
A higher Chern-Weil derivation of AKSZ

σ-models

Domenico Fiorenza, Christopher L. Rogers, and Urs Schreiber

August 20, 2011

Abstract

Chern-Weil theory provides for each invariant polynomial on a Lie al-
gebra g a map from g-connections to differential cocycles whose volume
holonomy is the the corresponding Chern-Simons theory action functional.
We observe that in the context of higher Chern-Weil theory in smooth ∞-
groupoids [FSS10, Sch10] this statement generalizes from Lie algebras to
L∞-algebras and further to L∞-algebroids. It turns out that the symplec-
tic form on a symplectic higher Lie algebroid (for instance a Poisson Lie
algebroid or a Courant Lie 2-algebroid) is ∞-Lie-theoretically an invari-
ant polynomial. We show that the higher Chern-Simons action functional
associated to this by higher Chern-Weil theory is the action functional
of the AKSZ σ-model whose target space is the given L∞-algebroid (for
instance the Poisson σ-model or the Courant-σ-model).
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1 Introduction.

The class of topological field theories known as AKSZ σ-models[AKSZ95] con-
tains in dimension 3 ordinary Chern-Simons theory (see [Fre] for a comprehen-
sive review) as well as its Lie algebroid generalization (the Courant σ-model
[Royt06]), and in dimension 2 the Poisson σ-model (see [CaFe00] for a review).
It is therefore clear that the AKSZ construction is some sort of generalized
Chern-Simons theory. Here we demonstrate that this statement is true also in
a useful precise sense.

Our discussion proceeds from the observation that the standard Chern-
Simons action functional has a systematic origin in Chern-Weil theory (see for
instance [GHV] for a classical textbook treatment and [HoSi05] for the refine-
ment to differential cohomology that we need here):

The refined Chern-Weil homomorphism assigns to any invariant polyno-
mial 〈−〉 : g⊗n → R on a Lie algebra g of compact type a map that sends
g-connections ∇ on a smooth manifold X to cocycles [p̂〈−〉(∇)] ∈ Hn+1

diff (X) in
ordinary differential cohomology. These differential cocycles refine the curva-
ture characteristic class [〈F∇〉] ∈ Hn+1

dR (X) in de Rham cohomology to a fully
fledged line n-bundle with connection, also known as a bundle (n−1)-gerbe with
connection. And just as an ordinary line bundle (a “line 1-bundle”) with con-
nection assigns holonomy to curves, so a line n-bundle with connection assigns
holonomy holp̂(Σ) to n-dimensional trajectories Σ → X. For the special case
where 〈−〉 is the Killing form polynomial and X = Σ with dim Σ = 3 one finds
that this volume holonomy map ∇ 7→ holp̂〈−〉(∇)(Σ) is precisely the standard
Chern-Simons action functional. Similarly, for 〈−〉 any higher invariant poly-
nomial this holonomy action functional has as Lagrangian the corresponding
higher Chern-Simons form. In summary, this means that Chern-Simons-type
action functionals on Lie algebra-valued connections are the images of the re-
fined Chern-Weil homomorphism.

In previous work [Sch10, FSS10] a generalization of the Chern-Weil homo-
morphism to higher (“derived”) differential geometry has been established. In
this context smooth manifolds are generalized first to orbifolds, then to general
Lie groupoids, to Lie 2-groupoids and finally to smooth ∞-groupoids (smooth
∞-stacks), while Lie algebras are generalized to Lie 2-algebras etc., up to L∞-
algebras and more generally to Lie n-algebroids and finally to L∞-algebroids.

In this context one has for a any L∞-algebroid a natural notion of a-valued
∞-connections on exp(a)-principal smooth∞-bundles (where exp(a) is a smooth
∞-groupoid obtained by Lie integration from a). By analyzing the abstractly
defined higher Chern-Weil homomorphism in this context one finds a direct
higher analog of the above situation: there is a notion of invariant polynomials
〈−〉 on an L∞-algebroid a and these induce maps from a-valued ∞-connections
to line n-bundles with connections as before [SSS09, FSS10]. The corresponding
class of action functionals we call ∞-Chern-Simons theory [FRS].

This construction drastically simplifies when one restricts attention to trivial
∞-bundles with (nontrivial) a-connections. Over a smooth manifold Σ these are
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simply given by dg-algebra homomorphisms

A : W(a)→ Ω•(Σ) ,

where W(a) is the Weil algebra of the L∞-algebroid a [SSS09], and Ω•(Σ) is
the de Rham algebra of Σ (which is indeed the Weil algebra of Σ thought of as
an L∞-algebroid concentrated in degree 0). Then for 〈−〉 ∈ W(a) an invariant
polynomial, the corresponding ∞-Chern-Weil homomorphism is presented by a
choice of “Chern-Simons element” cs ∈W(a), which exhibits the transgression of
〈−〉 to an L∞-cocycle (the higher analog of a cocycle in Lie algebra cohomology):
the dg-morphism A naturally maps the Chern-Simons element cs of A to a
differential form cs(A) ∈ Ω•(Σ) and its integral is the corresponding ∞-Chern-
Simons action functional S〈−〉

S〈−〉 : A 7→ holp̂〈−〉(A)(Σ) =

∫
Σ

cs〈−〉(A) .

Even though trivial∞-bundles with a-connections are a very particular sub-
case of the general∞-Chern-Weil theory, they are rich enough to contain AKSZ
theory. Namely, here we show that a symplectic dg-manifold of grade n – which
is the geometrical datum of the target space defining an AKSZ σ-model – is
naturally equivalently an L∞-algebroid P endowed with a quadratic and non-
degenerate invariant polynomial ω of grade n. Moreover, under this identi-
fication the canonical Hamiltonian π on the symplectic target dg-manifold is
identified as an L∞-cocycle on P. Finally, the invariant polynomial ω is natu-
rally in transgression with the cocycle π via a Chern-Simons element csω that
turns out to be the Lagrangian of the AKSZ σ-model:∫

Σ

LAKSZ(A) =

∫
Σ

csω(A) .

(An explicit description of LAKSZ is given below in def. 2.13)
In summary this means that we find the following dictionary of concepts:

Chern-Weil theory AKSZ theory

cocycle π Hamiltonian

transgression element cs Lagrangian

invariant polynomial ω symplectic structure

More precisely, we (explain and then) prove here the following theorem:

Theorem 1.1. For (P, ω) an L∞-algebroid with a quadratic non-degenerate
invariant polynomial, the corresponding ∞-Chern-Weil homomorphism

∇ 7→ holp̂ω(∇)(Σ)
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sends P-valued ∞-connections ∇ to their corresponding exponentiated AKSZ
action:

holp̂ω(∇)(Σ) =

∫
Σ

LAKSZ(∇) .

The local differential form data involved in this statement is at the focus
of attention in this article here and contained in proposition 4.2 below. We
indicate the global aspects of the construction in 5. The more abstract higher
Chern-Weil theoretic interpretation of AKSZ σ-models implies various further
constructions and generalizations. We close in 6 by giving an outlook on these.

2 A reminder of AKSZ theory

The first half of the seminal article [AKSZ95] presented some key observations
on, what from a modern perspective would be called, symplectic derived geome-
try [Lu09] in its variant of symplectic dg-geometry [ToVe05]. In its second half,
it describes the role of such symplectic dg-geometry in quantum field theory in
general, and σ-model theory in particular.

In this section we briefly review some basics in order to establish the context
for our discussion.

2.1 Symplectic dg-geometry

In higher differential geometry, smooth manifolds are generalized first to orb-
ifolds – which are special Lie groupoids – then to higher Lie groupoids: smooth
∞-groupoids [Sch10]. Moreover, in derived differential geometry, the function al-
gebras are generalized to smooth ∞-algebras [Sp08] [Ste01]. All of these ingredi-
ents have presentations in terms of compound structures in ordinary differential
geometry. There is a bit of theory involved in exactly how these presentations
model the general abstract theory, but the main statement that we want to
discuss here can be described already in a rather simple-minded setup.

Therefore, here we shall be content with the following simple definitions
of what might be called affine smooth graded manifolds and affine smooth dg-
manifolds. Despite their simplicity these definitions capture in a precise sense
all the relevant structure: namely the local smooth structure. Globalizations of
these definitions can be obtained, if desired, by general abstract constructions.
We give some outlook on this in section 6.

Definition 2.1. The category of affine smooth N-graded manifolds – here called
smooth graded manifolds for short – is the full subcategory

SmoothGrMfd ⊂ GrAlgop
R

of the opposite category of N-graded-commutative R-algebras on those isomor-
phic to Grassmann algebras of the form

∧•C∞(X0)Γ(V ∗) ,
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where X0 is an ordinary smooth manifold, V → X0 is an N-graded smooth
vector bundle overX0 degreewise of finite rank, and Γ(V ∗) is the graded C∞(X)-
module of smooth sections of the dual bundle.

For a smooth graded manifold X ∈ SmoothGrMfd, we write C∞(X) ∈
cdgAlgR for its corresponding dg-algebra of functions.

Remarks.

• The full subcategory of these objects is equivalent to that of all objects
isomorphic to one of this form. We may therefore use both points of view
interchangeably.

