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Abstract

For T any abelian Lawvere theory, we establish a Quillen adjunction between
model category structures on cosimplicial T -algebras and on simplicial presheaves
over duals of T -algebras, whose left adjoint forms algebras of functions with val-
ues in the canonical T -line object. We find mild general conditions under which
this descends to the local model structure that models ∞-stacks over duals of
T -algebras.

For T the theory of commutative algebras this reproduces the situation in Toën’s
Champs Affines. We consider the case where T is the theory of C∞-rings: the case
of synthetic differential geometry. In particular, we work towards a definition of
smooth∞-vector bundles with flat connection. To that end we analyse the tangent
category of the category of C∞-rings and Kock’s simplicial model for synthetic
combinatorial differential forms which may be understood as an∞-categorification
of Grothendieck’s de Rham space functor.



Introduction

I will describe three ideas that are strongly related to this thesis, and after that
explain where one is to place this thesis amongst them. The first two have been
around for about half a century and the last for much less. The three ideas are
1: topos theory 2: synthetic differential geometry 3: higher topos theory. Topos
theory is the mother subject of all three and this thesis is part of an attempt to
apply the ideas of higher topos theory to synthetic differential geometry.

1. In the context of algebraic geometry, Grothendieck (and the community around
him) suggested studying sheaves over certain small sites of duals of rings. This
gave a way of embedding varieties, which in this context are identified with the
duals of their coördinate rings, into a category with convenient closure properties.
The concept of an elementary topos and the theory of the inner logic of elementary
topoi were subsequently developed by several people. One important figure in this
more abstract development is Bill Lawvere.

2. Inside certain topoi defined over sites not of duals of rings, but duals of C∞-
rings, authors like Anders Kock argue using the internal logic of the topos, as
developed in the theory of elementary topoi. There is mathematical value in the
freedom that is provided by working in the topos, as intuitive constructions that
for example physicists want to use can be given rigorous meaning inside these
topoi. One calls this field Synthetic Differential Geometry.

3. Certain generalizations of the notion of sheaf are useful They are called stacks.
Where a sheaf is a contravariant functor, in some situations one encounters not
a functor, but only a functor ‘up to isomorphism’, i.e. such that the image of
a composite is, up to isomorphism, equal the composition of their images. Here
we talk of isomorphism of arrows, i.e. certain kinds of morphisms between mor-
phisms. One can subsequently consider morphisms between those morphisms and
so on. This leads to the (imprecise) concept of an ∞-stack. Grothendieck himself
was interested in∞-stacks and wrote a famous letter to Daniel Quillen concerning
them, which is entitled ‘À la poursuite des champs’.

Joyal answered the call for a definition by suggesting that a model category on
simplicial presheaves he constructed could model what Grothendieck was looking
for. This idea has been applied fruitfully, for example by Morel and Voevodsky in
their study of the A1-homotopy theory of schemes, as well as by Toën and Vezzosi
in their investigation of derived algebraic geometry.

Jacob Lurie, building on unpublished work of Joyal published, in 2009, an impres-
sive piece of work ‘Higher Topos Theory’ [17] where ∞-stacks become objects of
certain ∞-categories called ∞-topoi. Moreover, he proves that Joyal’s model cat-
egories of simplicial presheaves provide ‘models’ for his ∞-topoi. Lurie develops
derived geometry grounded in this theory in his works entitled ‘Derived Algebraic
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Geometry’.

The place of this thesis amongst the ideas 1, 2 and 3 is between 2 and 3. The
program is to understand smooth derived geometry. We take our example from
Toën’s work ‘Champs Affines’ [23] in which it is established that there is a Quillen
adjunction between cosimplicial R-algebras and simplicial presheaves (with a local
model structure) over a small site of duals of R-algebras for any commutative ring
R. We interpret the left adjoint as sending a simplicial presheaf X to the cosim-
plicial R-algebra O(R) of functions from X to some line object O. There is space
for generalization here, which we occupy in order to apply this idea to the context
of C∞-rings. Thus we show, for any Lawvere theory T under the Lawvere theory
of abelian groups, that there is a line object in the model category of simplicial
presheaves over any suitable small site of duals of C∞-rings and that homming
into this line object gives the left adjoint of a Quillen adjunction.

Another result in this text is the construction of a cosimplicial C∞-ring that is
closely related to Kock’s infinitesimal simplices and the proof that its normaliza-
tion under the Dold-Puppe equivalence is the De Rham complex. There is still
work to do in this part, but intuitively the De Rham complex is the function alge-
bra on the ∞-stack of infinitesimal paths on a manifold, surely a pleasing mental
image. A more rounded off piece of work is the description of the tangent category
of C∞-rings (intuitively the category of all modules over all C∞-rings) in terms
of the tangent category of commutative rings, with the important corollary that
the category of simplicial modules over a simplicial C∞-ring R is equivalent to
the category of simplicial modules over its underlying simplicial ring U(R). It is
expected that these results will lead to a good notion of∞-vector bundle with flat
connection on a manifold.

Other work in the area of smooth derived geometry is that of David Spivak.
In his PhD-thesis and the article ‘Derived Smooth Manifolds’ ([22]) based on
that he discusses ‘spaces’ that are locally equivalent to duals of simplicial C∞-
rings. He then proves how this gives a good intersection theory of generalized
smooth manifolds. Our approach can be seen as complementary to Spivak’s.
Thus, morally speaking, Spivak considers a simplicial site, whereas we consider
simplicial presheaves. Ultimately one would to seek to combine these in derived
geometry.

Outline

This work is divided into two parts. In the first part we derive the main theorem,
in the second part we present some applications.

We begin by proving that there is an enriched adjunction between cosimplicial
T -algebras and simplicial presheaves on certain small categories C of opposites
of T -algebras for Lawvere theories T lying under the Lawvere theory of abelian
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groups. The left adjoint sends a simplicial presheaf to the cosimplicial T -algebra
of functions from it to the line object. This enriched adjunction is shown to be
a Quillen adjunction, when we regard the simplicial presheaves with their pro-
jective model category structure and the cosimplicial algebras with a structure
where weak equivalences induce isomorphisms in cohomology. Moreover, under
mild cohomological conditions, this Quillen adjunction is proven to descend to
the (hyper-)local structure on simplicial presheaves for subcanonical Grothendieck
topologies on C.

The second part explores the application of this theory to the context of C∞-
rings, and therefore to synthetic differential geometry. We characterize the tangent
category for C∞-rings in terms of the one for rings (the tangent category of the
category of rings is the category of all modules over rings). Next we see how the
De Rham complex on a manifold emerges naturally as the normalization of the
cosimplicial C∞-ring of functions on the “infinitesimal path ∞-groupoid” on the
manifold. This is a rerooting of work done by Kock in the synthetic differential
context on infinitesimal simplices. The context provided by me is performed not in
some topos based on duals of C∞-rings, but on the category of duals of C∞-rings
itself. Moreover, the relationship between said ∞-groupoid and the De Rham
complex is shown to be described by Dold-Puppe’s normalization functor. We
end this second and last part of the thesis by proving that the adjunction from
the main theorem descends to a model category localized at a suitable set of
�Cech covers. This means that the image of the ‘infinitesimal path ∞-groupoid”
under the derived right adjoint of our Quillen adjunction is the smooth ∞-stack
of infinitesimal paths.
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Chapter 1

Cosimplicial T -algebras

1.1 Lawvere theories

In this section I review the notion of a Lawvere theory. An algebra for a Lawvere
theory is intuitively a set with some set of operations that satisfy axioms that use
only the operations on the set and equality in their formulations. For example, the
category of abelian groups is the category of structures (A,+,−, 0) such that ap-
propriate axioms hold. This in contrast to structures (A,+) such that appropriate
axioms hold. However, the categories are equivalent, so we ignore the distinction
in this text.

Let us get to it.

1. Definition. A Lawvere theory is a category T isomorphic to a category having
all natural numbers n ∈ Z≥0 as objects, such that n is an n-fold categorical power
of 1. An algebra for a Lawvere theory T is a product preserving functor from
T to Set. The category of all T -algebras as objects and morphisms all natural
transformations between them is written T -alg.

If T is a Lawvere theory then the category of T -algebras is equivalent to a cat-
egory of equationally defined universal algebras. Below I translate the basics of
congruences to the setting of Lawvere theories.

2. Definition. Let T be a Lawvere theory, A a T -algebra. A congruence ∼ on A
is an equivalence relation on A(1) such that the following holds for any f : n→ 1
in arr T . If a, b ∈ A(n) such that for each i = 1, ..., n we have A(πi)(a) ∼ A(πi)(b)
then also A(f)(a) ∼ A(f)(b).

3. Proposition. Let T be a Lawvere theory and A a T -algebra. Then for any
relation R on A(1) there is a smallest congruence on A containing R.

