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Addendum – Technical details



Quantum Physics and Logic?



Physicist Logician



Physicist: Logician

I have a theory!



Physicist Logician:

Nice!



Physicist Logician:

I am an expert on theories.



Physicist Logician:

Which one is it?



Physicist: Logician

It has a field φ...



Physicist: Logician

It has a field φ
with many indices!



Physicist Logician:

?



Physicist: Logician

And the action functional...



Physicist: Logician

And the action functional...
S(φ) = · · ·



Physicist: Logician

...has a kinetic term... ?

S(φ) =
1

2
〈φ,Dφ〉+ · · ·



Physicist: Logician

...and interaction given by... ?

S(φ) =
1

2
〈φ,Dφ〉+ · · ·



Physicist: Logician

...a cubic term... ??

S(φ) =
1

2
〈φ,Dφ〉

+
1

6
〈φ, [φ, φ]〉+ · · ·



Physicist: Logician

...and a quartic term... ???

S(φ) =
1

2
〈φ,Dφ〉

+
1

6
〈φ, [φ, φ]〉

+
1

24
〈φ, [φ, φ, φ]〉+ · · ·



Physicist: Logician

...and a quintic term... ????

S(φ) =
1

2
〈φ,Dφ〉

+
1

6
〈φ, [φ, φ]〉

+
1

24
〈φ, [φ, φ, φ]〉

+
1

120
〈φ, [φ, φ, φ, φ]〉+ · · ·



Physicist: Logician

...and so on. ?∞

S(φ) =
1

2
〈φ,Dφ〉

+
∞∑
k=2

1

(k + 1)!
〈φ, [φk ]〉



Physicist Logician



Physicist Logician:

Is that it?



Physicist: Logician

Next I quantize this!



Physicist Logician:

%#!&



Physicist Logician:

%#!&

Enough! Go on!



Physicist Logician:

%#!&



Physicist Logician:

Let’s see...



Physicist Logician:

What are the models
of your “theory”?



Physicist: Logician

Everything!



Physicist Logician:

Everything?



Physicist: Logician

Yes, in physics:

electromagnetism, Yang-Mills fields, gravity,
electrons, quarks, gravitinos,
B-fields, C -fields, RR-fields,
Chern-Simons fields,
Poisson σ-model fields, Courant σ-model fields,
string fields,...
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Yes, in physics:
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Chern-Simons fields,
Poisson σ-model fields, Courant σ-model fields,
string fields,...
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Physicist: Logician

Yes, in physics:
electromagnetism, Yang-Mills fields, gravity,
electrons, quarks, gravitinos,
B-fields, C -fields, RR-fields,
Chern-Simons fields,
Poisson σ-model fields,
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Physicist: Logician

Yes, in physics:
electromagnetism, Yang-Mills fields, gravity,
electrons, quarks, gravitinos,
B-fields, C -fields, RR-fields,
Chern-Simons fields,
Poisson σ-model fields, Courant σ-model fields,

string fields,...



Physicist: Logician

Yes, in physics:
electromagnetism, Yang-Mills fields, gravity,
electrons, quarks, gravitinos,
B-fields, C -fields, RR-fields,
Chern-Simons fields,
Poisson σ-model fields, Courant σ-model fields,
string fields,...



Physicist Logician:

Hold it!



Physicist Logician:

What’s going on here?



Is there a formal theory of
1. geometric action functionals;

2. their quantization

that produces the
fundamental physical theories

of interest?



Notice that quantized field theory
has been identified with a

universal construction
in higher category theory.



Crash course in
higher category theory:



Crash course in
higher category theory:

An (∞, n)-category
is a directed space

in which (k ≤ n)-dimensional paths
need not be reversible.



Crash course in
higher category theory:

An (∞, n)-category
is a directed space

in which (k ≤ n)-dimensional paths
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So an (∞, 0)-category
is an ∞-groupoid is a space.



Crash course in
higher category theory:

An (∞, n)-category
is a directed space

in which (k ≤ n)-dimensional paths
need not be reversible.

So an (∞, 0)-category
is an ∞-groupoid is a space.

End of the crash course.



again:

Notice that quantized field theory
has been identified with a

universal construction
in higher category theory.



again:

Notice that quantized field theory
has recently been identified with a

universal construction
in higher category theory.