• Much of the theory works just as well when V is allowed to be Z-graded.
This is the case that genuinely corresponds to derived (instead of just
higher) differential geometry. An important class of examples for this
case are BV-BRST complexes which motivate much of the literature. For
the purpose of this short note, we shall be content with the N-graded case.

• For an N-graded C∞(X0)-module Γ(V ∗) we have

∧•C∞Γ(V ∗) = C∞(X0)⊕ Γ(V ∗0 )⊕
(
Γ(V ∗0 ) ∧C∞(X0) Γ(V ∗0 )⊕ Γ(V ∗1 )

)
⊕ · · · ,

with the leftmost summand in degree 0, the next one in degree 1, and so
on.

• There is a canonical functor

SmoothMfd ↪→ SmthGrMfd

which identifies an ordinary smooth manifold X with the smooth graded
manifold whose function algebra is the ordinary algebra of smooth func-
tions C∞(X0) := C∞(X) regarded as a graded algebra concentrated in
degree 0. This functor is full and faithful and hence exhibits a full sub-
category.

All the standard notions of differental geometry apply to differential graded
geometry. For instance for X ∈ SmoothGrMfd, there is the graded vector space
Γ(TX) of vector fields on X, where a vector field is identified with a graded
derivation v : C∞(X)→ C∞(X). This is naturally a graded (super) Lie algebra
with super Lie bracket the graded commutator of derivations. Notice that for
v ∈ Γ(TX) of odd degree we have [v, v] = v◦v+v◦v = 2v2 : C∞(X)→ C∞(X).

Definition 2.2. The category of (affine, N-graded) smooth differential-graded
manifolds is the full subcategory

SmoothDgMfd ⊂ cdgAlgop
R

of the opposite of differential graded-commutative R-algebras on those objects
whose underlying graded algebra comes from SmoothGrMfd.
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This is equivalently the category whose objects are pairs (X, v) consisting
of a smooth graded manifold X ∈ SmoothGrMfd and a grade 1 vector field
v ∈ Γ(TX), such that [v, v] = 0, and whose morphisms (X1, v1)→ (X2, v2) are
morphisms f : X1 → X2 such that v1 ◦ f∗ = f∗ ◦ v2.

Remark 2.3. The dg-algebras appearing here are special in that their degree-0
algebra is naturally not just an R-algebra, but a smooth algebra (a “C∞-ring”,
see [Ste01] for review and discussion). In a more theoretical account than we
want to present here, we would use the corresponding more general notion of
smooth dg-algebras. For our present purposes, this will only briefly play a role
in def. 3.3 below.

Definition 2.4. The de Rham complex functor

Ω•(−) : SmoothGrMfd→ cdgAlgop
R

sends a dg-manifold X with C∞(X) ' ∧•C∞(X0)Γ(V ∗) to the Grassmann algebra

over C∞(X0) on the graded C∞(X0)-module

Γ(T ∗X)⊕ Γ(V ∗)⊕ Γ(V ∗[−1]) ,

where Γ(T ∗X) denotes the ordinary smooth 1-form fields on X0 and where
V ∗[−1] is V ∗ with the grades increased by one. This is equipped with the
differential d defined on generators as follows:

• d|C∞(X0) = ddR is the ordinary de Rham differential with values in Γ(T ∗X);

• d|Γ(V ∗) → Γ(V ∗[−1]) is the degree-shift isomorphism

• and d vanishes on all remaining generators.

Definition 2.5. Observe that Ω•(−) evidently factors through the defining
inclusion SmoothDgMfd ↪→ cdgAlgR. Write

T(−) : SmoothGrMfd→ SmoothDgMfd

for this factorization.

The dg-space TX is often called the shifted tangent bundle of X and denoted
T [1]X.

Observation 2.6. For Σ an ordinary smooth manifold and for X a graded
manifold corresponding to a vector bundle V → X0, there is a natural bijection

SmoothGrMfd(TΣ, X) ' Ω•(Σ, V )

where on the right we have the set of V -valued smooth differential forms on
Σ: tuples consisting of a smooth function φ0 : Σ → X0, and for each n > 1
an ordinary differential n-form φn ∈ Ωn(Σ, φ∗0Vn−1) with values in the pullback
bundle of Vn−1 along φ0.



8

The standard Cartan calculus of differential geometry generalizes directly
to graded smooth manifolds. For instance, given a vector field v ∈ Γ(TX) on
X ∈ SmoothGrMfd, there is the contraction derivation

ιv : Ω•(X)→ Ω•(X)

on the de Rham complex of X, and hence the Lie derivative

Lv := [ιv,d] : Ω•(X)→ Ω•(X) .

Definition 2.7. For X ∈ SmoothGrMfd the Euler vector field ε ∈ Γ(TX) is
defined over any coordinate patch U → X to be given by the formula

ε|U :=
∑
a

deg(xa)xa
∂

∂xa
,

where {xa} is a basis of generators and deg(xa) the degree of a generator. The
grade of a homogeneous element α in Ω•(X) is the unique natural number n ∈ N
with

Lεα = nα .

Remarks.

• This implies that for xi an element of grade n on U , the 1-form dxi is
also of grade n. This is why we speak of grade (as in “graded manifold”)
instead of degree here.

• Since coordinate transformations on a graded manifold are grading-preserving,
the Euler vector field is indeed well-defined. Note that the degree-0 coor-
dinates do not appear in the Euler vector field.

The existence of ε implies the following useful statement (amplified in [Royt99]),
which is a trivial variant of what in grade 0 would be the standard Poincaré
lemma.

Observation 2.8. On a graded manifold, every closed differential form ω of
positive grade n is exact: the form

λ :=
1

n
ιεω

satisfies
dλ = ω .

Definition 2.9. A symplectic dg-manifold of grade n ∈ N is a dg-manifold
(X, v) equipped with 2-form ω ∈ Ω2(X) which is

• non-degenerate;

• closed;
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as usual for symplectic forms, and in addition

• of grade n;

• v-invariant: Lvω = 0.

In a local chart U with coordinates {xa} we may find functions {ωab ∈
C∞(U)} such that

ω|U =
1

2
dxa ωab ∧ dxb ,

where summation of repeated indices is implied. We say that U is a Darboux
chart for (X,ω) if the ωab are constant.

Observation 2.10. The function algebra of a symplectic dg-manifold (X,ω) of
grade n is naturally equipped with a Poisson bracket

{−,−} : C∞(X)⊗ C∞(X)→ C∞(X)

which decreases grade by n. On a local coordinate patch {xa} this is given by

{f, g} =
f ∂

xa ∂
ωab

∂g

∂xb
,

where {ωab} is the inverse matrix to {ωab}, and where the graded differentiation
in the left factor is to be taken from the right, as indicated.

Definition 2.11. For π ∈ C∞(X) and v ∈ Γ(TX), we say that π is a Hamil-
tonian for v, or equivalently, that v is the Hamiltonian vector field of π if

dπ = ιvω .

Note that the convention (−1)n+1dπ = ιvω is also frequently used for defin-
ing Hamiltonians in the context of graded geometry.

Remark 2.12. In a local coordinate chart {xa} the defining equation dπ = ιvω
becomes

dxa
∂π

∂xa
= ωabv

a ∧ dxb = ωabdx
a ∧ vb ,

implying that

ωabv
b =

∂π

∂xa
.

2.2 AKSZ σ-Models

We now consider, in definition 2.13 below, for any symplectic dg-manifold (X,ω)
a functional SAKSZ on spaces of maps TΣ → X of smooth graded manifolds.
While only this precise definition is referred to in the remainder of the article,
we begin by indicating informally the original motivation of SAKSZ. The reader
uncomfortable with these somewhat vague considerations can take note of def.
2.13 and then skip to the next section.

Generally, a σ-model field theory is, roughly, one
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1. whose fields over a space Σ are maps φ : Σ→ X to some space X;

2. whose action functional is, apart from a kinetic term, the transgression of
some kind of cocycle on X to the mapping space Map(Σ, X).

Here the terms “space”, “maps” and “cocycles” are to be made precise in a
suitable context. One says that Σ is the worldvolume, X is the target space and
the cocycle is the background gauge field.

For instance, an ordinary charged particle (such as an electron) is described
by a σ-model where Σ = (0, t) ⊂ R is the abstract worldline, where X is a
(pseudo-)Riemannian smooth manifold (for instance our spacetime), and where
the background cocycle is a line bundle with connection on X (a degree-2 cocycle
in ordinary differential cohomology of X, representing a background electromag-
netic field). Up to a kinetic term, the action functional is the holonomy of the
connection over a given curve φ : Σ → X. A textbook discussion of these
standard kinds of σ-models is, for instance, in [DM99].

The σ-models which we consider here are higher generalizations of this ex-
ample, where the background gauge field is a cocycle of higher degree (a higher
bundle with connection) and where the worldvolume is accordingly higher di-
mensional. In addition, X is allowed to be not just a manifold, but an approx-
imation to a higher orbifold (a smooth ∞-groupoid).