Proof: The intersection of a set of congruences is a congruence. Take our desired
congruence to be the intersection of all congruences of A containing R. �
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4. Proposition. Let T be a Lawvere theory, A a T -algebra, C a congruence on A.
Then the relations A/C(f) ⊆ (A/C)n ×A/C induced by A(f) for each f : n→ 1
in arr T are functions and define a T -algebra.

Proof: �

This proposition is a good opportunity to introduce some notation:

5. Definition. If R ⊆ A(1) × A(1) then 〈R〉 denotes the smallest congruence
containing R. Write A/C for the algebra proven to exist in the above proposition.

6. Proposition. Let φ, ψ : A → B be two homomorphisms of T -algebras, Cφ,ψ
the smallest congruence on B containing the relation that relates φ(a) and ψ(a)
for every a ∈ A(1). Then the canonical map B → B/Cφ,ψ is a coequalizer of φ
and ψ.

Proof: Straightforward and similar to the case of groups. �

7. Remark. Let T and S be Lawvere theories, and let f : T → S be a product
preserving functor between them. Then write f∗ : S-alg → T -alg for the functor
defined by right composition with f . This functor preserves filtered colimits, since
in each category these are computed pointwise.

If T is the category with objects n ∈ Z≥0 with n the n-th power of 1 and such
that T is generated by the projections, then there is always a product preserving
functor T → S for any Lawvere theory and we denote the corresponding forgetful
functor US : S-alg→ Set.

8. Proposition. For any Lawvere theory T the forgetful functor UT : T -alg→ Set
has a left adjoint which I denote by FT .

Proof: If S is a set, let FT (S) be the algebra with underlying set all formal
expressions f(s1, ..., sn) for s1, ..., sn ∈ S and f an arrow of T with the obvious
action of arrows. �

The following theorem is due to Lawvere in [16] (in this form). We need the special
case where T is the theory of abelian groups in the proof for the model category
structure on the category of algebras for a Lawvere theory S such that there is a
product preserving functor from T to S.

9. Proposition. Let T and S be Lawvere theories, and let f : T → S be a
product preserving functor between them. Then the functor f∗ : S-alg → T -alg
defined by right composition with f has a left adjoint.

Proof: Let FS a US and FT a UT be the adjunctions from proposition 8. Let A be
a T -algebra. Then A ∼= FTUT (A)/Γ for some T -congruence Γ. Now UTFTUT (A) ⊆
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USFSUT (A), so Γ ⊆ USFSUT (A) and FSUT (A)/〈Γ〉 is an S-algebra, where 〈Γ〉 is
the smallest S-congruence containing Γ. This FSUT (A)/Γ is the free S-algebra on
A. �

10. Remark. There is a theory of Sets. It consists of all natural numbers starting
from 0 as objects, with only projections as arrows. The adjunction US ` FS is a
special case of the above proposition, where we take T to be this theory of sets.

Fix a Lawvere theory T .

11. Proposition. The category of T -algebras is complete and cocomplete.

Proof: Completeness follows by taking pointwise limits. For cocompleteness it
remains only to show that T -alg has coproducts since coequalizers are given by
proposition 6.

The S-indexed coproduct of a set {FT (S)/ΓS ;S ∈ S} of T -algebras is

FT

(∐
S
)
/〈∪S∈SιSΓS〉,

where ιSΓS is the image of ΓS in FT (
∐
S). �

1.2 Model category structure

12. Definition. Let T be a Lawvere theory. We say that T is abelian if there is
a product preserving functor A → T from the Lawvere theory for abelian groups
to T .

Fix an abelian Lawvere theory T . Write T -alg∆ for the category of cosimplicial
T -algebras. Say a morphism of T -alg∆ is a fibration if it is a componentwise
surjection and say it is a weak equivalence if it induces an isomorphism on the
cohomology of the associated cochain complexes of abelian groups. Say a mor-
phism is a cofibration if it has the left lifting property with respect to the class of
all acyclic fibrations. In this subsection I prove that this gives a simplicial model
structure on the category T -alg∆. Note that the two out of three axiom for weak
equivalences is trivial and our category is complete and cocomplete.

The strategy for proving that there is a simplicial model category structure on the
simplicial category of cosimplicial T -algebras is to prove first that there is such
a structure on the category of cosimplicial abelian groups and use the “transfer
theorem” which states that under some conditions on a right adjoint we may con-
clude that a simplicial model category exists in the domain of this right adjoint,
given a model category structure on the codomain.

I thought/learned of the model category structure on cosimplicial abelian groups
in this section from reading the note [13] and theorem 2.1.2. in [23], the ideas
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presented here are slight variations of their’s, which are heavily inspired by [3].
Moreover, since the proof seems to also work in the case of simplicial abelian groups
and the model structure presented here might therefore be considered standard
even without the above references, I have relegated it to the appendix.

We consider both Ab∆
s and T -alg∆

s as simplicially enriched categories as defined
in [10], by virtue of Ab and T -alg being both complete and cocomplete. Our first
subject is the category of cosimplicial abelian groups.

13. Theorem. Call a morphism of cosimplicial abelian groups a fibration if it
degreewise a surjection and a weak equivalence if it is a quasi-isomorphism. This
gives Ab∆ the structure of a simplicial model category.

Proof: See the appendix. �

14. Theorem. Say a morphism in T -alg∆ is a fibration if its image under the
forgetful functor to cosimplicial abelian groups is and say it is a weak equivalence
if its image under the forgetful functor is. Then this gives a simplicial model
structure on the category T -alg∆

s .

Proof: Since by construction Ab∆ is cofibrantly generated we apply the ‘Transfer
principle’ and Quillen’s path argument on page 811 of [2]. We need to check that
there is a functorial path object and that the forgetful functor preserves filtered
colimits to conclude that the described structure is a model category structure.
The forgetful functor to abelian groups preserves filtered colimits by remark 7.
For a functorial path object, take A 7→ A∆[1]; applying the forgetful functor to

A ∼= A∆[0] → A∆[1] → A∆[0]+∆[0] ∼= A×A

yields a path object in Ab∆, since by simplicial enrichment A− carries acyclic
cofibrations between cofibrant objects to weak equivalences, by the Factorization
Lemma (Corollary 7.7.2 [11]), by the fact that the simplicial unit interval ∆[1] is
a cylinder object for the point ∆[0] and using that every object A is fibrant.

It is left to verify axiom ‘SM7’ for enriched model categories (the “pushout-product
axiom”). By [17] A.3.1.6 we need only show that for i : C → C ′ a cofibration
of simplicial sets and j : X → Y a fibration in T -alg∆ the map f : XC′ →
XC ×Y C Y C′ is a fibration which is trivial if either i or j is. Apply the forgetful
functor T -alg∆ → Ab∆ to f . Note that exponentiation is preserved under the
forgetful functor and so are pullbacks. Since fibrations and weak equivalences are
preserved and reflected by the forgetful functor, the map XC′ → XC ×Y C Y C′ is
as desired. �
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Chapter 2

Function T -algebras on stacks

In algebraic geometry one considers small subsites C of Ringop and sees sheaves
on such sites as general spaces. There is an adjuction Spec ` O where Spec : R 7→
Ring(R,−) : Ring → Sh(S) and O : X 7→ Sh(X,Spec(Z[x])), assuming Z[x] is in
S and its spectrum Spec(Z[x]) is a sheaf.

In [23] Toën shows that one can do something analogous replacing sheaves by
stacks and rings by cosimplicial algebras, with appropriate model category struc-
tures. In this chapter we show that the argument goes through for T -algebras of a
particular kind, under mild cohomological conditions. The line object Spec(Z[x])
is generalized to T -alg(FT (1),−), the non-simplicial spectrum of the free T -algebra
on one generator. The main theorem is that there is a Quillen adjunction between
cosimplicial T -algebras and simplicial presheaves on some small subsite of T -algop

when the latter is endowed with the projective model category structure.

Throughout this chapter C will stand for a small full subcategory of T -algop.

2.1 Simplicial presheaves

We first review some model category structures on categories of contravariant
functors from some small category C to the category of simplicial sets. The two
most prominent model category structures on

(
Set∆op)Cop

s
which are called global

are the injective and the projective model category structure. We will be concerned
with the projective structure, which I now describe. Call a morphism f : X → Y
of simplicial presheaves a global fibration (weak equivalence) if for each object A
of C we have that fA is a fibration (weak equivalence) of simplicial sets in the
Quillen model category structure. Say a map f of simplicial presheaves is a global
cofibration if it has the left lifting property with respect to all global fibrations
that are also global weak equivalences.

15. Proposition. The above definitions make
(
Set∆op)Cop

s
into a simplicially en-

riched model category.
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Proof: The Quillen model structure on the simplicially enriched category of sim-
plicial sets is cofibrantly generated, so we may apply Theorem 11.7.3 in [11]. �

The model category structure we are interested in on the simplicial category of
simplicial presheaves is not the projective category structure, rather it is a left
Bousfield localization of this category. For its definition we use coskeleta. Let C
be a small category.

