)):$$
$$[\Sigma_{n+1}, \mathbf{B}G_{\mathrm{conn}}] \xrightarrow{\mathrm{CS}_{\mathbf{c}}} [\Sigma_{n+1}, \mathbf{B}^{n+1}U(1)_{\mathrm{conn}}] \xrightarrow{\int_{\Sigma}} U(1)$$

higher CS functional

$$\begin{split} \exp(iS_{\mathrm{CS}_{\mathsf{c}}}(-)) : \\ [\Sigma_{n+1}, \mathbf{B}G_{\mathrm{conn}}] &\xrightarrow{\mathrm{CS}_{\mathsf{c}}} [\Sigma_{n+1}, \mathbf{B}^{n+1}U(1)_{\mathrm{conn}}] &\xrightarrow{\int_{\Sigma}} U(1) \\ & G\text{-connections} &\xrightarrow{\mathrm{CS} \text{ Lagrangian}} & \xrightarrow{\mathrm{volume holonomy}} \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

higher CS functional:

$$\exp(iS_{\rm CS_c}(-)):$$

$$[\Sigma_{n+1}, \mathbf{B}G_{\text{conn}}] \xrightarrow{\text{CS}_{c}} [\Sigma_{n+1}, \mathbf{B}^{n+1}U(1)_{\text{conn}}] \xrightarrow{J_{\Sigma}} U(1)$$

higher WZW functional:

$$\exp(iS_{WZW_{c}}(-)):$$
$$[\Sigma_{n}, G]^{\underline{WZW}_{c}}[\Sigma_{n}, \mathbf{B}^{n}U(1)_{\operatorname{conn}}] \xrightarrow{\int_{\Sigma}} U(1)$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

higher CS functional:

$$\exp(iS_{\mathrm{CS}_{\mathsf{c}}}(-)):$$

$$[\Sigma_{n+1}, \mathbf{B}G_{\mathrm{conn}}] \xrightarrow{\mathrm{CS}_{\mathsf{c}}} [\Sigma_{n+1}, \mathbf{B}^{n+1}U(1)_{\mathrm{conn}}] \xrightarrow{\int_{\Sigma}} U(1)$$

higher WZW functional:

$$\exp(iS_{WZW_{c}}(-)):$$

$$[\Sigma_{n}, G] \xrightarrow{WZW_{c}} [\Sigma_{n}, \mathbf{B}^{n}U(1)_{conn}] \xrightarrow{\int_{\Sigma}} U(1)$$
maps to $G \xrightarrow{WZW} Lagrangian \xrightarrow{surface holonomy}$
IV Example

Theorem. Let G be a compact, simply connected Lie group. Then...

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Theorem. Let G be a compact,simply connected Lie group. Thenthe canonical topological class

$$c: BG \to K(\mathbb{Z}, 4)$$

has unique smooth lift

$$\mathbf{c}: \mathbf{B}G
ightarrow \mathbf{B}^3 U(1)$$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ うへで

to smooth moduli $\infty\text{-stacks}$

the "Chern-Simons 2-gerbe"

Theorem. Let G be a compact, simply connected Lie group. Then

the extension it classifies is the smooth String(G)-2-group

 $\hat{G} \simeq \text{String}(G)$.

Theorem. Let G be a compact, simply connected Lie group. Then

- BG_{conn} is moduli stack of G-connections;
- there is a differential refinement

$$\mathrm{CS}_{\mathbf{c}}: \mathbf{B}G_{\mathrm{conn}} \to \mathbf{B}^{3}U(1)_{\mathrm{conn}}$$
 .

Theorem. Let G be a compact, simply connected Lie group. Then

- exp(*iS*_{CS_c}) is ordinary
 CS-functional;
- exp(*iS*_{WZWc}) is ordinary WZW functional (topological term).

Next: consider the same for higher groups and higher differential classes.

Next: consider the same for higher groups and higher differential classes.

But not today.

End.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

view Addendum

Addendum

Pasting law and looping

Consider two squares in an

 ∞ -category:

Consider a pasting diagram of two squares in an ∞ -category:

Pasting law A): If both squares are homotopy pullbacks, then so is the total rectangle.

Appl.: **long fiber sequence** Define loop space objects ΩA of pointed objects A:

Appl.: **long fiber sequence** for any $f : A \rightarrow B$ we get

Back to first occurence of pasting.