More precisely, here we take the category of spaces to be SmoothDgMfd
from def. 2.2. We take target space to be a symplectic dg-manifold (X,ω)
and the worldvolume to be the shifted tangent bundle TΣ of a compact smooth
manifold Σ. Following [AKSZ95], one may imagine that we can form a smooth
Z-graded mapping space Maps(TΣ, X) of smooth graded manifolds. On this
space the canonical vector fields vΣ and vX naturally have commuting actions
from the left and from the right, respectively, so that their sum vΣ + vX equips
Maps(TΣ, X) itself with the structure of a differential graded smooth manifold.

Next we take the “cocycle” on X (to be made precise in the next section) to
be the Hamiltonian π (def. 2.11) of vX with respect to the symplectic structure
ω, according to def. 2.9. One wants to assume that there is a kind of Riemannian
structure on TΣ that allows to form the transgression∫

TΣ

ev∗ω := p!ev∗ω

by pull-push through the canonical correspondence

Maps(TΣ, X) oo
p

Maps(TΣ, X)× TΣ
ev // X .

When one succeeds in making this precise, one expects to find that
∫
TΣ

ev∗ω is
in turn a symplectic structure on the mapping space.

This implies that the vector field vΣ + vX on mapping space has a Hamilto-
nian

S ∈ C∞(Maps(TΣ, X)) , s.t. dS = ιvΣ+vx

∫
TΣ

ev∗ω .
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The grade-0 component

SAKSZ := S|Maps(TΣ,X)0

constitutes a functional on the space of morphisms of graded manifolds φ :
TΣ→ X. This is the AKSZ action functional defining the AKSZ σ-model with
target space X and background field/cocycle ω.

In [AKSZ95], this procedure is indicated only somewhat vaguely. The fo-
cus of attention there is on a discussion, from this perspective, of the action
functionals of the 2-dimensional σ-models called the A-model and the B-model.
In [Royt06] a more detailed discussion of the general construction is given, in-
cluding an explicit formula for S, and hence for SAKSZ. That formula is the
following:

Definition 2.13. For (X,ω) a symplectic dg-manifold of grade n with global
Darboux coordinates {xa}, Σ a smooth compact manifold of dimension (n+ 1)
and k ∈ R, the AKSZ action functional

SAKSZ : SmoothGrMfd(TΣ, X)→ R

is

SAKSZ : φ 7→
∫
TΣ

(
1

2
ωabφ

a ∧ ddRφ
b − φ∗π

)
,

where π is the Hamiltonian for vX with respect to ω and where on the right we
are interpreting fields as forms on Σ according to prop. 2.6.

This formula hence defines an infinite class of σ-models depending on the
target space structure (X,ω). (One can also consider arbitrary relative factors
between the first and the second term, but below we shall find that the above
choice is singled out). In [AKSZ95], it was already noticed that ordinary Chern-
Simons theory is a special case of this for ω of grade 2, as is the Poisson σ-model
for ω of grade 1 (and hence, as shown there, also the A-model and the B-model).
The main example in [Royt06] spells out the general case for ω of grade 2, which
is called the Courant σ-model there. (We review and re-derive all these examples
in detail in 4.1 below.)

One nice aspect of this construction is that it follows immediately that the
full Hamiltonian S on the mapping space satisfies {S,S} = 0. Moreover, using
the standard formula for the internal hom of chain complexes, one finds that
the cohomology of (Maps(TΣ, X), vΣ + vX) in degree 0 is the space of func-
tions on those fields that satisfy the Euler-Lagrange equations of SAKSZ. Taken
together, these facts imply that S is a solution of the “master equation” of a
BV-BRST complex for the quantum field theory defined by SAKSZ. This is a
crucial ingredient for the quantization of the model, and this is what the AKSZ
construction is mostly used for in the literature (for instance [CaFe00]).

Here we want to focus on another nice aspect of the AKSZ-construction: it
hints at a deeper reason for why the σ-models of this type are special. It is indeed
one of the very few proposals for what a general abstract mechanism might be
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that picks out among the vast space of all possible local action functionals those
that seem to be of relevance “in nature”.

We now proceed to show that the class of action functionals SAKSZ are
precisely those that higher Chern-Weil theory canonically associates to target
data (X,ω). Since higher Chern-Weil theory in turn is canonically given on
very general abstract grounds [Sch10], this in a sense amounts to a derivation
of SAKSZ from “first principles”, and it shows that a wealth of very general
theory applies to these systems. More on this will be discussed elsewhere, some
indication are in 5. Here we shall focus on a concrete computation exhibiting
SAKSZ as the image of the higher Chern-Weil homomorphism.

3 Chern-Weil theory on L∞-algebroids

We now discuss the ∞-Lie theoretic concepts in terms of which we shall re-
express the AKSZ σ-model below in 4.

3.1 General L∞-algebroids

We survey some basics of ∞-Lie theory that we need later on. The explicit
L∞-algebraic constructions are from [SSS09], a more encompassing discussion
is in [Sch10].

The following definition essentially repeats def. 2.2 with different terminol-
ogy. While this may look like a redundancy, it is useful to instead regard it as
the beginning of a useful dictionary between higher Lie theory and dg-geometry.
The examples to follow will illustrate this.

Definition 3.1. The category of L∞-algebroids is equivalent to that of smooth
dg-manifolds from def. 2.2:

L∞Algd ' SmoothDgMfd ↪→ cdgAlgop
R .

For a ∈ L∞Algd we write CE(a) ∈ cdgAlgR for the corresponding dg-algebra
and call it the Chevalley-Eilenberg algebra of a.

If the graded algebra underlying CE(a) has generators of grade at most n,
we say that a is a Lie n-algebroid.

Examples.

• Any (degreewise finite-dimensional) L∞-algebra (and so, in particular, any
Lie algebra) g can be seen as a (canonically pointed) L∞-algebroid bg over
the point: for D : ∨•g→ ∨•g the nilpotent derivation on the free graded
coalgebra over g which defines the k-ary brackts on g by

[−,−, · · · ,−]k := D|∨kg : ∨kg→ g ,

we have
CE(bg) := (∧•g∗, d := D∗) .
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One directly finds that L∞-algebroid morphims bg → bh are precisely
L∞-algebra morphism g→ h. This means that there is a full and faithful
inclusion

b : L∞Alg ↪→ L∞Algd

of the traditional category of L∞-algebras into that of L∞-algebroids.

We refer to bg as the delooping of g. This notation is the infinitesimal
analog of the notation BG for the one-object Lie groupoid corresponding
to a Lie group G: the loop space object ΩBG is equivalent to G, hence
the name “delooping” given to BG.

For g a Lie algebra, the algebra CE(bg) is the ordinary Chevalley-Eilenberg
algebra of g.

• For n ∈ N the delooping of the line Lie n-algebra is the L∞-algebroid
bnR defined by the fact that CE(bnR) is generated over R from a single
generator in degree n with vanishing differential.

• For X a smooth manifold, the tangent Lie algebroid a = TX is defined by
CE(TX) = (Ω•(X), ddR) ;

• For (X, {−,−}) a Poisson manifold, the corresponding Poisson Lie alge-
broid P(X) is defined by

CE(P(X)) = (∧•C∞(X)Γ(TX), {π,−}) ,

where π ∈ ∧2
C∞(X)Γ(TX) is the Poisson tensor and the bracket means the

canonical extension to the tangent bundle: the Schouten bracket.

Remark 3.2. For a an L∞-algebroid and {xi} local coordinates on the cor-
responding graded manifold, the vector field v corresponding to the Chevellay-
Eilenberg differential dCE(a) is

v
∣∣
U

= vi
∂

∂xi
,

with vi := dCE(a)x
i.

Definition 3.3. For a an L∞-algebroid, its Weil algebra is that representative of
the free smooth dg-algebra, remark 2.3, on the underlying word-length-1 complex
of a that makes the canonical projection of complexes

i∗ : W (a)→ CE(a)

into a dg-algebra homomorphism.

Proposition 3.4. Explicitly, the Weil algebra W(a) has

• as underlying graded algebra the de Rham complex Ω•(a) from def. 2.4,
applied to the corresponding graded manifold; i.e., the differential graded
manifold corresponding to W(a) is the tangent Lie ∞-algebroid Ta. This
can be equivalently written as

W(a) = CE(Ta).
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• as differential the sum
dW(a) = d + Lv ,

where d is the differential from def. 2.4 and where Lv is the Lie derivative
along the vector field v corresponding to the Chevalley-Eilenberg differen-
tial.

Remark. Therefore the Weil algebra W(a) is a twisted de Rham complex on
the graded smooth manifold corresponding to a, where the twist is dictated by
the characterizing morphism i∗ from def. 3.3. In the abstract theory indicated
below in 5 this makes W(a) part of the construction of a certain homotopical
resolution of the Lie integration of a. This is the deeper reason for the role
played by the Weil in higher Lie theory. But for the present purpose the above
explicit definition is sufficient.
Examples.

• For g a Lie algebra the definition of W(bg) reduces the ordinary definition
of the Weil algebra of the Lie algebra g.

• For a = Σ an ordinary smooth manifold, W(Σ) = Ω•(Σ).

• For G a Lie group with Lie algebra g acting on a manifold Σ, write Σ//g
for the corresponding action Lie algebroid. Then W(Σ//g) is the Cartan-
Weil model for G-equivariant de Rham cohomology on Σ.