16. Definition. Let n ∈ Z≥0. Write ∆n for the full subcategory of ∆ on the
objects of the form [k] for k ≤ n. The n-truncation functor is the functor(
SetC

)∆op

→
(
SetC

)∆op
n given by restriction along the inclusion ∆n → ∆.

The truncation functor clearly preserves colimits so it has a right adjoint. Pick
one.

17. Definition. Let n ∈ Z≥n. The functor coskn :
(
SetC

)∆op
n →

(
SetC

)∆op

that is
right adjoint to the n-truncation functor is called the n-th coskeleton functor.

18. Definition. Let (C,Γ) be a site, X an object of C and f : U → hX a map of
simplicial presheaves. Then f is said to be a hypercover if
1) In each degree U is a coproduct of representables.
2) For every n ∈ Z≥0 we have that the map f([n+ 1])→ coskn(f)([n+ 1]) induces
an epimorphism on the associated sheaves.

19. Definition. A hypercover is said to be split if its domain X satisfies the
following condition. There exist subpresheaves N([k]) ⊆ X([k]) for [k] ∈ ∆ such
that the following holds:∐

σ

N(dom(σ))→ X([n]),

where σ ranges over all surjections onto [n] is an isomorphism.

20. Remark. The domain of a split hypercover is cofibrant in the projective
structure on simplicial presheaves. We consider them because since their domains
and codomains are cofibrant a morphism on homotopy function complexes induced
by a hypercover f into a fibrant object is naturally weakly equivalent to the
morphism induced by f on the simplicially enriched hom-objects.

21. Definition. A hypercover of height n is a hypercover f for which the canonical
map f → coskn+1f is an isomorphism. When there exists some n for which f is
of height n, f is called bounded. It is called a �Cech cover if it has height 0.

22. Theorem. The left-Bousfield localization of the projective model category
structure on simplicial presheaves on some small site at the class of all hyper-
covers exists. The localization at all �Cech covers also exists. Both are simplicial
model categories.
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Proof: [8], theorem 6.2 for the first part of the theorem. Since there is only
a set of �Cech covers, and the projective model category structure is simplicial,
combinatorial and left-proper, the localization at �Cech covers exists by theorem
A.3.7.3. of [17]. The fact that these are simplicial model category follows from
theorem 4.1.1. in [11]. �

2.2 The Set∆op

-enriched adjunction

In this section I define the Set-enriched functors O and Spec, which are the objects
of study for this chapter, and show that they are adjoint to each other. I thank
Urs Schreiber for pointing out this proof of the adjunction. I was unfamiliar with
the end calculus and the previous proof spanned over five pages and relied on less
obvious facts.

23. Definition. We define the functor Spec :
(
T -alg∆

)op →
(
Set∆op)C by

R 7→ T -alg∆
s (R,−)

f 7→ T -alg∆
s (f,−),

where − denotes the functor sending a T -algebra A ∈ ob C to A, the constant
cosimplicial T -algebra with value A.

24. Definition. Define the functor O :
(
Set∆op)C → (

T -alg∆
)op

as

M 7→ (n 7→ SetC(M(n), UT ))
f 7→ (n 7→ SetC(fn, UT ))

25. Remark. Note that we can endow UT with a T -algebra structure by sending
an arrow f : m → n of T to the natural transformation A 7→ A(f). So the
specification above does indeed yield a functor.

26. Remark. An easy Yoneda style argument shows that n 7→ HomSetC (M(n), UT )
is isomorphic to

(
Set∆op)C

s
(M,UT ). Moreover, UT is isomorphic to the simplicial

presheaf Spec(FT (1)). So we are “homming into the line object”.

Likewise we could describe Spec(A) as T -alg∆
s (A,−).

However, it is a nuisance to keep unraveling the Yoneda lemma in the following
computation, which is why I prefer the definition given above.

27. Theorem. There exists a simplicially enriched adjunction Spec ` O.

Proof: The proof is split into two parts. In the first I prove that there is an
adjunction, and in the second part I use the first result to prove that there is a
simplicial set enriched adjunction. To show there is an adjunction, note that there
is a sequence of natural isomorphisms (writing k = 1k for an object of T ):
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T -alg∆(A,O(X)) ∼=
∫

[n]∈∆

∫
k∈T

Set(A([n])(k),SetC(X([n]), UkT ))

∼=
∫

[n]∈∆

∫
k∈T

∫
B∈C

Set(A([n])(k),Set(X([n])(B), B(k)))

∼=
∫

[n]∈∆

∫
B∈C

Set(X([n])(B),
∫
k∈T

Set(A([n])(k), B(k)))

∼=
∫

[n]∈∆

∫
B∈C

Set(X([n])(B), T -alg(A([n]), B))

∼=
(
SetC

)∆op

(X,Spec(A))

For the simplicial enrichment of the adjunction we have the following sequence
of natural isomorphisms, where the notation AS for S a simplicial set and A an
object is cotensoring as in [10], and likewise A · S is tensoring:

T -alg∆ (A ·∆([n]),O(X)) ∼=SetC×∆op
(X,Spec(A ·∆[n]))

∼=SetC×∆op (
X,T -alg∆

s (∆[n] ·A,−)
)

∼=
∫
B∈C

Set∆op (
X(B), T -alg∆

s (∆[n] ·A,B)
)

Now note that Set∆op (
X(B), T -alg∆

s (∆[n] ·A,B)
)

is naturally isomorphic to(
Set∆op

s

(
X(B), T -alg∆

s (∆[n] ·A,B)
))

0

and from that we conclude that the end above is naturally isomorphic to

SetC×∆op (
X ·∆[n], T -alg∆

s (A,−)
) ∼=SetC×∆op

(X,Spec(A))([n]). �

2.3 The Quillen adjunction

This section is devoted to showing how the adjunction from last section is actually
a Quillen adjunction in two different ways. The basis is the following theorem,
stating that if we take the projective structure on simplicial presheaves, we obtain
a Quillen adjunction.

28. Theorem. The functor Spec :
(
T -alg∆

s

)op → (SetC×∆op
)proj is a right Quillen

functor.

Proof: Let f : X → Y be an (acyclic) cofibration in T -alg∆, in other words an
(acyclic) fibration in

(
T -alg∆

)op
. We need to show that (A, [n]) 7→ T -alg∆

(
f,A∆[n]

)
is a (acyclic) fibration in the projective model structure; that is to say, that for
each A ∈ ob C, the morphism of simplicial sets [n] 7→ T -alg∆

(
f,A∆[n]

)
is an
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(acyclic) Kan fibration.

Note that all objects, thus in particular A : [n] 7→ A for A ∈ ob C ⊆ T -alg, in
T -alg∆ are fibrant. Therefore, by [17] A.3.1.6 (2’),

T -alg∆
s (Y,A)→ T -alg∆

s (X,A)×T -alg∆
s (X,∗) T -alg∆

s (Y, ∗)

(∗ denotes the terminal object) is an (acyclic) fibration. But this morphism is
isomorphic to T -alg∆

s (f,A) : [n] 7→ T -alg∆(f,Ay([n])). �

29. Lemma. Let K be a class of split hypercovers and suppose Hp(O(f)) is
an isomorphism for every hypercover f ∈ K. If the left-Bousfield localization of
(SetC×∆op

)proj at the class K exists then Spec is a right Quillen functor with re-
spect to this localization.

Proof: By [11] 13.1.2 and the fact that in T -alg∆ all objects are fibrant we know(
T -alg∆

)op
is left proper. Therefore, by [17] A.3.7.2 it suffices to check that fibrant

objects are sent to fibrant objects. So let B be cofibrant in T -alg∆. We want to
check that Spec(B) is fibrant, i.e. that Spec(B) is fibrant in the global structure
and that Spec(B) is local. The first follows from the fact that Spec is right Quillen
to the global model structure and hence sends fibrations to fibrations in the global
structure.

For the second condition, let f ∈ K. Since both the domain and codomain of f
are cofibrant ([7] corollary 9.41) it is enough to show that(

Set∆op)C
s

(f,Spec(B)) ∼= T -alg∆(B,O(f))

is a weak equivalence of simplicial sets. But we know that O(f) is a weak equiv-
alence in T -alg∆. Since B is cofibrant T -alg∆

s (B,−) sends acyclic fibrations to
acyclic fibrations by ‘SM7’. Since all objects are fibrant in this model category,
and since the factorization lemma (Corollary 7.7.2 [11]), T -alg∆

s (B,−) sends weak
equivalences between fibrant objects to weak equivalences, T -alg∆

s (B,O(f)) is a
weak equivalence of simplicial sets. �

30. Theorem. Assume FT (∗) ∈ C and let J be a subcanonical Grothendieck
topology on Cop and suppose K is a class of split hypercovers for J such that for
all f ∈ K we have H1(O(domf)) = 0. Then Spec is right Quillen with respect to
the left-Bousfield localization at K of (SetC×∆op

)proj (if this structure exists).

