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Cohesive oco-toposes

Geometric action functionals

Addendum — Technical details



Quantum Physics and Logic?



Physicist Logician



Physicist: Logician

| have a theory!



Physicist Logician:

Nice!



Physicist Logician:

| am an expert on theories.



Physicist Logician:

Which one is it?



Physicist: Logician

It has a field ¢...



Physicist: Logician

It has a field ¢
with many indices!



Physicist Logician:

?



Physicist: Logician

And the action functional...



Physicist: Logician

And the action functional...

S(6) =+



Physicist: Logician

...has a kinetic term... ?

S(6) = (0, D6) + -



Physicist: Logician

...and interaction given by... 7

S(6) = (0, D6) + -



Physicist: Logician

...a cubic term... 7
S(6) = 510, D9)
+elo [0l + -



Physicist:

...and a quartic term...

5(¢) =

- 5<¢>, Do)

(0, (¢, 9])
2$9: (9,0, ¢]) +

I\)l ,_.ONI ,_.

Logician

77



Physicist:

...and a quintic term...

5(¢) =

- 5<¢>, Do)

(0, (¢, 9])
2@ [0 0,9])
¢, [0, 6,0, 9]) +

|,_.0\||—l

120<

Logician

70707



Physicist:

...and so on.

S(6) = 3(6. Do)
- 1

(k+1)!

+ CACY)

k=2

Logician

200



Physicist Logician



Physicist Logician:

Is that it?



Physicist: Logician

Next | quantize this!



Physicist Logician:

%#1&



Physicist Logician:

%#1&

Enough! || Go on!



Physicist Logician:

%#1&



Physicist Logician:

Let’s see...



Physicist Logician:

What are the models
of your “theory”?



Physicist: Logician

Everything!



Physicist Logician:

Everything?



Physicist: Logician

Yes, in physics:



Physicist: Logician

Yes, in physics:
electromagnetism,
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Physicist: Logician

Yes, in physics:
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Physicist: Logician

Yes, in physics:

electromagnetism, Yang-Mills fields, gravity,
electrons, quarks, gravitinos,

B-fields, C-fields, RR-fields,

Chern-Simons fields,

Poisson o-model fields, Courant o-model fields,
string fields, ...



Physicist Logician:

Hold it!



Physicist Logician:

What's going on here?



Is there a formal theory of
1. geometric action functionals;

2. their quantization
that produces the

fundamental physical theories
of interest?



Notice that quantized field theory
has been identified with a
universal construction
in higher category theory.



Crash course in
higher category theory:



Crash course in
higher category theory:

An (00, n)-category
is a directed space
in which (k < n)-dimensional paths
need not be reversible.




Crash course in
higher category theory:

An (00, n)-category
is a directed space
in which (k < n)-dimensional paths
need not be reversible.

So an (00, 0)-category
is an oo-groupoid is a space.




Crash course in
higher category theory:

An (00, n)-category
is a directed space
in which (k < n)-dimensional paths
need not be reversible.

So an (00, 0)-category
is an oo-groupoid is a space.
End of the crash course.




again:

Notice that quantized field theory
has been identified with a
universal construction
in higher category theory.



again:

Notice that quantized field theory
has recently been identified with a
universal construction
in higher category theory.

Sure.| \What?




cobordism theorem, roughly:

(00, n)Cat

All (00, n)-categories.



cobordism theorem, roughly:

SymMon(oo, n)Cat (oo, n)Cat

Those with symmetric monoidal
structure.



cobordism theorem, roughly:

U : SymMon(oo, n)Cat___ (oo, n)Cat

forget

Forget the structure.



cobordism theorem, roughly:

U : SymMon(oo, n)Cat="= (oo, n)Cat : F

forget

Or generate it freely.



cobordism theorem, roughly:

Example:

Bord,,

(k < n)-paths are k-dimensional
cobordisms, (k > n)-paths are
diffeomorphisms.



cobordism theorem, roughly:

Example:

nVect

Points are higher analogs of vector
spaces, paths are higher linear maps.



cobordism theorem, roughly:

Bord,—% nVect

A topological quantized field theory is
a symmetric monoidal functor.



cobordism theorem, roughly:

Lurie (Baez-Dolan):
F(x)-=Bord, % nVect

A topological quantized field theory is
a symmetric monoidal functor.



cobordism theorem, roughly:

Lurie (Baez-Dolan):

F(x)-=Bord, % nVect

* 20) U(nVect)

Z(*) is the n-space of states.



