Higher prequantum string geometry

Urs Schreiber

handout for a talk, August 2012

based on joint work with D. Fiorenza, T. Nikolaus, C.-L. Rogers, H. Sati, D. Stevenson

1 Motivation

Topological string geometry is controled by the fiber sequence

Goal here: apply higher geometric quantization to these stringy prequantum n-bundles. Indicate how the extended quantum n-states encode central aspects of

n = 2: Freed-Witten anomaly cancellation for type II superstrings on D-branes;

n = 3: Green-Schwarz anomaly cancellation for heterotic superstrings on Hořava-Witten boundaries of M-theory: *twisted differential string structures* [SSS2].

2 General theory

2.1 Kinematics: twisted cohomology

Let **H** be any ∞ -topos, such as our $\mathbf{H} = \mathrm{Sh}_{\infty}(\mathrm{SmoothManifolds})$. **Definition** A group in ∞ -topos is a $G \in \mathbf{H}$ equipped with a groupal A_{∞} -algebra structure: coherently homotopy associative product with coherent homotopy inverses. **Fact.** (classical + Lurie) There is an equivalence

$$\{ \text{ groups in } \mathbf{H} \} \xrightarrow{\simeq} \left\{ \begin{array}{c} \text{looping } \Omega \\ \xrightarrow{\simeq} \\ \text{delooping } \mathbf{B} \end{array} \right\} \left\{ \begin{array}{c} \text{pointed connected} \\ \text{objects in } \mathbf{H} \end{array} \right\}$$

Definition. A *G*-principal ∞ -bundle over $X \in \mathbf{H}$ is

- a morphism $P \to X$; with an ∞ -action $\rho : P \times G \to P$;
- such that $P \to X$ is ∞ -quotient $P \to P//G \Leftrightarrow$ principality : $P \times G^n \xrightarrow{(p_1,\rho)} P \times_X \cdots \times_X P$

Theorem. [NSS] There is equivalence of ∞ -groupoids $GBund(X) \xrightarrow[]{\text{hofib}} \mathbf{H}(X, \mathbf{B}G)$,

where

- 1. hoftb sends a cocycle $X \to \mathbf{B}G$ to its homotopy fiber;
- 2. \lim_{\longrightarrow} sends an ∞ -bundle to the map on ∞ -quotients $X \simeq P//G \to *//G \simeq \mathbf{B}G$.

In particular, G-principal ∞ -bundles are classified by the intrinsic cohomology of H

$$GBund(X)/_{\sim} \simeq H^1(X,G) := \pi_0 \mathbf{H}(X, \mathbf{B}G).$$

Observation. By the above theorem, every G- ∞ -action $\rho: V \times G \to G$ has a classifying map c: $V \longrightarrow V//G$ \downarrow **Theorem.** [NSS] This is the universal ρ -associated V-bundle. BG

Observation. Sections σ of the associated ∞ -bundle are *lifts* of the cocycle through \mathbf{c} ; and these locally factor through V:

$$\left\{ \begin{array}{c} P \times_G V \longrightarrow V //G \\ \sigma \mid & \downarrow \\ X \longrightarrow BG \end{array} \right\} \simeq \left\{ \begin{array}{c} V //G \\ \sigma \not \mid & \downarrow \\ X \longrightarrow BG \end{array} \right\} \simeq \left\{ \begin{array}{c} V //G \\ \sigma \not \mid & \downarrow \\ X \longrightarrow BG \end{array} \right\} \begin{array}{c} V \longrightarrow V //G \\ \sigma \mid & \downarrow \\ V \longrightarrow V //G \\ \sigma \mid & \downarrow \\ V \longrightarrow V //G \\ \varphi \longrightarrow BG \end{array} \right\}$$

Hence sections σ are equivalently

- cocycles in [g]-twisted cohomology;
- **c**-valued cocycles in the *slice* ∞ -topos: $\Gamma_X(P \times_G V) \simeq \mathbf{H}_{/\mathbf{B}G}(g, \mathbf{c})$

2.2 Dynamics: differential refinement

Theorem. ([FSSc] using [GT]) For $\nabla : X \to \mathbf{B}^n U(1)_{\text{conn}}$ an *n*-form connection and Σ a *d*-dim

compact smooth manifold with boundary $\partial \Sigma$ we have **extended higher transgression**:

$$\begin{split} & [\Sigma, X] & \xrightarrow{} \Omega_{\mathrm{cl}}^{n-d+1}(-) \\ & [\partial \Sigma \to \Sigma, X] \\ & [\partial \Sigma, X] \underbrace{\underset{[\partial \Sigma, \nabla]}{\longleftarrow} [\partial \Sigma, \mathbf{B}^n U(1)_{\mathrm{conn}}}_{\mathrm{exp}(2\pi i \int_{\partial \Sigma} (-))} \underbrace{\mathbf{B}^{n-d+1}U(1)_{\mathrm{conn}}}_{\mathrm{exp}(2\pi i \int_{\partial \Sigma} (-))} \end{split}$$

For d = n this is *n*-volume parallel transport. For $\partial \Sigma =$ this is *n*-dimensional holonomy.