Proof: The next three paragraphs of this proof show that O(f) induces an iso-
morphism in cohomology. By the lemma above this is sufficient.

First a note on Sh(Cop, J)/hY . By Lemma C.2.2.17 in [14] SetC
op
/hY ' SetC

op/Y .
Also, if JY is the Grothendieck topology on Cop/Y that calls a family a cover-
ing if its domains are a covering family, then JY is subcanonical and there is an

1The condition in the premise is satisfied by split hypercovers as defined in [8]
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equivalence ε : Sh(Cop/Y, JY ) → Sh(Cop, J)/hY that sends hCop/Y (g : A → Y ) to
hCop(g) : hA→ hY .

Now I reproduce Verdier’s ([24], appendix to exposé V, section 2) definition of
homology in our case for f ∈

(
Set∆op)C

/hY . Take the free abelian group F on
f , this is a simplicial object of Ab

(
SetC/hY

)
. Since Ab

(
SetC/hY

)
is abelian, we

may take the homology of this object and define its abelian group objects to be
the homology of f . By 3) of théorème 3.2. in [24], the associated sheaves of the
homology of f are 0 ∈ Ab(Sh(Cop, J)/hY ) in degree strictly greater than 0; in
dimension 0 the associated sheaf is the constant sheaf on the integers.

By the Freyd-Mitchell embedding theorem [9], we may embed the category of
abelian groups in Sh(Cop, J)/hY through some exact i into the category of modules
over some commutative ring R. Write F̃ for the chain iNF in R-Mod. We may
then apply the universal coëfficient theorem for cohomology (Cartan-Eilenberg’s
Homological Algebra theorem VI.3.3a) and get a short exact sequence (we shall
need it for n > 1):

0 //Ext1(Hn−1(F̃ ), iC) //Hn(R-Mod(F̃ , iC)) //Ab(Hn(F̃ ), iC) //0.

Now by Verdier’s result we have that the sheaf of abelian groups Hn(N(F )) ∼= 0
for n ≥ 1. Since i is exact therefore 0 ∼= iHn(N(F )) ∼= Hn(iN(F )) for n ≥ 1,
so we see Hn(R-Mod(F̃ , iC)) ∼= 0 and since i is full and faithful for any abelian
group object C in Sh(Cop, J)/hY . In particular we may take, as coefficients C,
the obvious group on UT × hY . Note that, since i is full and faithful we have

R-Mod(iNF, iC) ∼=

Ch+ (Ab (Sh(Cop, J)/hY )) (NF,UT × hY ) ∼=

Ab (Sh(Cop, J)/hY )∆ (F,UT × hY ) ∼=

Sh(Cop, J)/hY ∆(f, UT × hY ) ∼=

Sh(Cop, J)∆(X,UT ).

All that is left is to show is that H0(O(f)) is an isomorphism. But this is an easy
consequence of the fact that UT is a sheaf (being represented by FT (∗) ∈ C). �
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Part II

Applications to C∞-rings.
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Chapter 3

C∞-rings

3.1 C∞-rings

In this section I introduce the category of C∞-rings, mostly following [18]. A C∞-
ring is an algebra for the Lawvere theory of Cartesian spaces and smooth maps,
and therefore part I applies. There is an injective, full and faithful functor from
the opposite category of C∞-manifolds to the category of C∞-rings that preserves
intersections of transversal submanifolds. Our main motivation for studying this
extension is that this category contains what we call infinitesimal objects that
behave as we want them to.

Write E for the category with as objects all finite cartesian powers of the real line
and as arrows all infinitely differentiable functions between them.

31. Definition. A C∞-ring is a product preserving functor from E to Set and C∞-
ring is full subcategory of SetE consisting of C∞-rings. Morphisms of C∞-rings
are called homomorphisms (of C∞-rings).

32. Example. Let M be a C∞ manifold. Define a C∞-ring C∞(M) by sending
Rn to C∞(M,Rn). For a smooth map f : Rn → R let C∞(M)(f) be the function
sending a smooth map φ :M→ Rn to f ◦ φ :M→ R.

33. The underlying R-algebra of a C∞-ring. Let A be a C∞-ring. Then the or-
dered triple U(A) := (A(R), A(·), A(+)) is a ring. If r ∈ R then there is a smooth
function r : R0 → R sending the only element ∗ ∈ R0 to r. Using this, we construct
a ring homomorphism R → U(A), sending some r ∈ R to the element A(r)(∗),
where now ∗ is the unique element of A(R0). This gives us, for every C∞-ring an
underlying R-algebra.

We will have to do computations with C∞-rings and a big chunk of these com-
putations will in fact occur in the underlying R-algebras. In these cases we will
suppress the A in front of ring-theoretic operations, treating a C∞-ring as an R-
algebra supplied with additional operations. So A(+)(a1, a2) will become a1 + a2
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and so on.

A very useful property of the category of C∞-rings is that the quotient of the
underlying R-algebra of a C∞-ring by one of its ideals is again canonically a C∞-
ring. This follows from the following theorem.1

Let p ∈ Rn for some natural number n. A starlike neighborhood U of p in Rn

is an open neighborhood of p in Rn such that any straight line segment in Rn

connecting p to some point in U is contained in U .

34. Theorem. Any infinitely differentiable function f in a starlike neighborhood
U of a point p ∈ Rk satisfies, for any natural number n the formula

f(x) =
∑
τ∈T

(
k∏
i=1

(
1
τi!

(xi − pi)τi
)
∂τ1

∂xτ11

· · · ∂
τk

∂xτkk
f
∣∣∣
p

)
+
∑
σ∈S

(∏
(xi − pi)σi

)
gσ(x),

for some gσ ∈ C∞(U,R); I wrote T for {(τ1, ..., τk) ∈ Zk≥0;
∑k

i=1 τi ≤ n} and
S := {σ ∈ Zk≥0;

∑k
i=1 σi = n+ 1}.

Proof: Corollary 2.4 of [19]. �

In the sequel it is mostly through theorem 34 that we put the infinite differentia-
bility of functions at work. An important special case is when n is set equal to
zero, which we apply in the following proposition.

35. Proposition. Let A be a C∞-ring. If I is an ideal of the underlying ring
U(A) then the quotient A/I exists and U(A/I) ∼= U(A)/I.

Proof: We use the case n = 0 of theorem 34 to show that the ideal I is also a
C∞-ring congruence. I spell this out now.

Define A/I : Rn 7→ A(Rn)/ ∼I,n, where ∼I,n⊆ A(Rn) is the congruence induced
by I. That is to say, for x, y ∈ A(Rn) we set x ∼I,n y iff for every i = 1, ..., n we
have πi(x)−πi(y) = 0 in A/I. For f : Rn → R a smooth function define a relation
(A/I(f))0 ⊆ Rn × R by [y]∼I,n ' (A/I(f))0 [x]∼I,n iff f(x) ∼I,1 y. To obtain a
function we must now check that if x ∼I,n y also f(x) ∼I,1 f(y).

To do this we apply theorem 34. Let us consider the case n = 0 for f , and let
p, q ∈ Rn be any point in Rn. Since f is smooth everywhere we obtain from
theorem 34 that

f(q)− f(p) =
n∑
i=1

(qi − pi)gi(q, p)

1Lawvere theories satisfying this theorem are called Fermat theories ([6]).
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for smooth gi : Rn×Rn → R. This yields a corresponding equation in the category
E and applying A to this equation we obtain, for x, y ∈ A(Rn) that

A(f)(x)−A(f)(y) =
n∑
i=1

(πi(x)− πi(y))A(gi)(x, y).

If now x ∼I,n y then by definition of ∼I,n the righthand side is equivalent to zero,
hence so is the left hand side.

The statement about the underlying R-algebras follows by construction. �

36. Definition. We call a C∞-ring finitely generated if it is of the form C∞(Rn)/I
for some ideal I. Such a C∞-ring is said to be finitely presented if I is a finitely
generated ideal.

3.1.1 Weil algebras and infinitesimals

The ring of dual numbers k[X]/(X2) plays an important role in algebraic geom-
etry. It has only one prime ideal and its spectrum therefore has only one point.
It is said that algebraic geometers view its spectrum Spec(k[X]/(X2)) as a point
with a small arrow sticking out. There is a way to make this precise, namely by
expressing things in categorial logic.

Indeed, finitely presented k-algebras (equiped with the structure of a site, see [21])
are the building blocks of a topos. The embedding of the category of finitely pre-
sented k-algebras into the Zariski topos gives a way to talk about the opposites of
k-algebras using the full power of intuitionistic higher order logic2. But this is a
bit of an overkill for our purposes. It will suffice to stay in the category of schemes
over k.