So n-dimensional topological QFT
is characterized by its
n-space of states

Z(*).



In nature,
the space of states of a QFT
Is not random,
but arises from quantization
of geometric action functionals,
such as
S:op—
1, D) + 5 5 rrkpy (6, [04).



Task:

1. formalize differential geometry;

2. formally derive these action
functionals;

3. and their quantization.



Task:

1. formalize differential geometry;

2. formally derive these action
functionals;

3. and their quantization.
Solution:

By a universal construction
in higher topos theory...



1l
Cohesive (0o, 1)-toposes



Set

The category of sets.



Set

A category of geometric
structures.



H Set

The underlying set.



H c et

The discrete (free) geometric
structure.



H—" Set

Convention throughout:
a morphism on top of another
one denotes a left adjoint.

Disc 4T



H— P Set

The codiscrete geometric
structure.



H— s Set

coDisc

The set of connected
components.



H— s Set

coDisc

If H a topos and [lMp(*) >~ *:
cohesive topos (Lawvere).



H— s Set

bl

coDisc

For instance H = sheaves on
smooth IR"s: smooth manifolds
and diffeological spaces.



We may consider this also in
higher topos theory.



ooGrpd

The (oo, 1)-category of
oo-groupoids (~ spaces).



ooGrpd

An (00, 1)-category of
geometric structures.



H ooGrpd

The underlying oo-groupoid.



H™ ' ocoGrpd

The discrete (free) geometric
structure.



H D" ooGrpd

The codiscrete geometric
structure.



H P 0oGrpd

coDisc

The...



H P 0oGrpd

coDisc

The oo-groupoid of paths.



H P 0oGrpd

coDisc

The oo-groupoid of paths!



.
H D" ooGrpd

coDisc

If H an (0o, 1)-topos and
[(*) ~ *: cohesive
(00, 1)-topos.



.
H D" ooGrpd

coDisc

For instance H = oo-stacks on
smooth R"s: smooth
oo-groupoids.



The intrinsic existence of paths
gives rise to an intrinsic
dynamics...



|11
Geometric action
functionals



Reflect paths back to H:
DISC

(M -b): H=—ooGrpd H

Disc



Reflect paths back to H:
DISC

(M Hb): H=—0oGrpd H

Disc

“H" is pronounced “flat”



A morphism

N(X) = A
¢ X — HA
is flat parallel transport with
values in A.




y / \72)

) gy 00
PN
/71 /Z 72\



Alternative perspective:

N(X) = A
¢: X — bA
is A-valued field

with vanishing field strength.




For instance we could have

A= U(1)

the circle group.



For instance we could have

A=BU(1)

the one-object groupoid with

End(x) = U(1).



For instance we could have

A= B%U(1)

the one-object 2-groupoid with
End(x) = BU(1).



For instance we could have

A= B"1y(1)

the one-object (n+ 1)-groupoid
with End(x) = B"U(1).



A morphism

X —»B"u(1)

encodes locally a closed
(n 4+ 1)-form on X

(and globally a bit more).



X an (n+ 1)-dim compact
manifold:
volume holonomy functional

X, B Ly(1)] - ua)

field space



Therefore every morphism
c:A— B"™y(1)
induces a functional

exp(iScs,) : [£,0A] 127 -u()
on flat A-valued fields.




After generalization
to non-flat fields
this is the
geometric action functional
that we are after

(“higher Chern-Weil theory™).