• For a = bnR the delooping of the line Lie n-algebra, we have that W(bnR)
is the free dg-algebra on a single generator c in degree n: this is the graded
algebra on two generators c and γ, with c in degree n and γ in degree n+1,
equipped with a differential defined by dW(bnR) : c 7→ γ .

3.2 Cocycles, invariant polynomials and Chern-Simons el-
ements

The key technical notion for our main theorem is that of Chern-Simons ele-
ments witnessing trangression between invariant polynomials and L∞-algebroid
cocycles, which is def. 3.7 below. We show in Section 5 how these notions are
related to the ∞-Chern-Weil homomorphism for ∞-bundles with connections.

Definition 3.5. Let a be an L∞-algebroid. A cocycle on a is an element
µ ∈ CE(a) which is closed.

Definition 3.6. An invariant polynomial on a is an element 〈−〉 in W(a) which
is

1. closed: dW(a)〈−〉 = 0;

2. horizontal: an element of the subalgebra generated by the shifted elements
in the Weil algebra.
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Definition 3.7. For 〈−〉 ∈ W(a) an invariant polynomial on an L∞-algebroid
a, we say a cocycle µ ∈ CE(a) is in transgression with 〈−〉 if there exists an
element cs in W(a) such that

1. dW(a)cs = 〈−〉;

2. i∗cs = µ.

We say that cs is a transgression element or Chern-Simons element witnessing
this transgression.

As we noticed above, if we look at an ordinary smooth manifold Σ as an
L∞-algebroid, then the Weil algebra of Σ is the de Rham algebra Ω•(Σ). This
motivates the following definition.

Definition 3.8. For a an L∞-algebroid and Σ a smooth manifold, we say a
morphism

A : W(a)→ Ω•(Σ)

is a degree 1 a-valued differential form on Σ.

Remark 3.9. The name “degree 1 a-valued differential forms” given to dgca
morphisms W(a)→ Ω•(Σ) has the following origin: if g is a Lie algebra, then the
Weil algebra W(bg) is the free differential graded commutative algebra generated
by a shifted copy g∗[−1] of the linear dual of g. Hence a dgca morphism W(bg)→
Ω•(Σ) is precisely the datum of a morphism of graded vector spaces g∗[−1] →
Ω•(Σ), i.e., an element of Ω1(Σ; g).

We say that an a-valued differential form A is flat if the morphism A :
W(a) → Ω•(Σ) factors through i∗ : W(a) → CE(a). The curvature of A is the
induced morphism of graded vector spaces given by the composite

Ω•(Σ) oo
A

W(a) oo ∧1V [1] : FA ,

where the morphism on the right is the inclusion of the linear subspace of the
shifted generators into the Weil algebra. A is flat precisely if FA = 0.

Remark 3.10. For {xa} a coordinate chart of a and

Aa := A(xa) ∈ Ωdeg(xa)(Σ)

the differential form assigned to the generator xa by the a-valued form A, we
have the curvature components

F aA = A(dxa) ∈ Ωdeg(xa)+1(Σ) .

Since dW = dCE + d, this can be equivalently written as

F aA = A(dWx
a − dCEx

a) ,
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so the curvature of A precisely measures the “lack of flatness” of A. Also notice
that, since A is required to be a dg-algebra homomorphism, we have

A(dW(a)x
a) = ddRA

a ,

so that
A(dCE(a)x

a) = ddRA
a − F aA .

Assume now A is a degree 1 a-valued diffrential form on the smooth manifold
Σ, and that cs is a Chern-Simons element transgressing an invariant polynomial
〈−〉 of a to some cocycle µ. We can then consider the image A(cs) of the Chern-
Simons element cs in Ω•(Σ). Equivalently, we can look at cs as a map from
degree 1 a-valued differential forms on Σ to ordinary (real valued) differential
forms on Σ.

Definition 3.11. In the notations above, we write

Ω•(Σ) oo
A

W(a) oo
cs

W(bn+1R) : cs(A)

for the differential form associated by the Chern-Simons element cs to the degree
1 a-valued differential form A, and call this the Chern-Simons differential form
associated with A.

Similarly, for 〈−〉 an invariant polynomial on a, we write 〈FA〉 for the eval-
uation

Ω•closed(Σ) oo
A

W(a) oo
〈−〉

inv(bn+1R) : 〈FA〉

3.3 Symplectic Lie n-algebroids

We now consider L∞-algebroids that are equipped with certain natural extra
structure (symplectic structure) and show how this extra structure canonically
induces an invariant polynomial and hence by observation 5.15 a σ-model field
theory. In the next section we demonstrate that the field theories arising this
way are precisely the AKSZ σ-models.

Definition 3.12. A symplectic Lie n-algebroid (P, ω) is a Lie n-algebroid P
equipped with a quadratic non-degenerate invariant polynomial ω ∈ W (P) of
degree n+ 2.

This means that

• on each chart U → X of the base manifold X of P, there is a basis {xa}
for CE(a|U ) such that

ω =
1

2
dxa ωab ∧ dxb

with {ωab ∈ R ↪→ C∞(X)} and deg(xa) + deg(xb) = n;

• the coefficient matrix {ωab} has an inverse;
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• we have
dW(P)ω = dCE(P)ω + dω = 0 .

The following observation essentially goes back to [Sev01] and [Royt99].

Proposition 3.13. There is a full and faithful embedding of symplectic dg-
manifolds of grade n into symplectic Lie n-algebroids.

Proof. The dg-manifold itself is identified with an L∞-algebroid by def. 3.1.
For ω ∈ Ω2(X) a symplectic form, the conditions dω = 0 and Lvω = 0 imply
(d +Lv)ω = 0 and hence that under the identification Ω•(X) 'W(a) this is an
invariant polynomial on a.

It remains to observe that the L∞-algebroid a is in fact a Lie n-algebroid.
This is implied by the fact that ω is of grade n and non-degenerate: the former
condition implies that it has no components in elements of grade > n and the
latter then implies that all such elements vanish. �
The following characterization may be taken as a definition of Poisson Lie alge-
broids and Courant Lie 2-algebroids.

Proposition 3.14. Symplectic Lie n-algebroids are equivalently:

• for n = 0: ordinary symplectic manifolds;

• for n = 1: Poisson Lie algebroids;

• for n = 2: Courant Lie 2-algebroids.

See [Royt99, Sev01] for more discussion.

Proposition 3.15. Let (P, ω) be a symplectic Lie n-algebroid for positive n in
the image of the embedding of proposition 3.13. Then it carries the canonical
L∞-algebroid cocycle

π :=
1

n+ 1
ιειvω ∈ CE(P)

which moreover is the Hamiltonian, according to definition 2.11, of dCE(P).

Proof. Since dω = Lvω = 0, we have

dιειvω = dιvιεω

= (ιvd− Lv)ιεω
= ιvLεω − [Lv, ιε]ω
= nιvω − ι[v,ε]ω
= (n+ 1)ιvω,

where Cartan’s formula [Lv, ιε] = ι[v,ε] and the identity [v, ε] = −[ε, v] = −v have

been used. Therefore π := 1
n+1 ιειvω satisfies the defining equation dπ = ιvω

from definition 2.11. �
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Remark 3.16. On a local chart with coordinates {xa} we have

π
∣∣
U

=
1

n+ 1
ωab deg(xa)xa ∧ vb .

Our central observation now is the following.

Proposition 3.17. The cocycle 1
nπ from prop. 3.15 is in transgression with the

invariant polynomial ω. A Chern-Simons element witnessing the transgression
according to def. 3.7 is

cs =
1

n
(ιεω + π) .

Proof. It is clear that i∗cs = 1
nπ. So it remains to check that dW(P)cs = ω.

As in the proof of proposition 3.15, we use dω = Lvω = 0 and Cartan’s identity
[Lv, ιε] = ι[v,ε] = −ιv. By these, the first summand in dW(P)(ιεω + π) is

dW(P)ιεω = (d + Lv)ιεω
= [d + Lv, ιε]ω
= nω − ιvω
= nω − dπ

.

The second summand is simply

dW(P)π = dπ

since π is a cocycle. �

Remark 3.18. In a coordinate patch {xa} the Chern-Simons element is

cs
∣∣
U

=
1

n

(
ωab deg(xa)xa ∧ dxb + π

)
.

In this formula one can substitute d = dW − dCE, and this kind of substitution
will be crucial for the proof our main statement in proposition 4.2 below. Since
dCEx

i = vi and using remark 3.16 we find∑
a

ωabdeg(xa)xa ∧ dCEx
b = (n+ 1)π ,

and hence

cs
∣∣
U

=
1

n

(
deg(xa)ωabx

a ∧ dW(P)x
b − nπ

)
.

In the following section we show that this transgression element cs is the
AKSZ-Lagrangian.
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4 The AKSZ action as a Chern-Simons func-
tional

We now show how an L∞-algebroid a endowed with a triple (π, cs, ω) consisting
of a Chern-Simons element transgressing an invariant polynomial ω to a cocycle
π defines an AKSZ-type σ-model action. The starting point is to take as target
space the tangent Lie ∞-algebroid Ta, i.e., to consider as space of fields of the
theory the space of maps Maps(TΣ,Ta) from the worldsheet Σ to Ta. Dually,
this is the space of morphisms of dgcas from W(a) to Ω•(Σ), i.e., the space of
degree 1 a-valued differential forms on Σ from definition 3.8.