Sure. What?



cobordism theorem, roughly:

(∞, n)Cat

All (∞, n)-categories.



cobordism theorem, roughly:

SymMon(∞, n)Cat (∞, n)Cat

Those with symmetric monoidal
structure.



cobordism theorem, roughly:

U : SymMon(∞, n)Cat
forget

// (∞, n)Cat

Forget the structure.



cobordism theorem, roughly:

U : SymMon(∞, n)Cat oo
free

forget
// (∞, n)Cat : F

Or generate it freely.



cobordism theorem, roughly:

Example:

Bordn

(k ≤ n)-paths are k-dimensional
cobordisms, (k > n)-paths are
diffeomorphisms.



cobordism theorem, roughly:

Example:

nVect

Points are higher analogs of vector
spaces, paths are higher linear maps.



cobordism theorem, roughly:

Bordn
Z // nVect

A topological quantized field theory is
a symmetric monoidal functor.



cobordism theorem, roughly:

Lurie (Baez-Dolan):

F (∗) ' //Bordn
Z // nVect

A topological quantized field theory is
a symmetric monoidal functor.



cobordism theorem, roughly:

Lurie (Baez-Dolan):

F (∗) ' //Bordn
Z // nVect

∗ Z (∗)
//U(nVect)

Z (∗) is the n-space of states.



So n-dimensional topological QFT
is characterized by its

n-space of states
Z (∗).



In nature,
the space of states of a QFT

is not random,
but arises from quantization

of geometric action functionals,
such as
S : φ 7→

1
2〈φ,Dφ〉 +

∑∞
k=2

1
(k+1)!〈φ, [φk ]〉.



Task:

1. formalize differential geometry;

2. formally derive these action
functionals;

3. and their quantization.



Task:

1. formalize differential geometry;

2. formally derive these action
functionals;

3. and their quantization.

Solution:
By a universal construction
in higher topos theory...



II
Cohesive (∞, 1)-toposes



Set

The category of sets.



H Set

A category of geometric
structures.



H Γ //Set

The underlying set.



H
oo Disc

Γ //Set

The discrete (free) geometric
structure.



H
oo Disc

Γ //Set

Convention throughout:
a morphism on top of another
one denotes a left adjoint.

Disc a Γ



H
oo Disc ? _

Γ //

oo
coDisc

? _

Set

The codiscrete geometric
structure.



H

Π0 //

oo Disc ? _

Γ //

oo
coDisc

? _

Set

The set of connected
components.



H

Π0 //

oo Disc ? _

Γ //

oo
coDisc

? _

Set

If H a topos and Π0(∗) ' ∗:
cohesive topos (Lawvere).



H

Π0 //

oo Disc ? _

Γ //

oo
coDisc

? _

Set

For instance H = sheaves on
smooth Rns: smooth manifolds
and diffeological spaces.



We may consider this also in
higher topos theory.



∞Grpd

The (∞, 1)-category of
∞-groupoids (' spaces).



H ∞Grpd

An (∞, 1)-category of
geometric structures.



H Γ //∞Grpd

The underlying ∞-groupoid.



H
oo Disc

Γ //∞Grpd

The discrete (free) geometric
structure.



H
oo Disc ? _

Γ //

oo
coDisc

? _

∞Grpd

The codiscrete geometric
structure.



H
Π //

oo Disc ? _

Γ //

oo
coDisc

? _

∞Grpd

The...



H
Π //

oo Disc ? _

Γ //

oo
coDisc

? _

∞Grpd

The ∞-groupoid of paths.



H
Π //

oo Disc ? _

Γ //

oo
coDisc

? _

∞Grpd

The ∞-groupoid of paths!



H
Π //

oo Disc ? _

Γ //

oo
coDisc

? _

∞Grpd

If H an (∞, 1)-topos and
Π(∗) ' ∗: cohesive
(∞, 1)-topos.



H
Π //

oo Disc ? _

Γ //

oo
coDisc

? _

∞Grpd

For instance H = ∞-stacks on
smooth Rns: smooth
∞-groupoids.



The intrinsic existence of paths
gives rise to an intrinsic

dynamics...