Refinement to non-flat fields:
by canonical factorization:

an+1U(1) counit Bn+1u(1)

underlying

flat fields
cocycles



Refinement to non-flat fields:
by canonical factorization:
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underlying

flat fields general fields
cocycles



Refinement to non-flat fields:
by canonical factorization:

B 1U(1)—B" 1 U(1)conn— B U(1)

underlying

flat fields general fields
cocycles

explained in |Addendum|.




By naturality, c gives

A€ HBH1y(1)

A—< -B"lyQ1)



with factorization

hA—26HB™H1Y(1)

|
B U(1)comn

l
A C B"+1U(1)




then consider

hA-—Pe B Ly(1)
!
S Bn+1 U(l)conn

!
A C Bn+1 U(l)




A morphism

X — ACODD

encodes A-valued fields

(and globally a bit more).



Therefore every morphism
C: Aconn — BfH_lU(l)COIm
induces a functional

. C

on A-valued fields.




Example.
. g an Loo-algebra

- invariant bilinear (—, —)
- A= exp(g)
- €= exp({—, —))

Scse( :Zk+1) (9,16") .



But much more:
é . Aconn — Bn+1U(1)C0nn

s the full
“prequantum
circle (n + 1)-bundle
with connection
on the moduli co-stack

of fields”



Therefore next:
apply
higher geometric quantization

to C
to obtain Z(x).



Therefore next:
apply
higher geometric quantization

to C
to obtain Z(x).

But not today.



End.

view



Addendum

Some technical details.

On the derivation of
geometric action functionals.



Q>



A group object in H.



A group object: “cohesive co-group”.



A group object: “grouplike cohesive Ay-space”.



BG

Equivalently its delooping: Homgg(*,*) ~ G.



BG

Q e/

Equivalently its delooping: coGrp(H) == _ Jo
B



BG BU(1)

For instance for U(1) := R/Z.



BG BU(1)

Since U(1) is abelian, the delooping BU(1) is a group object itself.



BG B2U(1)

Hence there is a second delooping.



BG B3U(1)

And a third.



BG B"1U(1)

And so on.



BG B"1U(1)

BG K(Z,n+2)

Under geometric realization...



BG B"1U(1)

BG €~ K(Z,n+2)

... this classifies integral cohomology [c] € H"?(BG,Z).



BG B"1U(1)

BG €~ K(Z,n+2)

Such [c] is a universal characteristic class.



BG B"t1U(1)

BG € > K(Z,n+2)
P
T <(P)
X

It takes equivalence classes [P] of G-bundles to integral
cohomology.



Let c be a cohesive refinement.



BG—° -~ B"1ly(1)

This takes G-bundles P...



X

BG—° - B"1ly(1)

... to B™1U(1)-bundles c(P).



1

Example: first Chern class of unitary bundles.



BU(n) — 2%t . Bly(1)

1

Lifted by determinant function.



BU(n) —2% . BU(1)

This takes a unitary bundle P...



X
l det(P)

BU(n) —2% . BU(1)

... to its derminant line bundle det(P) ® 1) C.



BG——=B"1U(1)

BG €~ K(Z,n+2)

Generally, for any cohesive characteristic map...



Cconn

BG——=B"1U(1)

BG €~ K(Z,n+2)

.. we may ask for a further differential refinement...



Bcconn & Bn+1 U(l)conn

BG— % - B"1y(1)

BG = K(Z,n+2)

.. which takes G-connections to B"U(1)-connections.



Bn+1 U(l)

To construct this, first differentially refine the coefficient object...



Bn+1 U(l)

B™2U(1)

To that end, first consider one more delooping...



Bn+1 U(l)

bB"2U(1) — B"2U(1)

..and the universal map it receives from the flat coefficients.



B"1U(1) bdRB"+2U(1)J—> I

bB"2U(1) — B"T2U(1)

The homotopy fiber of this...



barB2U(1) — =

bB™2U(1) —= B"2U(1)

..classifies flat B"*1U(1)-connections



bB™2U(1) —= B"2U(1)

...whose underlying B"*1U(1)-bundle is trivial.



(By the universal property of homotopy pullbacks.)