$\begin{array}{c} \infty \text{-geometric} \\ \textbf{quantization} \ [\infty \text{Quant}] \end{array}$	cohesive homotopy type theory [S1]	twisted hyper- sheaf cohomology [NSS]	
$\begin{array}{c} n \text{-plectic} \\ \text{cohesive } \infty \text{-groupoid} \end{array}$	$\omega: X \to \Omega^{n+1}_{\rm cl}(-,\mathbb{G}) (\text{e.g. } \mathbb{G} = U(1) \text{ or } = \mathbb{C}^{\times})$	twisting cocycle in de Rham cohomology	
prequantum circle <i>n</i> -bundle	$ \begin{array}{c} \mathbf{B}^{n}\mathbb{G}_{\text{conn}} \\ \downarrow F_{(-)} \\ X \xrightarrow{\omega} \Omega_{\text{cl}}^{n+1}(-,\mathbb{G}) \end{array} $	twisting cocycle in differential cohomology	
quantomorphism ∞ -group \supset Heisenberg ∞ -group	$\mathbf{Aut}_{/\mathbf{B}^{n}\mathbb{G}_{\mathrm{conn}}}(\mathbf{c}_{\mathrm{conn}}) = \left\{ \begin{array}{c} X \xrightarrow{\simeq} & X \\ \swarrow & \swarrow & X \\ \mathbf{c}_{\mathrm{conn}} & & \mathbf{c}_{\mathrm{conn}} \\ & \mathbf{B}^{n}\mathbb{G}_{\mathrm{conn}} \end{array} \right\}$	twist automorphism ∞ -group	
∞ -representation of cohesive <i>n</i> -group $\mathbf{B}^{n-1}\mathbb{G}$	$V_n \longrightarrow V_n // \mathbf{B}^{n-1} \mathbb{G}$ $\downarrow^{\mathbf{p}}$ $\mathbf{B}^n \mathbb{G}$	local coefficient ∞ -bundle	
prequantum space of states	$\Gamma_X(E) := \left\{ \begin{array}{c} X \xrightarrow{\sigma} V_n / / \mathbf{B}^{n-1} \mathbb{G} \\ \ddots & & \\ \mathbf{B}^n \mathbb{G} \end{array} \right\}$	cocycles in [c]-twisted cohomology	
composition with:			
transgression to higher dimension	$ \begin{bmatrix} S^{1}, V_{n} / / \mathbf{B}^{n-1} \mathbb{G}_{\text{conn}} \end{bmatrix} \xrightarrow{\text{tr} \operatorname{hol}_{S^{1}}} V_{n-1} / / \mathbf{B}^{n-2} \mathbb{G}_{\text{conn}} \\ \downarrow^{\mathbf{p}_{\text{conn}}^{V_{n}}} \qquad \qquad$	fiber integration in (nonabelian) differential cohomology	
higher quantum states	$\begin{array}{ c c c c c } & & & & & & & & & & & & & & & & & & &$	relative cohomology	

3 Applications

Higher twisted differential structures/twisted ∞ -bundles with connection are induced in string theory by quantum anomaly cancellation conditions [SSS2][S2]. We indicate that

• Freed-Witten-Kapustin anomaly cancellation for type II strings on D-branes [K][L] is encoded in the quantum 2-states of the extended geometric quantization of the string;

• analogously "lifted to M-theory": the *Green-Schwarz anomaly cancellation* for the heterotic string / twisted differential string structures [SSS2] are encoded in *quantumm 3-states* of the extended geometric quantization of the membrane.

3.1 Freed-Witten-Kapustin quantum anomaly

Consider the σ -model of the open bosonic string with target space X carrying a background B-field and containing n coincident D-branes with oriented worldvolume $Q \hookrightarrow X$ carrying, therefore, a rank-n Chan-Paton bundle. Alternatively, consider the analogous σ -model for the type II superstring and assume, for simplicity, that $W_3(Q) = 0$.