Remark 4.1. As we noticed in the introduction, in the context of the AKSZ
σ-model a degree 1 a-valued differential form on Σ should be thought of as the
datum of a (notrivial) a-valued connection on a trivial principal ∞-bundle on
Σ. We will come back to this point of view in Section 5.

Now that we have defined the space of fields, we have to define the action.
We have seen in definition 3.11 that a degree 1 a-valued differential form A
on Σ maps the Chern-Simons element cs ∈ W(a) to a differential form cs(A)
on Σ. Integrating this differential form on Σ will therefore give an AKSZ-type
action which, as we will see in Section 5, is naturally interpreted as an higher
Chern-Simons action functional:

Maps(TΣ,Ta)→ R

A 7→
∫

Σ

cs(A).

Theorem 1.1 then reduces to showing that, when {a, (π, cs, ω)} is the set of
L∞-algebroid data arising from a symplectic Lie n-algebroid (P, ω), the AKSZ-
type action dscribed above is precisely the AKSZ action for (P, ω). More pre-
cisely, this is stated as follows.

Proposition 4.2. For (P, ω) a symplectic Lie n-algebroid coming by proposition
3.13 from a symplectic dg-manifold of positive grade n with global Darboux chart,
the action functional induced by the canonical Chern-Simons element

cs ∈W(P)

from proposition 3.17 is the AKSZ action from definition 2.13:∫
Σ

cs =

∫
Σ

LAKSZ .

In fact the two Lagrangians differ at most by an exact term

cs ∼ LAKSZ .

Proof. We have seen in remark 3.18 that in Darboux coordinates {xa} where

ω =
1

2
ωabdx

a ∧ dxb



20

the Chern-Simons element from proposition 3.17 is given by

cs =
1

n

(
deg(xa)ωabx

a ∧ dW(P)x
b − nπ

)
.

This means that for Σ an (n+ 1)-dimensional manifold and

Ω•(Σ)←W(P) : φ

a (degree 1) P-valued differential form on Σ we have

∫
Σ

cs(φ) =
1

n

∫
Σ

∑
a,b

deg(xa)ωabφ
a ∧ ddRφ

b − nπ(φ)

 ,

where we used φ(dW(P)x
b) = ddRφ

b, as in remark 3.10. Here the asymmetry in
the coefficients of the first term is only apparent. Using integration by parts on
a closed Σ we have∫

Σ

∑
a,b

deg(xa)ωabφ
a ∧ ddRφ

b =

∫
Σ

∑
a,b

(−1)1+deg(xa)deg(xa)ωab(ddRφ
a) ∧ φb

=

∫
Σ

∑
a,b

(−1)(1+deg(xa))(1+deg(xb))deg(xa)ωabφ
b ∧ (ddRφ

a)

=

∫
Σ

∑
a,b

deg(xb)ωabφ
a ∧ (ddRφ

b)

,

where in the last step we switched the indices on ω and used that ωab =

(−1)(1+deg(xa))(1+deg(xb))ωba. Therefore∫
Σ

∑
a,b

deg(xa)ωabφ
a ∧ ddRφ

b =
1

2

∫
Σ

∑
a,b

deg(xa)ωabφ
a ∧ ddRφ

b +
1

2

∫
Σ

∑
a,b

deg(xb)ωabφ
a ∧ ddRφ

b

=
n

2

∫
Σ

ωabφ
a ∧ ddRφ

b .

.

Using this in the above expression for the action yields∫
Σ

cs(φ) =

∫
Σ

(
1

2
ωabφ

a ∧ ddRφ
b − π(φ)

)
,

which is the formula for the action functional from definition 2.13. �

4.1 Examples

We unwind the general statement of proposition 4.2 and its ingredients in
the central examples of interest, from proposition 3.14: the ordinary Chern-
Simons action functional, the Poisson σ-model Lagrangian, and the Courant
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σ-model Lagrangian. (The ordinary Chern-Simons model is the special case of
the Courant σ-model for P having as base manifold the point. But since it is
the archetype of all models considered here, it deserves its own discussion.)

By the very content of proposition 4.2 there are no surprises here and the
following essentially amounts to a review of the standard formulas for these
examples. But it may be helpful to see our general ∞-Lie theoretic derivation
of these formulas spelled out in concrete cases, if only to carefully track the
various signs and prefactors.

4.1.1 Ordinary Chern-Simons theory

Let P = bg be a semisimple Lie algebra regarded as an L∞-algebroid with
base space the point and let ω := 〈−,−〉 ∈W(bg) be its Killing form invariant
polynomial. Then (bg, 〈−,−〉) is a symplectic Lie 2-algebroid.

For {ta} a dual basis for g, being generators of grade 1 in W(g) we have

dWt
a = −1

2
Cabct

a ∧ tb + dta

where Cabc := ta([tb, tc]) and

ω =
1

2
Pabdt

a ∧ dtb ,

where Pab := 〈ta, tb〉. The Hamiltonian cocycle π from prop. 3.15 is

π =
1

2 + 1
ιvιεω

=
1

3
ιvPabt

a ∧ dtb

= −1

6
PabC

b
cdt

a ∧ tc ∧ td

=: −1

6
Cabct

a ∧ tb ∧ tc.

Therefore the Chern-Simons element from prop. 3.17 is found to be

cs =
1

2

(
Pabt

a ∧ dtb − 1

6
Cabct

a ∧ tb ∧ tc
)

=
1

2

(
Pabt

a ∧ dWt
b +

1

3
Cabct

a ∧ tb ∧ tc
)
.

This is indeed, up to an overall factor 1/2, the familiar standard choice of
Chern-Simons element on a Lie algebra. To see this more explicitly, notice that
evaluated on a g-valued connection form

Ω•(Σ)←W(bg) : A

this is

2cs(A) = 〈A ∧ FA〉 −
1

6
〈A ∧ [A,A]〉 = 〈A ∧ ddRA〉+

1

3
〈A ∧ [A,A]〉 .
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If g is a matrix Lie algebra then the Killing form is proportional to the trace of
the matrix product: 〈ta, tb〉 = tr(tatb). In this case we have

〈A ∧ [A,A]〉 = Aa ∧Ab ∧Ac tr(ta(tbtc − tctb))
= 2Aa ∧Ab ∧Ac tr(tatbtc)

= 2 tr(A ∧A ∧A)

and hence

2cs(A) = tr

(
A ∧ FA −

1

3
A ∧A ∧A

)
= tr

(
A ∧ ddRA+

2

3
A ∧A ∧A

)
.

4.1.2 Poisson σ-model

Let (M, {−,−}) be a Poisson manifold and let P be the corresponding Poisson
Lie algebroid. This is a symplectic Lie 1-algebroid. Over a chart for the shifted
cotangent bundle T ∗[−1]X with coordinates {xi} of degree 0 and {∂i} of degree
1, respectively, we have

dWx
i = −πij∂j + dxi;

where πij := {xi, xj} and
ω = dxi ∧ d∂i .

The Hamiltonian cocycle from prop. 3.15 is

π =
1

2
ιvιεω = −1

2
πij∂i ∧ ∂j

and the Chern-Simons element from prop. 3.17 is

cs = ιεω + π

= ∂i ∧ dxi − 1

2
πij∂i ∧ ∂j

.

In terms of dW instead of d this is

cs = ∂i ∧ dWx
i − π

= ∂i ∧ dWx
i +

1

2
πij∂i∂j .

So for Σ a 2-manifold and

Ω•(Σ)←W(P) : (X, η)

a Poisson-Lie algebroid valued differential form on Σ – which in components is
a function X : Σ → M and a 1-form η ∈ Ω1(Σ, X∗T ∗M) – the corresponding
AKSZ action is ∫

Σ

cs(X, η) =

∫
Σ

η ∧ ddRX +
1

2
πij(X)ηi ∧ ηj .

This is the Lagrangian of the Poisson σ-model [CaFe00].
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4.1.3 Courant σ-model

A Courant algebroid is a symplectic Lie 2-algebroid. By the previous example
this is a higher analog of a Poisson manifold. Expressed in components in
the language of ordinary differential geometry, a Courant algebroid is a vector
bundle E over a manifold M0, equipped with: a non-degenerate bilinear form
〈·, ·〉 on the fibers, a bilinear bracket [·, ·] on sections Γ(E), and a bundle map
(called the anchor) ρ : E → TM , satisfying several compatibility conditions.
The bracket [·, ·] may be required to be skew-symmetric (Def. 2.3.2 in [Royt99]),
in which case it gives rise to a Lie 2-algebra structure, or, alternatively, it may
be required to satisfy a Jacobi-like identity (Def. 2.6.1 in [Royt99]), in which
case it gives a Leibniz algebra structure.

It was shown in [Royt99] that Courant algebroids E → M0 in this com-
ponent form are in 1-1 correspondance with (non-negatively graded) grade 2
symplectic dg-manifolds (M,v). Via this correspondance, M is obtained as
a particular symplectic submanifold of T ∗[2]E[1] equipped with its canonical
symplectic structure.