III
Geometric action

functionals



Reflect paths back to H:

(Π a [) : H ooDisc

Γ
//∞Grpd oo Π

Disc
//H



Reflect paths back to H:

(Π a [) : H ooDisc

Γ
//∞Grpd oo Π

Disc
//H

“[” is pronounced “flat”



A morphism

φ :
Π(X )→ A

X → [A
is flat parallel transport with

values in A.



φ(x2)
φ(γ2)

$$
A

φ(x1)

φ(γ1) ::

φ(γ3)
//φ(x3)

x2
γ2

$$
Π(X )

φ

OO

x1

γ1

::

γ3
// x3

Σ
��

φ(Σ)
��



Alternative perspective:

φ :
Π(X )→ A

X → [A
is A-valued field

with vanishing field strength.



For instance we could have

A = U(1)

the circle group.



For instance we could have

A = BU(1)

the one-object groupoid with
End(∗) = U(1).



For instance we could have

A = B2U(1)

the one-object 2-groupoid with
End(∗) = BU(1).



For instance we could have

A = Bn+1U(1)

the one-object (n + 1)-groupoid
with End(∗) = BnU(1).



A morphism

X → [Bn+1U(1)

encodes locally a closed
(n + 1)-form on X

(and globally a bit more).



X an (n + 1)-dim compact
manifold:

volume holonomy functional

[X , [Bn+1U(1)]

∫
X //U(1)

field space



Therefore every morphism

c : A→ Bn+1U(1)

induces a functional

exp(iSCSc) : [Σ, [A]

∫
Σ [c //U(1)

on flat A-valued fields.



After generalization
to non-flat fields

this is the
geometric action functional

that we are after
(“higher Chern-Weil theory”).



Refinement to non-flat fields;
by canonical factorization:

[Bn+1U(1) counit //Bn+1U(1)

flat fields
underlying
cocycles



Refinement to non-flat fields;
by canonical factorization:

[Bn+1U(1) //Bn+1U(1)conn //Bn+1U(1)

flat fields general fields
underlying
cocycles



Refinement to non-flat fields;
by canonical factorization:

[Bn+1U(1) //Bn+1U(1)conn //Bn+1U(1)

flat fields general fields
underlying
cocycles

explained in Addendum .



By naturality, c gives

[A [c //

��

[Bn+1U(1)

��

A c //Bn+1U(1)



with factorization

[A [c //

��

[Bn+1U(1)

��

Bn+1U(1)conn
��

A c //Bn+1U(1)



then consider

[A [c //

��

[Bn+1U(1)

��

Aconn
ĉ //

��

Bn+1U(1)conn
��

A c //Bn+1U(1)



A morphism

X → Aconn

encodes A-valued fields

(and globally a bit more).



Therefore every morphism

ĉ : Aconn→ Bn+1U(1)conn

induces a functional

exp(iSCSĉ
) : [X ,Aconn]

∫
X ĉ

//U(1)

on A-valued fields.



Example.

I g an L∞-algebra

I invariant bilinear 〈−,−〉
I A := exp(g)

I c := exp(〈−,−〉)

SCSĉ
(φ) =

∞∑
k=1

1

(k + 1)!
〈φ, [φk ]〉 .



But much more:

ĉ : Aconn→ Bn+1U(1)conn

is the full
“prequantum

circle (n + 1)-bundle
with connection

on the moduli ∞-stack
of fields”



Therefore next:
apply

higher geometric quantization
to ĉ

to obtain Z (∗).



Therefore next:
apply

higher geometric quantization
to ĉ

to obtain Z (∗).

But not today.



End.

view Addendum



Addendum

Some technical details.

On the derivation of
geometric action functionals.





G

A group object in H.



G

A group object: “cohesive ∞-group”.



G

A group object: “grouplike cohesive A∞-space”.



BG

Equivalently its delooping: HomBG (∗, ∗) ' G .



BG

Equivalently its delooping: ∞Grp(H) '
B
//

oo Ω
H
∗/
≥0



BG BU(1)

For instance for U(1) := R/Z.



BG BU(1)

Since U(1) is abelian, the delooping BU(1) is a group object itself.



BG B2U(1)

Hence there is a second delooping.



BG B3U(1)

And a third.



BG Bn+1U(1)

And so on.