For Σ a 2-dimensional worldsheet with boundary $\partial \Sigma$ the gauge-interaction part of the action functional of the σ -model for a configuration $\phi : \Sigma \to X$ with $\phi|_{\partial\Sigma} \subset Q$ is the product of two contributions: the 2-dimensional parallel transport of the B-field over ϕ , and the traced holonomy over $\phi|_{\partial\Sigma}$ of the connection of the Chan-Paton bundle. By the above, the first term is not a function on the mapping stack $[\Sigma, X]$, but a section of the U(1)-principal bundle obtained by transgression of the B-field. Its Chern-class is the *anomaly* of that term. Accordingly, the traced boundary holonomy similarly needs to be not a function but a section of $[\Sigma, X]$ (the two Chern-classes/anomalies cancel). In [K] it was found that a sufficient condition for this to happen is that the Chan-Paton bundle is a $\nabla_B|_Q$ -twisted bundle with connection as in twisted K-theory.

	∞ -geometric quantization [∞ Quant]	string theory	
	prequantum circle 2-bundle	B-field $\nabla_B : X_{10} \to \mathbf{B}^2 U(1)_{\text{conn}}$	
	isotropic suspace	<i>n</i> -coincident D-branes: $Q \hookrightarrow X_{10}$	
		$\mathbf{B}U(n) \longrightarrow \mathbf{B}PU(n)$	
	universal local coefficient bundle	$\bigvee_{\mathbf{V}} \mathbf{d} \mathbf{d}_n$	
		$\mathbf{B}^2 U(1)$	
	polarized section	anomaly-free Chan-Paton background gauge field	
2-geometric on $Q \xrightarrow{\text{transg.}}$ 1-geometric on loop space $[S^1, Q]$			
$\left\{\begin{array}{c} \operatorname{pre} \\ \simeq [\nabla_B _Q] \end{array}\right.$	$\left.\begin{array}{c} \text{quantum 2-states} \\ \text{-twisted } U(n)\text{-bundles} \\ \text{on } Q \end{array}\right\} \qquad \longrightarrow \qquad \left.\right\}$	$\left\{\begin{array}{c} \text{prequantum states} \\ \simeq \text{ sections of line bundle } \exp(2\pi i \int_{S^1} [S^1, \nabla_B _Q]) \\ \text{ on loop space } [S^1, Q] \end{array}\right\}$	
Q X	$ \begin{array}{ccc} & & \mathcal{B}U(n)) //(\mathcal{B}U(1))_{\text{conn}} & & [S^1, \mathbf{Q}_{B} \mathbf{Q}_{Q} & \downarrow (\mathbf{dd}_{n})_{\text{conn}} & & \longmapsto \\ & & & \nabla_{B} & \mathbf{B}^2 U(1)_{\text{conn}} & & & & & & \\ \end{array} $	$Q \xrightarrow{[S^1,\sigma]} [S^1, (\mathbf{B}U(n)) // (\mathbf{B}U(1))_{\text{conn}}] \xrightarrow{\operatorname{tr} \operatorname{hol}_{S^1}} \mathbb{C} // U(1)_{\text{con}} $ $\downarrow^{(\mathbf{dd}_n)_{\text{conn}}} \qquad $	onn nn nn

Theorem. All this follows by applying the above extended prequantization via the following dictionary.

3.2 Green-Schwarz quantum anomaly

Consider now the bosonic part of the 3-dimensional σ -model of the M2-brane on an 11dimensional spacetime X_{11} .

The background gauge field that this couples to is the 11d supergravity C-field, whose moduli are described in [FSSb]. Oversimplifying a bit, we here take the moduli to be $\mathbf{B}^{3}U(1)_{\text{conn}}$, hence the background gauge field is a circle 3-bundle with connection. The canonical linear action of $\mathbf{B}^{2}U(1)$ should be on tmf and hence the linear prequantum 3bundle should be a *smooth* tmf-fiber bundle [ABG]. This is currently out of reach, and so for the time being we fall back to canonical *non-linear* representations of $\mathbf{B}^{2}U(1)$ on \mathbf{B} String and on \mathbf{B} String(E_{8}) given, according to section 2, by $\frac{1}{2}\mathbf{p}_{1}$ and similarly by \mathbf{a} : \mathbf{B} String(E_{8}) \rightarrow $\mathbf{B}^{3}U(1)$.