Let (M, v) be a Courant algebroid as above. In Darboux coordinates, the
symplectic structure is

ω = dpi ∧ dqi +
1

2
gabdξ

a ∧ dξb,

with
deg qi = 0, deg ξa = 1, deg pi = 2,

and gab are constants. The Chevalley-Eilenberg differential corresponds to the
vector field:

v = P iaξ
a ∂

∂qi
+gab

(
P ibpi−

1

2
Tbcdξ

cξd
) ∂

∂ξa
+

(
−∂P

j
a

∂qi
ξapj +

1

6

∂Tabc
∂qi

ξaξbξc
)

∂

∂pi
.

Here P ia = P ia(q) and Tabc = Tabc(q) are particular degree zero functions encod-
ing the Courant algebroid structure. Hence, the differential on the Weil algebra
is:

dW q
i = P iaξ

a + dqi

dW ξ
a = gab

(
P ibpi −

1

2
Tbcdξ

cξd
)

+ dξa

dW pi = −∂P
j
a

∂qi
ξapj +

1

6

∂Tabc
∂qi

ξaξbξc + dpi.

Following remark. 3.16, we construct the corresponding Hamiltonian cocycle
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from prop. 3.15:

π =
1

n+ 1
ωab deg(xa)xa ∧ vb

=
1

3

(
2pi ∧ v(qi) + gabξ

a ∧ v(ξb)
)

=
1

3

(
2piP

i
aξ
a + ξaP iapi −

1

2
Tabcξ

aξbξc
)

= P iaξ
api −

1

6
Tabcξ

aξbξc.

The Chern-Simons element from prop. 3.17 is:

cs =
1

2

(∑
ab

deg(xa)ωabx
a ∧ dWxb − 2π

)

= pidW q
i +

1

2
gabξ

adW ξ
b − π

= pidW q
i +

1

2
gabξ

adW ξ
b − P iaξapi +

1

6
Tabcξ

aξbξc.

So for a map
Ω•(Σ)←W(P) : (X,A, F )

where Σ is a closed 3-manifold, we have∫
Σ

cs(X,A,F ) =

∫
Σ

Fi ∧ ddRX
i +

1

2
gabA

addRA
b − P iaAaFi +

1

6
TabcA

aAbAc.

This is the AKSZ action for the Courant algebroid σ-model from [Royt99].

5 Higher Chern-Simons field theory

We indicate now the roots of the construction of the higher Chern-Simons action
functionals discussed above in a more encompassing general theory. We refer
the reader to [Sch10, FSS10] for details on this section.

The first step in this identification involves the Lie integration of an L∞-
algebroid a to a smooth ∞-groupoid exp(a) in analogy to how a Lie algebra
integrates to a Lie group. This in turn involves two aspects: the notion of a
bare ∞-groupoid on the one hand, and its smooth structure on the other.

Bare ∞-groupoid are presented by Kan complexes: simplicial sets such that
for all adjacent k-cells there exists a composite k-cell, and such that every k-cell
has an inverse, up to (k + 1)-cells, under this composition. For instance for G
any ordinary groupoid there is such a Kan complex whose 0-cells are the objects
of the groupoid, and whose k-cells are the sequences of composable k-tuples of
morphisms of the groupoid.

These bare∞-groupoids are equipped with geometric structure by providing
a rule for what the geometric families of k-cells in the∞-groupoid are supposed
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to be. In this sense a smooth structure on an ∞-groupoid A is given by declar-
ing for each Cartesian space U = Rn a set Ak(U) of smooth U -parameterized
families of k-morphisms in A, for k, n ∈ N. Collecting this data for all k and all
U produces a functor

A : CartSpop → sSet

U 7→ ([k] 7→ Ak(U))

from the opposite of the category of Cartesian spaces to the category of simplicial
sets – a simplicial presheaf – and this functor encodes the structure of a smooth
∞-groupoid.

For instance if A = ( A1 //// A0 ) is an ordinary Lie groupoid, with a
smooth manifold of objects A0 and a smooth manifold of morphisms A1, this
assignment is given in the two lowest degrees by sending U to the set of smooth
functions from U to the spaces of objects and morphisms: A : U 7→ C∞(U,Ak).

Definition 5.1. A smooth ∞-groupoid is a simplicial presheaf on the category
of Cartesian spaces and smooth functions between them,

A : CartSpop → sSet ,

such that for each U ∈ CartSp, the simplicial set A(U) is a Kan complex.
A morphism f : A1 → A2 of smooth ∞-groupoids is a morphism of the

underlying simplicial presheaves (a natural transformation of functors). A mor-
phism is an equivalence of smooth∞-groupoids if it is stalkwise a weak homotopy
equivalence of Kan complexes.

Remark 5.2. Here the category of Cartesian spaces is just the simplest of
many possible choices. It can be varied at will, corresponding to which kind
of geometric structure the ∞-groupoids are to be equipped with. For instance
we can equivalently take instead the full category of smooth manifolds, without
changing the notion of smooth ∞-groupoid, up to equivalence. We could also
take richer categories, such as that of smooth dg-manifolds. For non-positively-
graded dg-manifolds we would speak of derived smooth ∞-groupoids in this
case. These are necessary for discussion of the Lie integration of the full AKSZ
BV-action, as opposed to just the grade-0 functional that we concentrate on
here.

Remark 5.3. It turns out that under the above notion of equivalence, every
simplicial presheaf is equivalent to one that is objectwise a Kan complex. In a
more abstract discussion than we want to get at here, we would more naturally
say that : the ∞-category of smooth ∞-groupoids is the simplicial localization
LW [CartSpop, sSet] at the stalkwise weak equivalences ([Sch10]).

When regarded as simplicial presheaves on smooth test spaces, smooth ∞-
groupoids have a canonical construction from L∞-algebroids by what is a pa-
rameterized version of the classical Sullivan construction in rational homotopy
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theory: the original construction [Sul77] sends – in our∞-Lie theoretic language
– an L∞-algebroid a to the simplicial set

exp(a)(∗) : [k] 7→ HomcdgAlgR(CE(a),Ω•(∆k)) ,

whose k-cells are the flat a-valued differential forms on the k-simplex (recall
definition 3.8). It was noticed in [Hin97, Get09] (for the special case of L∞-
algebras) that this construction deserves to be understood as forming the dis-
crete∞-groupoid that underlies the Lie integration of a. In [Henr08] the object
exp(a), still for the case that a = bg comes from an L∞-algebra, is observed to
be naturally equipped with a Banach manifold structure. Moreover, a detailed
discussion is given showing that the truncations τn exp(a) (the decategorifica-
tion of the ∞-groupoid to an n-groupoid) corresponds to the Lie integration
to an n-group. For instance for a = bg coming from an ordinary Lie algebra,
τ1 exp(bg) is BG: the one-object groupoid corresponding to the classical simply
connected Lie group integrating g. A detailed discussion of the smooth structure
of τ1 exp(a) for the case that a is a Lie 1-algebroid was given in [CrFe03]. There
it is found that a certain cohomological obstruction has to vanish in order that
this is a genuine Lie groupoid coming from a simplicial smooth manifold. In
[TsZh06] it was pointed out that however for Lie 1-algebroids a the 2-truncation
τ2 exp(a) is always a simplicial manifold.

In [FSS10] it was observed that without any assumption on a and the trun-
cation degree, the construction always naturally – and usefully – extends to
smooth structure as encoded by presheaves on Cartesian test-spaces, simply
by declaring the U -parameterized families of k-cells in exp(a) to be given by
U -parameterized families of flat a-valued connections:

Definition 5.4. For a an L∞-algebroid, the functor

exp(a) : CartSpop → sSet

to the category of simplicial sets is defined by setting, for U ∈ CartSp and
k ∈ N,

exp(a) : (U, [k]) 7→
{

Ω•vert,si(U ×∆k) oo
Avert

CE(a)

}
,

where ∆k is the standard realization of the k-simplex as a smooth manifold
with boundary and corners, and where Ω•vert,si(U × ∆k) is the dg-algebra of

vertical differential forms on U × ∆k → U , that have sitting instants towards
the boundary faces of the simplex (see [FSS10] for details).
We say that this simplicial presheaf presents the universal Lie integration of a.
This can be understood as saying that the Lie integration of a always exists as
a diffeological ∞-groupoid [BaHo09].

Remark 5.5. The simplicial presheaf exp(a) can naturally be thought of as
the presheaf of U -points of the simplicial set [k] 7→ HomcdgAlgR(CE(a),Ω•(∆k))
described above. Indeed, the dg-algebra of vertical differential forms on U×∆k is
naturally isomorphic to CE(U×T∆k). Also note that this is in turn isomorphic
to the (completed) tensor product CE(U)⊗̂CE(T∆k) = C∞(U)⊗̂Ω•(∆k).
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Indeed, the simplicial presheaf given in definition 5.4 is a Lie ∞-groupoid in
the sense of definition 5.1.

Proposition 5.6. For a an L∞-algebroid, the simplicial presheaf exp(a) is a
Lie ∞-groupoid (is objectwise a Kan complex).