The functor Spec : k-algop → Sch(k) has a left adjoint, and therefore Spec pre-
serves limits. This implies that the image of a colimit in k-alg is a limit in Sch(k).
Now the following diagram is easily seen to be a coequalizer:

k[X]
X 7→X2

//

X 7→0
//k[X] //k[X]/(X2).

Therefore the image under Spec

Spec(k[X]/(X2)) //A1
k

x 7→x2
//

x7→0
//A1
k

is an equalizer. In categorial logic we express this by saying that the monomor-
phism Spec(k[X]/(X2))→ A1

k is isomorphic to the subobject {x ∈ A1
k|x2 = 0} of

2This is a rather vague statement, I refer to the sequent calculus that can be found in [14].
This in contrast to, for example, Martin-Löf’s conception of intuitionistic logic.
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A1
k. If we now call elements infinitesimally small when their square is zero we see

that indeed Spec(k[X]/(X2)) is (up to isomorphism) the object of infinitesimals
in A1

k.

37. Proposition. Let k be a natural number and I ⊆ R[x1, ..., xn] be an ideal con-
taining all monomials of degree k. Then there is a unique C∞-ring A with underly-
ing R-algebra equal to A := R[x1, ..., xn]/I. There is an isomorphism of C∞-rings
A→ C∞(Rn)/〈I〉 induced by the homomorphism of rings R[x1, ..., xn] ↪→ C∞(R)
sending xi 7→ πi.

Proof: The pivot of this proof is once again theorem 34. We first prove unique-
ness of A. Let f : Rn → R be a smooth function. Is its action on an n-tuple of
polynomials p = ([p1], ..., [pn]) fixed?

Write c(pi) for the constant coëfficient of pi. Applying theorem 34 to f around
(c(p1), ..., c(pn)) up to degree k, we obtain A(f)(p) =

∑
τ∈T

(
k∏
i=1

(
1
τi!

([pi]− [c(pi)])
τi

)
·A
(
∂τ1

∂x1
· · · ∂

τk

∂xτkk
f

)
(c(p1), ..., c(pn))

)

+
∑
σ∈S

(
k∏
i=1

([pi]− [c(pi)])
σi

)
· A(gσ)([pi] − [c(pi)]).

The second term of this formula vanishes by assumption on I, and we obtain an
expression for the action of f .

To prove the existence of A we need only show that the induced homomorphism
of rings A→ C∞(Rn)/〈I〉 is an isomorphism. Apply theorem 34 again to see that
any function f ∈ C∞(Rn) is equivalent modulo 〈I〉 to the function

x 7→
∑
τ∈T

(
k∏
i=1

(
1
τi!
xτii

)
∂τ1

∂xτ11

· · · ∂
τk

∂xτkk
f
∣∣∣
p

)
,

which is the image of the obvious polynomial. Use this polynomial to define a two
sided inverse to the induced map. �

38. Definition. A Weil algebra is a C∞-ring who’s underlying R-algebra is iso-
morphic to some R[x1, ..., xn]/I where for some k all monomials of degree k are in
I.

For some characterisations of Weil algebras, see [18] Theorem I.3.17. Weil algebras
are used extensively in the section on the infinitesimal path ∞-groupoid.

3.2 The tangent category

39. Definition. Let C be a category with finite pullbacks. For an object C ∈ ob C
write Ab(C/C) for the category of abelian group objects in the category over C.
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We define TC ; an object is an object in Ab(C/C) for some C. If X ∈ Ab(A) and
Y ∈ Ab(B) a morphism X → Y is a pair (f, φ) with f : A→ B an arrow in C and
φ : X → f∗Y an arrow in Ab(C/A).

40. Definition. We define a category Mod of modules over commutative rings
with multiplicative unit. As objects, take all modules over such rings. If M is an
R-module and N is an S-module then a morphism M → N is a pair (f, φ) of a
ring homomorphism f : R → S and an R-linear map φ : M → Nf , where Nf is
the R-module with structure map R→ S → EndAb(N).

41. Proposition. Mod ' TRing.

Proof: We construct a functor F : Mod → TRing and show that it is full, faithful
and surjective on objects.

As for the definition of F , let us first define F0 as follows. If M is an R-module
then R × M is an abelian group that can be given the structure of a ring by
(r0,m0)(r1,m1) = (r0r1, r0m1 + r1m0). The projection πR : R ×M → R can
be equiped with an abelian group structure in Ring/R by pulling back the group
structure in Set of M along R → 1; one needs only check that this structure is
in fact in Ab(Ring/R), i.e. that the pullback of the arrows in Set become arrows
in Ring. This defines F on objects. If M is an R-module and N an S-module
and (f, φ) : M → N is an arrow in Mod then take F (f, φ) to be (f, φ′), where
φ′ : F0(M)→ f∗(F0(N)) : (r,m) 7→ (r, φ(m)).

It is clear that F is full and faithful. Indeed, for M a module over R and N a
module over S the inverse of FM,N is given by sending (f, φ′) 7→ (f, π ◦ φ′), where
π : R×S (S ×N)→ S ×N → N is the projection from the vertex of the pullback
f∗F0(N) followed by the projection S ×N → N .

To show that it is essentially surjective on objects, let a : G → R be an abelian
group object in Ring/R (by abuse of notation). Then the kernel of a is an R-
module and φ : G → F0(ker(a)) : g 7→ (a(g), g − η(a(g))) is an isomorphism of
rings over R, where I wrote η for the ‘unit element’ of a. It is easily seen that it
respects the group structure. �

42. Proposition. Let R be a C∞-ring and write U(R) for its underlying ring.
Then the forgetful functor U : Ab(C∞-ring/R) → Ab(Ring/U(R)) is one half of
an equivalence of categories.

Proof: The hardest part of this proof is to show that the functor U is injective on
objects. In the process of doing so we obtain a closed formula for the action of an
abelian group in the overcategory of some R on some smooth function f : Rk → R
in terms of R and the ring structure on the abelian group. The argument is anal-
ogous to the proof of proposition 37.
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Let R be a C∞-ring and let a : M → R be an abelian group in C∞-ring/R. Up
to isomorphism M sends Rn to M(R)n. To see what it does on arrows, note that
the underlying abelian group over the ring U(R) is in the essential image of the
functor Mod → TRing and the ring that is the domain of U(a) is therefore iso-
morphic to R ×M0 (for some module M0) with the ring structure as defined in
the proof of proposition 41. Along this isomorphism we could write (r,m) for a
general element of M(R), but I think it is better to save our formulas from too
many commas and parentheses and write r ⊕m for the same element.

Now let f : Rk → R be a smooth function. We use theorem 34 for n = 2 and p
some point in Rk. We then obtain the formula for f ◦+ : Rk × Rk → R:

f(p+ w) = f(p) +
k∑
l=1

wl · (∂f/∂xl)(p) +
∑

(i,j)∈{1,...,k}2
wi · wj · hij(p, w).

for smooth functions hij . Thus, if r = (ri ⊕ 0; 1 ≤ i ≤ k) and m = (0 ⊕mi; 1 ≤
i ≤ k) then M(f ◦+)(r,m) =

M(f)(r) +
k∑
l=1

ml ·M(∂f/∂xl)(r) +
∑

(i,j)∈k×k

mi ·mj ·M(hij)(y, w).

The last term in this formula is zero, by definition of the ring structure. Since M
is a C∞-ring over R we may replace the occurences of M in other terms on the
right hand side by R to obtain:

M(f)(ri ⊕mi; 1 ≤ i ≤ k) = R(f)(r)⊕
k∑
l=1

ml ·R(∂f/∂xl)(r). (3.1)

This gives the closed formula I promised and injectivity on objects as a corollary.

For essential surjectivity, just check that the above closed formula for M yields
a C∞-ring for each module N over U(R); the abelian group structure is trivially
present and the underlying module is isomorphic to N .

The functor U is obviously faithful and therefore injective on arrows. To show
that U if full, consider, for φ : M → N be a U(R)-linear map the assignment
Rn 7→ φn. Once it is checked that it is natural using the above closed formula one
immediately sees that it is sent by U to φ. �

43. Proposition. TC∞-ring ' C∞-ring×Ring TRing.

Proof: On objects an inverse is provided by proposition 42. As for arrows, let
(α, (f, φ)) : (R,A) → (S,B) be an arrow in the pullback. We seek an arrow
(f ′, φ′) : U−1

R (A)→ U−1
S (B). Take f ′ := α and define φ′R to be φ. We must check

22



a naturality square for g : Rn → R an arbitrary smooth function. This is easy
using the closed formula (3.1) in the proof of proposition 42:

φ

(
R(g)(r)⊕

k∑
l=1

ml ·R(∂f/∂xl)(r)

)
= R(g)(r)⊕

k∑
l=1

φ(ml)·R(∂f/∂xl)(r),

as desired. �

44. Remark. I originally formulated this theorem as an isomorphism for some-
thing called a nasal C∞-ring, a functor preserving products on the nose. Later
I figured out that this is not a useful notion, see [12], and that the theorem was
false3.