∞ -geometric	string theory		
quantization $[\infty Quant]$			
	11d supergravity C-field		
prequantum circle 3-bundle	$\sim Y_{11} \rightarrow \mathbf{B}^3 U(1)_{\mathrm{conn}}$		
	(plus flux quantization corrections, see [FSSb])		
izetronic granece	Hořava-Witten boundary		
isotropic suspace	$X_{10} \hookrightarrow Y_{11}$		
	action of $\mathbf{B}^2 U(1)$ on \mathbf{B} String(Spin $\times E_8$):		
	\mathbf{B} String $($ Spin $\times E_8) \longrightarrow \mathbf{B}$ Spin $\times E_8$		
universal local coefficient bundle	$\sqrt{\frac{1}{2}\mathbf{p}_1-2\mathbf{a}}$		
	$\mathbf{B}^{3}U(1)$		
nolarized section	anomaly-free heterotic		
polarized section	background gauge fields		

From [FSSb] we now find this dictionary:

With this a quantum 3-state / polarized section is a diagram

This we recognize from [SSS2] as an anomaly-free heterotic background field configuration. The differential form data over a trivializing cover $U \to X$ encoded by this is [SSS1, FSSt]

- gravity gauge potential $\omega \in \Omega^1(U, \mathbf{so})$ with field strength F_{ω} ;
- Yang-Mills gauge field $-A \in \Omega^1(U, \mathfrak{e}_8)$ with field strength F_A ;
- B-field $-B \in \Omega^2(-)$ with field strength

 $H = \nabla B = dB + \mathbf{CS}(\omega) - \mathbf{CS}(A) + \mathbf{C}.$

$$dH = \langle F_{\omega} \wedge F_{\omega} \rangle - \langle F_A \wedge F_A \rangle.$$

References

- [ABG] M. Ando, A. Blumberg, D. Gepner, Twists of K-theory and TMF, arXiv:1002.3004
- [FSSt] D. Fiorenza, U. Schreiber, J. Stasheff. Čech-cocycles for differential characteristic classes, Advances in Theoretical and Mathematical Physics, Volume 16 Issue 1 (2012) arXiv:1011.4735
- [FSSa] D. Fiorenza, H. Sati, U. Schreiber, String 2-connections and 7d nonabelian Chern-Simons theory, arXiv:1201.5277
- [FSSb] D. Fiorenza, H. Sati, U. Schreiber, The E₈-moduli 3-stack of the C-field, arXiv:1202.2455
- [FSSc] D. Fiorenza, H. Sati, U. Schreiber, Extended higher cup-product Chern-Simons theories, arXiv:1207.5449
- [GT] K. Gomi, Y. Terashima, A Fiber Integration Formula for the Smooth Deligne Cohomology, International Mathematics Research Notices (2000), No. 13
- [K] A. Kapustin, D-branes in a topologically nontrivial B-field, Adv. Theor. Math. Phys. 4, no. 1, (2000), arXiv:hep-th/9909089
- [L] K. Laine, Geometric and topological aspects of Type IIB D-branes, Master thesis (2009), arXiv:0912.0460
- [NSS] T. Nikolaus, U. Schreiber, D. Stevenson, Principal ∞-bundles I General theory, II Presentations (2012) arXiv:1207.0248, arXiv:1207.0249
- [Ro] C. L. Rogers, Higher symplectic geometry, PhD (2011) arXiv:1106.4068
- [SSS1] H. Sati, U. Schreiber, J. Stasheff, L_{∞} -algebra connections, in Fauser et al. (eds.) Recent Developments in QFT, Birkhäuser 2008 arXiv:0801.3480
- [SSS2] H. Sati, U. Schreiber, J. Stasheff, Twisted differential string- and fivebrane structures, Communications in Mathematical Physics (2012) arXiv:0910.4001
- [S1] U. Schreiber, Differential cohomology in a cohesive ∞-topos ncatlab.org/schreiber/show/differential+cohomology+in+a+cohesive+topos
- [S2] U. Schreiber, Twisted smooth cohomology in string theory, Lecture series at ESI Program on K-Theory and Quantum Fields (2012) ncatlab.org/nlab/show/twisted+smooth+cohomology+in+string+theory
- [∞CS] D. Fiorenza, U. Schreiber, ∞-Chern-Simons theory, ncatlab.org/schreiber/show/infinity-Chern-Simons+theory
- [∞Quant] D. Fiorenza, C. Rogers, U. Schreiber, ∞-Geometric prequantization, ncatlab.org/schreiber/show/infinity-geometric+prequantization