Proof. Since the differential forms in the above definition are required to
have sitting instants, they can be smoothly pulled back along the standard con-
tinuous retract projections ∆n → Λni of the n-horns, because these are smooth
away from the boundary. This provides horn fillers in the standard way. See
also the proof of Proposition 4.2.10 in [FSS10].

Remark 5.7. While it can be useful in specific computations to know that
exp(a) is degreewise a smooth manifold, if indeed it is, no general concept in
smooth higher geometry requires this assumption. On the other hand, one
can show [Sch10], that every smooth ∞-groupoid is equivalent to a simplicial
presheaf that is degreewise a disjoint union of smooth manifolds, even to one
that is degreewise a disjoint union of Cartesian spaces.

Remark 5.8. A category with weak equivalences, such as that of smooth ∞-
groupoids, is canonically equipped with a derived hom-functor, which to smooth
∞-groupoids X and exp(a) assigns an ∞-groupoid RHom(X, exp(a)). One
finds that the objects of this ∞-groupoid are Čech cocycles for principal ∞-
bundles P → X that are modeled on a in higher analogy of how an ordinary
smooth principal bundle is “modeled on” the Lie algebra of its structure group.
The 1-morphisms in RHom(X, exp(a)) are the gauge transformations of these
principal ∞-bundles, and so on [NSS, Sch10].

Note that in the definition of exp(a) only the Chevalley-Eilenberg algebra of
a is relevant. The Weil algebra W(a) is then introduced in order to describe a
differential refinement of exp(a).

Definition 5.9. For a an L∞-algebroid write exp(a)diff for the simplicial presheaf
given by

exp(a)diff : (U, [k]) 7→


Ω•vert,si(U ×∆k)vert

ooAvert
CE(a)

Ω•(U ×∆k)

OO

oo (A,FA)
W(a)

OO

 ,

where on the right we have the set of horizontal dg-algebra homomorphims that
make the square commute, as indicated.

Notice that by definition 3.8 the bottom horizontal morphisms on the right
are a-valued differential forms on U ×∆k.

Proposition 5.10. The canonical projection morphism

exp(a)diff → exp(a)

to the Lie integration from definition 5.4 is an equivalence of smooth∞-groupoids.
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Remark 5.11. It is via this property that the Weil algebra serves in∞-Chern-
Weil theory as part of a resolution of exp(a) from which curvature characteristics
are built.

Let now 〈−〉 be an invariant polynomial on a ( definition 3.6). Evaluating 〈−〉
on the curvature FA of an a-connection A gives a closed differential form 〈FA〉
on U × ∆k, according to definition 3.11. This differential form, however, will
in general not descend to the base space U . This naturally leads to considering
the following definition, which picks the universal subobject of exp(a)diff that
makes all curvature characteristic forms 〈FA〉 descend to base space.

Definition 5.12. Define the simplicial presheaf

exp(a)conn : (U, [k]) 7→



Ω•vert,si(U ×∆k) oo
Avert

CE(a)

Ω•(U ×∆k)

OO

oo A
W(a)

OO

Ω•(U)closed

OO

oo 〈FA〉 inv(a)

OO


,

where on the right we have the set of a-valued forms A on U ×∆k that make
the diagram commute as indicated.

This has the following interpretation (first considered in [SSS09]):

1. The commutativity of the top diagram say that the a-valued differential
form A on U × ∆k is vertically flat with respect to the trivial simplex
bundle U × ∆ → U . This is an analogue of the verticality condition for
an ordinary Ehresmann connection.

2. The commutativity of the lower diagram says that all curvature forms
FA transform covariantly along the simplices in such a way as to make
all the curvature characteristic form 〈FA〉 descent to base space. This
is the analogue of the horizonatlity condition on an ordinary Ehresmann
connection.

One finds therefore that forX a smooth manifold, an element in RHom(X, exp(a)conn)
is

1. a choice of good open cover {Ui → X};

2. on each patch Ui differential form data Ai with values in a;

3. on each double intersection a choice of 1-parameter gauge transformation
between the corresponding differential form data;



29

4. on each triple intersection a choice of 2-parameter gauge-of-gauge trans-
formation;

5. and so on.

Such a differential Čech cocycle is essentially what defines an ∞-connection on
a principal ∞-bundle. This is discussed in detail in [FSS10, Sch10].

Remark 5.13. Since for the discussion of the simple case of AKSZ σ-models
we can assume that the underlying ∞-bundle is trivial, only a single 0-simplex

C∞(Σ) oo
Avert

CE(a)

Ω•(Σ)

OO

oo A
W(a)

OO

Ω•(Σ)closed

OO

oo〈FA〉 inv(a)

OO

is involved in the description of the AKSZ σ-model.

With these concepts in hand, we can now explain how the datum of a triple
(µ, cs, 〈−〉) consisting of a Chern-Simons element witnessing the transgression
between an invariant polynomial and a cocyle (definition 3.7) serves to present a
differential characteristic class in terms of a morphism of smooth∞-groupoids.
To see this, recall that the line delooping L∞-algebroid bn+1R of the Lie line
(n+ 1)-algebra is defined by the fact that CE(bn+1R) is generated over R from
a single generator in degree n+ 1 with vanishing differential. As an immediate
consequence, an (n+ 1)-cocylce µ on an L∞-algebroid a is the same thing as a
dg-algebra morphism

µ : CE(bn+1R)→ CE(a).

Similarly, a triple (µ, cs, 〈−〉) is naturally identified with a commutative diagram
of dg-algebras:

CE(a) oo
µ

CE(bn+1R)

W(a) oo
cs

OO

W(bn+1R)

OO

inv(a) oo
〈−〉

OO

inv(bn+1R)

OO

.

Pasting this diagram to the one above defining exp(a)conn leads to the following
observation, discussed in [FSS10].

Proposition 5.14. Every triple (µ, cs, 〈−〉) induces a morphism

exp(a)conn → exp(bn+1R)conn .
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This morphism is in fact the presentation of the ∞-Chern-Weil homomorphism
induced by the invariant polynomial 〈−〉.

This means that for

(∇ : X → exp(a)conn) ∈ RHom(X, exp(a)conn)

an a-valued ∞-connection, the composite

X
∇−→ exp(a)conn

exp(cs)−−−−→ exp(bn+1R)conn

is a representative of the curvature (n + 1)-form on X that the ∞-Chern-Weil
homomorphism induced by 〈−〉 assigns to ∇.

We can now formalize the observation mentioned in the introduction, that
the Chern-Weil homomorphism plays the role of action functional for σ-model
quantum field theories. Indeed, in view of the above constructions, the AKSZ
σ-model Lagrangian corresponds to forming the following commutative diagram:

C∞(Σ) CE(P)
φvertoo CE(bn+1R)

1
nπoo : 1

nπ(φvert)

Ω•(Σ)

OO

W(P)

OO

φoo W(bn+1R)
csoo

OO

: cs(φ)

Ω•(Σ)closed

OO

inv(P)
Fφoo

OO

inv(bn+1R)

OO

ωoo : ω(Fφ)

.

In other words, under the identification of the AKSZ action functional as an
instance of the ∞-Chern-Weil homomorphism we indeed translate concepts as
shown in the table in the introduction: the symplectic form is the invariant
polynomial that induces the Chern-Weil homomorphism, the Hamiltonian is the
cocycle that it transgresses to, and the Chern-Simons element that witnesses the
transgression is the Lagrangian.

This suggests the following general definition of a higher Chern-Simons field
theory.

Definition 5.15. Let Σ be an n-dimensional compact smooth manifold and
a an L∞-algebroid equipped with an invariant polynomial 〈−〉. Let cs be a
Chern-Simons element witnessing its transgression to a cocycle µ. Then way
may say

• A morphism φ : Σ → exp(a)conn is a field configuration on Σ with values
in a.

• The assignment
φ 7→ cs(φ) ∈ Ωn+1(Σ)

is the Lagrangian defined by cs;
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• The assignment

φ 7→
∫

Σ

cs(φ) ∈ Ωn+1(Σ)

is the action functional defined by cs.

The collection of these notions we call the higher Chern-Simons field theory
defined by cs.

6 Generalizations

The identification of the AKSZ action functionals as a special case of the general
abstract Chern-Weil homomorphism allows to tranfer various insights about the
general theory and about its other special cases to AKSZ theory. We close
this article by briefly indicating a few. More detailed discussion shall be given
elsewhere.

6.1 Symplectic n-groupoids and nontrivial topology

The smooth∞-groupoid exp(P) that Lie integrates a symplectic Lie n-algebroid
(as discussed in 5) is the “higher universal” Lie integration of P. One finds (see
[Sch10] for the discussion in the case of smooth ∞-groupoids, following the
discussion of Banach-∞-groupoids in [Henr08]) that its geometric realization in
topological spaces is ∞-connected (hence: contractible) in analogy to how the
classical universal Lie integration of a Lie algebra is 1-connected (hence: simply
connected).

As we have shown here, this is sufficient for the traditional description of
AKSZ σ-models. But more generally one will be interested in the universal inte-
gration to the smooth n-groupoid P := τn exp(P) obtained as the n-truncation
(where one retains only equivalence classes of n-cells in exp(P)).