45. Corollary. For any simplicial C∞-ring R, the category of abelian groups over
R is isomorphic to the category of abelian groups over the underlying simplicial
ring.

Let me now give some additional motivation for the notion of module given here.
Call an abelian group object over some C∞-ring a module. Then derivations, after
Quillen [20] are sections of the projection onto the C∞-ring, i.e. the underlying
object in the overcategory. One easily computes that for the case of rings this
yields derivations. In the case of C∞-rings we recover Dubuc and Kock’s notion
of module in [6]. In that text a module is just a module over the underlying ring.
A derivation is a linear map d : R→M for some module M over R such that for
every smooth function f : Rn → R we have that

d(R(f)(r1, ..., rn)) =
n∑
i=1

∂f

∂xi
· d(ri).

This coincides with Quillen’s notion of derivation applied to C∞-rings.

Additionally we have that the initial object in the category of C∞(M)-derivations
for some manifold M is isomorphic to the module of De Rham 1-forms, a strong
indication that we should be looking more at C∞-rings and their Quillen deriva-
tions.

3.3 The infinitesimal path ∞-groupoid of a Manifold

The opposite L4 of C∞-rings is what one is really interested in from the point of
view of studying smooth geometry. There are several sites defined on different sub-
categories of the opposite category of finitely generated C∞-rings, and in the next
section we will study one. In the present section the motivation is to show how

3I believe the theorem above is true.
4We deviate from the usage in [18] here, in that book Lop is the category of finitely generated

C∞-rings.
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one can reconstruct the De Rahm complex by definitions in the internal language
of L. We write ` in front of something in C∞-ring to indicate that we consider
it as part of L. If there is something in L that we wish to view as something in
C∞-ring we write C∞ in front of it.

The following definitions are inspired on Kock’s construction, in [15]. His construc-
tion occurs within a smooth topos, and ours does not. However, the construction
given here in this section can be viewed as occuring in one of the topoi of [18] by
the Yoneda embedding (which preserves limits). Reasoning internally in a smooth
topos, as always, Kock proves an internal version ([15] theorem 4.7.1) of theorem
51. Something that is not made fully explicit in Kock’s version, and is natural to
do in our context is to compute the normalized cocomplex of C∞Πinf(M). In this
section ‘normalized cocomplex’ of a cosimplicial abelian group refers to the dual
of the Dold-Puppe correspondence ([5]). The Dold-Puppe correspondence ([1],
section 3, or see [10], III.2) is an equivalence between simplicial abelian groups
and chain complexes of abelian groups. So when I tell the reader to take the
normalized cochain of a cosimplicial C∞-ring I am abusing notation, the reader
should take the normalized cochain complex of the underlying cosimplicial abelian
group.

Write (R,+, ·,−, 0, 1) for the image of the ring (R,+, ·,−, 0, 1) under `C∞(−,R) :
Diff→ L. Since L has all finite limits the following definitions make sense for all
n,m ∈ Z≥0. The object

D(n) :=

{
x ∈ Rn;

n∧
k=1

n∧
l=1

xk · xl = 0

}

I call the object of first order infinitesimals in Rn.

D̃(m,n) :=

{
x ∈ D(n)m;

m∧
k=1

m∧
l=1

xk − xl ∈ D(n)

}
.

If we think of D(n) as the type of infinitesimally small vectors in Rn, then we
may think of D̃(m,n) as the type of m-tuples of vectors that are all infinitesimally
close to the origin and in addition are pairwise infinitesimally close to each other.
Also,

Rn<m> :=

{
x ∈ (Rn)m+1;

m+1∧
k=1

m+1∧
l=1

xk − xl ∈ D(n)

}

can then be thought of as the type of m+ 1 tuples of pairwise infinitesimally close
vectors in Rn.

46. Proposition. For n,m ∈ Z≥0 we have Rn × D̃(m,n) ∼= Rn<m>.
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Proof: Working out the definitions one easily computes that

Rn × D̃(m,n) ∼= `

(
C∞((Rn)m+1,R)/

m+1∑
k=2

m+1∑
l=2

I ◦ (πk − πl) +
m+1∑
k=2

I ◦ πk

)

and that

Rn<m>
∼= `

(
C∞((Rn)m+1,R)/

m+1∑
k=1

m+1∑
l=1

I ◦ (πk − πl)

)
,

where I := 〈πi · πj ; i, j = 1, ..., n〉 ⊆ C∞(Rn,R). The image under `C∞(−,R)
of φ : (Rn)m+1 → (Rn)m+1 : (x1, ..., xm+1) 7→ (x1, x2 − x1, ..., xm+1 − x1) then
induces an isomorphism from Rn<m> to Rn × D̃(m,n). One just checks that the
dual map is onto and has the desired kernel. �

47. Remark. The assignment [m] 7→ Rn<m> has a natural structure of a simpli-
cial locus. We define it by defining a cosimplicial structure on its dual. Write
n := {1, ..., n} and F for the free C∞-ring functor. Then F (∆([0],−) × n) is a
cosimplicial C∞-ring and I : [m] 7→

∑m+1
k=1

∑m+1
l=1 I ◦ (πk − πl) is a cosimplicial

ideal of F (∆([0],−) × n). Write Infn for F (∆([0],−) × n)/I. Then `Infn is a
simplicial locus which in degree [m] is isomorphic to Rn<m>.

48. Definition. For any natural number n ≥ 0 define Πinf(Rn) := `Infn. Choos-
ing5 an open cover for each manifold M such that all covering opens and each
intersection of pairs of such opens is diffeomorphic to Rn we express M as a col-
imit of copies of Ui ∼= Rn in the category of manifolds and set

Πinf(M) ∼= colimiΠinf(Ui).

49. Remark. Note that this is, up to isomorphism, independent of the choice of
covering of the manifold. Indeed, in each degree [m] we have colimiΠinf(Ui) ∼=
colimi(Ui × D̃(m,n)) and since D̃(m,n) is a Weil algebra it is exponentiable, by
theorem II.1.13 in [18] we get

Πinf(M) ∼= (colimiUi)× D̃(m,n) ∼= M × D̃(m,n).

50. Remark. The following theorem gives motivation for definition 48. Given
some f ∈ C∞((Rn)m+1,R) we consider the m-form

∑
α:{2,...,m+1}↪→{1,...,n}

∂αf

∂ξα

∣∣∣
(x,0,...,0)

·
m∧
i=1

dπα(i+1),

where the α range over all injections. It induces an isomorphism in degree m from
the normalized chain complex of C∞Πinf(Rn) to the De Rham complex of Rn. If
we cover some M by an atlas and apply this isomorphism locally we obtain an
isomorphism as in the following theorem.

5using a Grothendieck universe argument
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51. Theorem. Let M be a manifold. The normalized cochain complex of the un-
derlying cosimplicial abelian group of C∞(Πinf(−)) is isomorphic to the De Rham
complex of M .

Proof: Our strategy will be to first prove this for M = Rn and then glue the
isomorphism at the end.

Suppose M = Rn. For the purposes of this proof, we use the isomorphism

Ωm(Rn) ∼= C∞Man

(
Rn,

m∧
i=1

(Rn)∗
)
,

where
∧m
i=1 (Rn)∗ denotes the space of alternating tensors.

To compute the normalized cochain complex of C∞Πinf(Rn) we must first analyse
the cofaces, some of whose images we will divide out by. The cosimplicial structure
was obtained from the one on C∞Rn<−> by transport of structure. One checks that
for i ≥ 1 the (i-th) coface map of the corresponding cosimplicial C∞-ring sends
πk to πk if k < i and πk to πk+1 if k ≥ i. The 0-th coface map sends π1 to π1 +π2

and πk to πk+1 for all k > 1. We compute the normalized cochain complex of this
cosimplicial R-module by dividing out C∞(Rn× D̃(m,n)) by the sub-vectorspace
generated by the images of all but the 0-th coface map. To facilitate this procedure
we note that there is an equality of ideals∑m+1

l=2

∑m+1
k=2 I ◦ (πk − πl) +

∑m+1
k=2 I ◦ πk =

〈πi,jπi′,j′ + πi,j′πi′,j ; i, i′ = 2, ...,m+ 1 & j, j′ = 1, ..., n〉

as the reader can check for herself.