BG_

Π

��

Bn+1U(1)
_

Π
��

BG K (Z, n + 2)

Under geometric realization...



BG_

Π

��

Bn+1U(1)
_

Π
��

BG
c // K (Z, n + 2)

... this classifies integral cohomology [c] ∈ Hn+2(BG ,Z).



BG Bn+1U(1)

BG
c // K (Z, n + 2)

Such [c] is a universal characteristic class.



BG Bn+1U(1)

BG
c // K (Z, n + 2)

X

P

OO

c(P)

66

It takes equivalence classes [P] of G -bundles to integral
cohomology.



BG
c //

_

Π

��

Bn+1U(1)
_

Π
��

BG
c // K (Z, n + 2)

Let c be a cohesive refinement.



X

P
��

BG
c // Bn+1U(1)

This takes G -bundles P...



X

P
��

c(P)

((
BG

c // Bn+1U(1)

... to Bn+1U(1)-bundles c(P).



BU(n)
_

Π
��

B1U(1)
_

Π
��

BU(n)
c1 // K (Z, 2)

Example: first Chern class of unitary bundles.



BU(n)
B det //

_

Π
��

B1U(1)
_

Π
��

BU(n)
c1 // K (Z, 2)

Lifted by determinant function.



X

P
��

BU(n)
B det // BU(1)

This takes a unitary bundle P...



X

P
��

det(P)

((
BU(n)

B det // BU(1)

... to its derminant line bundle det(P)⊗U(1) C.



BG
c // Bn+1U(1)

BG
c // K (Z, n + 2)

Generally, for any cohesive characteristic map...



cconn //

BG
c // Bn+1U(1)

BG
c // K (Z, n + 2)

... we may ask for a further differential refinement...



BGconn
cconn // Bn+1U(1)conn

BG
c // Bn+1U(1)

BG
c // K (Z, n + 2)

... which takes G -connections to BnU(1)-connections.



Bn+1U(1)

To construct this, first differentially refine the coefficient object...



Bn+1U(1)

Bn+2U(1)

To that end, first consider one more delooping...



Bn+1U(1)

[Bn+2U(1) // Bn+2U(1)

..and the universal map it receives from the flat coefficients.



Bn+1U(1) [dRBn+2U(1)

��

c
// ∗

��
[Bn+2U(1) // Bn+2U(1)

The homotopy fiber of this...



X

∇

''

[dRBn+2U(1)

��

c
// ∗

��
[Bn+2U(1) // Bn+2U(1)

...classifies flat Bn+1U(1)-connections



X

∇

''

''
[dRBn+2U(1)

��

c
// ∗

��
[Bn+2U(1) // Bn+2U(1)

...whose underlying Bn+1U(1)-bundle is trivial.



X

∇

''

''
((

[dRBn+2U(1)

��

c
// ∗

��
[Bn+2U(1) // Bn+2U(1)

(By the universal property of homotopy pullbacks.)



X

ω

((
[dRBn+2U(1)

��

c
// ∗

��
[Bn+2U(1) // Bn+2U(1)

But this are closed differential (n + 2)-forms ω ∈ Ωn+2
cl (X )!



[dRBn+2U(1)

��

c
// ∗

��
∗ // [Bn+2U(1) // Bn+2U(1)

Canonical example: pull back further along point inclusion...



Bn+1U(1)
c

//

��

[dRBn+2U(1)

��

c
// ∗

��
∗ // [Bn+2U(1) // Bn+2U(1)

... to recover Bn=1U(1) ' ΩBn+2U(1)...



Bn+1U(1)
curv

c
//

��

[dRBn+2U(1)

��

c
// ∗

��
∗ // [Bn+2U(1) // Bn+2U(1)

...equipped with universal form curv.



Bn+1U(1)
curv

c
//

��

[dRBn+2U(1)

��

c
// ∗

��
∗ // [Bn+2U(1) // Bn+2U(1)

These are the first steps in constructing a long fiber sequence...



∗

��
Bn+1U(1)

curv

c
//

��

[dRBn+2U(1)

��

c
// ∗

��
∗ // [Bn+2U(1) // Bn+2U(1)

... the next step...