For instance for P = bg the delooping of a semisimple Lie algebra g (the case
of the Courant Lie 2-algebroid over the point) we have that τ1 exp(bg) ' BG is
the one-object Lie groupoid obtained from the simply-connected Lie group that
integrates g, while the untruncated exp(bg) is some higher extension of BG by
ever higher abelian ∞-groups.

This truncation, however, also affects the coefficient object of the ∞-Chern-
Weil homomorphism (discussed in detail in [FSS10]): notably the untruncated
AKSZ action functional

exp(csω) : exp(P)conn → exp(bn+1R)conn ' Bn+1Rconn

descends to the truncation only up to a quotient by the group K ⊂ R of periods
of the hamiltonian cocycle π:

exp(csω) : τn exp(P)conn → Bn+1R/Kconn .

Typically we have K ' Z and hence R/K ' U(1). This way the properly trun-
cated AKSZ action functional indeed takes values in circle n+ 1-bundles. This
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becomes a further quantization condition for the field configurations, discussed
in the next item.

6.2 ∞-Connections on nontrivial a-principal ∞-bundles:
AKSZ instantons

As we have shown in this article, the fields of AKSZ σ-model theories may be
understood as ∞-connections on trivial exp(P)-principal ∞-bundles or, by the
previous paragraph, on trivial τn exp(P)-principal ∞-bundles.

The general theory of [FSS10][Sch10] provides also a description of ∞-
connections on non-trivial such ∞-bundles and there is no reason to restrict
attention to the trivial ones. Such fields with non-trivial underlying principal
∞-bundles correspond to what in the analog situation of Yang-Mills theory are
called instanton field configurations. These are of importance in a comprehen-
sive discussion of the quantum theory.

This issue plays only a minor role in low dimensions. For instance the reason
that the fields of Chern-Simons theory are and can be taken to be connections
on trivial G-principal bundles on Σ is that for simply connected Lie groups G
the classifying space BG has its first non-trivial homotopy group in degree 4, so
that all G-principal bundles on a 3-dimensional Σ are necessarily trivializable.

But by the same argument there are inevitably AKSZ instanton contribu-
tions from fields that are connections on non-trivial ∞-bundles as soon as we
pass to 4-dimensional AKSZ models and beyond.

6.3 Twisted AKSZ-structures and higher extensions of
symplectic L∞-algebroids

For any differential characteristic class

ĉ : Aconn → Bn+1R/Kconn

such as obtained from Lie integration of a Chern-Simons element:

exp(cs) : τn exp(a)conn → Bn+1R/K

it is of interst to study the homotopy fibers that this induces on cocycle ∞-
groupoids over a given base space X:

in [SSS09c][FSS10] the ∞-groupoid ĉStruc(X) of twisted ĉ-structures is in-
troduced as the homotopy pullback

ĉStructw(X)
tw //

��

Hn
diff(X,K)

��
RHom(X,Aconn)

ĉ // RHom(X,Bn+1Kconn)

,

where the right vertical morphisms – unique up to equivalence – picks one
cocycle representative in each cohomology class. The morphism tw sends a
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given twisted differential cocycle to its twist. The fibers over the trivial twist are
precisely the Â-principal ∞-bundles with connection, where Â is the extension
of A classified by c, wich is characterized by the fact that it sits in a fiber
sequence

BnK → Â→ A .

In [FSS10] this is discussed in detail for the case that c = 1
2p1 is a smooth

refinement of the first fractional Pontryagin class and for the case c = 1
6p2

of the fractional second Pontryagin class. In these cases the extension Â is the
delooping, respectively, of the smooth string 2-group and of the smooth fivebrane
6-group. The corresponding twisted differential string-structures and twisted
differential fivebrane structures are shown there (following [SSS09c]) to encode
the Green-Schwarz mechanism in heterotic string theory and dual heterotic
string theory, respectively.

By our discussion here, all these constructions have their natural analogs
for AKSZ σ-models, too. In particular, every symplectic Lie n-algebroid (P, ω)
with Hamiltonian π ∈ CE(P) has a canonical (“string-like”) extension

bnR→ P̂→ P

classified by π regarded as an L∞-cocycle π : P→ bn+1R.
This extension is easy to describe: the Chevalley-Eilenberg algebra CE(P̂)

is that of P with a single generator b in degree n adjoined, and the differential
extended to this generator by the formula

dCE(P̂) : b 7→ π .

A twisted differential exp(P)-structure is accordingly an exp(P)-∞-connection
φ (an AKSZ σ-model field) equipped with an equivalence of its curvature char-
acteristic ω(φ) to a presribed “twisting class”. When the twisting class is trivial,

then these are equivalently exp(P̂)-principal ∞-connections.
Notice that these considerations are relevant only over a base space of dimen-

sion at least (n+ 2). Compare this again to the familiar case of Chern-Simons
theory: in Chern-Simons theory itself the G-principal bundle may always be
taken to be trivial, since the base space Σ is taken to be 3-dimensional. But
all the constructions of Chern-Simons theory make sense also over arbitrary
X. Generally, the Chern-Weil homomorphism assigns a Chern-Simons circle
3-bundle to every suitabe G-principal bundle on X, and its volume holonomy is
the corresponding Chern-Simons functional for this situation. Analogously one
can consider AKSZ theory over higher dimensional base spaces.

6.4 Relation to higher dimensional supergravity

AKSZ theory is not the only class of field theories where it was noticed that
field configurations have an interpretation in terms of morphisms of dg-algebras.
Almost two decades earlier originates the observation that (higher dimensional)
supergravity (see for instance [DM99] for standard itroductions) has a rather
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beautiful description in such terms. A detailed exposition of this dg-algebraic
approach to supergravity is in the textbook [CaDAFr91].

The authors there speak of “free differential algebras” (“FDAs”) where they
would mean what in the mathematical literature are called “quasi-free dg-
algebras” or “semi-free dg-algebras” – those whose underlying graded algebra
is free, as in our definition 3.1 of Chevalley-Eilenberg algebras. Moreover, what
we here observe are morphisms out of the Weil algebra (def. 3.8) they call “soft
group manifolds”. But apart from these purely terminological differences one
finds that the observations that drive the developments there are precisely the
following, here reformulated in our ∞-Lie theoretic language (see section 4 of
[Sch10]):

First of all it is a standard fact that in “first order formulation” the field
configurations of gravity in d+1 dimensions are naturally presented by iso(d, 1)-
vaued connection forms, where iso(d, 1) = Rd+1 n so(d, 1) is the Poincaré-Lie
algebra. This perspective is inevitable in the context of supergravity, where
the first-order formulation is required by the coupling to fermions. There is an
evident super-algebra generalization of the Poincaré Lie algebra to the super-
Poincaré-Lie algebra siso(d, 1) and a field configuration of supergravity is an
siso(d, 1)-valued connection. Or rather, such a connection encodes the graviton
field and its superpartner field, the gravitino field, but not yet the higher bosonic
form fields generically present in higher supergravity theories. The first central
observation of [DAFr82] is (in our words) that these naturally appear after
passage to L∞-extensions of siso(d, 1).

To put this statement into our context, notice that there is a fairly straight-
forward super-geometric extension of general abstract higher Chern-Weil theory
in which L∞-algebroids are generalized to super L∞-algebroids as Lie algebras
are generalized to super Lie algebras (see section 3.5 of [Sch10]).

It turns out that super-Lie algebra cohomology of siso(d, 1) contains a certain
finite number of exceptional cocycles µ : siso(d, 1) → bn+1R for certain values
of d, whose existence is naturally understood from the existence of the four
normed division algebras ([Hu11]). In particular, for d = 10 there is a 4-cocycle
µ4 : siso(10, 1)→ b4R. The Lie 3-algebra extension that it classifies

b3R→ sugra11 → siso(10, 1)

has been called the supergravity Lie 3-algebra in [SSS09]. It turns out ([DAFr82])
that this carries, in turn, a 7-cocycle µ7 : sugra11 → b7R. The original obser-
vation of [DAFr82] was (not in these words, though, but easily translated into
∞-Lie theoretic terms using our discussion here) that 11-dimensional supergrav-
ity, including its higher form field degrees of freedom, is naturally understood
as a theory of ∞-connections with values in the corresponding supergravity Lie
6-algebra

b7R→ ŝugra11 → sugra11

and that the construction of its action functional is governed by the higher Lie
theory of this object.
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While 11-dimensional supergravity is not entirely a higher Chern-Simons-
theory, it crucially does involve Chern-Simons terms in its action functionals.
Indeed, one can see that one of the characterizing conditons on a supergravity
action functional – the one called the cosmo-cocycle condition in [CaDAFr91] –
is the defining condition on a Chern-Simons element in our def. 3.7, but solved
only up to first order in the curvature terms. It may be noteworthy in this
context that there are various speculations (see [BaTrZa96] for discussion and
review) that higher dimensional supergravity should be thought of as a limiting
theory of a genuine higher Chern-Simons theory.

This shows that there is a close conceptual relation between AKSZ σ-models,
higher Chern-Simons theories and higher dimensional supergravity, mediated by
abstract higher Chern-Weil theory. The various implications of this observation
shall be explored elsewhere.
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[SSS09c] H. Sati, U. Schreiber, J. Stasheff, Twisted differential string- and
fivebrane structures, arXiv:0910.4001 (2009)



37
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