Now consider, for [m] ∈ ∆0 the function φ[m] : C∞((Rn)m+1,R) → Ωm(Rn) that
sends f to x 7→

∑
α:{2,...,m+1}↪→{1,...,n}

∂αf

∂ξα

∣∣∣
(x,0,...,0)

·
m∧
i=1

πα(i+1),

where the α : {2, ...,m + 1} ↪→ {1, ..., n} range over injections. Firstly, this is
a well defined R-linear function. Second, the ideal 〈πi,jπi′,j′ + πi,j′πi′,j ; i, i′ =
2, ...,m+1 & j, j′ = 1, ..., n〉 is in the kernel of φ (we omit the subscript [m]). This
one proves by using the definition of wedge product and noting that

x 7→
∂α(f · (πi,jπi′,j′ + πi,j′πi′,j))

∂ξα

∣∣∣
(x,0,...,0)

is fixed under transposition of two of the non-x variables. Also, the images of all
but the 0-th coface map are contained in ker(φ). Indeed, if some function f does
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not depend on the (1 <) i-th (vector valued) variable, then

∂αf

∂ξα

∣∣∣
(x,0,...,0)

will be zero. So this induces a linear map φ from N(C∞(Πinf(Rn)))m to Ωm(Rn).
To go back, take a form ω and send it to the coset of ψ(ω) : (x, y1, ..., ym) 7→
ω(x)(y1, ..., ym).

We must check that ψ(φ(f)) is in the same coset as f . Taking the Taylor expansion
of (y1, ..., ym) 7→ f(x, y1, ..., ym) up to order m+1 around 0 and using Hadamard’s
lemma for the rest term we note that since g · πi,jπi,j′ is in ker(φ) for smooth g
and since all terms of lower degree depend on less than m variables of y1, ..., ym,
the function f is equivalent modulo kerφ, to

(x, y1, ..., ym) 7→
∑

α:{1,...,m}↪→{1,...,n}

∂αf

∂ξα

∣∣∣
(x,0,...,0)

·
m∏
i=1

yi,α(i),

modulo ker(φ). The symmetrization of this map equals ψ(φ(f)). Since for any
smooth g we have g · (πi,jπi′,j′ + πi,j′πi′,j) ∈ ker(φ) we obtain ψ(φ(f)) ∼ f .

Now we verify that φ(ψ(ω)) = ω for any alternating m-form ω. If ω is such a form
then

∂αψ(ω)
∂ξα

∣∣∣
(x,0,...,0)

= ω(x)(e1,α(1), ..., em,α(m)),

where el,k is a standard basisvector of (Rn)m; this can be checked expressing
(y1, ..., ym) 7→ ω(x)(y1, ..., ym) as a linear combination of maps of the form

∏m
i=1 πi,p(i)

with p : {1, ...,m} ↪→ {1, ..., n}. Thus ω is equal to x 7→

(y1, ..., ym) 7→
∑
α

∂αψ(ω)
∂ξα

∣∣∣
(x,0,...,0)

m∏
i=1

yi,α(i).

Its symmetrization is φ(ψ(ω)), but since each ω(x) is an alternating multilinear
map φ(ψ(ω)) = ω.

I now show that φ ◦ d0 ◦ψ = d, where d0 is the 0-th face map and d is the exterior
derivative. Let ω ∈ Ωm(Rn). Then for some {fα ∈ C∞(Rn,R); α : {1, ...,m} ↪→
{1, ..., n}} we have

ω : x 7→
∑
α

(
fα(x) ·

m∧
i=1

πi,α(i)

)
.

Thus, d0(ψ(ω)) =
∑

α

(
fα ◦ (π1 + π2)) ·

∧m
i=1 πi+2,α(i)

)
∼ker(φm+1)

∑
α

(
(fα ◦ (π1 + π2)) ·

m∏
i=1

πi+2,α(i)

)
=: χ.

27



We have φm+1(χ) = φm+1(d0(ψm(ω))). One computes, for β : {2, ...,m + 2} ↪→
{1, ..., n}, that

∂βχ

∂ξβ

∣∣∣
(x,0,...,0)

=
∂fβ′

∂ξβ(2)

∣∣∣
x
,

where β′ : {1, ...,m} ↪→ {1, ..., n} : j 7→ β(j + 2). Consequently,

φm+1(χ) : x 7→
∑

β:{2,...,m+2}↪→{1,...,n}

∂fβ′

∂ξβ(2)

∣∣∣
x
·
m+1∧
i=1

πi,β(i+1) =

∑
α:{1,...,m}↪→{1,...,n}

Dxf ∧
m+1∧
i=2

πi,α(i−1) = d(ω)(x).

This concludes the proof for M = Rn.

For general M all we need to do is show that the linear function φ[m] respects the
charts. This is a straightforward computation using the standard charts on the
m-fold exterior power of the cotangent bundle and using the expression of φ[m]

given in remark 50. �

3.4 Thickened Cartesian spaces and the Spec ` O ad-
junction

In this section we define the site of thickened cartesian spaces and prove that the
Spec ` O adjunction is Quillen with respect to the �Cech local structure on simpli-
cial presheaves. As a corollary, using theorem ?? the adjunction is Quillen to the
hyperlocal model structure. The site we consider is locally connected, and this is
crucial for envisioned applications.

We consider the full subcategory Thk ⊆ L on all loci isomorphic to Rn × lW for
some Weil algebra W . Take the Grothendieck topology generated by the following
notion of coverage:

52. Definition. For some set of arrows γ in Thk with codomain Rn ×W we set
that γ is a covering iff all arrows γi ∈ γ are of the form gi×idW : Rn×W → Rn×W
such that the h−1(gi) form an open cover Rn, any finite intersection of their images
is diffeomorphic to some Rk and all the images have compact closure. Call the
resulting site (Thk,Γ).

53. Theorem. Endow
(
SetThkop)∆op

s
with the model category structure which

is the left Bousfield localization of the projective model category structure at
the set of morphisms K such that for each f ∈ K the following holds. The
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morphism f : U → Rm × `W is a �Cech cover such that there is a coverage
〈fi : `C∞(Ui)× `W → Rm × `W ; i ∈ α〉 for which

f([0]) :
∐
i∈α

h`C∞(Ui)× h`W → Rm × `W

that is induced by h(fi) on the components of the domain. Then Spec is a right
Quillen functor with respect to this model category structure.

Proof: By lemma 29 it suffices to prove that the cohomology of O(f) induces an
isomorphism in cohomology for every f ∈ K since all �Cech covers are split. In
degree 0 follows from the fact that the presheaf O is representable (by R) and
therefore a sheaf. In higher degrees it suffices to prove that O(domf) ∼= 0, since
the cohomology of the codomain is clearly 0.

Showing the higher cohomology groups are zero is small variation (due to the
presence of `W ) on a standard argument. First we rewrite A ∼= O(dom(f)) as
having

An =
∏

I∈αn+1

C∞-ring
(
C∞(R), C∞(∩i∈n+1UI(i))⊗∞W

)
and define the cochain map by transport of structure. Suppose ξ is in the kernel
of the cochain map ∂n : An−1 → An for n > 1. Let 〈ρi; i ∈ α〉 be a partition of
unity subordinate to the covering {Ui; i ∈ α} of Rm. Then the element ζ ∈ An−1

defined by〈
g 7→

∑
i∈α

ξIi(g) · ιC∞(Rm)(ρi); I ∈ αn
〉
,

where Ii means 0 7→ i and j + 1 7→ I(j) and ιC∞(Rm) denotes the inclusion into
the coproduct. One then uses ∂n(ξ) = 0 to conclude that ∂n−1(ζ) is, up to a sign,
equal to ξ. �

We are now in a position to define the∞-stack of infinitesimal paths on a manifold
M . Namely as Spec◦P (Πinf(M)), where P is a chosen fibrant replacement functor.
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Appendix

This appendix is devoted to proving theorem 13. We split the proof in two. In
the first part we prove the model category structure exists and in the second that
it is simplicially enriched.

54. Theorem. Call a morphism of cosimplicial abelian groups a fibration if it is
degreewise a surjection. Say it is a weak equivalence if it induces an isomorphism
in cohomology. Then this gives the structure of a model category on the category
of cosimplicial abelian groups.

It is easy to verify the two-out-of-three axiom and the category of cosimplicial
abelian groups is complete and cocomplete. It is a simple exercise to show that
the classes of fibrations, cofibrations and weak equivalences are stable under taking
retracts. The focus is on the other two axioms. All that follows is part of a proof
of these axioms.
We define, for any n ∈ Z≥0, the cochain complex Z[n] with Z in degree n and 0
everywhere else. Then Sn := ΓZ[n], where Γ is the functor from cochain complexes
to cosimplicial objects given by the Dold-Puppe correspondence. Also set Z[n −
1, n] to have Z in degree n−1 and n, the identity between them, and 0 everywhere
else except Z[−1, 0] := 0. Dn := ΓZ[n− 1, n].