But this are closed differential (n + 2)-forms w € Q7F2(X)!



bdRB"+2 U(l)j—> *

s = HBM2((1) — = B™2U(1)

Canonical example: pull back further along point inclusion...



B U(1) —— bdRB"+2U(1)J—> %

s = HBM2((1) — = B™2U(1)

... to recover B™=1U(1) ~ QB"2U(1)...



Bn+1 U(l) _curv bdRBn+2 U(l)J—> «

s = HBM2((1) — = B™2U(1)

...equipped with universal form curv.



Bn+1 U(l) _curv bdRBn+2 U(l)J—> «

s = HBM2((1) — = B™2U(1)

These are the first steps in constructing a long fiber sequence...



B7Y(1) — % herBT2U(1) >+

* ———bB"2U(1) —— B"2U(1)

... the next step...



bB"+1U(1)J4>*

B"1U(1) — > hgrB"2U(1) ——— *

]

s - HB™2Y(1) — = B"2U(1)

...recovers the flat coefficients of B™1U(1).



bB™U(1) —————— %

B"1U(1) — > hgrB"2U(1) ——— *

]

s - HB™2Y(1) — = B"2U(1)

We learn: “flat” means curv ~ 0.



Refine this by considering all curvature forms in Q7%(-).



bB 1 U(l)J4> %
0

Qi)

B"HU(I)COHHJ

B7Y(1) " b B2 U(L)

|

* ——— bB"2 (1) —— B"2U(1)

This finally gives the coefficients for B” U(1)-connections...



bB 1 U(l)J4> %
0

B LU(L)eonn = Q47(-)

n

B7Y(1) " b B2 U(L)

|

* ——— bB"2 (1) —— B"2U(1)

With underlying bundle n and curvature form F.



bB™1U(1) flat connections

inclision

B" 1 U(1)conn connections

forget connection

B"1u(1) bundles

In summary, so far, we have abelian differential cohomology.



bB"1U(1)

|

B 1U(1)con

|

B™1U(1)

Recall that the total map is still the canonical counit.



bB"1U(1)

|

B 1U(1)con

|

BG—° - B"1{(1)

Therefore for a cohesive characteristic map c...



PBG — = - pB+1Y(1)

|

B U(1)con

|

BG— % ~B"1y(1)

...we have a canonical refinement to flat differential cohomology.



PBG — = - pB+1Y(1)

|

Cconn Bn+1 U(l)conn

|

BG—° - B"1{(1)

Hence a differential refinement of ¢ should fit into...



PBG — = - pB+1Y(1)

|

B Geonn Seomn B! U(]')COHI]

|

BG——=B"U(1)

.. a diagram of this form.



BG —— > HB"U(1) ——> %

0
BGconn % Bn+1 U(]')COHHJ QQ{Q‘Q(_)
BG——° B”+1U(1)Jﬂ> barB"2U(1) ——— *

(In total we looked at this situation in the cohesive co-topos.)



Bcconn % Bn+1 U(l)conn

So given the differential characteristic map...



B Geonn Seomn B! U(]')COIH]

...we canonically send G-connections V...



i Ceonn(V)
\V4

B Geonn Seomn B! U(]')COIH]

...to B"U(1)-connections Ceonn(V).



[Z, B Geonn] —222 [, B 1U(1)conn]

This statement refines to the full moduli stack [X, BGeonn] of
G-connections.



[Z, BGeonn] —2~ [£, B™ 1 U(1)conn] — conero[Z, B™ 1 U(1) conn]

Consider the projection to the concretefied 0-truncation.



[Z, BGconn] ﬂ [27 Bn+1 U(l)conn] - U(l)

If dim¥ = n+ 1, then this is ~ U(1)...



[Z7 BGconn] Seomn [Zy B! U(l)conn] L U(]-)

.. and the map computes the holonomy fz Cconn (V).



exp(iScs.) : [T, BGeonn] —2 [, B U(1)conn] _ uQ)

.. we call the co-Chern-Simons functional induced by c.
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