[Bn+1U(1)
c

//

��

∗

��
Bn+1U(1)

curv

c
//

��

[dRBn+2U(1)

��

c
// ∗

��
∗ // [Bn+2U(1) // Bn+2U(1)

...recovers the flat coefficients of Bn+1U(1).



[Bn+1U(1)
c

//

��

∗

0

��
Bn+1U(1)

curv

c
//

��

[dRBn+2U(1)

��

c
// ∗

��
∗ // [Bn+2U(1) // Bn+2U(1)

'

v~

We learn: “flat” means curv ' 0.



[Bn+1U(1)
c

//

��

∗

0
��

Ωn+2
cl (−)

��
Bn+1U(1)

curv

c
//

��

[dRBn+2U(1)

��

c
// ∗

��
∗ // [Bn+2U(1) // Bn+2U(1)

Refine this by considering all curvature forms in Ωn+2
cl (−).



[Bn+1U(1)
c

//

��

∗

0
��

Bn+1U(1)conn c
//

��

Ωn+2
cl (−)

��
Bn+1U(1)

curv

c
//

��

[dRBn+2U(1)

��

c
// ∗

��
∗ // [Bn+2U(1) // Bn+2U(1)

This finally gives the coefficients for BnU(1)-connections...



[Bn+1U(1)
c

//

��

∗

0
��

Bn+1U(1)conn c
F //

η

��

Ωn+2
cl (−)

��
Bn+1U(1)

curv

c
//

��

[dRBn+2U(1)

��

c
// ∗

��
∗ // [Bn+2U(1) // Bn+2U(1)

With underlying bundle η and curvature form F .



[Bn+1U(1)

inclusion

��

flat connections

Bn+1U(1)conn

forget connection

��

connections

Bn+1U(1) bundles

In summary, so far, we have abelian differential cohomology.



[Bn+1U(1)

}}

��
Bn+1U(1)conn

��
Bn+1U(1)

Recall that the total map is still the canonical counit.



[Bn+1U(1)

}}

��
Bn+1U(1)conn

��
BG

c // Bn+1U(1)

Therefore for a cohesive characteristic map c...



[BG
[c //

��

[Bn+1U(1)

}}

��
Bn+1U(1)conn

��
BG

c // Bn+1U(1)

...we have a canonical refinement to flat differential cohomology.



[BG
[c //

��

[Bn+1U(1)

��
cconn //

��

Bn+1U(1)conn

��
BG

c // Bn+1U(1)

Hence a differential refinement of c should fit into...



[BG
[c //

��

[Bn+1U(1)

��
BGconn

cconn //

��

Bn+1U(1)conn

��
BG

c // Bn+1U(1)

... a diagram of this form.



[BG
[c //

��

[BnU(1)
c

//

��

∗

0
��

BGconn
cconn //

��

Bn+1U(1)conn c
//

��

Ωn+2
cl (−)

��
BG

c // Bn+1U(1)
curv

c
//

��

[dRBn+2U(1)

��

c
// ∗

��
∗ // [Bn+2U(1) // Bn+2U(1)

(In total we looked at this situation in the cohesive ∞-topos.)



BGconn
cconn // Bn+1U(1)conn

So given the differential characteristic map...



X

∇
��

BGconn
cconn // Bn+1U(1)conn

...we canonically send G -connections ∇...



X

∇
��

cconn(∇)

((
BGconn

cconn // Bn+1U(1)conn

...to BnU(1)-connections cconn(∇).



[Σ,BGconn]
cconn // [Σ,Bn+1U(1)conn]

This statement refines to the full moduli stack [X ,BGconn] of
G -connections.



[Σ,BGconn]
cconn // [Σ,Bn+1U(1)conn] // concτ0[Σ,Bn+1U(1)conn]

Consider the projection to the concretefied 0-truncation.



[Σ,BGconn]
cconn // [Σ,Bn+1U(1)conn] // U(1)

If dimΣ = n + 1, then this is ' U(1)...



[Σ,BGconn]
cconn // [Σ,Bn+1U(1)conn]

∫
Σ // U(1)

... and the map computes the holonomy
∫

Σ cconn(∇).



exp(iSCSc) : [Σ,BGconn]
cconn // [Σ,Bn+1U(1)conn]

∫
Σ // U(1)

... we call the ∞-Chern-Simons functional induced by c.
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