55. Lemma. 0→ Sn and Sn → Dn are cofibrations for all n ∈ Z≥0.

Proof: We prove that Sn → Dn is a cofibration. Since the Dold-Puppe functor
N from cosimplicial objects to cochain complexes sends degreewise surjections
to degreewise surjections ([10], lemma III.2.11.(1)) we need to check that if φ :
A → B is a degreewise surjection between cochain complexes of abelian groups
that induces an isomorphism in cohomology then in any square as below that
commutes, there is a diagonal filler as drawn

Z[n]
f //

��

A

ι

��
Z(n− 1, n) g

//

99t
t

t
t

t
B

.

Analysing this one finds we seek a following lift (for n > 0)

0 //

!!BBBBBBBBB Z
fn

��????????

}}{
{

{
{

gn

///////

��///////
gn−1



��An−1
∂n

A

//

ιn−1

��

An

ιn
��

Bn−1
∂n

B

//Bn

.

This is equivalent to finding an element α of An−1 for which ∂nA(α) = fn(1)
and ιn−1(α) = gn−1(1). Now we know that fn(1) ∈ ker ∂n+1

A and since ι is a
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quasi-isomorphism we have
(
ιn � ker ∂n+1

A

)−1 (im ∂nB) = im ∂nA. Since ιn(fn(1)) =
∂nB(gn−1(1)) this implies that there is some z ∈ An−1 such that ∂nA(z) = fn(1), let z
be such. Then ιn−1(z)− gn−1(1) ∈ ker ∂nB. Therefore, there is some b ∈ Bn−2 and
some a ∈ ker ∂nA such that ιn−1(a)−∂n−1

B (b) = ιn−1(z)−gn−1(1). Since ιn−2 is onto
there is some b′ ∈ An−2 such that ιn−1(a) − ιn−1(∂n−1

A (b′)) = ιn−1(z) − gn−1(1).
Write −a′ := ∂n−1

A (b′) − a. Then ιn−1(z − a′) = ιn−1(z) − ιn−1(a′) = ιn−1(z) −
ιn−1(a) + ιn−1∂

n−1
A (b′) = gn−1(1) and ∂nA(z − a′) = ∂nA(z) = fn(1).

It is left to prove the n = 0 case. In that case we must show that if Z(0)→ A→ B
is zero then Z(0)→ A is already zero. Suppose f0(1) 6= 0. Since ι0(f0(1)) = 0 we
have f0(1) ∼im ∂0 0, but im ∂0 = 0, so the result follows.

Now 0→ Sn. We must find a filler in

An−1

∂n
A //

ιn−1

��

An
∂n+1

A //

ιn

��

An+1

ιn+1

��

0

==||||||||| //

!!BBBBBBBBB Z

??�
�

�
� //

gn ��???????? 0

==|||||||||

!!BBBBBBBBB

Bn−1
∂n

B

//Bn
∂n+1

B

//Bn+1

.

This is equivalent to finding an element a0 ∈ ker ∂n+1
A such that ιn(a0) = gn(1).

By assumption on ι we may take some a′ ∈ An−1 and a ∈ ker ∂n+1
A such that

∂nB(ιn−1(a′))− gn(1) = ιn(a). Take a0 = ∂A(a′)− a. �

56. Lemma. 0→ Dn has, for each n ∈ Z≥0, the left lifting property with respect
to all fibrations.

Proof: We seek fillers in

An−2

ιn−2

��

∂n−1
A //An−1

ιn−1

��

∂n
A //An

ιn

��

∂n+1
A //An+1

ιn+1

��

0

==|||||||||

!!BBBBBBBBB //Z

=={
{

{
{ //

gn−1 !!CCCCCCCC Z

??�
�

�
� //

gn ��???????? 0

==|||||||||

!!BBBBBBBBB

Bn−2
∂n−1

B

//Bn−1
∂n

B

//Bn
∂n+1

B

//Bn+1

.

Upon inspection of this diagram one notices that it is equivalent to prove there is
an element a ∈ An−1 with ιn−1(a) = gn−1(1). There is such an element because
ιn−1 is onto by assumption. �

57. Lemma. A map f : A → B is an acyclic fibration iff it is a fibration and
has the right lifting property with respect to all maps of the form 0 → Sn and
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Sn → Dn.

Proof: One direction (⇒) follows by lemma 55. For the converse, let n ∈ Z≥0.
Then there is always a filler in

0 //

��

A

f

��
Z[n]

1 7→b
//

>>|
|

|
|

B

,

for b ∈ ker ∂n+1
B . Hence im (f � ker ∂n+1

A ) = ker ∂n+1
B , so a forteriori Hn(f) is

onto.

For injectivity suppose a ∈ ker ∂n+1
A is mapped to b ∈ im ∂nB. Let b′ be such that

∂nB(b′) = b and let β : Z(n − 1, n) → B send 1 ∈ Z(n − 1, n)n−1 to b′. Then the
diagram

Z[n] 17→a //

��

A

f
��

Z[n− 1, n]
β

//

::t
t

t
t

t
B

must have a filler, implying that a ∈ im ∂nA. �

58. Lemma. Any map f : A→ B in Ab∆ can be factored as f = qj, where j has
the left lifting property with respect to all fibrations and is a weak equivalence,
and q is a fibration.

Proof:

A
j //

f
((QQQQQQQQQQQQQQQQQQ A

∐(∐
n∈Z≥0

∐
b∈Bn

Dn
)

��
B

;

∐
n∈Z≥0

∐
b∈Bn

Dn is a sum of objects having the left lifting property with respect
to all fibrations, and hence has that lifting property itself. Its cohomology in
degree i is

∐
n∈Z≥0

∐
b∈Bn

H i(Dn) = 0 by proposition V.9.3 in [4]. It is then clear
that j is a quasi-isomorphism. It also enjoys the lifting property, being a pushout
of a morphism having the left lifting property with respect to all fibrations. �

59. Lemma. Any map f : A → B in Ab∆ may be factored f = pi, where p is a
trivial fibration and i a cofibration.

Proof: It suffices, by lemma 58 to prove this for f a fibration. The result in that
case follows from a small object argument using lemmata 55 56 57. �
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60. Lemma. Suppose that the map i : A→ B in Ab∆ is a cofibration and a weak
equivalence. Then i has the left lifting property with respect to all fibrations.

Proof: This is a consequence of lemma 58 . Find a factorisation

A
j //

i ��<<<<<<<< B

q

��
B

as in lemma 58, so that j has the left lifting property with respect to all fibrations
and is a weak equivalence, and q is a fibration. Then q is a trivial fibration, so the
dotted arrow exists making the diagram

A
j //

i
��

B

q

��
B

idB

//

@@�
�

�
�

B

commute. The map i is therefore a retract of j, so i has the desired lifting property.
�

61. Theorem. The model category on cosimplicial abelian groups is simplicially
enriched.

Proof: It remains to show the ‘SM7’ axiom. We must show that for any cofibration
of simplicial sets i : C → C ′ and any fibration j : X → Y of cosimplicial abelian
groups the induces map

k : XC′ → XC ×Y C Y C′

is a fibration of cosimplicial abelian groups, which is acyclic if either i or j is
acyclic. One easily checks that k is a fibration under these circumstances.

For acyclicity we need a lemma. Consider an arbitrary cosimplicial abelian group
A and a weak equivalence i of simplicial sets. I claim that the map Ai is a weak
equivalence. For any L ∈ Set∆op

the cosimplicial abelian group AL is the diagonal
of the bi-cosimplicial abelian group

([m], [n]) 7→
∏

x∈K([m])

A([n]).

The cohomology of this diagonal is naturally isomorphic to its homotopy groups
([25] theorem 8.3.8) which are naturally isomorphic to the cohomology of the
total complex (theorem 8.5.1 in [25]). Since taking the total complex of a dou-
ble complex preserves quasi-isomorphisms and the map induced by i induces a
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quasi-isomorphism on the cochain-complexes associated to the bi-cosimplicial ob-
ject displayed above by the Dold-Puppe correspondence, we may conclude Ai is a
quasi-isomorphism for any A. An analogous argument serves to show that jC

′
is

a quasi-isomorphism.

We now wrap up by noting we have an exact sequence of cosimplicial abelian
groups

0 //XC ×Y C Y C′ //XC ⊕ Y C′
f //Y C //0

where f : (x, y) 7→ jC(x)− Y i(y). This then gives rise to a long exact sequence in
cohomology

· · · → Hp(XC ×Y C Y C′)→ Hp(XC)⊕Hp(Y C′)→

Hp(Y C) → Hp+1(XC ×Y C Y C′) → · · ·

(using that cohomology preserves coproducts [4]). Using the above paragraph,
if i is a weak equivalence the map Hp(XC ×Y C Y C′) → Hp(XC) ⊕ Hp(Y C′)
is an isomorphism onto Hp(XC) and therefore XC ×Y C Y C′ → XC is a weak
equivalence. And if moreover Xi : XC′ → XC is a weak equivalence, then by the
two out of three axiom for weak equivalences, k would also be a weak equivalence.
A similar argument works to prove that if j is a weak equivalence of cosimiplicial
abelian groups then so is k. �
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